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ABSTRACT

Hallucination detection is essential for reliable LLMs. Most existing fact-
checking systems retrieve external knowledge to verify hallucinations. While
effective, these methods are computationally heavy, sensitive to retriever qual-
ity, and reveal little about an LLM inherent fact-checking ability. We propose
an evidence-free claim verification task: identifying factual inaccuracies without
external retrieval. To study this setting, we introduce a comprehensive evalua-
tion framework covering 9 datasets and 18 methods, testing robustness to long-
tail knowledge, claim source variation, multilinguality, and long-form generation.
Our experiments show that traditional uncertainty quantification methods often
lag behind detectors based on internal model representations. Building on this, we
develop a probe-based approach that achieves state-of-the-art results. To sum up,
our setting establishes a new path for hallucination research: enabling lightweight,
scalable, and model-intrinsic detection that can facilitate broader fact-checking,
provide reward signals for training, and be integrated into the generation process.

1 INTRODUCTION

One of the central limitations of Large Language Models (LLMs) is their tendency to hallucinate
— generate facts that are factually incorrect (Huang et al., 2025; Maynez et al., 2020). Such errors
are persistent and systematic: theoretical analyses and empirical studies demonstrate that hallucina-
tions are rooted in the fundamental limits of statistical learning and generative modeling (Xu et al.,
2024). Moreover, they pose significant social risks, undermining the trust and restricting the safe de-
ployment of LLMs in high-stakes domains such as medicine, law, and science (Asgari et al., 2025).
These risks make the development of reliable hallucination detection methods a key research priority
in the foreseeable future (Farquhar et al., 2024).

Recent progress in fact-checking has been driven primarily by retrieval-based pipelines, which
first retrieve evidence from a database and then verify the correctness of a claim against it, as in
FActScore (Min et al., 2023) or SAFE (Wei et al., 2024b). While effective, such methods intro-
duce several challenges: (i) retrieval-based approaches increase latency, as each generation requires
querying external databases; (ii) the quality of retrieval is crucial-noisy or irrelevant results can un-
dermine the entire RAG pipeline and lead to missed or false detections (Cuconasu et al., 2024); (iii)
retrieval-augmented generation (RAG) inherently prioritizes information from the retrieved context,
rather than leveraging the full breadth of the LLM parametric knowledge. As a result, the retrieval-
based hallucination detectors are sensitive both to retrieval errors and the model balancing of external
versus internal knowledge, limiting their scalability and robustness in practice.

By contrast, LLMs already encode substantial factual knowledge in their parameters through large-
scale pretraining on massive and diverse corpora and fine-tuning on targeted datasets. Several studies
demonstrate that LLMs store and retrieve encyclopedic and commonsense facts with remarkable ac-
curacy, allowing them to generate factually correct statements even without explicit external ground-
ing (Wang et al., 2020; Kadavath et al., 2022). This intrinsic competence suggests that hallucination
detection need not always rely on external evidence: LLMs on their own are capable of identifying
factual errors.

Therefore, in this work, we propose an alternative setting: evidence-free claim verification. In this
formulation, the task is to identify whether the claim is true or false directly — without access to
external retrieval. To investigate this setting, we conduct a systematic comparison of 18 methods
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Claim verification
Quito is the capital city of Ecuador.

COVID-19 can be cured in one day.

Niemand ist am Coronavirus gestorben.

TRUE

FALSE

Davvero finiscono nel Mediterraneo 30.000
bottiglie di plastica al minuto?

...
Existing
datasets

CLAIMS

X-Fact, 
AVeriTeC
PopQA ...

LLM

Human

Knowledge base

Figure 1: The task setting of evidence-free claim verification. Claims from any source (human or
LLMs) can be verified without having access to a knowledge base.

across 9 datasets, evaluating different aspects of generalization. We further introduce INTRA, a
probing approach, which achieves SoTA results and demonstrates strong robustness across datasets.

This shift positions hallucination detection as a lightweight, model-intrinsic capability that exposes
what an LLM can reveal about the factuality of its own outputs. We cast the proposed methods
as a factuality-oriented reward models, akin to those used in other domains to guide and evaluate
behavior (Stiennon et al., 2020; Christiano et al., 2017). In this role, the detector can be integrated
directly into the generation process to enhance factuality in downstream tasks, improving reliability
without relying on external retrieval. We release code and models to support future research.1

The contributions of the paper are as follows:

1. We formalize the evidence-free claim verification task, where truthfulness is identified without
external retrieval.

2. We establish a large-scale evaluation schema spanning 9 datasets and 18 methods, designed to
stress-test robustness across long-tail knowledge, claim source variation, multilinguality, and long-
form generation, and use it to provide a systematic analysis that highlights the strengths of internal-
based and verbalized approaches.

3. We propose an internal-based claim verifier INTRA that achieves SoTA performance across
benchmarks and shows strong generalization and robustness.

2 RELATED WORK

Traditional approaches to hallucination detection rely mainly on RAG systems. These systems verify
the output of models by checking them against external knowledge sources (Min et al., 2023; Wei
et al., 2024a; Aushev et al., 2025). FactScore (Min et al., 2023) breaks down the generated text into
atomic facts and then calculates how many of them are actually supported by reliable sources such
as Wikipedia. While this approach works quite well, RAG-based methods have several drawbacks:
they require significant computational resources, their performance strongly depends on retrieval
quality, and they are limited by the coverage of external knowledge bases. These limitations prevent
them from fully utilizing the model’s own parametric knowledge.

To address these limitations, another promising direction has emerged that uses LLM internal repre-
sentations without needing any external retrieval. SAPLMA (Azaria & Mitchell, 2023) showed that
simple linear classifiers trained on hidden layer activations can distinguish true statements from false
ones with 60-80% accuracy. Orgad et al. (2025) found that information about truthfulness tends to
concentrate in specific tokens and layers. Interestingly, models might encode correct answers inter-
nally even when they generate incorrect ones. However, these methods often struggle when applied
to different domains than they were trained on.

A related line of research focuses on uncertainty quantification methods, which try to analyze how
confident a model is. Traditional approaches often mix different types of uncertainty that are not
really related to factuality (Farquhar et al., 2024). Claim Conditioned Probability (CCP) (Fadeeva
et al., 2024) addresses this by separating uncertainty about claim values from uncertainty about
surface forms and shows particularly good performance across different languages. Among recent

1https://anonymous.4open.science/r/HalluDetect-2D44

2

https://anonymous.4open.science/r/HalluDetect-2D44


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

supervised methods, UHead (Shelmanov et al., 2025) uses trainable attention-based heads, while
other approaches rely on token-level Mahalanobis distance (Vazhentsev et al., 2025b).

RAUQ (Vazhentsev et al., 2024) takes a different approach by identifying attention heads that con-
sistently drop their activation when the model generates incorrect information. Additionally, sev-
eral contrastive and self-correction approaches have been proposed. Contrastive methods such as
CCS (Burns et al., 2023) use contrastive learning objectives to learn representations of truthfulness,
while DoLa (Chuang et al., 2024b) improves truthful generation by contrasting different model lay-
ers during inference. Self-correction approaches try to iteratively refine outputs, though detailed
analysis by Kamoi et al. (2024) shows that self-correction without external feedback typically does
not work well. In this context, our factuality detector can be understood as a specialized type of
reward model (Stiennon et al., 2020; Christiano et al., 2017) that focuses on evaluating truthfulness.

3 APPROACH

3.1 TASK DESCRIPTION

We define the task of evidence-free claim verification below. Let a claim be a declarative statement
represented by a sequence of tokens y = y1, . . . , yn. The objective is to produce a truthfulness score
s ∈ [0, 1] that estimates the probability of the claim being factually correct, i.e., s ≈ P (Verified | y).
The verification function f must operate without access to any external knowledge, including web
search results, retrieved documents from a vector database, or any other form of external evidence.
The assessment of truthfulness must be based solely on the parametric knowledge encoded within
the model M and the internal representations it generates when processing the claim y.

Consider the following claim: “The Eiffel Tower is located in Paris.” An evidence-free verifier
must evaluate this statement without querying an external database for the Eiffel Tower’s location.
Instead, it must infer the claim’s veracity by analyzing the model’s internal signals, such as hidden
state activations, attention patterns, or output probabilities that arise when processing the text. The
output would be a single score (e.g., s = 0.98) indicating a high likelihood of the claim being true.

3.2 EXISTING METHODS

Although initially motivated by detecting errors in LLM outputs, hallucination detection methods
are also applicable to verifying claims from any source. Existing approaches to hallucination de-
tection — and by extension claim verification — can be broadly categorized into supervised and
unsupervised approaches, which leverage either output probabilities or internal signals from the
model. Below, we provide an overview of representative baselines from each category.

Unsupervised methods. Uncertainty quantification is a widely used signal for hallucination de-
tection methods, based on the assumption that LLMs are less confident when producing incorrect
information. In this work, we focus on probability– and internal–based methods (Vashurin et al.,
2025). Sampling-based approaches are unsuitable for claim verification without access to both the
input prompt (that produced the claim) and the full generation.

We consider several straightforward uncertainty measures: Sequence Probability (SP), which com-
putes the probability of a generated sequence; Perplexity (PPL), estimating the average inverse
log-likelihood of tokens; and Mean Token Entropy (MTE), which averages the predictive en-
tropy across tokens (Fomicheva et al., 2020). Among state-of-the-art unsupervised measures, we
include Focus (Zhang et al., 2023), which propagates uncertainty from previous tokens via attention
weights; Claim-Conditioned Probability (CCP) (Fadeeva et al., 2024), which conditions on the
type and meaning of the claim to ignore surface-form and “what to talk about” uncertainty; Re-
current Attention-based Uncertainty Quantification (RAUQ) (Vazhentsev et al., 2025a), which
identifies uncertainty-aware attention heads and combines their signals with perplexity; and Atten-
tion Score (Sriramanan et al., 2024), computing the sum of eigenvalues of attention matrices.

Supervised methods. A further category of methods involves training lightweight classifiers on
LLM representations as predictors of factuality. Several representative approaches fall into this cat-
egory. SAPLMA trains a linear probe on hidden states collected from the 16th layer model, which
was identified as the most informative (Azaria & Mitchell, 2023). Contrast-Consistent Search
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(CCS) employs contrastive training with a margin loss over last-layer embeddings, where negatives
are hallucinations and positives are true statements. We adapt this method using a relaxed loss con-
dition (Burns et al., 2023). Mass Mean Probe (MM) is a linear probing technique that learns a
projection defined by the difference of class means in hidden state space (Marks & Tegmark, 2023).
MIND improves upon previous probing methods by optimizing both the selection of embeddings
and the training configuration of the linear model (Su et al., 2024). Sheeps2 is a probing-based
approach that trains lightweight classifiers on hidden states using attention pooling to detect halluci-
nations in grounded generation tasks (CH-Wang et al., 2024). Supervised Average Token Relative
Mahalanobis Distance (SATRMD) adapts Mahalanobis distance by computing token-level dis-
tances across layers and averaging them over tokens to serve as features for a model (Vazhentsev
et al., 2025b). Information Contribution to Residual (ICR) tracks changes in hidden states across
layers by quantifying each module’s contribution to the residual stream (Zhang et al., 2025).

Finally, several methods exploit attention weights. Trainable Attention-based Dependency (TAD)
models conditional dependencies between generation steps, using attention features to estimate the
gap between conditional and unconditional confidence, and propagates uncertainty from earlier to-
kens to detect long-sequence hallucinations efficiently (Vazhentsev et al., 2024). UHead combines
multiple unsupervised uncertainty estimators with a trainable Transformer-based head on top of
the language model and is specifically designed for hallucination detection in long-form genera-
tions (Shelmanov et al., 2025).

3.3 INTRINSIC TRUTHFULNESS ASSESSMENT

Although these methods are effective in specific settings, they face several limitations. First, the per-
formance of supervised methods often degrades in out-of-distribution scenarios (Vazhentsev et al.,
2025b), which are crucial for real-world applications. Second, methods based on hidden states
tend to focus on particular algorithmic features (Zhang et al., 2023; Vazhentsev et al., 2025b), lay-
ers (Azaria & Mitchell, 2023; Su et al., 2024), or tokens (Azaria & Mitchell, 2023), which further
restricts their generalizability. Third, some methods that rely on attention weights (Vazhentsev et al.,
2024; Chuang et al., 2024a; Shelmanov et al., 2025) typically require access to both the input prompt
and the full generation, which limits their applicability in scenarios such as claim verification, where
no prior knowledge of the input is available. To address these limitations, we propose the Intrinsic
Truthfulness Assessment (INTRA) method, which integrates the most effective insights from prior
approaches into a unified and generalizable fact-checking framework.

Token and layer selection. Early attempts at supervised hallucination detection relied either on
sequence-level embeddings – typically formed by averaging token-level hidden states (Su et al.,
2024) – or on the hidden states of the first or last generated token (Azaria & Mitchell, 2023). More
recent work has shown that this assumption does not always hold. Instead, it proposes leveraging all
token-level hidden states, aggregated using token-level uncertainty scores (Vazhentsev et al., 2025b)
or supervised attention pooling (CH-Wang et al., 2024). In our method, we focus on the strong
generalization and relying on fitted token-level uncertainty scores may not be the optimal solution.

We compute a sequence-level embedding using a learnable parameter vector θ for a given sequence
y = y1, y2 . . . yN of length N , with corresponding hidden states hl(yi) for the i−th token from the
l−th layer, following the approach of CH-Wang et al. (2024).

hl(y) =

N∑
i=1

αl,ihl(yi), αl,i =
exp

(
θ⊤hl(yi)

)∑N
k=1 exp (θ

⊤hl(yk))
. (1)

Here, αl,i represents the attention weight assigned to the hidden state of token yi, normalized across
the sequence via a softmax.

Layer-wise truthfulness score. To perform layer-wise claim verification, we apply a linear classi-
fier with learnable weights W on top of the sequence-level embeddings from each layer:

pl(Verified | y) = σ
(
W⊤hl(y)

)
, (2)

2Please note that “Sheeps” is our own convenient adaptation of the method’s name, as CH-Wang et al.
(2024) do not assign an explicit name to their approach in the original paper.
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where σ(·) is the sigmoid function, and pl(Verified | y) represents the probability that the sequence
y is truthful according to layer l. We avoid complicating the training procedure or model archi-
tecture to ensure that the layer-wise scores do not overfit to specific patterns and remain broadly
generalizable. The layer-wise models are trained using the standard cross-entropy loss.

Aggregated truthfulness score. Claim verification probabilities can be computed at various layers
within a model. Azaria & Mitchell (2023); Servedio et al. (2025) show that the optimal layer for this
task can differ depending on the specific generation task. To effectively integrate information across
layers, we follow the approach of Vazhentsev et al. (2025b) and train a regression model on top of
the layer-wise probabilities. However, acknowledging that previous work has shown the first and
last layers to be less effective, we use only the middle layers. We further argue that raw probabilities
are not standardized across layers, which could degrade the performance of the regressor. Therefore,
we apply quantile normalization (Amaratunga & Cabrera, 2001) as q(·) to the probabilities before
using them in the L2 regression:

INTRA(y) =
∑
l∈L

βl · q (pl(Verified | y)) + b, (3)

where βl and b are the learnable weights and bias term, respectively, of the L2 regression model. We
split the entire training dataset into two parts: the first is used to fit the parameters θ and W, while
the second is used to fit βl, l ∈ L and b. We use the layers from the first third to the second third of
the model (e.g., layers 11 to 22 for LLaMA 3.1-8B-Instruct). We present an ablation study with the
various ranges of layers in L in Table 2.

4 EXPERIMENTAL SETUP

Datasets. We study the generalization of hallucination detection across heterogeneous sources and
domains. To ensure robustness and provide a comprehensive evaluation, we validate nine diverse
datasets that collectively test different dimensions of hallucination detection.

A critical aspect of our evaluation is understanding models’ hallucinations across the spectrum of
knowledge popularity. PopQA (Mallen et al., 2023) provides popularity annotations for each en-
tity. Wild Hallucinations (WH) (Zhao et al., 2024) complements this with queries about long-tail
knowledge. For both datasets we construct atomic claims and their labeling, detailed procedure is
described in Appendix A.

Our evaluation also examines generalization across different generation sources and languages. X-
Fact (Gupta & Srikumar, 2021) provides multilingual claims across 25 languages. UHead (Shel-
manov et al., 2025) tests robustness by using claims from long generation made by Mistral 7b
model. Common Claims (CC) (Casper et al., 2023) provides GPT-3-davinci-002 generated
claims with human-annotated labels.

Several datasets leverage structured patterns to provide controlled evaluation scenarios.
Cities (Marks & Tegmark, 2023) uses template-based statements about city locations. CounterFact
(CF) (Meng et al., 2022) similarly provides factual recall statements. Companies (CMP) (Azaria
& Mitchell, 2023) covers diverse factual aspects of organizations including headquarters, activities,
and representatives. AVeriTeC (Schlichtkrull et al., 2023) is a dataset of real-world claims covering
fact-checks by 50 different organizations.

We further apply a filtering procedure to ensure that each claim is both high-quality and self-
contained, i.e., it includes all necessary context to be fact-checked without relying on surrounding
text. Details about datasets and filtering are provided in Appendix C

Baselines. We compare the proposed INTRA method against both the supervised and unsupervised
approaches earlier described in Section 3.2.

Models. We evaluate hallucination detection methods on small open-source models, as they provide
white-box access required for internal approaches, they are cheaper to run, promote privacy, and
democratize research. Moreover, frontier GPT-like closed-source systems increasingly integrate
retrieval into their generation process, making them incompatible with our evidence-free setting.

We use LLaMA 3.1-8B-Instruct as the base model for both probability-based and
embedding-based methods. We train all methods on the split of PopQA, which is described in

5
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Table 1: Performance of hallucination detection methods in the proposed evidence-free setting, mea-
sured by ROC-AUC↑ across nine datasets. Bold values indicate the best-performing method for each
dataset, the second best is underlined. Avg column reports the average score across all datasets, sum-
marizing overall robustness. Datasets represent distinct challenges: PopQA (long-tail knowledge),
AVeriTeC (human-made claims), UHead (cross-model long-form generation), Cities/CC/CMP/CF
(rule-generated claims), WH (long-form generation with long-tail entities), and X-Fact (multilin-
gual claims).

Method long-tail human-made cross-model rule-generated long-form multilingual Avg
PopQA AVeriTeC UHead Cities CC CMP CF WH X-Fact

Unsupervised Methods

SP 78.2 67.4 69.9 95.8 65.0 74.9 70.1 70.0 53.5 71.6
PPL 73.3 57.4 62.4 94.2 72.5 75.0 65.9 59.3 57.6 68.6
MTE 65.9 66.6 60.7 56.8 69.0 64.3 52.5 66.1 61.1 62.6
Att. Score 49.7 59.4 58.6 41.5 42.8 47.8 49.1 58.6 42.7 50.0
RAUQ 65.6 67.3 61.2 57.0 68.4 63.6 52.4 67.3 60.9 62.6
CCP 72.5 65.1 69.1 89.6 65.9 79.3 66.5 69.1 51.3 69.8
Focus 67.3 59.4 58.0 74.2 63.1 66.5 59.8 67.8 55.8 63.5
Verb 72.8 62.9 72.8 98.6 74.3 89.5 75.4 73.8 51.9 74.7

Supervised Methods

UHead 65.7 52.1 71.2 61.6 68.9 66.9 54.5 74.2 52.6 63.1
MM 79.5 63.0 57.4 99.9 67.9 75.1 82.1 56.3 51.6 71.4
CCS 86.6 54.1 66.5 95.9 67.9 77.6 66.2 66.5 54.4 71.1
ICR 74.9 51.0 70.9 58.3 50.7 54.9 51.4 56.5 57.7 58.5
TAD 84.4 56.5 60.1 73.1 65.3 69.6 53.6 70.6 57.8 65.7
SATRMD 81.3 68.3 62.9 86.6 69.9 78.8 60.6 64.3 53.6 69.6
MIND 88.7 66.8 64.5 91.3 70.0 71.2 66.2 65.9 50.5 70.6
Sheeps 88.8 63.6 64.8 98.1 73.4 84.5 72.7 72.1 57.0 75.0
SAPLMA 88.6 62.9 63.5 81.8 70.9 80.6 60.6 67.6 55.0 70.2

INTRA 89.3 66.7 66.4 99.0 75.0 93.0 79.1 73.5 57.1 77.7

detail in Appendix A. For the UHead baseline, we use a model trained following the exact proce-
dures described in the original paper (Shelmanov et al., 2025). Embeddings extraction process and
other technical details are described in Appendix B.

Metrics. We use ROC-AUC and PR-AUC as our primary metrics to evaluate all detection methods.
Both are threshold-insensitive measures: ROC-AUC evaluates the ability to rank regardless of the
decision threshold, while PR-AUC is more sensitive to detecting hallucinations and less strict on
false negatives.

5 RESULTS

Table 1 reports the ROC-AUC scores for hallucination detection in the proposed evidence-free set-
ting in nine datasets. The results using the PR-AUC metric are presented in Table 6 in Appendix D,
where we also include the Verbalized GPT-4.1 scores to provide approximate upper bounds for some
datasets. In our experiments, PopQA is treated as the in-domain dataset, since the supervised meth-
ods are trained on its training split, while all other datasets are considered out-of-domain. The results
highlight clear differences in robustness between the families of methods.

In-domain performance. As expected, most supervised methods significantly outperform unsuper-
vised ones. The only exception is UHead, which is pre-trained but not fine-tuned on PopQA. The
highest ROC-AUC is achieved by the proposed INTRA method, which outperforms the second-best
Sheeps method by 0.5%.

Unsupervised methods. We also found that uncertainty-based approaches, with the exception of
SP, generally underperform compared to other methods. The model’s raw confidence is not always
well aligned with hallucinations on arbitrary inputs, a trend consistent with observations reported in
standard uncertainty quantification studies for LLMs (Vashurin et al., 2025).
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Across evaluated baselines, we identify the Verbalized assessment as a promising direction with
remarkably strong result, that stands out as the best-performing unsupervised approach, which con-
trasts with recent findings on uncertainty quantification (Vashurin et al., 2025). However, it is sig-
nificantly more compute-intensive than all other methods. Unlike the Verbalized approach, which
requires generating multiple tokens to assess the target sequence, other methods complete the task
with a single forward pass. Moreover, it suffers from a very high refusal rate on non-English inputs,
with up to 58% of cases resulting in refusals or similar behavior.

Generalization performance. Several baselines achieve strong results on specific datasets but fail
to generalize across hallucination types. For example, MM performs well on its original benchmark
but fails on long-form generations such as UHead or WH. Similarly, the UHead model leads in WH
and its own dataset, yet lags behind in all other settings. This result illustrates the broader problem
of low generalization capacity in hallucination detection (Levinstein & Herrmann, 2025).

We also observe strong generalization from contrastive objectives, which yield competitive results
in the specific settings and suggest that contrastive training can enhance robustness in this task,
consistent with prior work in other domains (Moskvoretskii et al., 2024).

Finally, our proposed detector, INTRA, addresses these issues by achieving the highest average
performance and demonstrating consistent robustness across datasets. While not always the best-
performing on individual benchmarks, it performs reliably in every setting. By combining token-
level hidden states across layers, it captures rich internal information, which appear crucial for
evidence-free detection, consistent with prior findings (Dombrowski & Corlouer, 2024). Overall,
the proposed INTRA method outperforms the second-best Sheeps method by 2.7% in ROC-AUC
across datasets.

Saturation and contamination. We also find that widely used rule-generated datasets are largely
saturated, with trends diverging from those observed on other benchmarks. As these datasets have
been repeatedly used in prior work (Burns et al., 2023; Marks & Tegmark, 2023), we suspect con-
tamination and overfitting at the method design stage. This is further supported by the MM method,
which performs poorly across all datasets except the one on which it was originally introduced,
indicating overfitting to leaked benchmarks.

Downstream applications. Main results suggest that training the full LLM, particularly with a mix
of uncertainty-based objectives, can be highly effective. This is evidenced by the UHead method,
which ranks first on long-form generation – its original target domain. Moreover, its strong per-
formance and generalization on WH, a dataset constructed with a different model and focused on
long-tail entities, indicate substantial potential for scaling and broader applicability.

6 ANALYSIS

Long-tail performance. Figure 3a presents results stratified by entity popularity. INTRA dom-
inates the performance, indicating that supervised and internal signals enable robust hallucination
detection even for rare entities.

The verbalized detector is strongest for rare entities (0–100 group), but its advantage fades with
increasing popularity. In contrast, SP improves as popularity grows, while both SP and PPL fail on
the rarest entities, revealing their weakness on long-tail knowledge.

Language analysis. Figure 3b shows that no single method dominates across languages. Perplexity
(PPL) performs best for Spanish, German, Arabic, and Tamil, probably reflecting stronger pre-
training coverage and surface-form modeling. INTRA leads in morphologically rich languages such
as Turkish, Georgian, Italian, and Polish, where internal representations better capture structural
variation. CCP is strongest for Romanian, Indonesian, and Serbian, mitigating surface-form and
topical uncertainty in medium-resource settings. Overall, these results highlight that typological
properties and resource availability shape the effectiveness of evidence-free detection methods.

Claim position influence. While metrics assume claim independence, datasets like UHead contain
multiple claims per LLM generation. For WH and UHead, we therefore computed ROC-AUC by
claim position and averaged across generations, shown in Figure 2. There is evidence that hallucina-
tion rates vary with position with prior work shows errors accumulate on later claims (Belém et al.,
2025; Spataru et al., 2024; Wang & Sennrich, 2020).

7
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Figure 3: ROC–AUC splited by popularity and language groups.

Our WH analysis largely confirms this with a U-shaped trend: hallucination rates are high early,
drop in the middle, and rise again toward the end. The methods separate well in the early positions,
but their differences shrink in the middle. Starting around position ≈12, CCP, Verb, and INTRA
show a modest recovery, while SP and PPL remain flat. The UHead dataset shows a similar pattern,
but with a steeper U-shape, likely due to having fewer claims per generation (see Appendix E).

6.1 ABLATION STUDIES

Performance of individual layers. Figure 4 presents the ROC-AUC performance of individual lay-
ers across various out-of-domain datasets compared to the full INTRA method. The results indicate
that, across all tasks, intermediate layers generally yield better performance, consistent with prior
work (Azaria & Mitchell, 2023; Vazhentsev et al., 2025b; Servedio et al., 2025). Although the most
effective layer varies across datasets, the proposed INTRA method achieves performance equal to
or exceeding that of the best individual layer, highlighting the advantage of integrating information
across multiple layers.

Layer selection. Table 2 presents the results of the INTRA method trained on different subsets
of the model’s hidden layers. We evaluate using all layers, the first layers (0–8), the last layers
(24–32), and various ranges of middle layers. These results demonstrate that training only on the
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Figure 4: ROC-AUC↑ performance of individual layers in the INTRA method.

Table 2: Impact of different layer subsets on the performance by ROC-AUC↑ of the proposed
INTRA method. The best method is in bold, the second best is underlined.

Layers PopQA AVeriTeC UHEAD Cities CC CMP CF WH X-Fact Avg
All 89.5 66.4 63.7 98.7 74.2 89.1 73.7 73.3 58.1 76.3
0-8 84.9 59.5 53.0 83.9 62.1 65.4 59.7 64.1 55.2 65.3
24-32 86.7 63.8 61.0 73.2 71.5 70.5 58.4 70.0 57.0 68.0
2-30 89.6 66.2 63.6 98.8 73.8 89.7 74.7 73.1 58.3 76.4
8-24 89.6 66.8 65.3 99.3 74.4 92.0 77.4 73.5 57.6 77.3
11-22 89.3 66.7 66.4 99.0 75.0 93.0 79.1 73.5 57.1 77.7
13-19 88.8 65.4 65.6 99.0 74.9 94.0 81.9 73.1 58.7 77.9
15-17 87.5 63.0 64.8 98.7 73.8 94.1 82.8 72.2 59.8 77.4
16 87.2 58.7 63.9 95.7 71.9 88.9 77.6 70.7 54.9 74.4

first or last layers is generally ineffective for claim verification tasks. In contrast, training on a small
subset of intermediate layers typically yields optimal or near-optimal performance with minimal
variation. Importantly, using a single middle layer performs significantly worse than training on a
set of middle layers, which additionally underscores the importance of integrating information from
multiple layers in a single score.

7 CONCLUSION

We introduced the task of evidence-free claim verification, systematically comparing 18 meth-
ods across nine datasets and proposing the INTRA approach, which achieves state-of-the-art results
and strong generalization. Our experiments show that LLMs encode rich factuality signals in their
internal representations that can be harnessed without retrieval, enabling lightweight and scalable
hallucination detection. Beyond benchmarking, this paradigm opens avenues for integrating truth-
fulness signals directly into the generation process, serving as reward models for alignment or as
monitoring modules in real-world deployments.

Our analyses highlight clear priorities for future work. First, middle layers emerge as especially
informative, suggesting that training should explicitly focus on these representations. Second, cross-
dataset results reveal clear winners: some methods consistently outperform in certain languages and
on claims involving rare entities, showing that detector choice matters and that targeted selection
can yield substantial gains. Finally, incorporating claim position as a structural feature of long
generations offers another promising direction for improving detection.

9
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ETHICAL STATEMENT

This study relies primarily on open-source language models and publicly available datasets. While
we generate a small amount of synthetic data, we apply extensive filtering to ensure quality and to
reduce the risk of inappropriate or harmful content. Nevertheless, as with any model-generated data,
we cannot guarantee the complete absence of problematic outputs.

Our work focuses on analyzing the signals of models for hallucination detection as a first scientific
step. We do not claim that the proposed detectors are fully reliable or suitable for deployment
without further validation. The study should therefore be viewed as exploratory research rather than
a production-ready solution.

Finally, we emphasize that the proposed detectors are not intended for potential malicious uses. All
contributions are released for research purposes only, in accordance with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We make all efforts to ensure the reproducibility of our results. Nearly all methods in this work are
deterministic, with pre-defined hyperparameters specified in the attached code. The full codebase,
together with configuration files and scripts to reproduce experiments, is released as supplementary
material. All datasets used are either publicly available or provided in processed form, with detailed
construction and filtering steps described in Appendix A. With the use of supplementary materials
nearly every experiment presented in the paper can be exactly reproduced.
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A DATA CONSTRUCTION

We study the generalization of hallucination detection across heterogeneous sources and domains.
To ensure robustness and provide a comprehensive evaluation we propose the use of several datasets
as a base for atomic claims:

• PopQA (Mallen et al., 2023): This dataset contains simple rule-based questions annotated with a
measure of popularity. It was designed to balance popular and less popular entities and to ensure
robustness to social and cultural variation. We use it to evaluate model robustness to long-tail
knowledge. For this purpose, we split the dataset into training and test sets by stratifying on
popularity, so that both sets maintain a similar distribution of popular and less popular entities.
To avoid domain adaptation effects, we also ensure that entities and question templates from the
training set do not appear in the test set.
To construct atomic claims, we take the original questions, generate answers with
LLaMA-3.1-8B-Instruct, and assess correctness using INACCURACY (Moskvoretskii
et al., 2025). Each question–answer pair is then converted into an atomic claim with
LLaMA-3.1-70B-Instruct, the hallucination label is defined by answers InAccuracy.
The system prompt was “You convert question-answer pairs into factual claims.” and the few-shot
prompt for a user prompt was as follows:

Converting QA pairs to a Claim Instruction

Convert the question and answer into a factual, declarative English sentence.
Examples:

Q: What sport does Kwak Hee-ju play?
A: Table Tennis → Kwak Hee-ju plays table tennis.

Q: What is the religion of James VI and I?
A: Protestantism → James VI and I confess protestantism.

Q: Who is the father of Sybilla of Normandy?
A: Rollo of Normandy → The father of Sybilla of Normandy is Rollo of Normandy.

As an answer return just the resulting claim.

• AVeriTeC (Schlichtkrull et al., 2023): A human-made fact-checking benchmark with a rigorous
verification protocol. We adopt the validation split and use only the claims (without evidence),
retaining only refuted or supported instances to reduce bias.

• UHead (Shelmanov et al., 2025): An original dataset of questions about popular Wikipedia en-
tities. Atomic claims are extracted with Gemma from long-form generations of a Mistral model,
following the CCP setup (Fadeeva et al., 2024). This dataset tests cross-model robustness, since
claims are generated by a different model, and also challenges robustness to long-form generation.

• Cities (Marks & Tegmark, 2023): a dataset formed of statements from the template “The city
of [city] is in [country]” using a list of world cities. For each city, authors generated
one true statement and one false statement.

• Companies (CMP) (Azaria & Mitchell, 2023): A dataset describing various general information
about popular companies: headquarters location, what they do, well-known representatives etc.

• Common Claims (CC) (Casper et al., 2023): Dataset consists of various statements generated
by GPT-3-davinci-002, labeled by humans as being true, false, or neither. The authors left only
true/false variables and filtered out some facts to balance the dataset.

• CounterFact (CF): Counterfact was introduced by (Meng et al., 2022) and consists of
factual recall statements. The dataset consists of sentences constructed using various pat-
terns: [X] is [Y] citizen. [X] is owned by [Y]. [X] is the capital
of [Y] etc. Authors adapt Counterfact by using statements which form complete sentences
and, for each such statement, using both the true version and a false version given by one of
Counterfact’s suggested false modifications.

• Wild Hallucinations (WH) (Zhao et al., 2024): The original dataset contains 7,917 user queries
assuming long-form generation, covering a diverse set of domains. These queries correspond to
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Table 3: Examples of filtered data. Claims generated by the model in response to the query: “Tell
me facts about Moby, American musician and songwriter.”

Claim Filtered Verification Explanation
Moby was born Richard Melville Hall. No This fact explicitly mentions the

stage name “Moby” and provides
a unique personal detail, his birth
name.

Moby is an American singer-songwriter. No This fact explicitly mentions the en-
tity “Moby” and describes his pro-
fession, directly tying the fact to him.

Moby released his first solo album, Go, in 1991. No This fact explicitly mentions Moby
and provides a specific time frame
for the start of his musical career.

He rose to international fame. Yes The statement is too vague and lacks
a specific entity or individual to
whom it refers.

The album Play came out in 1999. Yes This fact is vague as it doesn’t spec-
ify the artist of the album “Play,”
which could refer to multiple albums
with the same title.

The album was a commercial success. Yes The statement is too vague and could
apply to any album, lacking specific
identification.

real information needs but are not found in Wikipedia, thus representing long-tail knowledge. We
generate answers to these questions with LLaMA-3.1-8B-Instruct, split them into atomic
claims, and validate each claim against the provided evidence using FactScore (Min et al., 2023).
The resulting atomic claims, labeled for hallucination by FactScore, form a dataset aimed at testing
robustness to long-form generation in long-tail knowledge.

• X-Fact (Gupta & Srikumar, 2021): The dataset consists of short statements in 25 languages, each
labeled for hallucination by expert fact-checkers. It provides a multilingual evaluation benchmark
designed to assess both out-of-domain generalization and the capabilities of multilingual models.

B TECHNICAL DETAILS

Since our base model was meta-llama/Llama-3.1-8B-Instruct an instruction-tuned
model, we extracted all claim embeddings using the chat template, with the user prompt set to
‘Generate true statement’ and the assistant content being the claim text itself.

C DATA FILTERING

Due to the lack of context in the task, we had to filter out some claims that could be correct, but
did not meet the criteria. Specifically, each claim should describe a unique characteristic of a single
entity. As shown in Table 3, some data is accurate, but due to the use of pronouns, it is difficult
to verify the accuracy of the information without additional context. Incorrect facts that appear to
be correct in form were not filtered out (for example: Moby’s album ”Go” was released in 1992,
not 1991). For filtering out, we used Llama 3.3 72b Instruct with prompt C and 10-shot
few-shot.
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Table 4: Final validation datasets after filtering claims. Cities, Common Claims, CounterFacts and
Companies were not filtered out, as the claims are fully consistent with the original task.

Dataset Before After % filtered

PopQA 6,974 5,494 21
AVeriTeC 424 349 17
UHead 2,057 921 55
Cities - 1,496 0
Companies (CMP) - 1,200 0
Common Claims (CC) - 4,450 0
CounterFact (CF) - 1,200 0
Wild Hallucinations (WH) 46,605 36,427 21
X-Fact 2,315 1,131 51

Fact Filter Instruction

You are an expert in verifying atomic facts extracted from Wikipedia. Your task is to de-
termine whether a given fact refers exclusively to the specified topic or entity and cannot
reasonably apply to others without direct reference.

Rules:
• The fact must be unique or directly tied to the target entity.
• Generic statements that could apply to many similar entities (e.g., people, places, events)

are not acceptable.
• The entity must be explicitly stated in the fact.
• Whether the fact is true, false, or debatable is not relevant; only specificity matters.
• If the fact clearly names or describes something unique to the topic, it is GOOD.
• If the fact is vague, general, or potentially applies to many, it is BAD.

Output format: Return a brief explanation (1–2 sentences), followed by a semicolon
and then either GOOD or BAD. Example: Mentions a specific architectural
style found only in this city; GOOD

To generate a verbalized classification, we used Llama 3.1 8b instruct and a prompt C. Hyperparame-
ters for generation: temperature=0.3, max tokens=150, few shots=10. To generate
verbalized evaluations, we used Llama 3.1 8b Instruct and a prompt with 10 few-shots hyperparam-
eters for generation. Verbalized evaluation may not be stable between generations, so we set a large
number of few-shots and a low temperature. Besides, we conducted an additional ablation study on
5-seed generation. As we can see from Table 5, the std between generations is low, which proves
the stability of the verbalized approach for claim classification.

Table 5: Results of verbalized classification runs across 5 seeds. Mean scores are reported with
standard deviation.

Dataset PR-AUC ↑ ROC-AUC ↑
PopQA 0.8541 ± 0.0016 0.7276 ± 0.0033
AVeriTeC 0.7585 ± 0.0129 0.6290 ± 0.0261
Cities 0.9743 ± 0.0014 0.9861 ± 0.0006
Companies (CMP) 0.6694 ± 0.0030 0.7431 ± 0.0033
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Verbalized Claim Classification

You are an expert fact-checker with comprehensive knowledge across all domains. Your task
is to determine whether claims are factually TRUE or FALSE based on established facts and
evidence.

Rules:
• Evaluate the factual accuracy of each claim based on verifiable information.
• Consider the claim exactly as written.
• Small errors in dates, numbers, or facts render the claim FALSE.
• If a claim contains multiple parts, all parts must be true for the claim to be TRUE.
• If any part is incorrect, misleading, or inaccurate, classify the claim as FALSE.
• Provide a brief explanation (1–2 sentences) of your reasoning.
• Output format: explanation; followed by either "TRUE" or "FALSE".

D ADDITIONAL EXPERIMENTAL RESULTS

Table 6 presents the results using the PR-AUC metric. We also report the Verbalized GPT-4.1
scores to provide approximate upper bounds for some datasets. While GPT-4.1 is able to outperform
other methods in several cases, it underperforms in specific settings, such as the multilingual X-Fact
dataset due to refusals. Moreover, it requires significantly more computational resources and time,
making it less practical for direct application in many tasks. Overall, INTRA demonstrates highly
robust and consistent performance in PR-AUC, which aligns with the main findings based on ROC-
AUC.

Table 6: PR-AUC↑ Values by Method and Dataset (multiplied by 100). In addition, we have added
Verbalized GPT 4.1 score classification to provide upper bounds for some of the datasets. The best
method is in bold, the second best is underlined.

long-tail human-made cross-modal rule-generated long-form multilingual

Method PopQA AVeriTeC UHead Cities CC CMP CF WH X-Fact Avg

Unsupervised Methods

MSP 89.4 79.6 40.4 94.4 64.1 71.5 66.5 32.0 64.4 66.9
PPL 88.3 74.3 31.5 94.4 71.7 77.3 62.4 21.3 69.4 65.6
MTE 83.7 78.5 30.6 55.2 66.6 61.4 51.6 29.4 73.9 59.0
Att. Score 75.1 75.0 30.6 45.6 44.6 48.0 49.4 22.9 60.9 50.2
RAUQ 83.6 79.1 31.0 55.2 66.2 61.3 51.6 30.6 73.7 59.1
CCP 87.7 78.8 44.8 90.5 65.7 79.0 64.7 32.4 65.0 67.6
Focus 83.5 75.3 32.1 71.0 62.1 63.9 57.0 31.7 68.8 60.6
Verb LLaMA3.1 85.4 75.8 40.5 97.4 66.9 84.3 67.2 32.0 66.0 68.4
Verb GPT-4.1 - 83.4 62.8 - - - - - 71.5 -

Supervised Methods

UHead 84.1 70.7 62.6 58.3 65.2 65.0 53.0 36.5 64.0 60.2
CCS 95.3 59.8 30.9 96.3 62.6 64.1 67.2 67.1 41.4 64.1
ICR 89.5 71.6 47.0 56.2 50.4 45.8 51.2 19.4 58.3 54.4
TAD 94.0 75.4 31.2 72.2 63.1 66.4 52.7 37.8 68.6 62.4
SATRMD 92.3 79.2 32.4 86.6 68.4 76.8 58.1 27.2 68.2 65.5
MIND 95.8 82.0 34.5 90.9 69.8 69.2 61.9 31.9 67.0 67.0
Sheeps 94.9 76.8 35.1 97.8 72.6 83.9 66.9 37.2 69.0 70.5
SAPLMA 96.0 73.9 35.9 80.9 69.2 81.8 57.4 32.7 67.5 66.1

INTRA 96.2 78.6 36.7 99.3 73.5 92.5 71.1 41.8 68.6 73.1
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Figure 5: ROC–AUC on Uhead by claim position. The dashed line shows the fraction of hallucinated
claims at each position; the numbers above it indicate the number of claims at that position.

FUTURE DIRECTIONS

Our study establishes a foundation for evidence-free hallucination detection, and several natural
directions arise for further work:

• Extending to more models. We focus here on LLaMA 3.1-8B-Instruct as a rep-
resentative small, open-source model. Future work can broaden the scope to additional
open models of different sizes and architectures, providing a more systematic view of how
evidence-free detection scales with model capacity and design choices.

• Bridging to evidence-dependent systems. While we emphasize evidence-free methods,
it is important to study how they complement RAG and evidence-dependent detectors.
Joint evaluations could clarify trade-offs in computational cost, latency, and robustness, and
future research might explore hybrid pipelines that combine internal signals with external
retrieval.

• Applications for trust and control. A promising direction is to integrate evidence-free
detectors directly into training or inference pipelines, such as reward signal during align-
ment, filters during generation, or lightweight modules for user-facing fact-checking. Such
applications could help make LLMs not only more accurate but also more transparent and
trustworthy in practice.

20


	Introduction
	Related Work
	Approach
	Task Description
	Existing Methods
	Intrinsic Truthfulness Assessment

	Experimental Setup
	Results
	Analysis
	Ablation Studies

	Conclusion
	Data Construction
	Technical details
	Data Filtering
	Additional Experimental Results
	Uhead claim position analysis

