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ABSTRACT

State-Space Models (SSMs) have emerged as efficient alternatives to transformers
for sequential data tasks, offering linear or near-linear scalability with sequence
length, unlike transformers with quadratic-complexity attention. This makes
SSMs ideal for long-sequence tasks in natural language processing (NLP), vision,
and edge AI applications such as real-time transcription, translation, and contex-
tual search. These applications demand lightweight, high-performance models
for deployment on resource-constrained devices like laptops and PCs. While spe-
cialized accelerators have been proposed for emerging neural networks, designing
new hardware is time-intensive, costly, and impractical for every model. Instead,
optimizing models for existing neural processing units (NPUs) in AI PCs offers
a scalable and efficient solution. Towards this end, we propose XAMBA, the
first framework to enable and optimize SSMs on commercial off-the-shelf (COTS)
state-of-the-art (SOTA) NPUs. Our approach follows a systematic three-step
methodology: (1) enabling SSMs on NPUs, (2) optimizing performance to meet
target Key Performance Indicator (KPI) requirements, and (3) trading accuracy
for additional performance gains. After enabling SSMs on NPUs, XAMBA ad-
dresses key performance bottlenecks with two techniques: CumBA and ReduBA.
These replace sequential CumSum and ReduceSum operations with matrix-based
computations, significantly improving execution speed and memory efficiency. In
addition, ActiBA further enhances performance by mapping computationally ex-
pensive activation functions (e.g., Swish, Softplus) to NPU hardware using piece-
wise linear approximations, reducing latency with minimal accuracy loss. Exper-
imental evaluations on an Intel® Core™ Ultra Series 2 AI PC demonstrate that
XAMBA achieves significant performance improvements, reducing execution la-
tency by up to 4.8× compared to baseline implementation. Our code implemen-
tation is available at this link.

1 INTRODUCTION

SSMs, a classical framework for modeling dynamic systems through first-order differential equa-
tions, have gained prominence in machine learning for their efficiency in handling sequential data.
Unlike transformers, which rely on quadratic-complexity attention mechanisms, SSMs achieve lin-
ear or near-linear scalability with sequence length by leveraging principles from convolutional and
recurrent neural networks Gu et al. (2022). This makes SSMs highly suitable for long-sequence
tasks Azizi et al. (2025) like natural language processing, computer vision, and medicine, where they
match transformers’ modeling capabilities with significantly lower computational overhead. Their
efficiency is particularly critical for edge applications, such as personal assistants and real-time tran-
scription, where SSMs enable transformative AI with reduced resource consumption and improved
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Figure 1: Execution bottlenecks for Mamba and Mamba-2 on Intel® Core™ Ultra Series 2 NPU.
Mamba is limited by sequential DSP execution of Swish (a.k.a. SiLU) and SoftPlus, while Mamba-2
faces CumSum and ReduceSum bottlenecks. Refer A.1 for models’ architectural details.

energy efficiency. Among SSM-based architectures, Mamba Gu & Dao (2024) and Mamba-2 Dao
& Gu (2024) are the most prominent. Mamba introduces algorithmic innovations, such as selec-
tive scan, which efficiently processes sequential data by selectively updating only relevant states.
Mamba-2 further refines this approach with the structured state-space duality (SSD) framework,
which connects SSMs with attention mechanisms, enabling the reuse of transformer optimization
techniques Patro & Agneeswaran (2024). These algorithmic advancements position SSMs as strong
candidates for replacing transformers in resource-constrained environments. While specialized ac-
celerators exist for emerging networks, designing a new hardware is costly and impractical for
every model. Instead, XAMBA repurposes NPUs for SSMs, enabling efficient deployment on ex-
isting hardware. The efficiency of SSMs makes them ideal for deployment on NPUs, specialized
accelerators optimized for data-parallel operations like matrix multiplication. Modern edge proces-
sors, such as AI PCs from Intel, Qualcomm, and AMD, integrate NPUs alongside CPUs and GPUs
to support diverse AI workloads. NPUs, designed for high throughput and energy efficiency, con-
sist of two key components: (1) Multiply-and-accumulate (MAC) Processing Units (MPUs) Raha
et al. (2024), which handle parallelized matrix operations, and (2) Digital Signal Processors (DSPs),
which execute sequential tasks like non-linear activations and cumulative summations. This archi-
tecture makes NPUs ideal for continuous, resource-intensive workloads such as personal assistants,
real-time transcription, and contextual search. Prior work has demonstrated the benefits of deploying
transformer-based models (e.g., Llama, Phi) on NPUs, achieving significant improvements in infer-
ence latency and energy efficiency Fei & Abdelfattah (2024). However, transformers’ quadratic
complexity limits their scalability for long sequences. SSMs, with their linear complexity, offer a
natural fit for NPUs, enabling even greater performance and energy efficiency. Despite this, de-
ploying SSMs on NPUs presents unique challenges. Their sequential computations (e.g., CumSum,
Swish, Softplus) and specialized operators misalign with NPUs’ data-parallel architecture, leading
to inefficient DSP execution, increased memory traffic, and underutilized parallel units. While prior
work has optimized recurrent models like LSTMs on NPUs Wang et al. (2018) and proposed spe-
cialized accelerators like MARCA for SSMs Li et al. (2024), no prior work addresses the challenges
of deploying SSMs on COTS SOTA NPUs. As shown in Figure 1, SSMs face significant bottlenecks
on NPUs. For Mamba, activation functions like Swish and Softplus OpenVINO Documentation
(2024) dominate execution time due to inefficient DSP execution. In Mamba-2, CumSum and Re-
duceSum emerge as critical bottlenecks, exacerbated by poor memory reuse and increased off-chip
traffic. These challenges underscore the need for specialized optimizations to fully leverage SSMs
on NPUs. To address these challenges, we propose XAMBA, the first work to enable and optimize
SSMs on COTS NPUs. XAMBA follows a systematic 3-step methodology: (1) enabling SSMs on
NPUs, (2) optimizing performance to meet target KPI requirements, and (3) trading accuracy for
additional performance gains.

• Optimizing SSM Performance on NPUs: After enabling SSMs on NPUs, XAMBA in-
troduces CumBA and ReduBA to address key bottlenecks in SSM execution on NPUs.
CumBA replaces sequential CumSum operations with matrix multiplication (MatMul) us-
ing a precomputed mask, leveraging the high-frequency MPUs for faster execution. Re-
duBA computes ReduceSum via matrix-vector multiplication (MVM) with a precomputed
vector mask, further reducing latency. Both techniques enhance memory efficiency by
increasing data reuse and reducing SRAM access, while CumBA leverages sparsity in its
mask for additional optimizations using Zero Value Compression (ZVC) and compute skip.

• Trading Accuracy for Performance Gains: XAMBA introduces ActiBA, which maps
computationally expensive activation functions (e.g., Swish, Softplus) onto the NPU’s
Piecewise Linear Unit (PLU) using Configurable Lookup Table (C-LUT) during the drain
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Figure 2: XAMBA: (a) NPU architecture (b) Sequential CumSum and ReduceSum computation on
a DSP. (c) CumBA and ReduBA masks for optimized computations. (d) Sequential execution of
activation functions (Swish/SiLU and SoftPlus) on DSP. (e) ActiBA: Efficient execution of SoftPlus
and Swish activations using C-LUT in PLU.

phase of the previous layer. ActiBA uses piecewise linear approximations to implement
these functions with negligible accuracy loss, avoiding sequential DSP execution and re-
ducing memory access overhead.

• XAMBA achieves significant latency reductions for Mamba and Mamba-2 on an Intel®
Core™ Ultra Series 2 NPU. CumBA reduces execution latency by 2.7×, ReduBA by 1.2×,
and ActiBA by up to 2.6× compared to baseline unoptimized implementation.

2 XAMBA DESIGN METHODOLOGY

Before detailing the design methodology, it is essential first to understand the underlying system
architecture (refer Figure 2). We consider an output-stationary MPU architecture (as shown in Fig-
ure 2(a)) inspired by Raha et al. (2024). Although our case study considers an output-stationary
MPU architecture, the proposed techniques are generic and can be applied to other NPUs without
loss of generality. Step-1: The first step of XAMBA is to enable SSMs on NPUs. Since NPUs
generally support static input shapes, we use a prefill model with a fixed number of input tokens to
generate the hidden states, applying padding for smaller inputs. For subsequent token generation,
we employ a separate model that uses the cached hidden states to ensure efficiency.

2.1 STEP-2: OPTIMIZING SSM PERFORMANCE TO MEET TARGET KPI REQUIREMENTS

CumBA: As highlighted in Figure 1, one of the major bottlenecks in executing Mamba-2 on NPUs
is the CumSum operation. A deeper analysis reveals that Mamba-2 contains three CumSum opera-
tions per block (Figure 5), but the primary bottleneck, denoted as CumSumb, accounts for more
than 99.9% of the total CumSum execution time. This bottleneck arises in step-1 of the SSD frame-
work of Mamba-2 (Listing 1 of Dao & Gu (2024)). Within SSD, the input sequence is split into
blocks, and step 1 computes the intra-chunk output, assuming an initial state of zero. CumSumb,
appearing at the start of this step, computes semi-separable (SS) matrices essential for modeling
long-range dependencies across input segments. The bottleneck stems from the large matrix dimen-
sions associated with CumSumb: In Mamba-2 130M, CumSumb operates on a 256× 256 matrix,
whereas the other CumSum operations in the model involve significantly smaller dimensions (256
and 2 × 2). Figure 2(b) depicts that executing CumSum on NPUs leads to high latency due to its
sequential nature on the DSP. Given an input tensor X ∈ Rm×n, the standard CumSum operation
along the row dimension is expressed as Ci,j =

∑i
k=1 Xk,j for all i ∈ [1,m], j ∈ [1, n]. This
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Figure 3: CumBA: Enhancing memory, bandwidth, and compute efficiency by exploiting CumBA
mask sparsity and two-sided sparsity acceleration in the NPU datapath.

requires m sequential cycles, assuming the DSP has an n-width vector adder. CumSum is pro-
cessed in smaller chunks for higher-dimensional tensors exceeding register file capacity, requiring
frequent on-chip SRAM memory transfers. This increases latency, memory traffic, and bandwidth
consumption, leading to inefficient data reuse and performance degradation.

To address these inefficiencies, XAMBA introduces CumBA, which transforms CumSum into
a MatMul, leveraging the parallel processing capabilities of the NPU’s MPU. Specifically,
CumBA precomputes (at compile-time) a lower triangular mask MCumBA (Figure 2(c)), where
MCumBA(i, j) = 1 if j ≤ i and 0 otherwise. This enables CumSum to be computed as C =
MCumBA ·X. By remapping CumSum to matrix multiplication, CumBA enables parallel execution,
leveraging the MPU’s high-frequency MAC array to perform multiple operations simultaneously. It
improves data reuse by utilizing the MPU’s larger local register files, reducing redundant memory
reads/writes to SRAM compared to DSP-based execution. The MPU processes MatMul in a tiled
manner, further improving data reuse and minimizing costly on-and-off-chip memory transfers.

CumBA memory savings using Zero Value Compression (ZVC): XAMBA applies ZVC Rhu et al.
(2018) to compress the CumBA mask, a lower triangular binary matrix with ∼50% zeros, sig-
nificantly reducing storage and memory traffic (Figure 3). This compression leads to substantial
memory savings, as only non-zero elements are stored. Additionally, modern NPUs utilize sparsity
bitmaps to skip zero-value computations, further improving execution speed and energy efficiency.
While CumBA benefits from ZVC-driven optimizations, the weights in Mamba and Mamba-2 ex-
hibit minimal inherent sparsity, limiting acceleration gains from sparsity-aware execution. As future
work, we plan to explore structured sparsity techniques in SSMs to further enhance NPU efficiency.

ReduBA: As illustrated in Figure 1, another significant bottleneck in the execution of Mamba-2 on
NPUs is the ReduceSum operation. A detailed analysis shows that these bottlenecks originate from
the reduction sum operations present in every step of the SSD framework in Mamba-2 (Listing 1 of
Dao & Gu (2024)). Similar to CumSum, the ReduceSum operation suffers from high latency due
to sequential DSP execution, as illustrated in Figure 2(b). Given an input matrix X ∈ Rm×n, the
ReduceSum along the row dimension is defined as Rj =

∑m
i=1 Xi,j = Cm,j for all j ∈ [1, n].

To mitigate this, XAMBA introduces ReduBA, which reformulates ReduceSum as a matrix-
vector multiplication (MVM) using a precomputed vector mask MReduBA (Figure 2(c)), where
MReduBA(i) = 1 for all i. The ReduceSum operation is then computed as R = MReduBA · X.
ReduBA improves upon CumBA by reusing the ReduBA vector mask MReduBA across all opera-
tions, reducing memory traffic. Unlike CumBA’s matrix-matrix operations, where each computation
fetches a new part of the mask, ReduBA’s matrix-vector multiplication applies the same mask re-
peatedly, minimizing memory accesses and optimizing bandwidth. ReduBA also leverages multiple
MAC units in the MPU and a tiled computation strategy, further enhancing data reuse and reducing
on-chip memory accesses, resulting in lower latency and improved memory efficiency for Reduce-
Sum operations in Mamba-2 on NPUs.

2.2 STEP-3: TRADING ACCURACY FOR ADDITIONAL PERFORMANCE GAINS

ActiBA: As illustrated in Figure 1, two of the most significant bottlenecks in Mamba’s execution
on NPUs are the Swish (a.k.a. SiLU) and Softplus activation functions. They introduce signifi-
cant execution overhead when processed sequentially on the DSP, as depicted in Figure 2(d). The
SiLU function is defined as SiLU(x) = x · σ(x) with σ(x) = 1

1+e−x , while Softplus is given by
Softplus(x) = 1

β log(1 + eβx). Both functions exhibit nonlinearity near the origin but transition to
linear behavior elsewhere, making them suitable for approximation using piecewise linear functions.
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Figure 4: Latency reduction for Mamba and Mamba-2 130M models on Intel® Core™ Ultra Series
2 Intel Corporation (2024a) NPU with XAMBA optimizations (CumBA, ReduBA, and ActiBA).

XAMBA introduces ActiBA, which leverages the Piecewise Linear Unit (PLU) found in modern
NPUs to efficiently map the Swish and Softplus activation functions. The PLU, located within the
Arithmetic Unit (AU) in the MPU’s drain path, integrates a C-LUT, as shown in Figure 2(e). The
C-LUT stores precomputed slopes and intercepts for linear segments, enabling the approximation
f(x) ≈ mkx + ck over intervals [xk, xk+1]. During runtime, the activation function is evaluated
directly using the C-LUT, avoiding sequential DSP execution and significantly reducing latency.
ActiBA also utilizes vertical fusion by performing activation computations during the drain phase,
which eliminates the need for storing and reloading intermediate outputs. This reduces memory ac-
cess overhead and optimizes memory bandwidth usage. The simple linear computations, integrated
into the data drain process, further minimize execution latency. By addressing both computational
and memory inefficiencies, ActiBA drastically lowers end-to-end latency for Mamba-based mod-
els with negligible loss in quality Yang et al. (2019). Increasing the number of linear segments in
the non-linear section of the activation functions can further reduce this loss without significantly
impacting performance Reggiani et al. (2023).

3 EXPERIMENTAL METHODOLOGY

Networks and Datasets: Experiments use pretrained state-space models from HuggingFace, specif-
ically mamba-130m-hf and mamba2-130m-hf, with fixed input tokens of 4. Preprocessing
and Conversion: The models are converted from PyTorch to ONNX. They are then converted
to OpenVINO Intel IR files (compressing weights to FP16 precision) and compiled into a binary
using the OpenVINO NPU compiler. CumBA and ReduBA optimizations are applied during con-
version, and ActiBA is emulated by replacing activation functions with ReLU. Platform: Experi-
ments run on an Intel® Core™ Ultra Series 2 Intel Corporation (2024a) platform (ASUS Zenbook
S 14, 16GB RAM, 256V NPU). Performance Evaluation: Models are evaluated using Open-
VINO’s benchmark app tool, focusing on inference latency, with optimizations (CumBA, Re-
duBA, ActiBA) affecting NPU execution efficiency. All results were collected using public frame-
works (OpenVINO, PyTorch) and are replicable via the provided code (see abstract).

4 RESULTS

We evaluate XAMBA’s effectiveness in reducing inference latency for Mamba-based models. Fig-
ure 4(a) shows the average latency of a single-block Mamba-2 130M model on the Intel® Core™ Ul-
tra Series 2 NPU. The CumBA technique reduces latency by 2.7× over the baseline, while ReduBA
provides a 1.2× reduction. Reduced inference latency directly translates to improved Tokens/second.
Combining CumBA and ReduBA yields a 4.8× reduction, demonstrating the performance gains
of XAMBA. Figure 4(b) presents the normalized inference latency breakdown for the Mamba-2
130M model, comparing the baseline with the optimized CumBA technique. In the baseline, Cum-
Sum operations contribute over 50% of the total latency. CumBA reduces this by transforming
CumSum into matrix multiplication using a precomputed mask, achieving a 2.7× reduction in la-
tency. Figure 4(c) shows the first inference latency breakdown for the Mamba 130M model with
ActiBA optimizations. Using PLU for SoftPlus in a piecewise linear fashion reduces latency by
1.2×. Further reductions (1.8×) are achieved with SiLU, leading to a total 2.6× latency reduction
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Table 1: Quality of XAMBA model variants across benchmarks. Arrows indicate direction of better perfor-
mance. Groups are separated by model size.

Model
LAMBADA

PPL ↓
HellaSwag

ACC ↑
PIQA
ACC ↑

ARC-E
ACC ↑

ARC-C
ACC ↑

OpenbookQA
ACC ↑

Winogrande
ACC ↑

AVG.
ACC ↑

Mamba-130M 16.07 24.23 35.25 51.85 47.98 28.40 64.47 42.03
Mamba-130M-PLU SiLU & Softplus — 25.34 31.83 52.33 47.14 28.20 59.19 40.67
Mamba2-130M 16.79 24.15 35.27 52.80 47.39 30.60 64.91 42.52
Mamba2-130M-PLU SiLU & SoftPlus 16.78 24.15 35.27 52.80 47.43 30.60 64.91 42.53

Mamba-370M 8.14 27.90 46.48 52.09 54.97 30.80 69.48 46.95
Mamba-370M-PLU SiLU & Softplus 8.13 27.99 46.49 52.01 54.92 30.80 69.48 46.95
Mamba2-370M 7.98 26.71 46.94 53.67 54.84 32.40 70.51 47.51
Mamba2-370M-PLU SiLU & SoftPlus 7.98 26.71 46.94 53.83 54.84 32.40 70.51 47.54

Mamba-790M 6.01 29.35 55.07 56.51 61.24 34.20 72.14 51.42
Mamba-790M-PLU SiLU & Softplus 6.02 29.44 55.06 56.35 61.24 34.00 72.14 51.37
Mamba2-780M 5.85 28.50 54.91 56.91 60.98 36.20 72.03 51.59
Mamba2-780M-PLU SiLU & SoftPlus 5.85 28.50 54.92 56.91 61.03 36.20 72.03 51.60

Mamba-1.4B 5.04 32.94 59.11 57.30 65.53 36.40 74.16 54.24
Mamba-1.4B-PLU SiLU & Softplus 5.04 32.59 59.07 57.22 65.45 36.40 74.16 54.15
Mmaba2-1.3B 5.02 33.11 59.94 58.25 64.14 37.80 73.23 54.41
Mmaba2-1.3B-PLU SiLU & SoftPlus 5.02 33.19 59.93 58.33 64.14 37.80 73.23 54.44

Mamba-2.8B 4.23 36.26 66.16 59.98 69.65 39.60 75.24 57.82
Mamba-2.8B-PLU SiLU & Softplus 4.23 36.26 66.16 60.14 69.61 39.60 75.24 57.84
Mmaba2-2.7B 4.09 36.26 66.58 61.72 69.57 38.80 76.39 58.22
Mmaba2-2.7B-PLU SiLU & SoftPlus 4.09 36.26 66.60 61.80 69.61 38.80 76.39 58.24

with negligible quality loss when both SoftPlus and SiLU are mapped to PLU. Table 1 demonstrates
that ActiBA’s hardware-friendly approximations introduce only negligible quality tradeoffs. For the
original Mamba architecture, the largest accuracy drop occurs with the 130M model (42.03% →
40.67%, a 1.36% reduction), while larger models like the 1.4B version show remarkably stable per-
formance (54.24% → 54.15%, just 0.09% difference). The Mamba2 variants exhibit even greater
robustness to approximations—the 130M model’s accuracy remains virtually unchanged (42.52%
→ 42.53%), and interestingly, the 2.7B model shows a slight improvement (58.22% → 58.24%).
These results collectively confirm that ActiBA’s optimizations successfully maintain model quality,
with the maximum observed degradation being well under 1.5% even for the smallest model, while
most variants experience changes of less than 0.1%. We set a KPI target of 50 Tokens/s, following
MobileLLM-125M Liu et al. (2024) (a comparable LLM), to ensure sufficient client-side respon-
siveness. With ActiBA optimizations, the Mamba-130M model’s decoding performance increases
from 100 Tokens/s to 260 Tokens/s, surpassing the 50 Tokens/s KPI target. XAMBA’s optimizations,
demonstrated on the 130M models, extend to larger models and inputs having similar bottlenecks,
enabling comparable or greater speed-ups. While performance gains vary by model size and work-
load, the core principles hold. Ongoing work will further explore scalability and optimization for
larger models.

5 CONCLUSION & FUTURE WORK

This work presents XAMBA, the first framework optimizing SSMs on COTS NPUs, removing the
need for specialized accelerators. XAMBA mitigates key bottlenecks in SSMs like CumSum, Re-
duceSum, and activations using ActiBA, CumBA, and ReduBA, transforming sequential operations
into parallel computations. These optimizations improve latency, throughput (Tokens/s), and mem-
ory efficiency. Future work will extend XAMBA to other models, explore compression, and develop
dynamic optimizations for broader hardware platforms.
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A APPENDIX

A.1 MAMBA VS. MAMBA-2

This section presents a comparative analysis of the Mamba Gu & Dao (2024) and Mamba-2 Dao
& Gu (2024) architectures, focusing on their structural and operational distinctions. Fig. 5 com-
pares the architectures and operations of the Mamba and Mamba-2 blocks, highlighting their struc-
tural and computational differences. Mamba-1 focuses on leveraging structured state-space models
(SSMs) for long-range sequence modeling through memory initialization using a high-order poly-
nomial projection operator (HiPPO) Gu et al. (2020), a selection mechanism, and hardware-aware
computing. It employs a sequential processing structure where linear projections are applied to the
input sequence and state-space parameters [A,B,C] in stages, with selective scanning through the
SSM unit to map inputs X to outputs Y . The Mamba-1 block relies on skip connections to reuse
features and mitigate performance degradation during training. Mamba-2 simplifies this design by
introducing the structured state-space duality (SSD) framework, which connects SSM and attention
mechanisms. Instead of sequential linear projections, the SSD layer processes [X,A,B,C] simul-
taneously using a single projection, akin to generating Q,K, V in standard attention mechanisms.
This reduces computational overhead and accelerates processing. Additionally, Mamba-2 adds a
normalization layer after the skip connection to improve training stability.

Fig. 5 also highlights the operator OpenVINO Documentation (2024) differences between Mamba
and Mamba-2, emphasizing the trade-offs in performance on Intel® AI PCs Intel Corpora-
tion (2024a) Intel Corporation (2024b). Mamba-2 introduces new operators like CumSum and
ReduceSum, while reducing gather operations (from 18 to 7). However, computationally expen-
sive operations such as power and sqrt increase, and data-parallel operations critical for DPUs,
like MatMul (reduced from 8 to 2) and Add (from 11 to 10), are decreased. These changes nega-
tively impact Mamba-2’s performance on Intel® AI PCs, as it shifts away from hardware-optimized
operations. Despite structural simplifications through its SSD framework, Mamba-2 performs worse
than Mamba on AI PCs due to increased reliance on less hardware-efficient operators.

OP type Num. OPs
Const 66

Convert 16
Gather 18
Power 2

ReduceMean 2
Add 11
Sqrt 2

Divide 3
Multiply 11
MatMul 8

Transpose 2
ShapeOf 1

Slice 3

GroupConvolution 1
Swish 2

VariadicSplit 1
SoftPlus 1

Unsqueeze 11
Exp 1

Concat 1

OP type Num. OPs
Const 149

Convert 26
Gather 7
Power 3

ReduceMean 3
Add 10
Sqrt 3

Divide 3
Multiply 15
MatMul 2

Slice 9
Transpose 11

GroupConvolution 1
Swish 2

VariadicSplit 1
Reshape 9

Tile 2
Pad 6

Unsqueeze 24

ReduceSum 6
SoftPlus 1
Clamp 1

ShapeOf 5
Broadcast 7

Range 6
LessEqual 4

Select 10

LogicalNot 4
Concat 3
Equal 2

CumSum 3
Exp 4

Subtract 1

Mamba Block

Mamba Mamba-2

Mamba-2 Block

Figure 5: Mamba Gu & Dao (2024) vs. Mamba-2 Dao & Gu (2024) showcasing structural dif-
ferences and operational trade-offs. Mamba-2 simplifies the design but suffers from decreased
performance on Intel® AI PCs Intel Corporation (2024a) Intel Corporation (2024b) due to less
hardware-efficient operations.
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