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Abstract

Accurate long-term risk estimation is critical for managing chronic diseases. Sur-
vival analysis provides a framework to quantify the causal effect of risk factors on
time-to-event outcomes, but short follow-up cohorts common in clinical studies
lead to heavy censoring and limit the estimation of long-term effects. Existing
extrapolation methods often focus on population-level outcomes and rely on loosely
defined external data, such as expert heuristics, limiting their utility for personalised
risk estimation. We propose LongSurv, a framework that extrapolates individual-
level survival trajectories from short-term electronic healthcare records (EHR) data
by integrating epidemiological priors like hazard ratios and relative risks. These
priors are incorporated in training via two loss functions: life expectancy consis-
tency loss that aligns predictions with demographic expectations, and a group-wise
ranking loss to preserve clinically valid risk orderings. Evaluated on 4595 post-PCI
patients from Maharashtra, India (95% censoring), outperforms a Weibull base-
line in discrimination (C-index 0.6946 vs. 0.5227) and calibration (IBS 0.0390
vs. 0.0494), while enabling counterfactual reasoning for personalised care. By
connecting short-term observational data with long-term causal survival insights,
LongSurv provides an interpretable and scalable approach to risk estimation.

1 Introduction

Continuity of care for patients with chronic diseases, such as cardiovascular diseases (CVDs) and
chronic kidney diseases (CKDs), is crucial for improving long-term health outcomes, optimising
resource utilisation, and reducing medical expenses through preventive and optimised care. Effective
continuity of care depends on accurate long-term risk estimation, which in turn requires understanding
the causal influence of risk factors and treatments on patient survival trajectories. Survival analysis
provides a framework for estimating such impact of risk factors on time-to-event outcomes and
quantifying them with survival quantities such as life expectancy. However, most healthcare cohort
studies are limited to short follow-up periods (typically 1-5 years) [1], causing a phenomenon known
as censoring [2]. Censoring presents a significant challenge in estimating long-term effects. These
limitations are particularly acute in the Indian healthcare context, where longitudinal cohorts are
scarce, making reliable extrapolation essential.

Traditional survival models such as Kaplan-Meier[3] and Cox-proportional hazards model [4] are
inadequate for long-term extrapolation due to their lack of a baseline hazard function. While recent
deep learning approaches ([5], [6], [7]) can capture complex dependencies, they remain primarily
predictive, requiring large uncensored datasets and their non-parametric nature [8]. Parametric
survival models, by contrast, assume an underlying distribution of hazard function such as Weibull,
Log-Normal, or Gompertz, which are typically recommended for robust long-term projections ([9],
[10]).
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Figure 1: Integrating Simulated Life Expectancy into Survival Modeling.
The diagram shows how long-term survival estimates are derived from short-term cohort data.
Feature-level relative risks (RRi) from healthcare studies and lifetables are used to simulate life
expectancy (LE i), which is aggregated via PCA into LEn×d. A survival model, trained on covariates
(x), incorporates this aggregated life expectancy through an auxiliary loss term (LLE ) alongside the
negative log-likelihood (LNLL) to enhance extrapolation beyond observed data.

Although most of the existing literature [11, 12, 13] emphasises population-level extrapolation,
typically comparing survival between a treatment arm and a control arm (such as in cost-effectiveness
analysis), there is limited focus on individual-level extrapolation, as personalised long-term risk
assessment depends on the ability to predict survival trajectories at the individual level.

In this work, we present LongSurv, a framework for learning parametrised survival models from
short-term, heavily censored cohorts by integrating demographic statistics and clinical evidence to
ensure population-level compliance and causal consistency. Applied to a real-world cohort of 4,595
post-PCI patients from Maharashtra, India (95% censoring, 1-year follow-up), LongSurv improves
predictive accuracy and enables plausible long-term extrapolation. Moreover, by enforcing explicit
causal relationships, it supports counterfactual reasoning and transparent clinical decision-making.

2 Methodology

The core challenge in modelling survival from short-term, highly censored cohorts lies in extending
predictions far beyond the observed horizon without diverging from known clinical and demographic
patterns. Conventional models, when trained solely on limited follow-up, tend to overfit short-term
dynamics and yield implausible long-term estimates. To overcome this, our approach embeds external
population statistics and causal relationships into the learning process, guiding the model toward
extrapolations that are both statistically robust and clinically coherent.

2.1 Life Expectancy as an Impact Metric

Life expectancy, defined as the area under the survival curve, provides a natural and interpretable
summary statistic for long-term survival. At the demographic level, reliable life table estimates
are available across regions and populations. We impose a life expectancy loss (LLE) that aligns
extrapolated survival predictions with these reference values, thereby anchoring the model to realistic
long-term outcomes. This provides a bridge between short-term cohort observations and long-term
population-level survival trends.
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2.2 Feature-Level Effects on Survival

While demographic-level life expectancy provides a broad anchor, the marginal contributions of risk
factors such as smoking, diabetes, or hypertension are rarely reported, despite being essential for
capturing their effects on survival. Epidemiological studies typically quantify their influence through
relative risks (RR) or hazard ratios (HR), which reflect causal relationships with survival established
in cohort studies (Appendix Table 3). We incorporate these quantities by translating them into feature-
specific adjusted life expectancies, estimated via life table methods over a synthetic population.
This involves modifying baseline age-specific mortality rates using reported relative risks, under
the simplifying assumption that these effects remain age-insensitive across the follow-up horizon.
To ensure validity in our target cohort, we introduce a prevalence scaling step that calibrates effect
sizes to the baseline prevalence of each feature. Since risk factors are often correlated, we then apply
principal component analysis (PCA) to disentangle overlapping effects and avoid double-counting.
Together, these adjustments yield feature-wise life expectancy priors that guide extrapolation in a
population-consistent and clinically meaningful way.

2.3 Learning Objective

LongSurv augments a parametric survival model (here, a Weibull AFT model [14]) with two regu-
larisation terms: a life expectancy loss that aligns predicted life expectancies µ̂i with demographic
targets LE i, and a feature-wise ranking loss that enforces monotonic effects of known risk/protective
factors reflecting causal relationships obtained from medical studies. The complete objective is

LLE = 1
n
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L = LNLL + w · LLE + v · Lrank

Here, dj ∈ {+1,−1} encodes whether feature j is risk-increasing or protective, and µj
0, µ

j
1 denote

group-wise predicted life expectancies. Where LNLL is the negative log-likelihood of censored data,
and w, v control the trade-off between fitting observed data and enforcing external causal structure.

3 Result

Evaluating survival extrapolations beyond the cohort period is challenging, as it involves validating
the survival projections outside the available data. We validate LongSurv at 2 levels: model fitness
within the cohort period and validity of survival extrapolation beyond the cohort period. As LongSurv,
a loss augmentation framework applied over a baseline parametric survival model, we evaluate and
compare it against the parametric model of choice (Weibull) in this study.

3.1 Model Fitness within Cohort Period

We evaluated survival models on discrimination (C-index) and calibration (Integrated Brier Score,
IBS) using an 80/20 train-test split (148 and 46 events, respectively). As Table 1 shows, LongSurv
substantially improves discrimination (0.6946 vs. 0.5227) and modestly improves calibration (0.0390
vs. 0.0494), indicating more accurate survival predictions within the cohort period.

Method C-Index IBS
Weibull 0.5227 0.0494
LongSurv(Weibull) 0.6946 0.0390

Table 1: Discrimination (C-index) and calibration (IBS) within the cohort period.

3.2 Evaluating Clinical Plausibility by Sub-Group based Analysis

To assess clinical plausibility, we stratified patients by categorical features (e.g., smoking, alcohol,
comorbidities, medications) and compared their extrapolated life expectancies (Figure 2). LongSurv
produced clinically coherent trends, non-smokers and non-drinkers outliving counterparts, comorbidi-
ties lowering survival, and medications improving outcomes, while the baseline Weibull model failed
to separate most subgroups.
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Figure 2: Feature-wise distributions of predicted life expectancy and the Mean difference
between the groups under LongSurv (left) and Weibull model (right). LongSurv captures clear and
clinically consistent differences across categorical subgroups (e.g., smoking status, comorbidities,
medications), while the Weibull model fails to separate most group-level effects.

3.3 Action Plans for Improving Patient Longevity

The proposed LongSurv framework enables dynamic simulation of personalised “what-if” scenarios
by modifying actionable covariates and quantifying the resulting gain in life expectancy (∆LE).
Actionable factors include smoking, alcohol, hypertension control, and Dual Antiplatelet Therapy
(DAPT) regimens.

For a 46-year-old male patient (smoker, alcohol consumer, hypertensive, on Aspirin+Clopidogrel),
Table 2 summarises predicted life expectancy under counterfactual interventions. Alcohol cessation
and switching to Ticlopidine-based DAPT yield the largest gains (∼4.8–4.9 years), while smoking
cessation and hypertension control provide smaller improvements. This allows the construction of a
ranked, clinically relevant action plan for longevity.

Intervention LE (years) ∆ LE (years)

Baseline Patient 6.54 0.00
Quit Smoking 6.58 0.04
Quit Alcohol 11.37 4.83
Controlled Hypertension 7.79 1.25
DAPT (Aspirin+Clopidogrel) 6.54 0.00
DAPT (Aspirin+Prasugrel) 10.22 3.68
DAPT (Aspirin+Ticlopidine) 11.48 4.93

Table 2: Predicted life expectancy and gains under counterfactual interventions.

4 Limitations

A key limitation of this study is the absence of longitudinal survival data to directly validate long-term
extrapolations, restricting the depth of evaluation. Instead, model validation relies on assessing
plausibility at both the population and feature levels. Another limitation is the use of a proxy
target variable (Expected Life Expectancy) derived from external feature-level statistics, making the
extrapolations sensitive to potential biases in those sources.

5 Conclusion

In summary, LongSurv enables causally grounded survival extrapolation from limited data, support-
ing personalised counterfactual analyses to guide clinical decision-making when long-term evidence
is unavailable.
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A Appendix

A.1 Curated Hazard Ratios (HR) and Relative Risks (RR)

Covariate Study Population RR / HR

Smoking [15] United States

Male:
Current Smoker: 2.24

Past Smoker: 1.30
Female:

Current Smoker: 2.29
Past Smoker: 1.35

Alcohol [16] Mumbai HR: 1.22

Diabetes [17] Mumbai HR: 1.67

Hypertension [18] United
States HR: 1.25

History of CAD [19]
United States

and UK
(EVEREST)

HR: 1.12

Aspirin [20] United States
(NHANES) HR: 0.647

Clopidogrel [21] Danish Diabetic, HR: 0.89
Non-Diabetic, HR: 0.75

Ticlopidine [22] Canada RR: 0.698

Prasugrel [23] Multiple Regions

HR: 0.96
(Prasugrel

vs
Clopidogrel)

Dual Anti Platelet Therapy [24] Mumbai HR: 0.52

Total Number of Stents [24] Mumbai HR: 1.01

Total Length [25] Europe
and North America HR: 1.05 per 10mm

Stent Position [24] Mumbai

LCX, HR: 0.43,
RCA, HR: 0.42,

Multiple, HR: 0.75
(ref: LAD)

Stent Type [26] Korea HR: 0.60
(BMS as ref.)

Table 3: Compilation of hazard ratios and relative risks from the literature, adjusted for relevant
covariates and meeting statistical significance criteria (p < 0.005)
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Figure 3: Effect of loss components on feature-wise life expectancy separation. (a) Application of
only the group ranking loss (Lrank) leads to exaggerated separation in life expectancy distributions
across feature-defined groups. This often results in implausibly wide ranges (e.g., ∆ > 60 years),
undermining clinical credibility. (b) Application of only the life expectancy loss (LLE) produces more
constrained and clinically plausible distributions. However, the suppression of variance can mask
the impact of important but less dominant features, yielding minimal and wrong group separation in
several covariates.

A.2 Data

The dataset was collected through a government-funded cohort study initiated in 2012 by the
Government of Maharashtra, India, as part of a state-sponsored insurance scheme aimed at improving
access to high-cost medical care for socioeconomically disadvantaged populations [27]. The cohort
consisted of 4,595 patients who underwent percutaneous coronary intervention (PCI) at various
participating centres across Maharashtra. Out of the 4595 patients, only 197 (4.92%) patients
experienced the event, which shows the highly censored nature of the data. Patients were followed for
one year, with outcomes including all-cause mortality, repeat PCI, rehospitalisation, and recurrence
of angina being documented. The dataset encompasses a range of patient characteristics, including
demographic factors (age, sex, employment status, education level, and locality), clinical conditions
(presence of diabetes, hypertension, and a history of coronary artery disease), behavioural factors
(smoking and alcohol consumption), and medication (Aspirin, Clopidogrel, Ticlopidine, Prasugrel,
and Dual-Antiplatelet Therapy [DAPT]). Additionally, the dataset includes details related to the PCI
procedure itself, such as stent length, total number of stents, type of stent used, and stent positioning.

A.3 Training and Hyperparameters

For training and evaluation, we used an 80:20 train–test split, resulting in 3,152 samples for training
and 788 samples for testing. Model training was performed using the torchsurv library, employing
the negative log-likelihood loss for the Weibull model. In addition, we implemented the auxiliary
losses introduced in this work.

The overall objective function is given by:

L = LNLL + λLE · LLE + λrank · Lrank,

where LNLL denotes the negative log-likelihood loss, LLE the life expectancy loss, and Lrank the
ranking loss. The coefficients λNLL, λLE, and λrank control the relative contribution of each component.

In our experiments, we set λNLL = 5, λLE = 0.05, and λrank = 5 to obtain the reported results.

A.4 Interpreting the Role of Loss Components

To evaluate the contribution of each loss component, specifically the life expectancy consistency loss
(LLE) and the ranking-based separation loss (Lrank), toward generating interpretable and clinically
meaningful longitudinal survival curves, we analyze their effects using two criteria: (i) feature-wise
group separation in the predicted survival distributions, and (ii) the plausibility and coherence of the
resulting life expectancy estimates across cohorts.
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Figure 3 demonstrates that group ranking loss (Lrank) promotes greater separation between the
feature-defined groups with clinically consistent ordering, effectively pushing survival curves apart.
While this enhances group-wise discrimination, it often results in excessively broad and clinically
implausible life expectancy distributions. In contrast, the life expectancy loss (LLE) enforces tighter
alignment of survival curves among individuals with similar age profiles, yielding more coherent
population-level life expectations. However, this constraint can make the separation between subtler
features disappear or become invisible. From Figure 3, we can see that the ordering of groups is
also not consistent with clinical trends. The proposed LONGSURV model balances these opposing
tendencies by jointly optimising both objectives. In the presented configuration, we weight LLE and
Lrank at 0.05 and 5.0, respectively, effectively harmonising clinical plausibility with interpretability
through structured group-wise separations.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims are that our method produces survival extrapolations that are
both plausible and consistent with established causal relationships between survival and risk
factors, relying solely on external causal priors. We substantiate this in the results section at
two levels: first, by reporting commonly used within-cohort metrics to demonstrate short-
term concordance; and second, by evaluating the plausibility of long-term extrapolations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The approach has a few limitations in-terms lack of sensitivity analysis,
transfering to new population, evaluating the extrapolation using actual data, etc., which we
disucss breifly at the end.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We don’t have any theoretical analysis and proofs for this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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Justification: We have provided the core details of the algorithm which is sufficient to
recreate; however, the code and data underlying this study are not made publicly available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: As this is a workshop paper, the code and data are not yet ready for release.
We plan to make them available in future iterations of this work

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [No]
Justification: As this is a workshop paper, space constraints prevent us from providing full
training and test details; however, these will be included in an extended version of the work
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report error bars in this work, as the focus is on demonstrating the
plausibility of extrapolations and reporting standard within-cohort concordance metrics
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
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Justification: The experiments were conducted on a simple tabular dataset and required no
special computational resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We foresee no harm arising from our research, and no personal information
from the underlying human subject data is disclosed. This work fully adheres to the NeurIPS
ethics guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss how are approach can be used for survival extrapolation for patients
and get to know the impact of risk factors on their survival
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper discusses simple survival models which don’t pose any risk

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All code was developed by the authors, and the data were collected as part of a
previous work by one of the authors

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The work doesn’t introduce any new assest

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No active crowdsourcing was conducted for this study; however, the work
relies on data from human subjects that were collected and published previously by one of
the authors.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This study involves neither active crowdsourcing nor new research with human
subjects; it relies solely on previously collected and published human subject data.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work is not related to LLM research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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