
Targeted Uncertainty Reduction in Robust MDPs

Uri Gadot
Technion

Kaixin Wang
Technion

Esther Derman
Mila - Quebec AI Institute

Navdeep Kumar
Technion

Kfir Levy
Technion

Shie Mannor
Technion

Abstract

Robust Markov decision processes (MDPs) provide a practical framework for gen-
eralizing trained agents to new environments. There, the objective is to maximize
performance under the worst model of a given uncertainty set. By construction,
this raises a performance-robustness dilemma: accounting for too large uncertainty
yields guarantees against larger disturbances, whilst too small uncertainty may
result in over-sensitivity to model misspecification. In this work, we introduce an
online method that addresses the conservativeness of robust MDPs by strategically
contracting the uncertainty set. First, we explicitly formulate the gradient of the
robust return with respect to the uncertainty radius. This gradient derivation enables
us to prioritize efforts in reducing uncertainty and leads us to interesting findings on
the relation between the robust return and the uncertainty set. Second, we present
a sampling-based algorithm aimed at enhancing our uncertainty estimation with
respect to the robust return. Third, we illustrate the effectiveness of our algorithm
within a tabular environment.

1 Introduction

The Markov Decision Process (MDP) model provides methodology to interact with a given envi-
ronment and learn an optimal policy that maximizes the cumulative discounted reward [14]. In
many cases, the environment is unknown or partially known which can cause the deterioration of the
performance of the policy [11]. To alleviate this issue, robust MDP (RMDP) framework consider a
set of possible environments (the uncertainty set) instead of a single environment, and maximize the
robust performance [1, 4, 6]. The robust performance of a policy is it’s worst performance over all of
the environment within the uncertainty set. Robust MDPs are not only resilient to the perturbation of
the environment but were also shown to have better generalization [18]. Unfortunately, robust MDPs
are NP-Hard for general uncertainty sets, hence the uncertainty set is assumed to be s-rectangular and
convex in order to make the problem tractable [17]. An uncertainty set is called s-rectangular (resp.
sa rectangular) if it can be decomposed as the Cartesian product of states (resp. states and actions).

There is a plethora of work on the topic [12, 6, 17, 1, 10] including the most recent works [15, 8, 16, 7]
that effectively exploits robustness-regularizer equivalence [3]. All these works consider a fixed
uncertainty set, however, a large uncertainty set can result in extremely cautious solution leading to
over-conservativeness. In many situations, such as designing simulators, approximating dynamics,
designing robots etc, we do have some control on the precision of the model parameters. However,
there might be a cost associated with that precision, and obtaining arbitrary precision in the model
parameters might be prohibitively expensive and unnecessary. This necessitates the reduction in
uncertainty in most sensitive areas. To the best of our knowledge, there does not exist any work that
studies the strategic contraction of the uncertainty set in order to reduce the conservativeness while
still enjoying the benefits of robust MDPs.
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To illustrate the significance of addressing uncertainty reduction in RMDPs, imagine the following
scenario in the context of autonomous robotics policy design, where different components of a
robot are manufactured across multiple factories. Due to inherent imperfections in these component
production processes, there exists a degree of uncertainty in the specifications of each part, influenced
by the capabilities of the respective factories. Now, envision a scenario where you have the option to
dispatch a single inspector to one of these factories, leading to improved precision in the delivered
part parameters. Our central inquiry revolves around optimizing the worst-case return: which factory
should you select as the destination for your inspector? Or in more general terms: where should we
invest resources in reducing this uncertainty? That is, uncertainty in some states may be critical to
the robust performance while in others it may be negligible. A natural approach is to look at the
derivative of the robust return with respect to (w.r.t.) the uncertainty set, however, its computation
may be non-trivial.

As is common in the robust MDPs literature, we consider s and sa rectangular uncertainty sets
constrained by Lp norms as in [3, 8, 7, 5] and compute the gradient of robust return w.r.t. uncertainty
radius. Our formulae shed light on the sensitivity of the robust return w.r.t. the uncertainty radius in
different states. We also suggest a sampling algorithm to improve the robust return by reducing the
uncertainty set in the parts that matter more.

2 Preliminaries

2.1 Markov Decision Processes

A Markov decision process (MDP) is a tuple (S,A, γ, µ, P,R) such that S and A are finite state and
action spaces . γ ∈ [0, 1) is a discount factor and µ ∈ ∆S the initial state distribution. Denoting
X := S ×A, the couple (P,R) corresponds to the MDP model with P : X → ∆S being a transition
kernel and R : X → R a reward function. A policy π : S → ∆A maps each state to a probability
distribution over A. For any policy π, Rπ ∈ RS is the expected immediate reward defined as
Rπ(s) := ⟨π(·|s), R(s, ·)⟩A, ∀s ∈ S. We similarly define the stochastic matrix induced by π
as Pπ(s′|s) := ⟨π(·|s), P (s′|s, ·)⟩A, ∀s, s′ ∈ S, and the policy induced occupation measure
dπP := µ⊤(IS − γPπ)−1. The performance measure we aim to maximize is the value function
vπ(P,R) := (IS − γPπ)−1Rπ, or alternatively, the return ρπ(P,R) := ⟨µ, vπ(P,R)⟩S , which can be done
using Bellman operators [13].

2.2 Robust Markov Decision Processes

In a robust MDP setting, we assume that (P,R) ∈ U and aim to maximize the return under the worst
realization from the set. We denote the robust performance of a policy π by ρπU := min(P,R)∈U ρπ(P,R).
It is optimal when it reaches ρ∗U := maxπ ρ

π
U at an optimal robust policy π∗

U ∈ argmaxπ ρ
π
U . When

considering the robust value function vπU := min(P,R)∈U vπ(P,R), we further need to assume that U is
convex and rectangular so that an optimal robust policy realizing v∗U := maxπ v

π
U can be computed

in polynomial time [17]. Specifically, we denote an s (resp. sa)-rectangular uncertainty set by
Us := ×s∈S(Ps,Rs) (resp. Usa := ×(s,a)∈X (P(s,a),R(s,a))). Similarly to non-robust MDPs,
rectangular robust MDPs can be solved through Bellman recursion [6, 17].

The worst kernel Pπ
U and worst reward function Rπ

U under the policy π are defined as (Pπ
U , R

π
U ) ∈

argmin(P,R)∈U ρπ(P,R) [12, 6]. The robust occupation measure can be defined w.r.t. worst parameters
as dπU := dπPπ

U
[7].

2.2.1 Ball Constrained Uncertainty set

We consider uncertainty sets that are centered around a nominal model (P0, R0), i.e., of the form U =
(P0, R0) + (P,R) and constrained according to Lp-norm balls [3, 9, 5, 2]. In the (s, a)-rectangular
case, the corresponding uncertainty set is denoted by Usa

p := Rsa
p ×Psa

p = ×(s,a)∈X (P(s,a),R(s,a))
where for any (s, a) ∈ X ,

R(s,a) = {r ∈ R | |r| ≤ αs,a} , and P(s,a) =
{
p ∈ RS | ⟨p,1⟩S = 0, ∥p∥p ≤ βs,a

}
.

Similarly, an s-rectangular Lp uncertainty is denoted by Us
p := ×s∈S(Ps,Rs) where for any s ∈ S,

Rs = {r ∈ RA | ∥r∥p ≤ αs}, and Ps = {p ∈ RX | ⟨p(·, a),1⟩S = 0 ∀a ∈ A, ∥p∥p ≤ βs}.
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3 The gradient of the robust return

In this section, we are interested in deriving the gradient of the robust return ρπU with respect to the
uncertainty level. To do so, we use the robust Bellman evaluation operators of [8][Thm. 1]:

ρπU =
∑

s,a∈X
dπP0

(s, a)
(
R0(s, a)− (απ

s,a + γβπ
s,aκq(v

π
U ))

)
,

where κq(v) := minw∈R∥v − w1∥q, ∀v ∈ RS , dπP (s, a) = dπP (s)π(a|s), and q is the conjugate
value of p. For s-rectangular Lp-constrained uncertainty set U = Us

p , we have:

ρπU =
∑
s

dπP0
(s)

[
Rπ

0 (s)−
(
αs + γβsκq(v

π
U )

)
∥πs∥q

]
from [8][Thm. 2]. When taking the derivative with respect to α and β on both sides, a key challenge
is the dependence of the variance function κ on the robust value function, which in turn depends on α
and β. The theorem below derives such gradient for sa-rectangular Lp constrained uncertainty set
Usa
p .

Theorem 3.1. For sa-rectangular Lp constrained uncertainty set U = Usa
p , and any policy π, the

gradient of the robust return ρπU w.r.t. uncertainty radiuses α, β is given by

∂ρπU
∂βs,a

= −γκq(v
π
U )d

π
U (s, a), and

∂ρπU
∂αs,a

= −dπU (s, a), ∀s, a,

From the above theorem, we can make the following observations: (i) The gradient with respect to
the reward radius differs from that of the kernel radius by a multiplicative constant γκq(v

π
U ) only.

Thus, more variance in the robust value function κq(v
π
U ) leads to a return that is more sensitive to the

kernel than to the reward radius; (ii) The term ∂ρπ
U

∂β is proportional to the discount factor γ, so that
longer horizon leads to a return that is more sensitive to kernel uncertainty than reward uncertainty.
The extreme case of γ = 0 results in no sensitivity to kernel uncertainty.

The result below captures the overall sensitivity of the robust return instead of the local one.
Corollary 3.2. The L1 norm of the gradient robust return for sa-rectangular Lp constrained
uncertainty set U = Usa

p , and for any policy π, is given by

(1− γ)
∥∥∥ ∂ρπU

∂β

∥∥∥
1
= γκq(v

π
U ), and (1− γ)

∥∥∥ ∂ρπU
∂α

∥∥∥
1
= 1.

As the result above illustrates, the norm of the normalized robust return ((1− γ)ρπU ) w.r.t. reward
uncertainty is a scalar constant, and independent of the policy employed. In the case of uncertainty
radius, it depends on the discount factor and the policy through the variance function.

We now generalize the result to the s-rectangular case.
Theorem 3.3. For s-rectangular Lp constrained uncertainty set U = Us

p , the gradient of the robust
return ρπ(U) w.r.t. uncertainty radiuses α, β is given by

∂ρπ(U)
∂β

= γκq(v
π)

∂ρπ(U)
∂α

and
∂ρπ(U)
∂αs

= −dπU (s)+
[
1− ∥πs∥q

]
dπP0

(s), ∀s.

Observe the additional ∥πs∥q appearing here in the s-rectangular case, which establishes additional
dependence of the robust return on the stochasticity of the policy. Stochastic policies lead to less
variation in the return than deterministic policies. This is confirmed in the result below.
Corollary 3.4. The L1 norm of the gradient robust return for s-rectangular Lp constrained uncer-
tainty set U = Us

p , and for any policy π, is given by

(1− γ)
∥∥∥ ∂ρπU

∂β

∥∥∥
1
= γκq(v

π
U )

∑
s

dπP0
(s)∥πs∥q, and (1− γ)

∥∥∥ ∂ρπU
∂α

∥∥∥
1
=

∑
s

dπP0
(s)∥πs∥q.

The norm of the gradient of the robust return is proportional to
∑

s d
π
P0
(s)∥πs∥q, which indicates

that the robust return of a stochastic policy is less sensitive to uncertainty than that of a deterministic
policy.
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4 Uncertainty set reduction

Given the ability to reduce your uncertainty set (e.g. using resources to improve accuracy or sampling
a random variable more times) the question we aim to answer is: "Where should we put our effort?".
Our previous results answer that question, provided that we seek to improve the robust return.
Therefore, we establish the following example to further illustrate the benefits of using the uncertainty
set radius gradients: In this problem, the true transition kernel is drawn from some distribution D,
and we try to learn the expected model Pgoal = Ep∼D[p] but still being robust w.r.t our estimation
error when we plan. We are given a finite number of samples T , and at each iteration t ∈ [1 : T ],
we can choose which part of the kernel we want to sample (e.g., P (·|s, a)). By estimating Pgoal

and construct confidence intervals around it to be used as uncertainty sets, the difference between
our robust return given that uncertainty set and the true return for Pgoal is measured. Our goal is to
reduce this difference as much as possible.

Algorithm 1 Sample w.r.t robust return gradient - sa-rectangular

Input: confidence δ
Initialize: ∀s, a : βs,a = ∞
for t = 1, 2, · · ·T do

Estimate current model: ∀s, a : P̂t(·|s, a) = 1
ns,a

∑ns,a

i=1 Pi(·|s, a)
Estimate uncertainty set (estimation accuracy): βt

s,a = ϵs,a(δ)
Calculate optimal robust policy π∗

Ut
and optimal robust return ρ∗Ut

w.r.t to the uncertainty set.

∀s, a : Calculate the gradient w.r.t the uncertainty set radius
∂ρ∗

Ut

βs,a
.

Choose (st, at) pair for next sampling (e.g. Softmax, Hardmax of
∂ρ∗

Ut

βs,a
).

Sample another transition kernel P (·|st, at) ∼ D
end for

4.1 Experimental results

In a tabular setting, each state-action transition kernel is sampled from a Dirichlet distribution with
some unknown parameters vector Pt(·|s, a) ∼ Dir(θsa) ∈ ∆S . Utilizing Theorems 3.1 and 3.3 we
suggest the sampling mechanism depicted in algorithm 1. To show our mechanism advantages we
compare it with 2 naive sampling methods: Firstly, uniformly selecting the (s, a)-pair to sample from.
Secondly, selecting the (s, a)-pair with the current biggest uncertainty set. The results can be seen in
figure 1, it is clear that our method achieve a lower difference between the true optimal return and the
robust return w.r.t the estimated uncertainty. In addition figure 2 shows the number of samples for
each (s, a) - pair. This figure is an exemplar of the "Not all parameters are born equal" phenomenon
- meaning that it is worth to put effort on reducing the uncertainty in some areas more than others.
The same phenomenon can be seen in figure 3 where some (s, a)-pair uncertainty set does not change
since it’s not relevant for the robust return compared to other pairs.

5 Discussion

Our work is the first to analyze the sensitivity of the robust return with respect to the uncertainty
set. It may help in designing robust planning and learning algorithms with a proper robustness
level. While guided exploration is beyond the scope of this work, our study paves the path toward
better exploration using our sensitivity-based formulae. One limitation of our method is that it
does not directly facilitate policy optimization. Rather, policy optimization is implicitly done in
most applications of interest. Interleaving policy improvement with uncertainty reduction may be
very useful, as far as phasic policy iteration is concerned. Another limitation is our reliance on
rectangularity. Although it is a common assumption in much of the RMDP literature, it may only
serve as an approximation of reality and can by itself lead to overly conservative strategies. As such,
we may consider extending our results to e.g., k-rectangular uncertainty sets [10].
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Figure 1: Optimal robust return w.r.t uncertainty in each iteration. In red - the optimal robust return
for the true expected model

Figure 2: Number of sample at each time-step. Each line represent different (s, a)-pair

Figure 3: Size of uncertainty at each time-step. Each line represent different (s, a)-pair
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A Helper results

We present here a simple mathematical result which is crucially used in deriving the main technical
result of the paper, that is, gradient of robust return.
Proposition A.1. For u, d, k, f ∈ RS , c ∈ R, the solution to

u = −cd− γ⟨k, u⟩f (1)

is given by

u = −cd+
cγ⟨k, d⟩

1 + γ⟨k, f⟩
f (2)

(3)

Proof. We have

u = −cd− γ⟨k, u⟩f. (4)

Now taking both sides dot product with k, we get

⟨k, u⟩ = −c⟨k, d⟩ − γ⟨k, u⟩⟨k, f⟩ (5)

= − c⟨k, d⟩
1 + γ⟨k, f⟩

. (6)

(7)

Putting it back in the original equation, we get

u = −cd− γ⟨k, u⟩f (8)

= −cd+
cγ⟨k, d⟩

1 + γ⟨k, f⟩
f (9)

(10)

B Gradient of robust return

Here we prove main results of the paper, that is, we derive the gradient of the robust return w.r.t.
uncertainty radiuses. We begin with sa-rectangular case.

B.1 sa-rectangular Uncertainty

Proof. (Theorem 3.1) Recall that vπUsa
p

is the fixed point of the robust Bellman operator T π
Usa

p
, so from

proposition ?? (Theorem 3.1 of [9]), we have

vπUsa
p
(s) =

∑
a

π(a|s)
[
−αs,a − γβs,aκq(v

π
Usa

p
) +R0(s, a) + γ

∑
s′

P0(s
′|s, a)vπUsa

p
(s′)

]
.

Using compact notations απ(s) :=
∑

a π(a|s)αs,a, βπ(s) :=
∑

a π(a|s)βs,a, Pπ
0 (s

′|s) :=∑
a π(a|s)P0(s

′|s, a), we have

vπUsa
p
= −απ − γβπκq(v

π
Usa

p
) +Rπ

0 + γPπ
0 v

π
Usa

p
,

=⇒ (I − γPπ
0 )v

π
Usa

p
= −απ − γβπκq(v

π
Usa

p
) +Rπ

0 ,

=⇒ vπUsa
p
=
(
I − γPπ

0

)−1(
−απ − γβπκq(v

π
Usa

p
) +Rπ

0

)
,

=⇒ vπUsa
p
(ŝ) =

∑
s,a

dπP0,ŝ(s, a)
[
R0(s, a)− αs,a − γβs,aκq(v

π
Usa

p
)
]
,
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where dπ(s, a) is shorthand for dπ(s)π(a|s). We wish to take derivative of robust value function
w.r.t. uncertainty radiuses, using the above expression. However, the main challenge is that the robust
value function is present on the both sides of the equation, particularly inside variance term κ. We
mitigate this issue in the case by case.

Reward derivative. Now taking the derivative both sides, we have
∂vπUsa

p
(ŝ)

∂αs,a
=

∂

∂αs,a

∑
s′,a′

dπP0,ŝ(s
′, a′)

[
R0(s

′, a′)− αs′,a′ − γβs′,a′κq(v
π
Usa

p
)
]
, (11)

(The first term has no dependence on αs,a) (12)

= −
∑
s′,a′

dπP0,ŝ(s
′, a′)

∂

∂αs,a

[
αs′,a′ + γβs′,a′κq(v

π
Usa

p
)
]
, (13)

= −dπP0,ŝ(s, a)−
∑
s′,a′

γdπP0,ŝ(s
′, a′)βs′,a′

∂κq(v
π
Usa

p
)

∂αs,a
, (14)

= −dπP0,ŝ(s, a)−
∑
s′,a′

γdπP0,ŝ(s
′, a′)βs′,a′

∑
s”

∂κq(v
π
Usa

p
)

∂vπU (s”)

∂vπUsa
p
(s”)

∂αs,a
. (15)

(16)

Kernel derivative. Similarly, we have
∂vπUsa

p
(ŝ)

∂βs,a
=

∂

∂βs,a

∑
s,a

dπP0,ŝ(s, a)
[
R0(s, a)− αs,a − γβs,aκq(v

π
Usa

p
)
]
, (17)

= − ∂

∂βs,a

[
γ
∑
s,a

dπP0,ŝ(s, a)βs,aκq(v
π
Usa

p
)
]
, (18)

= −γdπP0,ŝ(s, a)κq(v
π
Usa

p
)−

( ∑
s′,a′

γdπP0,ŝ(s
′, a′)βs′,a′

) ∂κq(v
π
U )

∂βs,a
, (19)

= −γdπP0,ŝ(s, a)κq(v
π
Usa

p
)−

( ∑
s′,a′

γdπP0,ŝ(s
′, a′)βs′,a′

) ∑
s”

∂κq(v
π
U )

∂vπUsa
p
(s”)

∂vπUsa
p
(s”)

∂βs,a
.

(20)

Note that we have derivative of value function w.r.t. uncertainty on the both sides of the equations.
To summarize, we have
∂vπUsa

p
(ŝ)

∂αs,a
= −dπP0,ŝ(s, a)−

( ∑
s′,a′

γdπP0,ŝ(s
′, a′)βs′,a′

)( ∑
s”

∂κq(v
π
Usa

p
)

∂vπU (s”)

∂vπUsa
p
(s”)

∂αs,a

)
,

∂vπUsa
p
(ŝ)

∂βs,a
= −γdπP0,ŝ(s, a)κq(v

π
Usa

p
)−

( ∑
s′,a′

γdπP0,ŝ(s
′, a′)βs′,a′

)( ∑
s”

∂κq(v
π
U )

∂vπUsa
p
(s”)

∂vπUsa
p
(s”)

∂βs,a

)
.

For fixed s, a, the above equations are of the form
u = −cd− γ⟨k, u⟩f. (21)

To illustrate, in the last equation (gradient w.r.t. β), we can put u(ŝ) =
∂vπ

U (ŝ)
∂βs,a

, d(ŝ) :=

dπŝ (s, a), f(ŝ) :=
∑

s′,a′ dŝ(s
′, a′)βs′,a′ , k(ŝ) =

∂κq(v
π
U )

∂vπ
U (ŝ) and c = γκq(v

π
Usa

p
). We get the

solution to the above equation, using proposition A.1 as

u = −cd+
cγ⟨k, d⟩

1 + γ⟨k, f⟩
f. (22)

Using this result, we get

∂vπU (ŝ)

∂αs,a
= −dπŝ (s, a) + γ

( ∑
s”

∂κq(v
π
U )

∂vπ
U (s”) d

π
s”(s, a)

1 + γ
∑

s”
∂κq(vπ

U )

∂vπ
U (s”)

∑
s′,a′ dπs”(s

′, a′)βs′,a′

)( ∑
s′,a′

dπŝ (s
′, a′)βs′,a′

)
.
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Taking dot product with initial distribution µ, we get

∂ρπU
∂αs,a

= −dπµ(s, a) + γ

∑
s”

∂κq(v
π
U )

∂vπ
U (s”) d

π
s”(s, a)

1 + γ
∑

s”,s′,a′
∂κq(vπ

U )

∂vπ
U (s”) d

π
s”(s

′, a′)βs′,a′

∑
ŝ,s′,a′

µ(ŝ)dπŝ (s
′, a′)βs′,a′ (23)

= −dπµ(s, a) + γ

∑
s”

∂κq(v
π
U )

∂vπ
U (s”) d

π
s”(s, a)

1 + γ
∑

s”,s′,a′
∂κq(vπ

U )

∂vπ
U (s”) d

π
s”(s

′, a′)βs′,a′

⟨dπµ, β⟩. (24)

Similarly, we have

∂ρπ(U)
∂βs,a

= γκq(v
π
U )

[
−dπµ(s, a) + γ

∑
s”

∂κq(v
π
U )

∂vπ
U (s”) d

π
s”(s, a)

1 + γ
∑

s”,s′,a′
∂κq(vπ

U )

∂vπ
U (s”) d

π
s”(s

′, a′)βs′,a′

⟨dπµ, β⟩
]
. (25)

We get the desired results by using the fact: uπ
U = ∇vκq(v)

∣∣∣
v=vπ

U

from [7] and expression of robust

occupation measure [7]

Special Cases. It is worth noting that for sa-rectangular L1 constrained set Usa
1 , we have the

following simplified expressions

∂ρπ(Usa
1 )

∂αs,a
= −dπµ(s, a) + γ⟨dπµ, β⟩

dπsmax
(s, a)− dπsmin

(s, a)

1 + γ⟨dπsmax
− dπsmin

, β⟩
(26)

∂ρπ(Usa
1 )

∂βs,a
= γκq(v

π
Usa

1
)
[
−dπµ(s, a) + γ⟨dπµ, β⟩

dπsmax
(s, a)− dπsmin

(s, a)

1 + γ⟨dπsmax
− dπsmin

, β⟩
]
. (27)

(28)

where smax ∈ argmaxs v
π
Usa

1
(s), smin ∈ argmins v

π
Usa

1
(s).

To get ∂ρπ(U)
∂αs,a

, ∂ρπ(U)
∂βs,a

, we just need to replace π with optimal robust policy π∗
U in the above expres-

sions.

B.2 S-rectangular Uncertainty

In this, we derive the gradient for s-rectangular case. We techniques used are very similar to sa-case.
Nonetheless, we derive it in detail for sake of completeness.

Proof. ( of Theorem 3.3) Precisely, we assume the uncertainty set U = Usa
p is s-rectangular Lp

constrained. From the above discussion, we have

vπU (ŝ) =
∑
s

dπP0,ŝ(s)
[
Rπ

0 (s)−
(
αs + γβsκq(v

π
U )

)
∥πs∥q

]
. (29)

Now, taking the derivative ρπ(U) w.r.t. αs, we get

∂vπU (ŝ)

∂αs
= − ∂

∂αs

∑
s′

dπŝ (s
′)
(
αs′ + γβs′κq(v

π
U )

)
∥πs′∥q (30)

= −dπŝ (s)∥πs∥q − γ
[ ∑

s′

dπŝ (s
′)βs′∥πs′∥q

] ∂

∂αs
κq(v

π
U ) (31)

= −dπŝ (s)∥πs∥q − γ
[ ∑

s′

dπŝ (s
′)βs′∥πs′∥q

] ∑
s”

∂κq(v
π
U )

∂vπU (s”)

∂vπU (s”)

∂αs
. (32)

9



Similarly, we have

∂vπU (ŝ)

∂βs
= −γdπŝ (s)κq(v

π
U )∥πs∥q−

[ ∑
s′

dπŝ (s
′)βs′∥πs′∥q

] ∑
s”

∂κq(v
π
U )

∂vπU (s”)

∂vπU (s”)

∂βs
. (33)

Again observe that the above equations are of the following form,

u = ce+ γ⟨k, u⟩f (34)

where u =
∂vπ

U
∂·s , e(s

′) := dπs (s
′)∥πs′∥q, f(s′) :=

∑
s” ds′(s)βs′∥πs′∥q, k(s) = ∂κq(v

π
U )

∂vπ
U (s) and c is a

constant. Using its solution, we get

∂vπU (ŝ)

∂αs
= dπŝ (s)∥πs∥q +

∑
s′

γdπŝ (s
′)βs′∥πs′∥q

∑
s”

∂κq(v
π
U )

∂vπU (s”)

∂vπU (s”)

∂αs
, (35)

= −dπŝ (s)∥πs∥q − γ

∑
s”

∂κq(v
π
U )

∂vπ
U (s”) d

π
s”(s)∥πs”∥q

1− γ
∑

s”
∂κq(vπ

U )

∂vπ
U (s”)

∑
s′ d

π
s”(s

′)βs′∥πs′∥q

∑
s′

dπŝ (s
′)βs′∥πs′∥q. (36)

(37)

Taking dot product with µ the both sides, we get

∂ρπ(U)
∂αs

= −dπµ(s)∥πs∥q − γ

∑
s”

∂κq(v
π
U )

∂vπ
U (s”) d

π
s”(s)∥πs”∥q

1− γ
∑

s”
∂κq(vπ

U )

∂vπ
U (s”)

∑
s′ d

π
s”(s

′)βs′∥πs′∥q

∑
s′

dπµ(s
′)βs′∥πs′∥q.

(38)

Similarly, we have

∂ρπ(U)
∂βs

= −γκq(v
π
U )

[
dπµ(s)∥πs∥q (39)

+ γ

∑
s”

∂κq(v
π
U )

∂vπ
U (s”) d

π
s”(s)∥πs”∥q

1− γ
∑

s”
∂κq(vπ

U )

∂vπ
U (s”)

∑
s′ d

π
s”(s

′)βs′∥πs′∥q

∑
s′

dπµ(s
′)βs′∥πs′∥q

]
(40)

= γκq(v
π
U )

∂ρπ(U)
∂αs

. (41)

Again, we get the desired results by using the fact: uπ
U = ∇vκq(v)

∣∣∣
v=vπ

U

from [7] and expression of

robust occupation measure [7].

Observe that here we have factor ∥πs∥q instead of π(a|s) as compared to sa-case.
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