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Semantic Aware Just Noticeable Differences for VVC compressed
Text Screen Content Images

ABSTRACT
With the rapid development of multimedia applications such as
online education, remote conferences, and telemedicine, an emerg-
ing type of image known as text screen content images (TSCI)
has gained widespread utilization. Compared to natural images
captured by cameras, TSCI is generally generated or rendered by
computers and exhibits significant differences in content character-
istics. One of the significant differences is that TSCI mainly contains
text, which is a symbol system defined by humans with specific
semantics. As an important carrier for transmitting semantic infor-
mation, the quality of text in TSCI significantly affects the subjective
perception experience of multimedia system users. Just noticeable
difference (JND) is a widely studied image quality measure that is
theoretically closest to human perception. However, the traditional
JND (T-JND) tests fail to distinguish text from other image contents,
ignoring the significant impact of semantic readability of text on
image quality. This paper focuses for the first time on the impact of
text semantics on the quality of TSCI, and a semantic aware JND
model for TSCI compressed by the state-of-the-art versatile video
coding (VVC) standard is explored and discussed. Specifically, a
matching TSCI database is first established. Using the database,
image subjective observation comparison experiments are further
designed and carried out to construct the traditional JND (T-JND) as
well as the semantic aware JND (S-JND). By comparing the experi-
mental results, crucial conclusions are reached, including the fact
that the S-JND provides a more precise description of the quality
of TSCI compared to the T-JND. These conclusions have important
guiding significance for the subsequent development of efficient
JND models suitable for TSCI compressed by VVC.

CCS CONCEPTS
• Human-centered computing→ User models.

KEYWORDS
Just noticeable difference, Screen content image, Text, Quality as-
sessment, Quality of experience

1 INTRODUCTION
Screen Content Images (SCIs) which typically feature a combi-
nation of text, graphics, tables, and potentially natural contents,
have become a ubiquitous presence in various screen based mul-
timedia platforms and devices for supporting online education,
screen-sharing, cloud computing systems, remote conference, prod-
uct advertising [6, 8, 19, 24], etc. Text, as an important visual content
in SCI, comprises the primary content of the Text Screen Content
Image (TSCI). Text is composed of a series of characters which
are important carriers of human knowledge transmission. Text is
composed of a series of characters which are important carriers of
human knowledge transmission. Generally, then content in TSCI
is semantic sensitive and is closely related to human prior knowl-
edge. It is reported that human eyes are is highly sensitive to the

quality of text [35].However, due to limited bandwidth and storage
ability, TSCIs are generally compressed before transmission, which
introduces inevitable image quality degradation. Thus, the quality
of TSCI plays a pivotal role in enhancing the informational value,
online interactivity, and accessibility of digital media.

Compared with the camera captured natural images, TSCI con-
sists of sharp edges, thin lines with few colors, even one-pixel-wide
single-color lines [16]. Also TSCI presents two main properties:
limited number of colors and repeating patterns [24]. To improve
coding efficiency of text information, various coding tools are in-
troduced in HEVC Screen Content Coding extensions (HEVC-SCC)
and the state-of-the-art Versatile Video Coding (VVC) standard
[32, 38], such as the Intra Block Copy (IBC), adaptive color trans-
form (ACT), palette mode, Transform Skip Residual Coding (TSRC),
and Block-Based Differential Pulse-Code Modulation (BDPM), etc.
However, when SCIs are processed, various distortions are still
inevitably involved [29]. Considering human visual system (HVS)
is the ultimate receiver and appreciator for the majority of pro-
cessed images, video and graphics [16], accurately assessment of
the perceptual quality of human observers is of great significance.

The ITU-R Recommendation BT.500 [5] is one of the most widely
used subjective image quality assessment protocols, which defines
standardized testing procedures for evaluating the perceptual image
quality based on human observer judgments. And theMeanOpinion
Score (MOS) or the Differential Mean Opinion Score (DMOS) meth-
ods for subjective scoring are introduced [38]. Previous studies have
suggested that human perception and judgment in psychophysical
measurement tasks typically perform better in comparison tasks
than in absolute ratings [32]. Therefore, by compare between two
visual stimuli, Just Noticeable Difference (JND) which is defined as
the smallest difference as discernible by human, has been widely
used for predict image coding distortion levels [31]. JND is a psy-
chophysical concept, and according to Weber’s Law, also known
as the Weber-Fechner law, the noticeable difference in a stimulus
is proportional to the intensity of the stimulus [31]. In the area of
quality assessment, JND focuses on capturing the tipping points of
changes in image/video quality. As such, JND represents a widely
studied measure of image quality that closely aligns with human
perception, offering a theoretical framework that resonates deeply
with our subjective experiences.

In the past years, researches on JND in the video and image
fields include obtaining subjective JND data, constructing databases,
or using JND models to validate and improve objective quality
assessment algorithms for multimedia signals [37]. To solve the
problem of insufficient databases, several image/video quality as-
sessment datasets based on JND have been developed, and subjec-
tive experiments have been conducted to search for JND points
[9, 12, 15, 23, 27]. In fact, human eyes cannot sense any changes
below the JND threshold due to their underlying spatial-temporal
masking properties [4]. Based on the above description, more and
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more JND models [3, 14, 25, 29, 33] have been proposed to opti-
mize the video coding and compression process by determining
the smallest difference that can be perceived by the human eye in
terms of visual perception, thus improving the coding efficiency
and subjective visual experience [36].

However, the current JND datasets still treat the texture in TSCI
as the same as that in natural images. Actually, humans read the
text, thus JND thresholds should be semantically aware, which
means that quality changes for TSCIs should consider the quantity
and accuracy of semantic information transmission. Without con-
sidering its readability, traditional JND based datasets are not able
be directly applied into TSCI related applications. And, this has
not been effectively considered in the development of traditional
subjective JND experimental design.

An important prerequisite for establishing an effective JND
model is to design reasonable subjective observation experiments
to obtain accurate JND observation data from subjects. To achieve
this goal, the accurate definition of the “difference” is a key process
for determining accurate JND observation data. In traditional JND
observation experiments, the definition of the “difference” is vague
and only texture change has been considered, which is not suitable
for TSCIs with semantic information. When viewing TSCIs, the
degree to which the human eye can effectively extract semantic
information from the text is a crucial factor in determining the
perceived quality of TSCIs. Therefore, it is necessary to focus on
the influence of text semantics on the definition of difference when
constructing subjective observation experiments for TSCI.

In this paper, focusing for the first time on the impact of text
semantics on the quality of TSCI, two different subjective JND
experiments are introduced, one of which is the same as the Tra-
ditional JND experiment (T-JND), and the other is the Semantic
Aware JND experiment (S-JND). Based on a new established TSCI
database, denoted as Semantic Aware Just Noticeable Differences
based TSCI (SAJ-TSCI) database, the number and the location of
the JND points are compared. And then the cognitive processes
are analyzed and come into crucial conclusions based on the ob-
servation time and the eye movement data. The rest of the paper
is organized as follows: Section II covers related work. Section III
outlines the construction of the dataset and the design of the sub-
jective experiment. Section IV conducts a statistical analysis of the
experimental data. The results of the data analysis are discussed in
Section V. Finally, conclusions are drawn in Section VI.

2 RELATEDWORK
The main purpose of Image Quality Assessment (IQA) is to propose
an assessment method that can accurately measure the subjective
perception of the human eye based on the perceptual characteristics
of the Human Visual System (HVS). Subjective assessment methods
yield results that are closer to human perception than objective
assessment methods, e.g., PSNR, MSE.

The concept of JND is widely applied subjective assessment
method, and it determines how accurate human sense are [37]. [30]
proposes a way to use JND for video quality measurement which
adopts “pair comparison” or “two-alternative forced-choice”, where
subjects are asked to determine which of the two videos, i.e., the

original source and the compressed one, is more distorted. How-
ever, the testing time required for each subject in this method is
very long, which may lead to fatigue or other factors that affect the
experimental results. In [15], the first JND dataset is constructed,
consisting of 5 JPEG encoded images and 5 H.264/AVC encoded
videos. Combining with the method in [30] with a binary search
method, the proposed observing method further reduces the size
of subjective JND experiments, and K-means clustering is used to
process the experimental data. In [9] the Gaussian Mixture Model
(GMM) method is used to model the JND observing data, and by
comparing GMMwith K-means methods, it is proved that the GMM
method provides more accurate quality levels and is actually more
reasonable. To solve the problem of insufficient databases, several
image/video quality assessment datasets based on JND are devel-
oped. The MCL-JCI dataset [12] contains 50 source images, each
having a resolution of 1920×1080, each source image is encoded
100 times with the JPEG encoder. Subsequently, by analyzing and
post-processing the original JND data, the staircase quality function
(SQF) is accessed. A video quality dataset MCL-JCV [27] encoded
with H.264/AVC is constructed, with quantization parameter (QP)
values ranging from 1 to 51. JND points of 50 subjects are recorded
relative to each video segment. The difference between every two
adjacent JND points is calculated, and an outlier detection algo-
rithm is proposed to remove unreliable data. [23] establishes a JND
dataset for VVC standard which consists of 202 images with a res-
olution of 1920×1080. Each image is encoded by VTM 5.0 intra
coding with the QP ranging from 13 to 51. In addition, there are
also some JND experiments designed for specific problems and ap-
plication programs. [18] studied three charts: bar charts, pie charts,
and bubble charts, analyzing the relationship between JNDs and
two main visual variables: the intensity of visual elements and their
distance.

By combining the features of JND and HVS, such as contrast
sensitivity, brightness masking, etc., some JND models have been
formed in image/video perceptual compression. JND-based models
aim to find the maximum distortion levels that cannot be perceived
by the HVS, and use them to eliminate the maximum tolerable
perceptual redundancies [21]. The JND model has been established
in [34] and [22] by using luminance masking effect and contrast
masking effect. The JND model in [3] and [2] introducd Contrast
Sensitivity Function (CSF) into the model to improve the accuracy
of assessment. In addition to the aforementioned JND models, other
JNDmodels are combinedwithmachine-learning techniques [14, 17,
39].By removing the perceptual redundancy information according
to the JND levels, compression gain can be further realized [36].
JND models have been used in image compression to improve the
overall compression efficiency [20], guide the quantization process
in coding [7, 26], and achieve more efficient perceptual encoding.

By combining the features of JND and HVS, such as contrast
sensitivity, brightness masking, etc., some JND models have been
formed in image/video perceptual compression. The JND model
has been established in [21, 25]by using luminance masking effect
and contrast masking effect. The JND model in [2, 3] introduces
Contrast Sensitivity Function (CSF) into the model to improve the
accuracy of assessment. In addition to the aforementioned JND
models, other JND models are combined with machine-learning
techniques [14, 17, 39]. By removing the perceptual redundancy
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Figure 1: Representative thumbnail images of 24 source sequences in the dataset.

information according to the JND levels, compression gain can be
further realized [36]. Currently, JND models have been used in
image compression to improve the overall compression efficiency
[20], guide the quantization process in coding [7, 26], and achieve
more efficient perceptual encoding.

Although JND based quality assessment methods for natural im-
ages have been widely studied and developed, the current methods
also exhibit disadvantages:

• The current SCI databases or JND based databases are devel-
oped for natural images, and as far as we know there has no
dataset been proposed for TSCI.

• Compared with the natural images, the textual of the text
in TSCI contains a lot of key information, and human eyes
are sensitive to the semantics of the textual information [30].
However, the traditional JND (T-JND) tests fail to distinguish
text from other image contents, ignoring the significant im-
pact of semantic readability of text on image quality.

3 SUBJECTIVE EXPERIMENTS
3.1 Test Material: SAJ-TSCI Dataset
The current JND dataset includes MCL-JCI [12], MCL-JCV [27],
VideoSet [28], etc., developed for the coding standards including
JPEG, H.264/AVC, VVC, etc. But these datasets have the following
obvious problems: 1) Most of these databases are developed for
natural images, and the TSCI still remain untouched; 2) Comparing
between the reference image and the distorted images, the definition
of the “difference” is not clear, and semantic information in text
is not involved. Therefore, in order to facilitate the study of the
differences between T-JND and S-JND for the TSCIs, a text screen
content image dataset, denoted as SAJ-TSCI, is established firstly.
The dataset contains 24 original TSCIs, as shown in Figure 1. All of
the TSCIs in this dataset are from web pages. The spatial resolution
range of the original image is 320 to 1210 pixels, the color space of
the image is YCbCr 4:4:4, and the bit depth is 8.

According to the ITU-R BT.1788, the spatial perceptual informa-
tion (SI) is used to measure the spatial detail information of the
original images [10]. In order to adapt to the sharp edges and even
single pixel boundaries of TSCI texture, this paper uses the SI to
show the spatial features of the 24 original images in the SAJ-TSCI
dataset as shown in Figure 2.

The Weber-Fechner law [31] shows that human eyes cannot per-
ceive a small quality difference between two images, the human eye
can perceive quality differences only when the quality difference
exceeds a certain threshold. When the image is encoded with a
smaller QP, the difference between the reconstructed image and
the original image is smaller, which is difficult to be perceived by
the human eye. When the image is encoded with a larger QP, the
reconstructed image is totally blurred, and is difficult to extract any
useful information. Thus, the QPs considered in this paper range
from 28 to 58, and VTM16.2 is was used to encode the original
image to obtain the reconstructed images corresponding to each
QP. And 744 reconstructed images compressed by using the VVC
standard can be obtained.

The JND subjective tests correspond to the proposed dataset is
constructed to answer the following questions:

• Is the number of T-JND points that humans can distinguish
from S-JND points the same?

• If different, which quantity is larger? What are the differ-
ences in their boundary points?

• What factors may have led to the difference between the two
kinds of JND points?

3.2 JND Subjective Observation Experiment for
TSCI

In order to avoid the human eye obtaining all semantic information
of the text by viewing clear images at the start of the experiment,
which leads to the human eyes having prior knowledge of text for
viewing subsequent distorted images. The initial image is set as
the image related to largest QP, i.e., the images with the largest
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Figure 2: SI information of the original images in SAJ-TSCI
dataset.

distortion without any semantic information. As the image becomes
clearer, the amount of the semantic information that subjects can
obtain gradually increases. Within each JND level, the reference
image remains static in the test while the target varies. For the
beginning of the test, the reference image is the image of QP=58.
The targets are arranged successively in accordance with decreasing
QP. If a target is deemed to be visually indistinguishable from
the reference by an observer, then the next target is presented.
This continues until the target list has been exhausted or when
the target becomes perceptibly different from the reference. If the
two compared image is visual different according the judgment
questions, the target is marked as a JND threshold.

3.3 Definition of “Difference” in the Experiment
The purpose of the T-JND experiment is to determine what extent
of the image distortion or changes can be detected by the observer.
Currently, in T-JND experiments, currently the definition of the
“difference” is not uniform and clear among different methods. This
may lead to a lack of clear guidance or understanding for subjects
to perform tasks. Most of the subjects may make choices based on
their own understanding of notifiable " differences". However, TSCI
is semantic aware, in the S-JND experiments, subjects needs to pay
attention to the difference in the amount of the semantic informa-
tion that can be obtained from the images. And the assessment
questions for the T-JND and the S-JND in this paper are set as:

Questions for the T-JND: Is there any difference between the
two images displayed on the screen?

Questions for the S-JND: Is there any difference in the amount
of semantic information you can obtain from the two images dis-
played on the screen?

3.4 Experimental Setup
49 subjects, including 23 males and 26 females, aged between 20 and
25 years old took participation in the experiments. All subjects have
no research experience in the field of image quality assessment and
have normal vision. All subjects recruited for this experiment were
graduate students. Considering that English semantic information
in TSCI needs the subjects to recognized in this experiment, all
subjects were required to pass the national English proficiency test.
Before the start of the testing step, each subject received simple
training and a PPT introduction document to introduce them to the
usage of the graphical user interface, as well as the testing steps of
this experiment.

Considering the visual fatigue that occurred during the experi-
ment, T-JND and S-JND tests were conducted separately. The sub-
jects were first introduced to the T-JND experiment, and after two
weeks, the S-JND experiment was introduced again. In order to
further alleviate the pressure on the subjects, all 24 sets of image
sequences were divided into 4 parts, each containing 6 original
images. Each subject needs to complete the viewing of 2 parts of
image sequences to ensure that each set of image sequences is
observed by 30 subjects. Each subject was required to complete a
comparison of 1 part of image sequences at once, and to rest for
at least 20 minutes before continuing to compare the remaining
parts. The experiment used a 2K monitor with high resolution,
wide color gamut, and accurate color representation capabilities
to ensure a stable and consistent visual assessment environment
for the subjects. The background of the graphical user interface
was set to pure gray, and all prompt information was displayed in
black font. The lighting conditions in the laboratory were normal.
The experimental setup and process comply with ITU-R BT.500-13
standards [5].

Considering semantic acquisition, if two images are presented on
the screen simultaneously, the amount of information the subject
obtains from both images may affect each other. Therefore, in this
experiment, the Double Stimulus (EBU) method was cyclic in that
the assessor was first presented with an anchor image, and then
with the compare image. Meanwhile, there was no time limit for
either experiment. Subjects clicked "Yes" or “No” according to their
viewing situation by comparing the two presented images. The
personal information of the subjects, QP for each JND level, and
their action time during the experiment have been recorded for
subsequent analysis. In addition, Tobii EyeX was used in the S-JND
experiment to record eye movement data for subsequent analysis.

3.5 Outlier Detection and Normality
Verification

For the all received JND testing results, outliers are firstly detected
and rejected according to the method in [23], which detects the
consistency between a certain subject and the original results of all
other subjects during the testing period.

The subjective data of each image is processed separately. Detect
outliers by checking the consistency of the original results between
a specific subject and all other subjects during the testing period.
Firstly, standardize the raw data of each image to calculate the
z-score.The average value 𝜇𝑛 and standard deviation 𝜎𝑛 of the
original samples in the 𝑛𝑡ℎ image set are calculated as (1) and
(2), respectively,

𝜇𝑛 =
1
𝑀

𝑀∑︁
𝑚=1

𝑄𝑚
𝑛 (1)

𝜎𝑛 =

√√√
1

𝑀 − 1

𝑀∑︁
𝑚=1

(𝑄𝑚
𝑛 − 𝜇𝑛)2 (2)

where 𝑄𝑚
𝑛 represents the collected samples of the𝑚𝑡ℎ subject on

the 𝑛𝑡ℎ image set, where𝑚 ∈ 1, 2..., 𝑀 , 𝑛 ∈ 1, 2..., 𝑁 .
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Figure 3: JND points quantity box plots.

Figure 4: Examples of distorted images.

Calculate the z-score using (3):

𝑍𝑚
𝑛 =

𝑄𝑚
𝑛 − 𝜇𝑛

𝜎𝑛
(3)

Then, the shape of the distribution is evaluated by calculating the
kurtosis of the original data. If the distribution follows a normal
distribution, the score is considered reliable. Next, for each JND
points of each image, check the relationship between the JND point
of that image and the mean and standard deviation of the rating
set. If the JND point exceeds a certain threshold range, it will be
marked as an outlier and discarded. The details of these steps are
summarized in [22].

After removing samples from outliers, the distribution of T-JND
and S-JND data go through normality testing by using Jarque-Bera
test [11] as shown in (4). After removing outliers, the remaining
T-JND points follows a normal distribution along with the S-JND
points.

𝐽𝐵 =
𝑛

6
(𝑠2 + (𝑘 − 3)2

4
) (4)

where 𝑛 is the sample size, and in this paper, 𝑛 is the raw JND
points for a certain test image, 𝑠 is the sample skewness and 𝑘 is
the sample kurtosis.

Figure 5: The box plots of the lowest JND locations. The top
figure shows the results of the T-JND experiment, and the
bottom figure shows the results of the S-JND experiment.

4 ANALYSIS AND DISCUSSION OF
SUBJECTIVE EXPERIMENTAL RESULTS

4.1 Comparison of the Number of JND Points
The T-JND and S-JND points related to the values of QP were col-
lected for each subject. First, the total number of JND points is
analyzed for each test images in the dataset, which in turn deter-
mines the number of perceived quality levels. As shown in Figure
3, the bottom and the top of each box indicate the 25th and 75th
percentiles of the samples, respectively, and the middle line is the
average number of the perceived JND points.

It is found that the distribution range of the number of the T-
JND points is relatively wide. As shown in Figure 3 (a), for the total
number of the JND points that can be perceived by the subjects,
the maximum number can reach up to 21, while some subjects can
only perceive 3 JND points. This is related to the understanding of
“difference” among various subjects in the first test for T-JND. Since
no strict definition of the “difference” was provided to the subjects,
they make their decision according to their own understanding.
Based on the results in Figure 3(a), the subjects can be divided into
two categories: texture perceivers and semantic perceivers.

Texture perceivers attempt to compare texture differences be-
tween two images, and as long as they feel a slight change in texture,
they recorded that there is a “difference”. For example, in the two
images in Figure 4 (a) and (b), the subject cannot perceive any se-
mantics information, but the texture of in the image has changed,
which resulted in differences for texture perceivers. Similarly, when
all the semantic information in the image can be obtained as shown
in Figure 4 (c) and (d), texture perceivers still perceive differences
within the stokes of characters, even if they can no longer obtain
additional semantic information at this time. Therefore, due to the
sensitivity of the human eye to the text region, texture perceivers
collect the highest number of JND points.

For the semantic perceivers, although we did not remind them to
pay attention to the semantic information, they are more inclined
towards image utility. They determine a JND point when there is a
difference for semantic information. For example, in a sentence, if
only a few letters can be seen clearly, but the meaning of the entire
sentence is still not able be acquired accurately, then the semantic
perceiver believes that the difference does not exist. This leads to
fewer JND points obtained by semantic perceivers.

But in the S-JND experiment, the “difference” was described and
reminded to all subjects to focus on the semantic perception. It
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(a) The highest JND locations in the T-JND experiment
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(b) The highest JND locations in the S-JND experiment

Figure 6: The box plots of the highest JND position for No.
15 image.

can be seen from Figure 3 (b) that the distribution range is more
concentrate for S-JND, and there is no significant difference in the
number of the JND points among subjects. It can be seen that the
maximum number of JND points in the S-JND experiment is 10.

For the same image, different subjects still have different numbers
of JND points. Therefore, GMM in [9] was used to achieve the
stair quality function (SQF) for each images. Assuming the JND
distribution is in the GMM form of 𝑁 components. The distribution
of the quantified parameter in mathematics can be expressed as (5):

𝑓 (𝑥) =
𝑁∑︁
𝑖=1

𝜋𝑖N(𝜇𝑥,𝑖 , 𝜎2𝑥,𝑖 ) (5)

where 𝜋𝑖 is themixtureweight satisfying the constraint of
∑𝑁
𝑖=1 𝜋𝑖 =

1. Each component is a normal distribution that satisfies the mean
𝜇𝑥,𝑖 and variance 𝜎2

𝑥,𝑖
calculated by (1) and (2).

The Expectation Maximization (EM) algorithm is used to itera-
tively update the parameters in GMM until the process converges
or reaches the preset maximum number of iterations. More infor-
mation can be found in [9].

After building the GMM, the next step is to build the corre-
sponding Stair Quality Function (SQF). Approximating the JND
distribution as the sum of 𝑁 peaks, as shown in (6),

𝐽𝑁𝐷 (𝑥) =
𝑁∑︁
𝑖=1

𝐻𝑖𝛿 (𝑥 − 𝜇𝑥,𝑖 ) (6)

where 𝛿 (·) is the Dirac function. 𝐻𝑖 denotes the posterior distribu-
tion of the 𝑖𝑡ℎ component.

After building the GMM, the next step is to build the corre-
sponding SQF. Approximating the JND distribution as the sum of
N peaks, and SQF is obtained by integrating the JND function from
the largest QP to the smallest QP.

One example to illustrate the relationship between SQF of T-JND
and S-JND for No.15 image is given in Figure 5. It is seen that the
total number of the quality levels obtained in the S-JND experiment
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(a) The lowest JND locations in the T-JND experiment
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(b) The lowest JND locations in the S-JND experiment

Figure 7: The box plots of the lowest JND position for No. 15
image.

is smaller than that in the T-JND experiment. This is consistent
with the previous analysis results.

4.2 Comparison of the Locations of JND Points
The box plots of the highest and lowest JND locations of the images
in Figure 6 and Figure 7. Similar to the analysis above, The highest
JND in T-JND experimenters concentrated into the value of QP=57
as shown in Figure 6 (a). This means that most of the observers only
judge the difference by the texture difference since no semantic
information is provided in this QP. The highest JND position in
the S-JND experiment is lower than that in the T-JND experiment
as shown in Figure 6 (b). Taking No. 15 image as an example, in
the T-JND experiment, the range of the highest JND position is 51
to 57, while in the S-JND experiment, it is 47 to 55. The highest
JND in S-JND is related to the semantic information increase which
generally corresponding to a lower QP compared with the T-JND.

At the same time, when all the semantic information provided
by the image is obtained even though with small texture changes,
it will generally receive no more attention, which makes the lowest
JND position in the S-JND experiment mostly higher than in the
T-JND experiment, as shown in Figure 7 (a) and (b). Still using No.
15 image as an example, the lowest JND position ranges from 36 to
47 in the T-JND experiment whereas it ranges from 40 to 51 in the
S-JND experiment.

4.3 Cognitive Process Analysis Based on
Observation Time

In order to further analyze the cognitive process of the semantic
information by the subjects, the observation time of each distorted
image corresponding to each image in the dataset was recorded.
Figure 7 shows the results from two subjects with the observing
time of 6 test images in the dataset. As described in Section 3,
the initial test distortion image is set as the largest QP, and then
the QP gradually decreased to obtain all the JND points for a test
image based on the subjective results. The enlarged figure shows
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(a) Observation time in the T-JND tests
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(b) Observation time in the S-JND tests

Figure 8: Observation time of Subject 1 and Subject 2 of the 6
original images with related reconstructed images in a test
image group for the T-JND test and the S-JND test, respec-
tively.

the specific observing time for each distortion images of the first
test image of the two subjects.

It is seen in Figure 8 (a) that the spent time variation is stable
and stays in a low level for the T-JND test. For this kind of JND
test, the subjects generally pay attention to the texture differences
without recognize the characters in the text. In other word, the
strokes in the text are only a special complex line and the subjects
did not spend more time to recognize the semantic information in
the text. Thus, the observing time in the T-JND test is less since
they just need to judge that whether the texture in the target image
has difference compared with the reference image.

Compared to the T-JND, the subjects in the S-JND tests generally
spent more time for each distortion images and appeared to exhibit
a certain trend as shown in Figure 8 (b). Since the target images
were arranged with a descending distortion order, the reference
and the target images were started with significant distortion. At
this stage, no semantic information can be perceived which makes
the subject can make their determination quickly and move to the
next comparison. As the QP value decreases, characters or words
in the text began to be seen. At this stage, the subject needed to pay
attention to increased semantic information, and the observation
time increases until all information can be obtained, and the obser-
vation time reaches a peak. Afterwards, the QP value continued to
decrease, however, the subject found that there would be no further
additional semantic information appeared, so observing time drops
again.

The above phenomena can be explained through the cognitive
process of the subject. In the S-JND test, the target image starts with
the largest distortion which means no semantic information can be
extracted. Then, when semantic information gradually appeared,
the subjects must spend more time to read/observe before they
made the determination. The cognitive load theory suggests that
the human cognitive system is limited [1], and processing multi-
ple tasks or information simultaneously can lead to an increase in
cognitive load. The Multimode Model proposed by Johnson and
Heinz [13] suggests that attention helps to make choices about

(a) QP=55

(b) QP=53

Figure 9: The eye tracking traces of Subject 1 for No. 22 image.

information at different stages of cognition. According to their per-
spective, attention can perform the function of selection across
sensory stage, semantic stage, and conscious stage. At the sensory
stage, it suggests that only physical stimuli will be processed and
sensory representations can be established. And the cognition of
the T-JND test mainly stays at this stage to perceive texture dif-
ferences. Generally, more information processing consumes more
cognitive resources. In the T-JND experiment, the subjects did not
pay extra attention to the semantic features. At the semantic stage,
the cognitive system constructs semantic representations of stimuli.
In the S-JND experiment, semantic acquisition tasks involve under-
standing, interpreting, and reasoning input information, requiring
deeper cognitive processing. The cognitive load of such tasks is usu-
ally high, and they require more attention and cognitive resources
to process complex semantic information. This ultimately leads to
the variation trend where the time spent by the subjects during the
observation process, i.e., the observation time increases first and
then decreases with the increase of the semantic information of the
target distortion images.

4.4 Cognitive process analysis based on Eye
Movement Data

For a further analysis of the cognitive process of the observers, eye
movement data of a subject was recorded using a Tobii EyeX eye
tracker in the S-JND experiment. In Figure 9, the size of the circle
represents the length of the time for each eye gaze, the order of eye
movements is represented by the numbers and colors. The order of
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viewing gradually darkens the color of the circles from yellow to
purple.

Based on the eye tracking results, the following conclusions can
be draw.

• Cognitive process is skim around when no sematic
information can be obtained.
In Figure 9, the two images both provide no semantic infor-
mation with difference in texture, however, the observation
paths of the subject are similar. The eye gazes started from
the center of the image, and then skimmed around and fin-
ished the observation of this image. Even though the subject
has been reminded to pay attention to the semantic infor-
mation, the eye traces show that the subject only roughly
observed the structure of the image around and then provide
a choice. This is because of no semantic information can be
obtained from the two images.

• Cognitive processes focus on the location of semantic
information when clear information is the minority.
With the increment of the image quality, some characters
were able to recognize, and as shown in Figure 10 (a). At
this stage, characters that are beneficial for text semantic
understanding is the saliency contents. As shown in the
“RegionA” of the Figure 10 (a), the blur region has no eye gaze
points, while most of the eye gaze points are concentrated in
the “Region C”. When most of the information in a sentence
is unidentifiable, subjects take the regions where he can
access the semantic information as the saliency contents and
spend less time on the unrecognizable text.

• Cognitive processes focus on the blur text that disturbs
the semantic information when clear information is
the majority.
In Figure 10 (b), more eye gaze points locate in the “Region
A”. It is seen that most of the textual information in the first
sentence from the left is recognizable, only the text in the
“Region A” is blurred. At this stage, in order to finish the
cognition of the complete meaning of the sentence, subjects
concentrated on the blurred information, and this results in
a clustering of eye gaze points in this region.

• Cognitive processes followings the reading order when
all sematic information is obtained.
In Figure 10 (c), all text semantic information can be obtained,
and all eye tracking points are evenly distributed in the
text area and follow the reading order, Generally, this stage
corresponding to the lowest S-JND point.

Based on the discussion in this section, text has significant seman-
tic features, and the loss of semantic information caused by TSCI
compression can affect human cognitive processes and ultimately
affect the distribution perceived quality of the TSCI. Therefore,
quality evaluation methods for TSCI or effective image compres-
sion methods should be sematic aware, and accurate acquisition of
text semantic information must be considered.

5 CONCLUSION
In this study, “difference” in the JND experiment was defined as the
difference in perceived semantic information, known as the S-JND.
Through subjective observation experiments, T-JND and S-JND data
were collected and compared in quantity and location. The results

(a) QP=51

(b) QP=47

(C) QP=44

Figure 10: The eye tracking map of Subject 1 is related to the
reconstructed images with QP values of 51, 47 and 44 for No.
22 image.

showed that S-JND is more suitable for measuring the quality of
TSCI than the excessive quality levels in the T-JND experiment.
In addition, cognitive process based on the observation time and
the eye track data were analyzed. The results in this study may
contribute to TSCI quality assessment and image compression for
multimedia applications.
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