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ABSTRACT

Battery degradation remains a critical challenge in the pursuit of green technologies
and sustainable energy solutions. Despite significant research efforts, predicting
battery cycle life accurately remains difficult due to the complex interplay of
aging and cycling behaviors. To address this challenge, we introduce FlowBatt,
a general-purpose model for battery degradation prediction and synthesis trained
via flow matching. FlowBatt leverages a scalable diffusion transformer (DiT)
backbone, enabling high expressivity and scalability. The model operates as a
probabilistic predictor of entire cycle life trajectories and as a generative model
capable of synthesizing realistic degradation curves for data augmentation. We
demonstrate the advantages of flow-based generative approaches by comparing
models trained with flow matching, diffusion processes, and supervised learning.
FlowBatt achieves results that are comparable to or better than state-of-the-art
performance for the remaining useful life prediction task and provides accurate
and generalizable state-of-health predictions while capturing uncertainty in aging
dynamics. Beyond prediction accuracy, this work advances the development of
foundational and scalable models for battery degradation.

1 INTRODUCTION

1.1 LITHIUM-ION BATTERIES

Lithium-ion (Li-ion) batteries are key technologies in the field of energy storage, with applications
spanning portable electronics and electric vehicles (Blomgren, 2017). The prominence of these
batteries is largely attributable to their high energy density, which enables substantial energy storage
within a compact and lightweight form factor. Moreover, Li-ion batteries demonstrate an extended
cycle life compared to other battery technologies, quantified in terms of charge and discharge cycles,
thereby enhancing their cost-effectiveness for long-term usage. The low self-discharge rate of Li-ion
batteries ensures lower energy loss during periods of inactivity than other battery technologies,
which is a significant advantage (Galeotti et al., 2015; Vetter et al., 2005). Nevertheless, several
challenges remain. Safety continues to be a major issue, as mechanical damage or improper handling
can potentially lead to hazardous events such as thermal runaway (Chombo and Laoonual, 2020).
Furthermore, the economic and environmental implications of Li-ion battery production, recycling,
and disposal present additional complexities that warrant ongoing investigation (Blömeke et al., 2022;
Ginster et al., 2024). One persistent challenge that continues to impact their long-term performance
and reliability is capacity degradation.

1.2 CAPACITY DEGRADATION

The phenomenon of capacity degradation in Li-ion batteries is a multifaceted issue that encompasses
both the effects of aging and the effects of cycling. Aging behavior, which is often referred to as
calendar aging, pertains to the decline in battery performance over time, irrespective of active usage.
Factors such as ambient temperature, state of charge, and storage conditions play a significant role
in this degradation mode. In contrast, cycling behavior, also termed cycle aging, is linked to the
deterioration that batteries experience during charge and discharge cycles. High charge-discharge
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rates and frequent cycling result in the accumulation of irreversible changes within the battery’s
electrochemical structure. This degradation is driven by a number of factors, including the formation
of a solid electrolyte interphase layer, electrolyte decomposition, and the growth of lithium plating
(Broussely et al., 2005; Edge et al., 2021). Both aging and cycling behaviors collectively result in
overall degradation, reducing the battery’s capability to store and deliver electric charge (Rubenbauer
and Henninger, 2017) over its operational lifespan. In addition, the aging of batteries is very individual
depending on, e.g., usage behavior and environmental conditions, which makes a basic understanding
difficult and hinders individual battery management. Despite extensive research, accurately predicting
the rate and extent of capacity loss remains a formidable challenge (O’Kane et al., 2022). Therefore,
advanced modeling techniques, including machine learning, are increasingly being employed to
provide more accurate predictions of the battery degradation.

1.3 MACHINE LEARNING IN BATTERY LIFE PREDICTION

The degradation of a battery can be quantified by using key performance indicators, including the state
of health (SOH) and the remaining useful life (RUL) (Li et al., 2022). The SOH is a measure of the
current capacity of a battery relative to its original capacity, expressed as a percentage, and provides
insight into the extent of capacity degradation (Cui et al., 2022; Ren and Du, 2023). In contrast, the
RUL is a predictive measure that estimates the remaining operational cycles of a battery before it
reaches a defined performance criteria (Li et al., 2023). Methods for battery degradation modeling can
be classified according to Rauf et al. (2022) into four domains: i) physics-based models, ii) empirical
models, iii) data-driven methods (DDMs), and iv) hybrid methods. Among these various domains,
DDMs are emerging as a prominent technique for developing battery degradation models. This is due
to the flexibility and independence from specific model assumptions that these approaches offer. In the
domain of DDMs, machine learning (ML) methods are widely regarded as one of the most effective
approaches for estimating RUL and SOH, due to their ability to address non-linear problems (Rauf
et al., 2022). Since all battery RUL and SOH prediction tasks are effectively regression problems,
supervised learning is the most commonly used approach in ML battery studies.

Recent literature reviews (Li et al., 2022; 2023; Rauf et al., 2022; Ren and Du, 2023; Wang et al.,
2021) indicate that various ML methods are utilized for modeling battery degradation. In the area
of artificial neural networks, shallow neural networks can capture nonlinear relationships among
an arbitrary number of inputs and outputs, however, they are hindered by slow training processes
and a propensity to converge at local minima (Li et al., 2022; Ren and Du, 2023). In contrast,
deep learning algorithms demonstrate superior performance in managing large datasets due to their
specialized architectures. They provide higher accuracy and enhanced generalization capabilities
but incur significant computational costs (Ren and Du, 2023). Techniques such as convolutional
neural networks (CNNs), recurrent neural networks, and long short-term memory (LSTM) networks
are commonly employed in this context (Li et al., 2023; Rauf et al., 2022; Wang et al., 2021).
Additionally, support vector machines achieve a commendable balance between generalization
capability and prediction accuracy. However, they may struggle with scalability on larger datasets
(Ren and Du, 2023). Similarly, relevance vector machines have the disadvantage of requiring
extensive datasets, which results in significant computational complexity. However, they offer the
advantage of high accuracy, robust learning capabilities, and the capacity to generate predictions with
associated probability distributions (Rauf et al., 2022). Lastly, Gaussian process regression (GPR)
methods are advantageous for their ability to quantify the uncertainty of estimated values, which is
particularly valuable in practical applications. Nonetheless, GPR methods typically exhibit lower
efficiency in high-dimensional spaces and can be computationally complex (Li et al., 2022; Ren and
Du, 2023). Another recent approach, with a sole focus on the prediction of the SOH, is presented by
Luo et al. (2023), in which the authors introduce the methodology of diffusion models as a promising
avenue for SOH prediction.

Despite the widespread application of ML models in battery degradation analysis, comparing these
various approaches presents significant challenges. Many studies utilize different datasets, which
are often not publicly available due to confidentiality concerns. To address this issue, BatteryML
was developed by Zhang et al. (2024b), offering a standardized method for data representation
that consolidates and harmonizes all accessible public battery datasets. Additionally, BatteryML
establishes clear benchmarks for predicting RUL and includes a range of models, such as linear
models, tree-based models, and neural networks, tailored for battery degradation prediction. In a
recent study, Zhang et al. (2025) introduced BatLiNet, a CNN-based framework designed to predict
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RUL across diverse ageing conditions. Its distinctive feature is an inter-cell learning mechanism that
predicts lifetime differences between pairs of cells. When combined with conventional single-cell
learning, this approach improves the stability and robustness of RUL predictions.

1.4 CONTRIBUTION TO LITERATURE

Our contribution advances the domain of battery degradation prediction in several aspects. First,
we introduce FlowBatt, a general-purpose generative model trained via flow matching, designed to
predict full state-of-health (SOH) trajectories and synthesize realistic degradation curves. Leveraging
a scalable diffusion transformer (DiT) backbone, FlowBatt captures the stochastic and nonlinear
dynamics of battery aging more effectively than traditional supervised approaches (Section 2). Second,
we demonstrate the benefits of flow-based generative modeling by benchmarking FlowBatt against
diffusion processes and supervised learning methods. Our results show that FlowBatt achieves
competitive performance compared to the state-of-the-art in remaining useful life (RUL) prediction
while providing uncertainty-aware and generalizable SOH forecasts (Section 4). Finally, we establish
FlowBatt as a scalable foundation model for battery degradation, enabling future extensions and
adaptations across diverse energy storage applications (Section 5). All codes and pre-trained models
will be made openly available at: https://github.com/_/FlowBatt.

2 METHODOLOGY

Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) are a flexible family of generative
models that learn to approximate a data distribution through a gradual noising-denoising process.
The forward process is defined as a parameterized Markov chain that progressively corrupts the data
with Gaussian noise until the signal is indistinguishable from random noise. The reverse process,
also known as the denoising or generative process, is learned by the model and gradually removes
noise step by step to reconstruct samples resembling the training data. Training is performed using
a variational objective that optimizes a lower bound on the data likelihood across many diffusion
steps. Once trained, DDPMs can generate diverse, high-quality samples, which has led to widespread
applications in image and audio synthesis (Dhariwal and Nichol, 2021; Ho et al., 2022; Yang et al.,
2024), data augmentation (Luzi et al., 2024), and scientific modeling (Bastek et al., 2024; Fürrutter
et al., 2024; Li et al., 2024; Zhang et al., 2024a).

Flow matching (Lipman et al., 2023; Liu et al., 2023; Albergo and Vanden-Eijnden, 2023) is a
proposed alternative to diffusion training that directly learns continuous-time generative dynam-
ics. Instead of discretizing the forward and reverse processes into thousands of noisy steps as in
DDPMs, flow matching estimates an ordinary differential equation (ODE) that smoothly transports
a base distribution (e.g., Gaussian noise) into the target data distribution. This approach avoids the
stochasticity and step-by-step denoising of DDPMs and enables more efficient training with fewer
discretization steps. Moreover, flow matching naturally admits exact likelihood estimation, making it
both expressive and computationally attractive for high-dimensional scientific data. In this work, we
adopt flow matching to train our generative model of battery degradation.

Transformers have become a powerful backbone for diffusion-based generative models, giving rise to
diffusion transformers (DiTs) (Peebles and Xie, 2023). Unlike convolutional UNet backbones, DiTs
leverage global self-attention to capture long-range dependencies in the data. Diffusion transformers
typically operate on tokenized patches of the input, and use a very powerful conditioning mechanism
based on adaptive layer normalization (Perez et al., 2018) for conditioning on auxiliary information
such as class labels or text encodings. In this work, the auxiliary information corresponds to the
battery’s performance during the early cycle life. Our approach employs DiTs directly on raw data
representations of battery degradation. This design combines the scalability and expressivity of
transformers with the probabilistic training of flow matching to capture the nonlinear, stochastic
dynamics of battery aging.

2.1 BACKGROUND

Denoising diffusion models (DDMs) learn to transform a simple prior distribution, typically a unit
Gaussian N (0, I), into an unknown data distribution q(x) by gradually denoising samples corrupted
with Gaussian noise (Ho et al., 2022). A fixed forward process incrementally adds noise to data
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x0 ∼ q(x) according to a variance schedule, and a neural network is trained to approximate the
reverse process that removes noise step by step. With the standard parameterization suggested in Ho
et al. (2022), the training objective reduces to a denoising score matching loss, where the network
ϵθ(xt, t) predicts the injected Gaussian noise

Lsimple(θ) := Et,x0,ϵ

[
∥ϵt − ϵθ(xt, t)∥2

]
. (1)

For conditional modeling, auxiliary information c can be incorporated into the reverse process by
conditioning the network ϵθ(xt, t, c), often enhanced with classifier-free guidance (Ho and Salimans,
2022). While diffusion models achieve strong generative performance, sampling requires simulating
many reverse steps, which motivates alternative formulations.

Instead of constructing a discrete forward diffusion process, flow matching (Lipman et al., 2023; Liu
et al., 2023) formulates generative modeling as learning a continuous-time transport map between
a tractable prior distribution p(x), typically N (0, I), and the unknown data distribution q(x). The
approach defines a family of interpolant distributions {pt(x)}t∈[0,1] that smoothly connects the prior
p0(x) = p(x) to the target p1(x) = q(x). This interpolation is governed by an ordinary differential
equation (ODE) of the form

dxt

dt
= vθ(xt, t), x0 ∼ p(x), (2)

where vθ is a neural network parameterized vector field trained to approximate the unknown proba-
bility flow that transports samples from prior to data. To obtain a tractable training objective, one
introduces a target vector field defined by the time derivative of a prescribed stochastic interpolant
xt = α(t)x0 + β(t)x1 with (x0,x1) ∼ p(x) × q(x). For example, choosing linear interpolation
α(t) = 1− t, β(t) = t yields

ṽ(xt, t|x0,x1) =
d

dt
[α(t)x0 + β(t)x1] = α̇(t)x0 + β̇(t)x1. (3)

The model vθ(xt, t) is then trained to match this target vector field in expectation:

LFM(θ) := Et,x0∼p(x),x1∼q(x)

[
∥vθ(xt, t)− ṽ(xt, t|x0,x1)∥2

]
. (4)

This training can be interpreted as regressing the dynamics of sample trajectories under the optimal
transport plan that pushes the prior into the data distribution. Once trained, the model generates
samples by integrating the learned ODE

x1 = x0 +

∫ 1

0

vθ(xt, t) dt, x0 ∼ p(x), (5)

which requires significantly fewer steps than simulating the reverse diffusion process. Moreover, flow
matching provides a unifying framework: with appropriate choices of interpolants, it can recover
score-based diffusion models as a special case while also supporting more efficient sampling schemes.
For conditional generation, the conditioning variable c is incorporated directly into the learned vector
field vθ(xt, t, c).

3 ARCHITECTURE

Figure 1 provides an overview of the FlowBatt architecture and its workflow. The top panel depicts
the diffusion-based training stage, where noisy SOH trajectories are progressively denoised through a
stack of DiT blocks conditioned on early-cycle capacity matrices. The bottom panels illustrate the
auxiliary pathway and the generation stage, where the capacity matrix is first encoded by a CNN
into a compact embedding, which is combined with the timestep embedding to modulate the DiT
backbone and generate complete SOH trajectories.

DiT backbone and block design. FlowBatt instantiates a compact Diffusion Transformer (DiT)
for long one-dimensional sequences representing SOH during battery’s cycle life. Given a per-cycle
signal x ∈ RT , we first lift it to a token sequence via a 1×1 convolution giving h0 ∈ RT×d, where
d is the hidden width (number of channels). We add fixed one-dimensional sinusoidal positional
embeddings p ∈ RT×d to preserve temporal order. The core of the network is a stack of N identical
DiT blocks, each following the Transformer paradigm of a pre-normalized residual connection with a
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Figure 1: Schematic view of the model architecture. Adapted and modified from the work by Fürrutter
et al. (2024), with permission from the authors. Modifications include context-specific changes.

multi-head self-attention (MSA) sublayer, followed by a feed-forward multilayer perceptron (MLP)
sublayer. The stack is followed by a final projection layer that applies an adaptive normalization
conditioned on the conditioning vector and then maps the hidden states back to the data domain. This
ensures that conditioning information influences not only the internal block dynamics but also the
final predicted vector field used in flow matching.

Conditioning mechanism. In the adaptive layer norm (adaLN)-Zero formulation (Peebles and Xie,
2023), each MSA and MLP sublayers is modulated by per-channel scale and shift parameters (γ, β)
applied to the normalized activations, together with residual scaling factors α applied directly before
the residual addition. All modulation parameters are produced from a single global conditioning
vector temb + cq that merges (i) a timestep embedding temb = ϕ(t) and an auxiliary embedding cq
obtained by encoding the capacity matrix corresponding to the early cycle life of the battery. The
conditioning vector is passed through a small multilayer perceptron that produces six d-dimensional
vectors as per-channel modulation parameters. The residual scalars α are initialized to zero, ensuring
that every block starts as an identity mapping and that conditioning effects are introduced gradually
during training. This approach, has been shown to improve optimization stability and sample quality
in large-scale generative modeling (Lipman et al., 2023).

Algorithm 1: One DiT block with adaLN-Zero conditioning
Input: Hidden states h ∈ RT×d, timestep t, auxiliary input Q (capacity matrix).
Output: Updated hidden states h′ ∈ RT×d.
/* Step 1: Form conditioning vector */
temb ← ϕ(t) // timestep embedding
cq ← CNN(Q) // auxiliary embedding
c← temb + cq // global conditioning vector
/* Step 2: Generate modulation parameters */
(γattn, βattn, αattn, γmlp, βmlp, αmlp)← MLP(c)
/* Step 3: Attention sublayer */
z ← LN(h) // pre-norm
z ← γattn ⊙ z + βattn // adaLN modulation
h← h + αattn ⊙MSA(z) // residual update
/* Step 4: MLP sublayer */
z ← LN(h) // pre-norm
z ← γmlp ⊙ z + βmlp // adaLN modulation

h′ ← h + αmlp ⊙MLP(z) // residual update

return h′

CNN encoder. We employ the concept of capacity matrix (Q) introduced by Attia et al. (2021),
as an auxiliary information for conditional generation. The capacity matrix serves as a compact
representation of battery electrochemical cycling data, incorporating a series of feature representations.
We utilize the capacity matrix obtained from early cycle life of the battery, i.e. the first 20 or 100
cycles similar to Attia et al. (2021); Severson et al. (2019b); Zhang et al. (2024b). This choice is
driven by the high costs, time, and effort associated with long-term battery testing. Our goal is to
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leverage early life performance data to predict battery degradation and minimize resource expenditure.
To encode Q into an embedding (cq), we utilize a CNN encoder (see Figure 1b). We adapt a CNN
architecture inspired by Attia et al. (2021); Zhang et al. (2025), which has been used for RUL
prediction. This model has been reported to lack robustness with respect to different initializations,
however, it provides very accurate predictions in some instances. To enhance the robustness of
the model we utilized explainable AI methods, specifically Grad-CAM (gradient-weighted class
activation mapping) method (Selvaraju et al., 2017) to better understand how these deep-learning
models make predictions for the RUL task. Further, we identified and eliminated potential modes
of failure. Results for this analysis are reported in Appendix A.2. The final architecture consists of
two convolutional layers with leaky rectified linear unit (LeakyReLU) activations, each followed by
average pooling to reduce spatial dimensions. The resulting feature map is projected with a final
convolution, activated, and flattened into a d-dimensional vector cq. During training, classifier-free
guidance can be employed by randomly dropping the embedding, allowing the model to learn both
conditional and unconditional generations. This CNN encoder effectively captures the relevant
features from the capacity matrix, enabling FlowBatt to generate accurate and context-aware SOH
trajectories.

In summary, our generative models trained via flow matching and diffusion processes combine a
DiT backbone with adaLN-Zero conditioning and a CNN-based encoder for auxiliary early-life data,
yielding a scalable and uncertainty-aware generative framework. By integrating timestep information
with early-cycle capacity matrices, the model learns to generate realistic SOH trajectories that reflect
both temporal dynamics and usage context. From these SOH trajectories, metrics such as RUL can
be directly computed by applying practical thresholds (e.g., 80% of nominal capacity). This design
positions FlowBatt as a flexible model for battery health prediction, capable of both probabilistic
modeling of aging behavior and data-driven synthesis. Figure 2 illustrates the denoising trajectories
of a test sample from the MATR-1 dataset using flow matching and diffusion processes. It can be
observed that the flow matching approach achieves faster denoising compared to the diffusion process.
Note that diffusion requires 1000 reverse steps, while in flow matching we solve the ODE over [0,1].
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Figure 2: Comparison of denoising trajectories for a test sample from the MATR-1 dataset using flow
matching (top) and the diffusion process (bottom). The pink line shows the generated sample and the
cyan line shows the reference for a given capacity matrix.

3.1 DATA

We conduct a comprehensive evaluation based on several publicly available datasets curated in
BatteryML (Zhang et al., 2024b). Specifically, we include CALCE (He et al., 2011; Xing et al.,
2013), HUST (Ma et al., 2022), MATR (Hong et al., 2020; Severson et al., 2019b), RWTH (Li et al.,
2021), SNL (Preger et al., 2020), and UL_PUR (Juarez-Robles et al., 2020; 2021), covering a range
of chemistries including lithium iron phosphate (LFP), lithium cobalt oxide (LCO), nickel manganese
cobalt oxide (NMC), nickel cobalt aluminum oxide (NCA), and a combination of NMC and LCO
(NMC_LCO). These datasets span diverse ageing conditions, including differences in capacities,
voltages, ambient temperatures, state of charge (SOC), and RUL ranges and provide a broad spectrum
of degradation behaviors.

In this study, we follow the benchmark protocol of BatLiNet (Zhang et al., 2025), which derives
five evaluation datasets under different ageing conditions. Specifically, BatLiNet defines two MATR
evaluation sets (MATR-1 and MATR-2) to maintain comparability with existing models. In addition,
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the HUST dataset, which uses LFP cells similar to MATR, is included to evaluate model adaptation
to different cycling protocols. Furthermore, BatLiNet constructs a MIX dataset by aggregating all
remaining public datasets, capturing diverse ageing conditions such as different ambient temperatures,
packing structures, and cathode chemistries (NMC, LCO, and NCA). From the MIX dataset, two
prediction tasks are defined: MIX-100, which evaluates the prediction of the 80% end-of-life point
using only the first 100 cycles, and MIX-20, a more challenging setup requiring the prediction of the
number of cycles until 90% capacity using only the first 20 cycles. As in Zhang et al. (2025), batteries
that reached end-of-life prematurely during the early cycles are excluded from the analysis. Further
details on datasets and preprocessing are provided in Appendix A.1 and Zhang et al. (2025; 2024b).

4 RESULTS AND DISCUSSION

Our generative models can be utilized for RUL prediction, SOH estimation, and SOH synthesis. It
should be noted that we refer to generating new SOH curves for data augmentation as SOH synthesis.
SOH and RUL predictions are two common tasks in managing inevitable capacity fade, widely
discussed in the literature. While both tasks aim to predict capacity fade, they utilize different data
representations. In this section, we conduct experiments based on the BatLiNet benchmark tests
(Zhang et al., 2025) and compare the results. Further detailed analysis and results are included in
Appendix A.4.

4.1 RUL PREDICTION

We evaluate three different models trained with supervised learning, diffusion processes, and flow
matching, referred to as Transformer, DiffBatt, and FlowBatt, respectively. All models directly predict
SOH trajectories from the input capacity matrix, from which the RUL is computed as the cycle index
at which the SOH drops below a specified threshold (e.g., 80% or 90%). For the probabilistic models
(DiffBatt and FlowBatt), a single model is trained and evaluated by generating ten SOH trajectories
from ten independent noise realizations for each input, thereby quantifying predictive variability. For
the deterministic baseline (Transformer), ten models with different random initializations are trained,
and we report the mean and standard deviation of their predictions.

Table 1: Comparison with baseline methods for the RUL prediction task. Best results based on RMSE
are shown in bold, and second-best results are underlined. For the models introduced in this study,
we report the mean and standard deviation over ten random seeds.

Method MATR-1 MATR-2 HUST MIX-100 MIX-20
RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

Training Mean 399 28 511 36 420 18 573 59 593 102

“Variance” Model (Severson et al., 2019a) 138 15 196 12 398 17 521 39 601 95
“Discharge” Model (Severson et al., 2019a) 86 8 173 11 322 14 1743 47 >2000 >100
“Full” Model (Severson et al., 2019a) 100 11 214 12 335 14 331 22 441 53
Ridge Regression (Attia et al., 2021) 125 13 188 11 1047 36 395 30 806 150
PCR (Attia et al., 2021) 100 11 176 11 435 19 384 28 701 78
PLSR (Attia et al., 2021) 97 10 193 11 431 18 371 26 543 77
SVM Regression (Zhang et al., 2025) 140 15 300 18 344 16 257 18 438 46
Random Forest (Attia et al., 2021) 140 15 202 11 348 16 211 14 288 31

MLP (Attia et al., 2021) 162±7 12±0 207±4 11±0 444±5 18±1 455±37 27±1 532±25 61±6
LSTM 123±11 12±2 226±36 14±2 442±32 20±1 266±11 15±1 417±62 37±7
CNN (Attia et al., 2021) 115±96 9±6 237±107 17±8 445±35 21±1 261±38 15±1 785±132 41±4
BatLiNet (Zhang et al., 2025) 59±2 6±0 163±12 11±1 264±9 10±1 158±7 10±0 201±18 18±1

Transformer (ours) 85±10 8±1 226±39 14±2 295±18 14±1 221±34 15±3 312±40 27±5
DiffBatt (ours) 68±3 6±0 202±5 16±0 282±16 10±1 218±17 13±1 295±24 30±2
FlowBatt (ours) 67±2 6±0 175±4 11±0 222±12 9±0 179±6 11±0 229±12 18±1

The results for the RUL prediction task are summarized in Table 1. This table illustrates the
performance of the models in the RUL task using root-mean-squared error (RMSE) and mean-
absolute-percentage error (MAPE) as the evaluation metrics. RMSE is suitable for the RUL task
since it represents the error based on an average number of cycles in which the predicted RUL differs
from the reference. Overall, FlowBatt achieves strong and consistent performance across all datasets.
It obtains the best results on HUST (222± 12 cycles, 9% MAPE), while also reaching the second-best
on MIX-100 (179± 6 cycles, 11% MAPE), MIX-20 (229± 12 cycles, 18% MAPE), and MATR-1
(67± 2 cycles, 6% MAPE), closely behind BatLiNet. These results highlight FlowBatt’s robustness
in capturing ageing dynamics across diverse conditions and its capability in down stream tasks,
achieving competitive performance compared to the state-of-the-art BatLiNet model (Zhang et al.,
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2025), which is specifically designed for RUL prediction. Notably, FlowBatt is the only model
besides BatLiNet that consistently ranks within the top three across all datasets, demonstrating
superior generalizability. DiffBatt also demonstrates strong predictive capability, achieving lower
RMSE than many classical and deep-learning baselines, for example 202 ± 5 on MATR-2 and
218 ± 17 on MIX-100, however, it generally lags behind FlowBatt. The supervised Transformer
baseline performs competitively on simpler datasets such as MATR-1 (85± 10) but exhibits larger
errors and variance on more challenging setups, indicating limited generalization capacity.

A broader comparison confirms that FlowBatt narrows the gap to or performs better than BatLiNet
(Zhang et al., 2025), the current state-of-the-art approach. On the MATR-2 dataset, FlowBatt achieves
an RMSE of 175± 4, only slightly higher than BatLiNet (163± 12) but considerably outperforming
both DiffBatt (202± 5) and Transformer (226± 39). DiffBatt remains competitive and provides a
useful comparison point for diffusion-based generative modeling, while the Transformer baseline
illustrates the limitations of purely supervised approaches when faced with heterogeneous ageing
conditions. Taken together, these results confirm that flow-matching-based generative modeling offers
a competitive and scalable alternative to both supervised and diffusion-based methods for battery
degradation.
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Figure 3: Results obtained from FlowBatt for RUL prediction. Colorbar shows the standard deviation
σRUL of the predicted RUL from ten generated SOH trajectories per sample.

Figure 3 presents the RUL prediction results for all test samples across datasets using the FlowBatt
model. FlowBatt provides uncertainty estimates by reporting the standard deviation of RUL values
computed from ten generated trajectories per sample. The results suggest a general tendency for
samples with larger prediction errors to also exhibit higher predictive variance, indicating that
FlowBatt can capture uncertainty in more challenging prediction cases.

4.2 SOH PREDICTION

In practical applications, estimating a battery’s SOH requires predicting the current discharge capacity
under standardized conditions using reference performance tests and historical cycling data. However,
the discrepancy between real-world battery usage and these standardized conditions poses significant
challenges in obtaining precise ground-truth labels, complicating accurate SOH prediction. Conse-
quently, developing a robust benchmark test for SOH prediction remains an ongoing effort within
the research community. Therefore, we benchmark our SOH prediction results by approximating its
theoretical definition (capacity relative to the nominal capacity) using data obtained from controlled
cycling experiments. Results are reported in Table 2. We employ the same datasets in our RUL
prediction tasks for the SOH prediction experiments, which allows for reproducibility due to the clear
data splits. For each degradation curve, we compute the error as the RMSE between the predicted and
reference trajectories up to the end-of-life (EOL) point, padding the remainder of the sequence with
the final observed value. Results are reported as the mean RMSE across all test samples. Since SOH
is expressed as a percentage of the nominal capacity, the mean RMSE is also given in percentage units.
To ensure reproducibility, a detailed discussion on experimental setup and error metrics is included in
Appendix A.4. The supervised Transformer baseline provides a useful point of comparison, achieving
reasonable performance on some datasets, such as MATR-1 (1.09±0.07) and MIX-20 (1.42±0.10),
but showing considerably higher errors on more challenging datasets such as HUST (3.18±0.16).
This highlights the limited generalization ability of purely supervised models across diverse ageing
conditions. DiffBatt improves upon the Transformer across all datasets, reducing the RMSE and
demonstrating the benefits of probabilistic generative modeling. For example, DiffBatt achieves
an RMSE of 0.92±0.04 on MATR-1 and 1.15±0.08 on MIX-20, both lower than the Transformer
baseline. FlowBatt further advances accuracy and generalizability, consistently outperforming both
Transformer and DiffBatt. It achieves the best results on all datasets, with an RMSE of 0.87±0.02
on MATR-1, 1.77±0.04 on MATR-2, and 2.10±0.12 on HUST, showing robustness across different
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Table 2: Results obtained for SOH prediction task corresponding to the
mean RMSE and the standard deviation across ten predictions.

Method MATR-1 MATR-2 HUST MIX-100 MIX-20

Transformer 1.09±0.07 2.25±0.22 3.18±0.16 1.76±0.06 1.42±0.10
DiffBatt 0.92±0.04 1.85±0.03 2.44±0.14 1.71±0.09 1.15±0.08
FlowBatt 0.87±0.02 1.77±0.04 2.10±0.12 1.41±0.02 0.88±0.03

battery chemistries and operating conditions. Particularly on the heterogeneous MIX-100 and
MIX-20 datasets, FlowBatt achieves significant improvements, lowering the RMSE to 1.41±0.02
and 0.88±0.03, respectively. These results demonstrate that flow matching provides a more scalable
and reliable approach for SOH trajectory prediction, yielding both higher accuracy and stronger
generalization than supervised or diffusion-based baselines.

5 TOWARDS A FOUNDATION MODEL FOR BATTERY DEGRADATION

Foundation models are large-scale, general-purpose AI models pre-trained on broad datasets and
adaptable to downstream tasks with minimal retraining (Bommasani et al., 2022). By training on
diverse battery datasets and demonstrating strong generalization across prediction tasks, FlowBatt
offers a promising pathway toward foundational modeling of battery degradation. It captures complex
ageing dynamics across chemistries and operating conditions, showing high expressivity and robust
generalization. The architecture naturally supports multimodal conditioning: in addition to early-
cycle capacity matrices, inputs such as temperature, current profiles, or environmental conditions can
be incorporated, enabling rapid adaptation to new chemistries or protocols with limited fine-tuning.
FlowBatt also scales efficiently to large datasets through its flow-matching transformer backbone and
can synthesize realistic degradation curves to augment scarce datasets, thereby improving robustness
and transferability of downstream models.

6 CONCLUSIONS AND OUTLOOK

Tackling battery degradation is a major hurdle in advancing green technologies and sustainable energy
solutions. Accurately predicting battery capacity loss remains particularly challenging due to its
intricate and complex nature. To address this issue, we present FlowBatt, a novel general-purpose
model for predicting and synthesizing battery degradation patterns based on flow matching and
diffusion transformers. While the majority of the literature is dedicated to RUL predictions, we
present FlowBatt as a generative model for probablistic modeling of full SOH trajectories. FlowBatt
functions as both a probabilistic model to capture the inherent uncertainties in aging processes and a
generative model to simulate and predict battery degradation over time.

We evaluate the performance of Transformer, DiffBatt, and FlowBatt across two different tasks, i.e.,
RUL prediction and SOH prediction. In the RUL prediction task, FlowBatt achieves competitive per-
formance, closely approaching the state-of-the-art BatLiNet model while consistently outperforming
DiffBatt and the supervised Transformer baseline. It achieves the best results on HUST with RMSE
of 222±12 cycles and ranks among the top three models across all the datasets, performing closely
behind BatLiNet. These results illustrate FlowBatt’s efficacy in learning from and generalizing
across diverse data sources. In the SOH prediction task, FlowBatt achieves the lowest errors across
all datasets, highlighting the advantages of flow matching over both diffusion-based training and
supervised learning.

We believe that by training on several diverse battery datasets and demonstrating strong generalizabil-
ity and robustness across various tasks, FlowBatt offers a promising pathway toward developing a
foundational model for battery degradation. To support a deeper understanding of degradation mech-
anisms and to derive countermeasures in battery design, production, and formation, the data-driven
FlowBatt model may be linked with physics-based approaches or extended to account for variations
in design and process parameters. Beyond the technical contributions, we hope this work motivates
stronger engagement from industry and government stakeholders in curating real-world field data and
making them publicly available, thereby accelerating progress in this critical area of research.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

USAGE OF LARGE LANGUAGE MODELS

Large language models were used solely for language editing, including linguistic condensation and
checks for grammar and sentence structure. All content was reviewed and approved by the authors.
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A APPENDIX

A.1 DATASETS

Battery degradation curves utilized for training and testing the models are depicted in Figure 4 for
each cell chemistry. A brief summary of the datasets included in BatteryML (Zhang et al., 2024b) is
presented here.

The CALCE dataset includes full lifecycle data from 13 batteries with an LCO cathode. Each battery
has a nominal capacity of 1100 mAh. They were all charged using a constant current/constant voltage
protocol: 0.5C current until reaching 4.2V, maintaining 4.2V until the current dropped below 0.05A,
and a cutoff voltage of 2.7V (Xing et al., 2013; He et al., 2011).

The MATR dataset, provided by Severson et al. (2019b) and Hong et al. (2020), is one of the largest
public datasets containing 180 commercial 18650 LFP batteries. These batteries, cycled at a forced
convection temperature chamber of 30◦C, have a nominal capacity of 1.1 Ah and a nominal voltage
of 3.3V. The dataset comprises three subsets: MATR-1, MATR-2 (Severson et al., 2019b), and CLO
(Hong et al., 2020), all categorized due to distinct measurement batches.

The HUST dataset includes 77 LFP batteries, similar to those in the MATR dataset. These batteries
followed an identical charging protocol with varying multi-stage discharge protocols, all conducted
at a constant temperature of 30◦C (Ma et al., 2022).

The HNEI dataset contains 14 commercial 18650 cells with a graphite anode and a blended NMC
and LCO cathode. These cells were cycled at 1.5C to 100% depth of discharge for over 1000 cycles
at room temperature (Devie et al., 2018).

The SNL dataset includes 61 commercial 18650 cells (NCA, NMC, and LFP), cycled to 80% capacity.
The study evaluates the impact of temperature, depth of discharge, and discharge current on long-term
degradation (Preger et al., 2020).

The UL_PUR dataset comprises 10 commercial pouch cells with a graphite negative electrode and an
NCA cathode. These cells were cycled at 1C between 2.7V and 4.2V, equivalent to 0-100% state of
charge (SOC), at room temperature until reaching 10-20% capacity fade. Additionally, modules were
cycled at C/2 between 13.7V and 21.0V until 20% capacity fade (Juarez-Robles et al., 2020; 2021).

The RWTH dataset contains data from 48 lithium-ion battery cells aged under identical conditions.
These cells feature a carbon anode and an NMC cathode (Li et al., 2021). The cells were cycled at a
constant ambient temperature of 25◦C. Each cycle involved a 30-minute discharge phase down to
3.5V and a 30-minute charge phase up to 3.9V, with the currents capped at a maximum of 4A. This
resulted in cycles between approximately 20% and 80% state of charge.
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Figure 4: Train (up) and test (bottom) samples for each cell chemistry. The data is scaled using the
SOH of the first cycle.

A.2 EXPLAINING CNN PERFORMANCE VIA GRAD-CAM

For the RUL prediction task, we implement a CNN model based on the architecture proposed in
Attia et al. (2021); Zhang et al. (2024b; 2025). The model consists of convolutional layers with
ReLU activation functions, followed by a fully connected layer. The model is trained using the Adam
optimizer with a learning rate of 0.001 and a batch size of 128 (this is equal to full-batch training
for MATR-1 dataset) for 1000 epochs. The model is trained via mean-squared error (MSE) as the
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loss function. We train ten models with different initialization seeds and report the RMSE for each
model on the test dataset. The results are summarized in Table 3 for different seeds. As observed
in the table, the CNN model exhibits high variability in performance across different seeds, with
RMSE values ranging from 60 to 306 cycles. This variability indicates that the model’s performance
is sensitive to initialization and may not consistently capture the underlying degradation patterns.
This lack of robustness has been also reported in Attia et al. (2021); Zhang et al. (2024b; 2025). To

Table 3: RUL prediction results obtained from CNN models with different initialization
seeds for MATR-1 dataset.

Seed 0 1 2 3 4 5 6 7 8 9

Benchmark CNN (Zhang et al., 2024b) 76 67 64 74 60 82 65 79 367 78
CNN (Replicated) 71 77 83 306 79 60 78 62 88 64
XAI-CNN (Ours) 57 54 54 72 66 64 65 60 59 61

identify the reason behinde the high variability in performance, we employ Grad-CAM (Selvaraju
et al., 2017) to visualize the regions of the input capacity matrix that the CNN model focuses on when
making predictions. Figure 5(a) shows one sample of the capacity matrix from the MATR-1 train
dataset, while Figure 5(b) displays all test samples of the MATR-1 dataset. The heatmaps in Figure 6
illustrate the Grad-CAM results for the best and worst-performing CNN models based on RMSE.
The heatmaps obtained from the worst model indicate that the gradients for some test samples are
zero, suggestiong that the model fails to perform meaningful predictions for these samples. Same
observations for the training samples indicate that the model fails to learn from those training samples.
Moreover, the model tends to focus on early cycles, which may not provide sufficient information
for accurate RUL prediction. In contrast, the heatmaps for the best-performing model show that
the model focuses on a broader range of cycles, including later ones that are more indicative of
degradation trends.

(a) Capacity matrix (b) MATR-1 test samples

Figure 5: (a) One sample of capacity matrix from MATR-1 train dataset. (b) All test samples of
MATR-1 dataset.

To enhance the robustness and accuracy of the CNN model, we provide a simple remedy by replacing
the ReLU activation functions with Leaky ReLU activation functions with negative slope equal
to 0.3. This choice is due to the realization that the ReLU activation function can lead to dead
neurons, especially when the input data contains negative values or when the weights are initialized
poorly. Dead neurons do not contribute to learning, which can significantly impact the model’s
performance and robustness. Leaky ReLU allows a small, non-zero gradient when the unit is not
active, which helps to keep the neurons alive and ensures that they continue to learn during training.
This modification helps to mitigate the issue of dead neurons and improves the overall robustness
of the CNN model. We refer to this modified model as XAI-CNN. The XAI-CNN model is trained
using the same hyperparameters as the CNN model. The RMSE results for different seeds are
summarized in Table 3. This model demonstrates significantly improved robustness, with RMSE
values ranging from 54 to 72 cycles across different seeds, and overal provides very accurate RUL
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(a) Grad-CAM heatmaps for best model (b) Grad-CAM heatmaps for worst model

Figure 6: Grad-CAM heatmaps for CNN model proposed in Attia et al. (2021); Zhang et al. (2024b).

predictions with RMSE of 61±5 for MATR-1 dataset. The Grad-CAM heatmaps for the best and
worst-performing XAI-CNN models are shown in Figure 7. The heatmaps indicate that the XAI-
CNN model consistently focuses on relevant regions of the capacity matrix across all test samples,
suggesting that it effectively captures important degradation patterns. This improvement in focus
likely contributes to the enhanced performance and robustness of the XAI-CNN model compared to
the original CNN architecture.

(a) Grad-CAM heatmaps for best model (b) Grad-CAM heatmaps for worst model

Figure 7: Grad-CAM heatmaps for XAI-CNN model.

We use the XAI-CNN model as the CNN encoder in FlowBatt and DiffBatt. The final linear layer of
the XAI-CNN model is removed, and the output from the last convolutional layer is flattened and
passed to a linear layer to match the dimension of the condition vector in FlowBatt and DiffBatt.

A.3 HYPERPARAMETERS

Table 4 summarizes the hyperparameters used for training our FlowBatt model. For implementing flow
matching, we build upon the official flow_matching library from Facebook Research (Lipman
et al., 2024). For diffusion-related components, including optimizers and schedulers, we rely on the
Hugging Face diffusers package von Platen et al. (2022).

For model development, we preprocess the SOH trajectories; we limit each trajectory to a maximum
of 2560 charge-discharge cycles and subsample the SOH values every ten cycles. Furthermore, we
truncate the trajectory once the SOH drops below 70%, since this threshold is typically considered
below the end-of-life criterion for many applications. If a trajectory reaches end-of-life before 2560
cycles, we pad the remaining part of the sequence with a constant SOH value of 70%. As a result,
all SOH trajectories are represented as fixed-length sequences of 256 steps, which defines the input
dimension of our model.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 4: Training and model hyperparameters.

Category Major hyperparameters

Training

Epochs: 10000
Initial learning rate: 1× 10−3

Optimizer: AdamW
Learning rate scheduler: Cosine schedule with 100 warmup steps

Model (DiT)

Sequence lenght: 256
Capacity matrix shape: (1,100,100)
Number of DiT blocks: 4
Channels (embedding dim): 16
Attention heads: 1
MLP ratio: 4.0
Class dropout probability: 0.0

Flow matching Scheduler: Conditional optimal transport schedule

A.4 SOH PREDICTION

For prediction tasks we generate ten samples for each input capacity matrix. The capacity matrix is
constructed from the first 100 or 20 cycles. The RMSE for an SOH sample j is computed as

RMSEj =

√√√√ 1

nj

nj∑
i=1

(ỹi − yi)2 (6)

where ỹ and y represent the predicted and the reference SOH in percentage, respectively, i denotes
the cycle number and nj is the cycle number at which the predicted SOH reaches the EOL. Further,
we report the mean RMSE across all the test samples as the RMSE for the dataset. We pad both
the reference and predicted sequences with the last value to ensure they have the same length. The
mean and standard deviation of the RMSE are computed over ten generated samples per each input
capacity matrix.

Figure 8 illustrates the predicted SOH versus the reference SOH for all test samples in the MIX-100
dataset. The results demonstrate that FlowBatt effectively captures various degradation dynamics
and accurately predicts SOH for the majority of test samples and highlights FlowBatt’s ability to
generalize across different battery chemistries and operational conditions present in the MIX-100
dataset. This capability is essential for developing reliable battery health monitoring systems that can
adapt to diverse usage patterns and environmental factors.

Figure 9 and Figure 10 show the predicted SOH against the reference SOH for all test samples in
the MIX-100 dataset obtained from DiffBatt and Transformer, respectively. Compared to FlowBatt,
DiffBatt shows a higher deviation from the reference for several test samples. The Transformer
model shows a higher deviation from the reference for most of the test samples compared to both
FlowBatt and DiffBatt. These results further highlight the advantages of flow matching over both
diffusion-based training and supervised learning.
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Figure 8: SOH predictions obtained from FlowBatt against reference for all the test samples of
MIX-100 dataset. The pink dashed line shows the prediction and the cyan solid line shows the
reference. The gray area shows the prediction uncertainty computed from ten generated samples.
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Figure 9: SOH predictions obtained from DiffBatt against reference for all the test samples of
MIX-100 dataset. The pink dashed line shows the prediction and the cyan solid line shows the
reference. The gray area shows the prediction uncertainty computed from ten generated samples.
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Figure 10: SOH predictions obtained from Transformer model against reference for all the test
samples of MIX-100 dataset. The pink dashed line shows the prediction and the cyan solid line
shows the reference. The gray area shows the prediction uncertainty computed from ten generated
samples.
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