
Published as a conference paper at ICLR 2022

IGLU: EFFICIENT GCN TRAINING VIA LAZY UP-
DATES

S Deepak Narayanan∗†& Aditya Sinha∗‡
Microsoft Research India
{sdeepaknarayanan1,adityaasinha28}@gmail.com

Prateek Jain‡
Microsoft Research India
prajain@google.com

Purushottam Kar
IIT Kanpur & Microsoft Research India
purushot@cse.iitk.ac.in

Sundararajan Sellamanickam
Microsoft Research India
ssrajan@microsoft.com

ABSTRACT

Training multi-layer Graph Convolution Networks (GCN) using standard SGD
techniques scales poorly as each descent step ends up updating node embeddings for
a large portion of the graph. Recent attempts to remedy this sub-sample the graph
that reduce compute but introduce additional variance and may offer suboptimal
performance. This paper develops the IGLU method that caches intermediate
computations at various GCN layers thus enabling lazy updates that significantly
reduce the compute cost of descent. IGLU introduces bounded bias into the
gradients but nevertheless converges to a first-order saddle point under standard
assumptions such as objective smoothness. Benchmark experiments show that
IGLU offers up to 1.2% better accuracy despite requiring up to 88% less compute.

1 INTRODUCTION

The Graph Convolution Network (GCN) model is an effective graph representation learning technique.
Its ability to exploit network topology offers superior performance in several applications such as
node classification (Kipf & Welling, 2017), recommendation systems (Ying et al., 2020) and program
repair (Yasunaga & Liang, 2020). However, training multi-layer GCNs on large and dense graphs
remains challenging due to the very aggregation operation that enables GCNs to adapt to graph
topology – a node’s output layer embedding depends on embeddings of its neighbors in the previous
layer which recursively depend on embeddings of their neighbors in the previous layer, and so on.
Even in GCNs with 2-3 layers, this prompts back propagation on loss terms for a small mini-batch of
nodes to update a large multi-hop neighborhood causing mini-batch SGD techniques to scale poorly.

Efforts to overcome this problem try to limit the number of nodes that receive updates as a result of a
back-propagation step Chiang et al. (2019); Hamilton et al. (2017); Zeng et al. (2020). This is done
either by sub-sampling the neighborhood or clustering (it is important to note the distinction between
nodes sampled to create a mini-batch and neighborhood sampling done to limit the neighborhood of
the mini-batch that receives updates). Variance reduction techniques Chen et al. (2018a) attempt to
reduce the additional variance introduced by neighborhood sampling. However, these techniques often
require heavy subsampling in large graphs resulting in poor accuracy due to insufficient aggregation.
They also do not guarantee unbiased learning or rigorous convergence guarantees. See Section 2 for
a more detailed discussion on the state-of-the-art in GCN training.

Our Contributions: This paper presents IGLU, an efficient technique for training GCNs based on
lazy updates. An analysis of the gradient structure in GCNs reveals the most expensive component of
the back-propagation step initiated at a node to be (re-)computation of forward-pass embeddings for
its vast multi-hop neighborhood. Based on this observation, IGLU performs back-propagation with
significantly reduced complexity using intermediate computations that are cached at regular intervals.
∗Authors contributed equally
†Now at ETH Zurich
‡Now at Google Research India

1

Published as a conference paper at ICLR 2022

This completely avoids neighborhood sampling and is a stark departure from the state-of-the-art.
IGLU is architecture-agnostic and can be readily implemented on a wide range of GCN architectures.
Avoiding neighborhood sampling also allows IGLU to completely avoid variance artifacts and offer
provable convergence to a first-order stationary point under standard assumptions. In experiments,
IGLU offered superior accuracies and accelerated convergence on a range of benchmark datasets.

2 RELATED WORKS

(Bruna et al., 2014; Defferrard et al., 2016; Kipf & Welling, 2017) introduced the GCN architecture for
transductive learning on graphs. Later works extended to inductive settings and explored architectural
variants such as the GIN (Xu et al., 2019). Much effort has focused on speeding-up GCN training.

Sampling Based Approaches: The neighborhood sampling strategy e.g. GraphSAGE (Hamilton
et al., 2017) limits compute by restricting back-propagation updates to a sub-sampled neighborhood
of a node. Layer sampling strategies such as FastGCN (Chen et al., 2018b), LADIES (Zou et al.,
2019) and ASGCN (Huang et al., 2018) instead sample nodes at each GCN layer using importance
sampling to reduce variance and improve connectivity among sampled nodes. FastGCN uses the same
sampling distribution for all layers and struggles to maintain connectivity unless large batch-sizes
are used. LADIES uses a per-layer distribution conditioned on nodes sampled for the succeeding
layer. ASGCN uses a linear model to jointly infer node importance weights. Recent works such as
Cluster-GCN (Chiang et al., 2019) and GraphSAINT (Zeng et al., 2020) propose subgraph sampling
creating mini-batches out of subgraphs and restricting back-propagation to nodes within the subgraph.
To avoid losing too many edges, large mini-batch sizes are used. Cluster-GCN performs graph
clustering and chooses multiple clusters per mini-batch (reinserting any edges cutting across clusters
in a mini-batch) whereas GraphSAINT samples large subgraphs directly using random walks.

Bias and Variance: Sampling techniques introduce bias as non-linear activations in the GCN
architecture make it difficult to offer unbiased estimates of the loss function. Zeng et al. (2020)
offer unbiased estimates if non-linearities are discarded. Sampling techniques also face increased
variance for which variance-reduction techniques have been proposed such as VR-GCN (Chen et al.,
2018a), MVS-GNN (Cong et al., 2020) and AS-GCN (Huang et al., 2018). VR-GCN samples nodes
at each layer whose embeddings are updated and uses stale embeddings for the rest, offering variance
elimination in the limit under suitable conditions. MVS-GNN handles variance due to mini-batch
creation by performing importance weighted sampling to construct mini-batches. The Bandit Sampler
(Liu et al., 2020) formulates variance reduction as an adversarial bandit problem.

Other Approaches: Recent approaches decouple propagation from prediction as a pre-processing
step e.g. PPRGo (Bojchevski et al., 2020), APPNP (Klicpera et al., 2019) and SIGN (Frasca et al.,
2020). APPNP makes use of the relationship between the GCNs and PageRank to construct improved
propagation schemes via personalized PageRank. PPRGo extends APPNP by approximating the dense
propagation matrix via the push-flow algorithm. SIGN proposes inception style pre-computation
of graph convolutional filters to speed up training and inference. GNNAutoScale (Fey et al., 2021)
builds on VR-GCN and makes use of historical embeddings for scaling GNN training to large graphs.

IGLU in Context of Related Work: IGLU avoids neighborhood sampling entirely and instead
speeds-up learning using stale computations. Intermediate computations are cached and lazily
updated at regular intervals e.g. once per epoch. We note that IGLU’s caching is distinct and
much more aggressive (e.g. lasting an entire epoch) than the internal caching performed by popular
frameworks such as TensorFlow and PyTorch (where caches last only a single iteration). Refreshing
these caches in bulk offers IGLU economies of scale. IGLU incurs no sampling variance but incurs
bias due to the use of stale computations. Fortunately, this bias is provably bounded, and can be made
arbitrarily small by adjusting the step length and refresh frequency of the stale computations.

3 IGLU: EFFICIENT GCN TRAINING VIA LAZY UPDATES

Problem Statement: Consider the problem of learning a GCN architecture on an undirected graph
G(V, E) with each of the N nodes endowed with an initial feature vector x0

i ∈ Rd0 , i ∈ V . X0 ∈
Rn×d0 denotes the matrix of these initial features stacked together. N (i) ⊂ V denotes the set of
neighbors of node i. A denotes the (normalized) adjacency matrix of the graph. A multi-layer GCN

2

Published as a conference paper at ICLR 2022

architecture uses a parameterized function at each layer to construct a node’s embedding for the next
layer using embeddings of that node as well as those of its neighbors. Specifically

xki = f(xk−1
j , j ∈ {i} ∪ N (i);Ek),

where Ek denotes the parameters of k-th layer. For example, a classical GCN layer is given by

xki = σ

∑
j∈V

Aij(W
k)>xk−1

j

 ,

where Ek is simply the matrix W k ∈ Rdk−1×dk and dk is the embedding dimensionality at the kth

layer. IGLU supports more involved architectures including residual connections, virtual nodes, layer
normalization, batch normalization, etc (see Appendix A.5). We will use Ek to collectively refer
to all parameters of the kth layer e.g. offset and scale parameters in a layer norm operation, etc.
Xk ∈ Rn×dk will denote the matrix of kth layer embeddings stacked together, giving us the handy
shorthand Xk = f(Xk−1;Ek). Given a K-layer GCN and a multi-label/multi-class task with C
labels/classes, a fully-connected layer WK+1 ∈ RdK×C and activation functions such as sigmoid or
softmax are used to get predictions that are fed into the task loss. IGLU does not require the task loss
to decompose over the classes. The convergence proofs only require a smooth training objective.

Neighborhood Explosion: To understand the reasons behind neighborhood explosion and the
high cost of mini-batch based SGD training, consider a toy univariate regression problem with
unidimensional features and a 2-layer GCN with sigmoidal activation i.e. K = 2 and C = 1 = d0 =
d1 = d2. This GCN is parameterized by w1, w2, w3 ∈ R and offers the output ŷi = w3σ

(
z2
i

)
where

z2
i =

∑
j∈V Aijw

2x1
j ∈ R. In turn, we have x1

j = σ
(
z1
i

)
where z1

i =
∑
j′∈V Ajj′w

1x0
j′ ∈ R and

x0
j′ ∈ R are the initial features of the nodes. Given a task loss ` : R× R→ R+ e.g. least squares,

denoting `′i = `′(ŷi, yi) gives us

∂`(ŷi, yi)

∂w1
= `′i ·

∂ŷi
∂z2
i

· ∂z
2
i

∂w1
= `′i · w3σ′(z2

i) ·
∑
j∈V

Aijw
2
∂x1

j

∂w1

= `′i · w3σ′(z2
i) ·

∑
j∈V

Aijw
2σ′(z1

j) ·
∑
j′∈V

Ajj′x
0
j′ .

The nesting of the summations is conspicuous and indicates the neighborhood explosion: when
seeking gradients in a K-layer GCN on a graph with average degree m, up to an mK−1-sized
neighborhood of a node may be involved in the back-propagation update initiated at that node.
Note that the above expression involves terms such as σ′(z2

i), σ′(z1
j). Since the values of z2

i , z
1
j etc

change whenever the model i.e.
{
w1, w2, w3

}
receives updates, for a fresh mini-batch of nodes,

terms such as σ′(z2
i), σ′(z1

j) need to be computed afresh if the gradient is to be computed exactly.
Performing these computations amounts to doing forward pass operations that frequently involve
a large neighborhood of the nodes of the mini-batch. Sampling strategies try to limit this cost by
directly restricting the neighborhood over which such forward passes are computed. However, this
introduces both bias and variance into the gradient updates as discussed in Section 2. IGLU instead
lazily updates various incomplete gradient (defined below) and node embedding terms that participate
in the gradient expression. This completely eliminates sampling variance but introduces a bias due to
the use of stale terms. However, this bias provably bounded and can be made arbitrarily small by
adjusting the step length and frequency of refreshing these terms.

Lazy Updates for GCN Training: Consider an arbitrary GCN architecture with the following
structure: for some parameterized layer functions we have Xk = f(Xk−1;Ek) where Ek denotes
the collection of all parameters of the kth layer e.g. weight matrices, offset and scale parameters used
in layer norm operations, etc. Xk ∈ RN×dk denotes the matrix of kth layer embeddings stacked
together and X0 ∈ RN×d0 are the initial features. For a K-layer GCN on a multi-label/multi-class
task with C labels/classes, a fully-connected layer WK+1 ∈ RdK×C is used to offer predictions
ŷi = (WK+1)>xKi ∈ RC . We use the shorthand Ŷ ∈ RN×C to denote the matrix where the
predicted outputs ŷi for all the nodes are stacked. We assume a task loss function ` : RC ×RC ×R+

and use the abbreviation `i := `(ŷi, yi). The loss function need not decompose over the classes and
can thus be assumed to include activations such as softmax that are applied over the predictions ŷi.
Let L =

∑
i∈V `i denote the training objective. The convergence proofs assume that L is smooth.

3

Published as a conference paper at ICLR 2022

𝐸𝑘

𝐸𝑘+1

𝑋𝑘−1

𝑋𝑘

𝑋𝑘+1

𝛂𝑘−1

𝛂𝑘

𝛂𝑘+1

𝑋𝑘 = 𝑓 𝑋𝑘−1; 𝐸𝑘 , 𝛂𝑘 =
𝜕 𝛂𝑘+1⊙𝑋𝑘+1

𝜕𝑋𝑘

(b) (c)

𝐸GraphSAINT

𝑋𝑘−1

𝑋𝑘

Dropout

Graph Conv

ReLU

Layer Norm

(a)

IGLU Neighbourhood Sampling Layer Sampling Subgraph Sampling

Figure 1: Fig 1(a) highlights the distinction between existing sampling-based approaches that may introduce
bias and variance. IGLU completely sidesteps these issues and is able to execute GCN back-propagation steps
on the full graph owing to its use of lazy updates which offer no sampling variance and provably bounded bias.
Fig 1(b) summarizes the quantities useful for IGLU’s updates. IGLU is architecture-agnostic and can be readily
used with wide range of architectures. Fig 1(c) gives an example layer architecture used by GraphSAINT.

Motivation: We define the the loss derivative matrix G = [gic] ∈ RN×C with gic := ∂`i
∂ŷic

. As the
proof of Lemma 1 (see Appendix C) shows, the loss derivative with respect to parameters Ek at

any layer has the form ∂L
∂Ek =

∑N
j=1

∑dk
p=1

(∑
i∈V

∑
c∈[C] gic ·

∂ŷic
∂Xk

jp

)
∂Xk

jp

∂Ek . Note that the partial

derivatives
∂Xk

jp

∂Ek can be computed for any node using only embeddings of its neighbors in the (k−1)th

layer i.e. Xk−1 thus avoiding any neighborhood explosion. This means that neighborhood explosion
must be happening while computing the terms encapsulated in the round brackets. Let us formally
recognize these terms as incomplete gradients. The notation ∂P

∂Q

∣∣∣
R

denotes the partial derivative of
P w.r.t Q while keeping R fixed i.e. treated as a constant.
Definition 1. For any layer k ≤ K, define its incomplete task gradient to be αααk = [αkjp] ∈ RN×dk ,

αkjp :=
∂(G� Ŷ)

∂Xk
jp

∣∣∣∣∣
G

=
∑
i∈V

∑
c∈[C]

gic ·
∂ŷic
∂Xk

jp

The following lemma completely characterizes the loss gradients and also shows that the incomplete
gradient terms αααk, k ∈ [K] can be efficiently computed using a recursive formulation that also does
not involve any neighborhood explosion.
Lemma 1. The following results hold whenever the task loss L is differentiable:

1. For the final fully-connected layer we have ∂L
∂WK+1 = (XK)>G as well as for any k ∈ [K]

and any parameter Ek in the kth layer, ∂L
∂Ek = ∂(αααk�Xk)

∂Ek

∣∣∣
αααk

=
∑
i∈V

∑dk
p=1 α

k
ip ·

∂Xk
ip

∂Ek .

2. For the final layer, we have αααK = G(WK+1)> as well as for any k < K, we have

αααk = ∂(αααk+1�Xk+1)
∂Xk

∣∣∣
αααk+1

i.e. αkjp =
∑
i∈V

∑dk+1

q=1 αk+1
iq · ∂X

k+1
iq

∂Xk
jp

.

Lemma 1 establishes a recursive definition of the incomplete gradients using terms such as
∂Xk+1

iq

∂Xk
jp

that

concern just a single layer. Thus, computing αααk for any k ∈ [K] does not involve any neighborhood
explosion since only the immediate neighbors of a node need be consulted. Lemma 1 also shows
that if αααk are computed and frozen, the loss derivatives ∂L

∂Ek only involve additional computation of

terms such as
∂Xk

ip

∂Ek which yet again involve a single layer and do not cause neighborhood explosion.
This motivates lazy updates to αααk, Xk values in order to accelerate back-propagation. However,
performing lazy updates to both αααk, Xk offers suboptimal performance. Hence IGLU adopts two
variants described in Algorithms 1 and 2. The backprop variant* keeps embeddings Xk stale for

*The backprop variant is named so since it updates model parameters in the order back-propagation would
have updated them i.e. WK+1 followed by EK , EK−1, . . . whereas the inverted variant performs updates in
the reverse order i.e. starting from E1, E2 all the way to WK+1.

4

Published as a conference paper at ICLR 2022

an entire epoch but performs eager updates to αααk. The inverted variant on the other hand keeps the
incomplete gradients αααk stale for an entire epoch but performs eager updates to Xk.

Algorithm 1 IGLU: backprop order

Input: GCN G, initial features X0, task loss L
1: Initialize model parameters Ek, k ∈ [K],WK+1

2: while not converged do
3: Do a forward pass to compute Xk for all k ∈

[K] as well as Ŷ
4: Compute G then ∂L

∂WK+1 using Lemma 1 (1)
and update WK+1 ←WK+1 − η · ∂L

∂WK+1

5: Compute αααK using G,WK+1, Lemma 1 (2)
6: for k = K . . . 2 do
7: Compute ∂L

∂Ek using αααk, Xk, Lemma 1 (1)
8: Update Ek ← Ek − η · ∂L

∂Ek

9: Update αααk using αααk+1 using Lemma 1 (2)
10: end for
11: end while

Algorithm 2 IGLU: inverted order

Input: GCN G, initial features X0, task loss L
1: Initialize model parameters Ek, k ∈ [K],WK+1

2: Do an initial forward pass to computeXk, k ∈ [K]
3: while not converged do
4: Compute Ŷ,G and αααk for all k ∈ [K] using

Lemma 1 (2)
5: for k = 1 . . .K do
6: Compute ∂L

∂Ek using αααk, Xk, Lemma 1 (1)
7: Update Ek ← Ek − η · ∂L

∂Ek

8: Update Xk ← f(Xk−1;Ek)
9: end for

10: Compute ∂L
∂WK+1 using Lemma 1 (1) and use

it to update WK+1 ←WK+1 − η · ∂L
∂WK+1

11: end while

SGD Implementation: Update steps in the algorithms (steps 4, 8 in Algorithm 1 and steps 7, 10 in
Algorithm 2) are described as a single gradient step over the entire graph to simplify exposition – in
practice, these steps are implemented using mini-batch SGD. A mini-batch of nodes S is sampled
and task gradients are computed w.r.t L̂S =

∑
i∈S `i alone instead of L.

Contribution: As noted in Section 2, IGLU uses caching in a manner fundamentally different from
frameworks such as PyTorch or TensorFlow which use short-lived caches and compute exact gradients
unlike IGLU that computes gradients faster but with bounded bias. Moreover, unlike techniques such
as VR-GCN that cache only node embeddings, IGLU instead offers two variants and the variant that
uses inverted order of updates (Algorithm 2) and caches incomplete gradients usually outperforms
the backprop variant of IGLU (Algorithm 1) that caches node embeddings.

Theoretical Analysis: Conditioned on the stale parameters (either αααk or Xk depending on which
variant is being executed), the gradients used by IGLU to perform model updates (steps 4, 8 in
Algorithm 1 and steps 7, 10 in Algorithm 2) do not have any sampling bias. However, the staleness
itself training bias. However, by controlling the step length η and the frequency with which the stale
parameters are updated, this bias can be provably controlled resulting in guaranteed convergence to a
first-order stationary point. The detailed statement and proof are presented in Appendix C.
Theorem 2 (IGLU Convergence (Informal)). Suppose the task objective L has O (1)-Lipschitz
gradients and IGLU is executed with small enough step lengths η for model updates (steps 4, 8 in
Algorithm 1 and steps 7, 10 in Algorithm 2), then within T iterations, IGLU ensures:

1. ‖∇L‖22 ≤ O
(

1/T
2
3

)
if update steps are carried out on the entire graph in a full-batch.

2. ‖∇L‖22 ≤ O
(

1/
√
T
)

if update steps are carried out using mini-batch SGD.

This result holds under minimal assumptions of objective smoothness and boundedness that are
standard Chen et al. (2018a); Cong et al. (2020), yet offers convergence rates comparable to those
offered by standard mini-batch SGD. However, whereas works such as (Chen et al., 2018a) assume
bounds on the sup-norm i.e. L∞ norm of the gradients, Theorem 2 only requires an L2 norm bound.
Note that objective smoothness requires the architecture to use smooth activation functions. However,
IGLU offers similar performance whether using non-smooth activations e.g. ReLU or smooth ones
e.g. GELU (see Appendix B.7) as is also observed by other works (Hendrycks & Gimpel, 2020).

4 EMPIRICAL EVALUATION

IGLU was compared to state-of-the-art (SOTA) baselines on several node classification benchmarks
in terms of test accuracy and convergence rate. The inverted order of updates was used for IGLU as it
was found to offer superior performance in ablation studies.

5

Published as a conference paper at ICLR 2022

Datasets and Tasks: The following five benchmark tasks were used:
(1) Reddit (Hamilton et al., 2017): predicting the communities to which different posts belong,
(2) PPI-Large (Hamilton et al., 2017): classifying protein functions in biological protein-protein
interaction graphs,
(3) Flickr (Zeng et al., 2020): image categorization based on descriptions and other properties,
(4) OGBN-Arxiv (Hu et al., 2020): predicting paper-paper associations, and
(5) OGBN-Proteins (Hu et al., 2020): categorizing meaningful associations between proteins.
Training-validation-test splits and metrics were used in a manner consistent with the original release
of the datasets: specifically ROC-AUC was used for OGBN-Proteins and micro-F1 for all other
datasets. Dataset descriptions and statistics are presented in Appendix B. The graphs in these tasks
varied significantly in terms of size (from 56K nodes in PPI-Large to 232K nodes in Reddit), density
(from average degree 13 in OGBN-Arxiv to 597 in OGBN-Proteins) and number of edges (from
800K to 39 Million). They require diverse information to be captured and a variety of multi-label and
multi-class node classification problems to be solved thus offering extensive evaluation.

Baselines: IGLU was compared to state-of-the-art algorithms, namely - GCN (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017), VR-GCN (Chen et al., 2018a), Cluster-GCN (Chiang et al.,
2019) and GraphSAINT (Zeng et al., 2020) (using the Random Walk Sampler which was reported by
the authors to have the best performance). The mini-batched implementation of GCN provided by
GraphSAGE authors was used since the implementation released by (Kipf & Welling, 2017) gave run
time errors on all datasets. GraphSAGE and VRGCN address the neighborhood explosion problem
by sampling neighborhood subsets, whereas ClusterGCN and GraphSAINT are subgraph sampling
techniques. Thus, our baselines include neighbor sampling, layer-wise sampling, subgraph sampling
and no-sampling methods. We recall that IGLU does not require any node/subgraph sampling. IGLU
was implemented in TensorFlow and compared with TensorFlow implementations of the baselines
released by the authors. Due to lack of space, comparisons with the following additional baselines is
provided in Appendix B.2: LADIES (Zou et al., 2019), L2-GCN (You et al., 2020), AS-GCN (Huang
et al., 2018), MVS-GNN (Cong et al., 2020), FastGCN (Chen et al., 2018b), SIGN (Frasca et al.,
2020), PPRGo (Bojchevski et al., 2020) and Bandit Sampler (Liu et al., 2020).

Architecture: We note that all baseline methods propose a specific network architecture along
with their proposed training strategy. These architectures augment the standard GCN architecture
(Kipf & Welling, 2017) e.g. using multiple non-linear layers within each GCN layer, normalization
and concatenation layers, all of which can help improve performance. IGLU being architecture-
agnostic can be readily used with all these architectures. However, for the experiments, the network
architectures proposed by VR-GCN and GraphSAINT was used with IGLU owing to their consistent
performance across datasets as demonstrated by (Chen et al., 2018a; Zeng et al., 2020). Both
architectures were considered and results for the best architecture are reported for each dataset.

Detailed Setup. The supervised inductive learning setting was considered for all five datasets as
it is more general than the transductive setting that assumes availability of the entire graph during
training. The inductive setting also aligns with real-world applications where graphs can grow over
time (Hamilton et al., 2017). Experiments on PPI-Large, Reddit and Flickr used 2 Layer GCNs
for all methods whereas OGBN-Proteins and OGBN-Arxiv used 3 Layer GCNs for all methods as
prescribed in the original benchmark (Hu et al., 2020). Further details are provided in Appendix A.1.

Model Selection and Hyperparameter Tuning. Model selection was done for all methods based on
their validation set performance. Each experiment was run five times with mean and standard deviation
in test performance reported in Table 1 along with training times. Although the embedding dimension
varies across datasets, they are same for all methods for any dataset. For IGLU, GraphSAGE and
VR-GCN, an exhaustive grid search was done over general hyperparameters such as batch size,
learning rate and dropout rate (Srivastava et al., 2014). In addition, method-specific hyperparameter
sweeps were also carried out that are detailed in Appendix A.4.

4.1 RESULTS

For IGLU, the VR-GCN architecture performed better for Reddit and OGBN-Arxiv datasets while
the GraphSAINT architecture performed better on the remaining three datasets. All baselines were
extensively tuned on the 5 datasets and their performance reported in their respective publications was
either replicated closely or else improved. Test accuracies are reported in Table 1 and convergence

6

Published as a conference paper at ICLR 2022

Table 1: Accuracy of IGLU compared to SOTA algorithms. The metric is ROC-AUC for Proteins
and Micro-F1 for the others. IGLU is the only method with accuracy within 0.2% of the best accuracy
on each dataset with significant speedups in training across datasets. On PPI-Large, IGLU is ∼ 8×
faster than VR-GCN, the most accurate baseline. * denotes speedup in initial convergence based on a
high validation score of 0.955. – denotes no absolute gain. ‖ denotes a runtime error.

Algorithm PPI-Large Reddit Flickr Proteins Arxiv
GCN 0.614 ± 0.004 0.931 ± 0.001 0.493 ± 0.002 0.615 ± 0.004 0.657 ± 0.002

GraphSAGE 0.736 ± 0.006 0.954 ± 0.002 0.501 ± 0.013 0.759 ± 0.008 0.682 ± 0.002
VR-GCN 0.975 ± 0.007 0.964 ± 0.001 0.483 ± 0.002 0.752 ± 0.002 0.701 ± 0.006

Cluster-GCN 0.899 ± 0.004 0.962 ± 0.004 0.481 ± 0.005 ‖ 0.706 ± 0.004
GraphSAINT 0.956 ± 0.003 0.966 ± 0.003 0.510 ± 0.001 0.764 ± 0.009 0.712 ± 0.006

IGLU 0.987 ± 0.004 0.964 ± 0.001 0.515 ± 0.001 0.784 ± 0.004 0.718 ± 0.001
Abs. Gain 0.012 – 0.005 0.020 0.006

% Speedup (1) 88.12 8.1* 44.74 11.05 13.94

0 20 40 60 80
Wall Clock Time(s)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
icr

o-
F1

PPI-Large

0 5 10 15 20
Wall Clock Time(s)

0.88

0.90

0.92

0.94

0.96

M
icr

o-
F1

Reddit

0 2 4 6 8 10
Wall Clock Time(s)

0.35

0.40

0.45

0.50

M
icr

o-
F1

Flickr

0 20 40 60 80 100
Wall Clock Time(s)

0.5

0.6

0.7

0.8

RO
C

AU
C

OGBN-Proteins

0 10 20 30 40
Wall Clock Time(s)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
icr

o-
F1

OGBN-Arxiv

GCN
GraphSAGE
VRGCN
GraphSAINT
ClusterGCN
IGLU

Figure 2: Wall Clock Time vs Validation Accuracy on different datasets for various methods.
IGLU offers significant improvements in convergence rate over baselines across diverse datasets.

plots are shown in Figure 2. Additionally, Table 1 also reports the absolute accuracy gain of IGLU
over the best baseline. The % speedup offered by IGLU is computed as follows: let the highest
validation score obtained by the best baseline be v1 and t1 be the time taken to reach that score. Let
the time taken by IGLU to reach v1 be t2. Then,

% Speedup :=
t1 − t2
t1

× 100 (1)

The wall clock training time in Figure 2 is strictly the optimization time for each method and
excludes method-specific overheads such as pre-processing, sampling and sub-graph creation that
other baselines incur. This is actually a disadvantage to IGLU since its overheads are much smaller.
The various time and memory overheads incurred by all methods are summarized in Appendix A.2
and memory requirements for IGLU are discussed in Appendix A.3.

Performance on Test Set and Speedup Obtained: Table 1 establishes that IGLU significantly
outperforms the baselines on PPI-Large, Flickr, OGBN-Proteins and OGBN-Arxiv and is competitive
with best baselines on Reddit. On PPI-Large, IGLU improves accuracy upon the best baseline
(VRGCN) by over 1.2% while providing speedups of upto 88%, i.e., IGLU is about 8× faster to train
than VR-GCN. On OGBN-Proteins, IGLU improves accuracy upon the best baseline (GraphSAINT)
by over 2.6% while providing speedup of 11%. On Flickr, IGLU offers 0.98% improvement in

7

Published as a conference paper at ICLR 2022

0 25 50 75 100 125 150 175 200
Epoch

0.55

0.60

0.65

0.70

0.75

0.80

0.85

RO
C

AU
C

IGLU Validation ROC AUC vs Epoch: OGBN-Proteins

Inverted
Backprop

0 5 10 15 20 25
Epoch

0.70

0.75

0.80

0.85

0.90

0.95

M
icr

o-
F1

IGLU Validation Micro-F1 vs Epoch: Reddit

Inverted
Backprop

(a) (b)

Figure 3: Effect of backprop and inverted order of updates in IGLU on Reddit and OGBN-Proteins
datasets. The inverted order of updates offers more stability and faster convergence. It is notable that
techniques such as VR-GCN use stale node embeddings that correspond to the backprop variant.

accuracy while simultaneously offering upto 45% speedup over the previous state-of-the-art method
GraphSAINT. Similarly on Arxiv, IGLU provides 0.84% accuracy improvement over the best baseline
GraphSAINT while offering nearly 14% speedup. On Reddit, an 8.1% speedup was observed in
convergence to a high validation score of 0.955 while the final performance is within a standard
deviation of the best baseline. The OGBN-Proteins and OGBN-Arxiv datasets were originally
benchmarked in the transductive setting, with the entire graph information made available during
training. However, we consider the more challenging inductive setting yet IGLU outperforms the
best transductive baseline by over 0.7% for Proteins while matching the best transductive baseline for
Arxiv (Hu et al., 2020). It is important to note that OGBN-Proteins is an atypical dataset because the
graph is highly dense. Because of this, baselines such as ClusterGCN and GraphSAINT that drop a
lot of edges while creating subgraphs show a deterioration in performance. ClusterGCN encounters
into a runtime error on this dataset (denoted by ‖ in the table), while GraphSAINT requires a very
large subgraph size to achieve reasonable performance.

Convergence Analysis: Figure 2 shows that IGLU converges faster to a higher validation score than
other baselines. For PPI-Large, while Cluster-GCN and VR-GCN show promising convergence in
the initial stages of training, they stagnate at a much lower validation score in the end whereas IGLU
is able to improve consistently and converge to a much higher validation score. For Reddit, IGLU’s
final validation score is marginally lower than GraphSAINT but IGLU offers rapid convergence in
the early stages of training. For OGBN-Proteins, Flickr and OGBN-Arxiv, IGLU demonstrates a
substantial improvement in both convergence and the final performance on the test set.

4.2 ABLATION STUDIES

Effect of the Order of Updates. IGLU offers the flexibility of using either the backprop order of
updates or the inverted order of updates as mentioned in Section 3. Ablations were performed on the
Reddit and OGBN-Proteins datasets to analyse the effect of the different orders of updates. Figure 3
offers epoch-wise convergence for the same and shows that the inverted order of updates offers faster
and more stable convergence in the early stages of training although both variants eventually converge
to similar validation scores. It is notable that keeping node embeddings stale (backprop order) offered
inferior performance since techniques such as VR-GCN (Chen et al., 2018a) that also keep node
embeddings stale. IGLU offers the superior alternative of keeping incomplete gradients stale instead.

Analysis of Degrees of Staleness. The effect of frequency of updates to the incomplete gradients
(αααk) on the performance and convergence of IGLU was analyzed. This ablation was conducted
keeping all the other hyperparameters fixed. In the default setting, αααk values were updated only once
per epoch (referred to as frequency 1). Two other update schemes were also considered: a) update the
αααk values every two epochs (referred to as frequency 0.5), and b) update the αααk values twice within
an epoch (referred to as frequency 2). To clarify,αααk values are the most fresh with update frequency 2
and most stale with update frequency 0.5. This ablation study was performed on the PPI-Large dataset
and each variant was trained for 200 epochs. Table 2 summarizes the results doing model selection
and Figure 4 plots the convergence of these variants. Figure 4b shows that on PPI-Large, the default

8

Published as a conference paper at ICLR 2022

0 25 50 75 100 125 150 175 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

n
Lo

ss

IGLU Train Loss vs Epoch: PPI-Large
IGLU - Frequency - 0.5
IGLU (Default) - Frequency - 1
IGLU - Frequency - 2

0 25 50 75 100 125 150 175 200
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

M
icr

o-
F1

IGLU Validation Micro-F1 vs Epoch: PPI-Large

IGLU - Frequency - 0.5
IGLU (Default) - Frequency - 1
IGLU - Frequency - 2

(a) (b)

Figure 4: Update frequency vs Accuracy. Experiments conducted on PPI-Large. As expected,
refreshing the αααk’s too frequently or too infrequently can affect both performance and convergence.

update frequency 1 has the best convergence on the validation set, followed by update frequency
0.5. Both update frequency 1 and 0.5 massively outperform update frequency 2. Figure 4a shows
that IGLU with update frequency 2 has the lowest training loss but poor validation performance,
indicating overfitting to the training dataset. We observe from this ablation that updating embeddings
prematurely can cause unstable training resulting in convergence to a suboptimal solution. However,
not refreshing the αααk values frequently enough can delay convergence to a good solution.

Table 2: Accuracy vs different update frequency on PPI-Large.

Update Frequency Train Micro-F1 Validation Micro-F1 Test Micro-F1
0.5 0.947 0.899 0.916
1 0.970 0.947 0.961
2 0.960 0.708 0.726

Additional Ablations and Experiments: Due to lack of space, the following additional ablations
and experiments are described in the appendices: a) Ablation on degrees of staleness for the backprop
order of updates in Appendix B.8, b) Experiments demonstrating IGLU’s scalability to deeper net-
works and larger datasets in Appendices B.3 and B.4 respectively, and c) Experiments demonstrating
IGLU’s applicability and architecture-agnostic nature in Appendices B.5 and B.6.

5 DISCUSSION AND FUTURE WORK

This paper introduced IGLU, a novel method for training GCN architectures that uses biased gradients
based on cached intermediate computations to speed up training significantly. The gradient bias
is shown to be provably bounded so overall convergence is still effective (see Theorem 2).IGLU’s
performance was validated on several datasets where it significantly outperformed SOTA methods
in terms of accuracy and convergence speed. Ablation studies confirmed that IGLU is robust to its
few hyperparameters enabling a near-optimal choice. Exploring other possible variants of IGLU, in
particular reducing variance due to mini-batch SGD, sampling nodes to further speed-up updates,
and exploring alternate staleness schedules are interesting future directions. On a theoretical side, it
would be interesting to characterize properties of datasets and loss functions that influence the effect
of lazy updates on convergence. Having such a property would allow practitioners to decide whether
to execute IGLU with lazier updates or else reduce the amount of staleness. Exploring application-
and architecture-specific variants of IGLU is also an interesting direction.

REPRODUCIBILITY STATEMENT

Efforts have been made to ensure that results reported in this paper are reproducible.

Theoretical Clarity: Section 3 discusses the problem setup and preliminaries and describes the
proposed algorithm. Detailed proofs are provided in Appendix C due to lack of space.

9

Published as a conference paper at ICLR 2022

Experimental Reproducibility: Section 4 and Appendices A and B contain information needed
to reproduce the empirical results, namely datasets statistics and data source, data pre-processing,
implementation details for IGLU and the baselines including architectures, hyperparameter search
spaces and the best hyperparameters corresponding to the results reported in the paper.

Code Release: An implementation of IGLU can be found at the following URL
https://github.com/sdeepaknarayanan/iglu

ETHICS STATEMENT

This paper presents IGLU, a novel technique to train GCN architectures on large graphs that outper-
forms state of the art techniques in terms of prediction accuracy and convergence speed. The paper
does not explore any sensitive applications and the experiments focus primarily on publicly available
benchmarks of scientific (e.g. PPI) and bibliographic (e.g. ArXiv) nature do not involve any user
studies or human experimentation.

ACKNOWLEDGMENTS

The authors are thankful to the reviewers for discussions that helped improve the content and
presentation of the paper.

REFERENCES

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete
Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System for Large-Scale
Machine Learning. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), 2016.

Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek
Rózemberczki, Michal Lukasik, and Stephan Günnemann. Scaling graph neural networks with
approximate pagerank. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD), 2020.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In Yoshua Bengio and Yann LeCun (eds.), Proceedings of the 2nd
International Conference on Learning Representations (ICLR), 2014.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic Training of Graph Convolutional Networks with Vari-
ance Reduction. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning (ICML), 2018a.

Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast Learning with Graph Convolutional Networks
via Importance Sampling. In Proceedings of the 6th International Conference on Learning
Representations (ICLR), 2018b.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and Deep Graph
Convolutional Networks. In Proceedings of the 37th International Conference on Machine
Learning (ICML), 2020.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-GCN: An
Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD), 2019.

Weilin Cong, Rana Forsati, Mahmut T. Kandemir, and Mehrdad Mahdavi. Minimal Variance
Sampling with Provable Guarantees for Fast Training of Graph Neural Networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD), 2020.

10

https://github.com/sdeepaknarayanan/iglu

Published as a conference paper at ICLR 2022

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
Neighbourhood Aggregation for Graph Nets. In Proceedings of the 34th Advances in Neural
Information Processing Systems (NeurIPS), 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on
Graphs with Fast Localized Spectral Filtering. In Proceedings of the 30th Advances in Neural
Information Processing Systems (NIPS), 2016.

Matthias Fey, Jan E. Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and
expressive graph neural networks via historical embeddings. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning (ICML), 2021.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. In International Conference on Machine
Learning (ICML) 2020 Workshop on Graph Representation Learning and Beyond, 2020.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation Learning on Large
Graphs. In Proceedings of the 31st Advances in Neural Information Processing Systems (NIPS),
2017.

Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs), 2020. arXiv:1606.08415
[cs.LG].

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In
Proceedings of the 34th Advances in Neural Information Processing Systems (NeurIPS), 2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive Sampling Towards Fast Graph
Representation Learning. In Proceedings of the 32nd Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the 3rd International Conference on Learning Representations, (ICLR), 2015.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In Proceedings of the 5th International Conference on Learning Representations
(ICLR), 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then Propagate: Graph
Neural Networks meet Personalized PageRank. In Proceedings of the 7th International Conference
on Learning Representations (ICLR), 2019.

Ziqi Liu, Zhengwei Wu, Zhiqiang Zhang, Jun Zhou, Shuang Yang, Le Song, and Yuan Qi. Bandit
samplers for training graph neural networks. In Proceedings of the 34th Advances in Neural
Information Processing Systems (NeurIPS), 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In Proceedings of the 8th International Conference on Learning
Representations (ICLR), 2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56), 2014.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. In Proceedings of the 6th International Conference on
Learning Representations (ICLR), 2018.

11

Published as a conference paper at ICLR 2022

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In Proceedings of the 7th International Conference on Learning Representations
(ICLR), 2019.

Michihiro Yasunaga and Percy Liang. Graph-based, Self-Supervised Program Repair from Diagnostic
Feedback. In Proceedings of the 37th International Conference on Machine Learning (ICML),
2020.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD),
2020.

Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. L2-GCN: Layer-Wise and Learned
Efficient Training of Graph Convolutional Networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
SAINT: Graph Sampling Based Inductive Learning Method. In Proceedings of the 8th International
Conference on Learning Representations (ICLR), 2020.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-Dependent
Importance Sampling for Training Deep and Large Graph Convolutional Networks. In Proceedings
of the 33rd Advances in Neural Information Processing Systems (NeurIPS), 2019.

APPENDIX

This appendix is segmented into three key parts.

1. Section A discusses additional implementation details. In particular, method-specific over-
heads are discussed in detail and detailed hyper-parameter settings for IGLU and the main
baselines reported in Table 1 are provided. A key outcome of this analysis is that IGLU has
the least overheads as compared to the other methods. We also provide the methodology
for incorporating architectural modifications into IGLU, provide a detailed comparison
with caching based methods and provide a more detailed descriptions of the algorithms
mentioned in the main paper.

2. Section B reports dataset statistics, provides comparisons with additional baselines (not
included in the main paper due to lack of space) and provides experiments on scaling to
deeper models and larger graphs as mentioned in Section 4.2 in the main paper. It also
provides experiments for the applicability of IGLU across settings and architectures, using
smooth activation functions, continued ablation on degrees of staleness and optimization on
the train set. The key outcome of this discussion is that IGLU scales well to deeper models
and larger datasets, and continues to give performance boosts with state-of-the-art even when
compared to these additional baselines. Experimental evidence also demonstrates IGLU’s
ability to generalize easily to a different setting and architecture, perform equivalently with
smooth activation functions and achieve lower training losses faster compared to all the
baselines across datasets.

3. Section C gives detailed proofs of Lemma 1 and the convergence rates offered by IGLU. It
is shown that under standard assumptions such as objective smoothness, IGLU is able to
offer both the standard rate of convergence common for SGD-style algorithms, as well as a
fast rate if full-batch GD is performed.

A ADDITIONAL IMPLEMENTATION DETAILS

We recall from Section 4.1 that the wall-clock time reported in Figure 2 consists of strictly the
optimization time for each method and excludes method-specific overheads. This was actually a
disadvantage for IGLU since its overheads are relatively mild. This section demonstrates that other
baselines incur much more significant overheads whereas IGLU does not suffer from these large

12

Published as a conference paper at ICLR 2022

overheads. When included, it further improves the speedups that IGLU provides over baseline
methods.

A.1 HARDWARE

We implement IGLU in TensorFlow 1.15.2 and perform all experiments on an NVIDIA V100
GPU (32 GB Memory) and Intel Xeon CPU processor (2.6 GHz). We ensure that all baselines are
experimented with the exact same hardware.

A.2 TIME AND MEMORY OVERHEADS FOR VARIOUS METHODS

We consider three main types of overheads that are incurred by different methods. This includes
pre-processing overhead that is one-time, recurring overheads and additional memory overhead. We
describe each of the overheads in the context of the respective methods below.

1. GraphSAGE - GraphSAGE recursively samples neighbors at each layer for every minibatch.
This is done on-the-fly and contributes to a significant sampling overhead. Since this
overhead is incurred for every minibatch, we categorize this under recurring overhead. We
aggregate this overhead across all minibatches during training. GraphSAGE does not incur
preprocessing or additional memory overheads.

2. VRGCN - Similar to GraphSAGE, VRGCN also recursively samples neighbors at each
layer for every minibatch on-the-fly. We again aggregate this overhead across all minibatches
during training. VRGCN also stores the stale/historical embeddings that are learnt for every
node at every layer. This is an additional overhead of O (NKd), where K is the number
of layers, N is the number of nodes in the graph and d = 1

K

∑
k∈[K] dk is the average

embedding dimensionality across layers.

3. ClusterGCN - ClusterGCN creates subgraphs and uses them as minibatches for training.
For the creation of these subgraphs, ClusterGCN performs graph clustering using the highly
optimized METIS tool†. This overhead is a one-time overhead since graph clustering is
done before training and the same subgraphs are (re-)used during the whole training process.
We categorize this under preprocessing overhead. ClusterGCN does not incur any recurring
or additional memory overheads.

4. GraphSAINT - GraphSAINT, similar to ClusterGCN creates subgraphs to be used as mini-
batches for training. We categorize this minibatch creation as the preprocessing overhead
for GraphSAINT. However, unlike ClusterGCN, GraphSAINT also periodically creates new
subgraphs on-the-fly. We categorize this overhead incurred in creating new subgraphs as
recurring overhead. GraphSAINT does not incur any additional memory overheads.

5. IGLU - IGLU creates mini-batches only once using subsets of nodes with their full neigh-
borhood information which is then reused throughout the training process. In addition to this,
IGLU requires initial values of both the incomplete gradients αααk and the Xk embeddings
(Step 3 and first part of Step 4 in Algorithm 1 and Step 2 and Step 4 in Algorithm 2) before
optimization can commence. We categorize these two overheads - mini-batch creation and
initializations of αααk’s and Xk embeddings as IGLU’s preprocessing overhead and note that
IGLU does not have any recurring overheads. IGLU does incur an additional memory
overhead since it needs to store the incomplete gradients αααk’s in the inverted variant and the
embeddings Xk in the backprop variant. However, note that the memory occupied by Xk

for a layer k is the same as that occupied by αααk for that layer (see Definition 1). Thus, for
both its variants, IGLU incurs an additional memory overhead of O (NKd), where K is
the number of layers, N is the number of nodes in the graph and d = 1

K

∑
k∈[K] dk is the

average embedding dimensionality across layers.

Tables 3 and 4 report the overheads incurred by different methods on the OGBN-Proteins and Reddit
datasets (the largest datasets in terms of edges and nodes respectively). ClusterGCN runs into a
runtime error on the Proteins dataset (denoted by || in the table). N/A stands for Not Applicable in
the tables. In the tables, specifically for IGLU, pre-processing time is the sum of initialization time

†http://glaros.dtc.umn.edu/gkhome/metis/metis/download

13

http://glaros.dtc.umn.edu/gkhome/metis/metis/download

Published as a conference paper at ICLR 2022

Table 3: OGBN-Proteins: Overheads of different methods. IGLU does not have any recurring
overhead while VRGCN, GraphSAGE and GraphSAINT all suffer from heavy recurring overheads.
ClusterGCN runs into runtime error on this dataset (denoted by ||). GraphSAINT incurs an overhead
that is ∼ 2× the overhead incurred by IGLU, while GraphSAGE and VRGCN incur upto ∼ 4.7×
and ∼ 7.8× the overhead incurred by IGLU respectively. For the last row, I denotes initialization
time, MB denotes minibatch time and T denotes total preprocessing time. Please refer to Discussion
on OGBN - Proteins at Section A.2 for more details.

Method Preprocessing (One-time) Recurring Additional Memory
GraphSAGE N/A 276.8s N/A

VRGCN N/A 465.0s O (NKd)
ClusterGCN || || ||
GraphSAINT 22.1s 101.0s N/A

IGLU 34.0s (I) + 25.0s (MB) = 59.0s (T) N/A O (NKd)

Table 4: Reddit: Overheads of different methods. IGLU and GraphSAINT do not have any
recurring overhead for this dataset while VRGCN and GraphSAGE incur heavy recurring overheads.
ClusterGCN suffers from heavy preprocessing overhead incurred due to clustering. In this case, IGLU
incurs an overhead that is marginally higher (∼ 1.4×) than that of GraphSAINT, while VRGCN,
GraphSAGE and ClusterGCN incur as much as ∼ 2.1×, ∼ 4.5× and ∼ 5.8× the overhead incurred
by IGLU respectively. For the last line, I denotes initialization time, MB denotes minibatch time and
T denotes total preprocessing time. Please refer to Discussion on Reddit at Section A.2 for more
details.

Method Preprocessing (One-time) Recurring Additional Memory
GraphSAGE N/A 41.7s N/A

VRGCN N/A 19.2s O (NKd)
ClusterGCN 54.0s N/A N/A
GraphSAINT 6.7s N/A N/A

IGLU 3.5s (I) + 5.7s (MB)= 9.2s (T) N/A O (NKd)

required to pre-computeαααk, Xk and mini-batch creation time. We also report the individual overhead
for both initialization and mini-batch creation for IGLU. The total pre-processing time for IGLU
is denoted by T, overheads incurred for initialization by I and overheads incurred for mini-batch
creation by MB.

For IGLU, the minibatch creation code is currently implemented in Python, while GraphSAINT
uses a highly optimized C++ implementation. Specifically for the Reddit dataset, the number
of subgraphs that GraphSAINT samples initially is sufficient and it does not incur any recurring
overhead. However, on Proteins, GraphSAINT samples 200 subgraphs every 18 epochs, once the
initially sampled subgraphs are used, leading to a sizeable recurring overhead.

Discussion on OGBN - Proteins: Figure 5 summarizes the total overheads for all the methods.
On the OGBN-Proteins dataset, IGLU incurs ∼ 2× less overhead than GraphSAINT, the best
baseline, while incurring as much as ∼ 7.8× less overhead than VRGCN and ∼ 4.7× less overhead
than GraphSAGE. It is also important to note that these overheads are often quite significant as
compared to the optimization time for the methods and can add to the overall experimentation time.
For experiments on the OGBN-Proteins dataset, VRGCN’s total overheads equal 46.25% of its
optimization time, GraphSAINT’s overheads equal 19.63% of its optimization time, GraphSAGE’s
overhead equal 9.52% of its optimization time. However IGLU’s total overheads equal only 5.59%
of its optimization time which is the lowest out of all methods. Upon re-computing the speedup
provided by IGLU using the formula defined in equation (1), but this time with overheads included,
it was observed that IGLU offered an improved speedup of 16.88% (the speedup was only 11.05%
when considering only optimization time).

14

Published as a conference paper at ICLR 2022

Proteins Reddit
Dataset

100

101

102

103

Ti
m

e
(s

)

Total Overheads for Different Methods (Lower the better)
ClusterGCN
GraphSAGE
VR-GCN
GraphSAINT
IGLU

Figure 5: Total Overheads in Wall Clock Time (Log Scale) for the different methods on OGBN-
Proteins and Reddit dataset. ClusterGCN runs into runtime error on the OGBN-Proteins dataset
and hence has not been included in the plot. IGLU frequently offers least total overhead compared to
the other methods and hence significantly lower overall experimentation time. Please refer to section
A.2 for details.

Table 5: URL’s and commit numbers to run baseline codes

Method URL Commit
GCN github.com/williamleif/GraphSAGE a0fdef

GraphSAGE github.com/williamleif/GraphSAGE a0fdef
VRGCN github.com/thu-ml/stochastic_gcn da7b78

ClusterGCN github.com/google-research/google-research/tree/master/cluster_gcn 0c1bbe5
AS-GCN github.com/huangwb/AS-GCN 5436ecd
L2-GCN github.com/VITA-Group/L2-GCN 687fbae

MVS-GNN github.com/CongWeilin/mvs_gcn a29c2c5
LADIES github.com/acbull/LADIES c10b526
FastGCN https://github.com/matenure/FastGCN b8e6e64

SIGN https://github.com/twitter-research/sign 42a230c
PPRGo https://github.com/TUM-DAML/pprgo_pytorch c92c32e

BanditSampler https://github.com/xavierzw/gnn-bs a2415a9

Discussion on Reddit: On the Reddit dataset, IGLU incurs upto ∼ 2.1× less overhead than
VRGCN and upto ∼ 4.5× less overhead than GraphSAGE. However, IGLU incurs marginally higher
overhead (∼ 1.4×) than GraphSAINT. This can be attributed to the non-optimized minibatch creation
routine currently used by IGLU compared to a highly optimized and parallelized implementation in
C++ used by GraphSAINT. This is an immediate avenue for future work. Nevertheless, VRGCN’s
total overhead equals 15.41% of its optimization time, GraphSAINT’s overhead equals 43.41% of its
optimization time, GraphSAGE’s overhead equals 31.25% of its optimization time, ClusterGCN’s
overhead equals 41.02% of its optimization time while IGLU’s overhead equals 44.09% of its
optimization time. Whereas the relative overheads incurred by IGLU and GraphSAINT in comparison
to optimization time may seem high for this dataset, this is because the actual optimization times
for these methods are rather small, being just 15.43 and 20.86 seconds for GraphSAINT and IGLU
respectively in comparison to the other methods such as VRGCN, ClusterGCN and GraphSAGE
whose optimization times are 124s, 131s and 133s respectively, almost an order of magnitude larger
than that of IGLU.

A.3 MEMORY ANALYSIS FOR IGLU

While IGLU requires storing stale variables which can have additional memory costs, for most
scenarios with real world graphs, saving these stale representations on modern GPUs are quite
reasonable. We provide examples of additional memory usage required for two of the large datasets

15

https://github.com/williamleif/GraphSAGE
https://github.com/williamleif/GraphSAGE
https://github.com/thu-ml/stochastic_gcn
https://github.com/google-research/google-research/tree/master/cluster_gcn
https://github.com/huangwb/AS-GCN
https://github.com/VITA-Group/L2-GCN
https://github.com/CongWeilin/mvs_gcn
https://github.com/acbull/LADIES
https://github.com/matenure/FastGCN
https://github.com/twitter-research/sign
https://github.com/TUM-DAML/pprgo_pytorch
https://github.com/xavierzw/gnn-bs

Published as a conference paper at ICLR 2022

- Reddit and Proteins in Table 6 and we observe that IGLU requires only 150MB and 260MB of
additional GPU memory. Even for a graph with 1 million nodes, the additional memory required
would only be ∼ 2.86GB which easily fit on modern GPUs. For even larger graphs, CPU-GPU
interfacing can be used. CPU and GPU interfacing for data movement is a common practice in
training machine learning models and hence a potential method to mitigate the issue of limited
memory availability in settings with large datasets. This has been explored by many works for dealing
with large datasets in the context of GCNs, such as VR-GCN (Chen et al., 2018a) for storing historical
activations in main memory (CPU). Such an interfacing is an immediate avenue of future work for
IGLU.

Table 6: Additional Memory Overheads incurred by IGLU on Large datasets

Dataset # of Train Nodes Embedding Dimensions Number of Layers Memory Per Layer Total GPU Memory
Reddit 155k 128 2 75MB 150MB

Proteins 90k 256 3 85MB 260MB
Million Sized Graph 1M 256 3 0.95GB 2.86GB

We observe that IGLU enjoys significant speedups and improvements in training cost across datasets
as compared to the baselines as a result of using stale variables. Additionally, since IGLU requires
training just a single layer at a time, there is scope for further reduction in memory usage by using
only the variables required for the current layer and by re-using the computation graphs across layers,
and therefore making IGLU even less memory expensive.

A.4 HYPERPARAMETER CONFIGURATIONS FOR IGLU AND BASELINES

Table 5 summarizes the source URLs and commit stamps using which baseline methods were obtained
for experiments. The Adam optimizer Kingma & Ba (2015) was used to train IGLU and all the
baselines until convergence for each of the datasets. A grid search was performed over the other
hyper-parameters for each baseline which are summarized below:

1. GraphSAGE: Learning Rate - {0.01, 0.001}, Batch Size - {512, 1024, 2048}, Neighbor-
hood Sampling Size - {25, 10, 5}, Aggregator - {Mean, Concat}

2. VRGCN : Batch Size - {512, 1000, 2048}, Degree - {1, 5, 10}, Method - {CV, CVD},
Dropout - {0, 0.2, 0.5}

3. ClusterGCN : Learning Rate - {0.01, 0.001, 0.005}, Lambda - {-1, 1, 1e-4}, Number of
Clusters - {5, 50, 500, 1000, 1500, 5000}, Batch Size - {1, 5, 50, 100, 500}, Dropout - {0,
0.1, 0.3, 0.5}

4. GraphSAINT-RW : Aggregator - {Mean, Concat}, Normalization - {Norm, Bias}, Depth -
{2, 3, 4}, Root Nodes - {1250, 2000, 3000, 4500, 6000}, Dropout - {0.0, 0.2, 0.5}

5. IGLU : Learning Rate - {0.01, 0.001} with learning rate decay schemes, Batch Size - {512,
2048, 4096, 10000}, Dropout - {0.0, 0.2, 0.5, 0.7}

A.5 INCORPORATING RESIDUAL CONNECTIONS, BATCH NORMALIZATION AND VIRTUAL
NODES IN IGLU

General-purpose techniques such as BatchNorm and skip/residual connections, and GCN-specific
advancements such as bi-level aggregation using virtual nodes offer performance boosts. The current
implementation of IGLU already incorporates normalizations as described in Sections 3 and 4. Below
we demonstrate how all these aforementioned architectural variations can be incorporated into IGLU
with minimal changes to Lemma 1 part 2. Remaining guarantees such as those offered by Lemma 1
part 1 and Theorem 2 remain unaltered but for changes to constants.

Incorporating BatchNorm into IGLU: As pointed out in Section 3, IGLU assumes a general form
of the architecture, specifically

xki = f(xk−1
j , j ∈ {i} ∪ N (i);Ek),

where f includes the aggregation operation such as using the graph Laplacian, weight matrices and
any non-linearity. This naturally allows operations such as normalizations (LayerNorm, BatchNorm

16

Published as a conference paper at ICLR 2022

etc) to be carried out. For instance, the f function for BatchNorm with a standard GCN would look
like the following

zki = σ

∑
j∈V

Aij(W
k)>xk−1

j

ẑki =

zki −µµµkB√
νννkB + ε

xki = Γk · ẑki + βββk,

where σ denotes a non-linearity like the sigmoid, Γk ∈ Rdk×dk is a diagonal matrix and βββk ∈ Rdk is
a vector, andµµµkB , ννν

k
B ∈ Rdk are vectors containing the dimension-wise mean and variance values over

a mini-batch B (division while computing ẑki is performed element-wise). The parameter Ek is taken
to collect parameters contained in all the above operations i.e. Ek =

{
W k,Γk,βββk

}
in the above

example (µµµkB , ννν
k
B are computed using samples in a mini-batch itself). Downstream calculations in

Definition 1 and Lemma 1 continue to hold with no changes.

Incorporating Virtual Nodes into IGLU: Virtual nodes can also be seamlessly incorporated simply
by re-parameterizing the layer-wise parameter Ek. We are referring to (Pei et al., 2020) [Pei et
al ICLR 2020] for this discussion. Let R be the set of relations and let Ng(·),Ns(·) denote graph
neighborhood and latent-space neighborhood functions respectively. A concrete example is given
below to illustrate how virtual nodes can be incorporated. We note that operations like BatchNorm
etc can be additionally incorporated and alternate aggregation operations e.g. concatenation can be
used instead.

g
(k,r)
i = σ

 ∑
j∈Ng(i)
τ(i,j)=r

Aij(L
k
g)>xk−1

j

s
(k,r)
i = σ

 ∑
j∈Ns(i)
τ(i,j)=r

Tij(L
k
s)>xk−1

j

(Low-level aggregation)

mk
i =

1

|R|
∑
r∈R

(
g

(k,r)
i + s

(k,r)
i

)
(High-level aggregation)

xki = σ
(
(W k)>mk

i

)
(Non-linear transform)

where τ denotes the relationship indicator, Aij denotes the graph edge weight between nodes i and
j and Tij denotes their geometric similarity in latent space. Note that g(k,r)

i , s
(k,r)
i corresponds to

embeddings of the virtual nodes in the above example. To implement the above, the parameter Ek
can be taken to collect the learnable parameters contained in all the above operations i.e. Ek ={
Lkg , L

k
s ,W

k
}

in the above example. Downstream calculations in Definition 1 and Lemma 1 continue
to hold as is with no changes.

Incorporating Skip/Residual Connections into IGLU: The architecture style presented in Section
3 does not directly allow skip connections but they can be incorporated readily with no change to
Definition 1 and minor changes to Lemma 1. Let us introduce the notation k → m to denote a direct
forward (skip) connection directed from layer k to some layer m > k. In a purely feed-forward style
architecture, we would only have connections of the form k → k + 1. The following gives a simple
example of a GCN with a connection that skips two layers, specifically (k − 2)→ k.

xki = f
(
xk−1
j , j ∈ {i} ∪ N (i);Ek)

)
+ xk−2

i ,

where f includes the aggregation operation with the graph Laplacian, the transformation weight
matrix and any non-linearity. Definition 1 needs no changes to incorporate such architectures. Part
1 of Lemma 1 also needs no changes to address such cases. Part 2 needs a simple modification as
shown below

17

Published as a conference paper at ICLR 2022

Lemma 3 (Lemma 1.2 adapted to skip connections). For the final layer, we continue to have (i.e. no
change) αααK = G(WK+1)>. For any k < K, we have αααk =

∑
m:k→m

∂(αααm�Xm)
∂Xk

∣∣∣
allαααm s.t. k→m

i.e. αkjp =
∑
m:k→m

∑
i∈V

∑dm
q=1 α

m
iq ·

∂Xm
iq

∂Xk
jp

.

Note that as per the convention established in the paper,
∑
m:k→m

∂(αααm�Xm)
∂Xk

∣∣∣
allαααm s.t. k→m

implies
that while taking the derivatives, αααm values are fixed (treated as a constant) for all m > k such that
k → m. This “conditioning” is important since αααm also indirectly depends on Xk if m > k.

Proof of Lemma 1.2 adapted to skip connections: We consider two cases yet again and use
Definition 1 that tells us that

αkjp =
∑
i∈V

∑
c∈[C]

gic ·
∂ŷic
∂XK

jp

Case 1 (k = K): Since this is the top-most layer and there are no connections going ahead let
alone skipping ahead, the analysis of this case remains unchanged and continues to yield αK =
G(WK+1)>.

Case 2 (k < K): Using Definition 1 and incorporating all layers to which layer k has a direct or skip
connection gives us

αkjp =
∑
i∈V

∑
c∈[C]

gic ·
∂ŷic
∂Xk

jp

=
∑

m:k→m

∑
i∈V

∑
c∈[C]

gic ·
∑
l∈V

dm∑
q=1

∂ŷic
∂Xm

lq

∂Xm
lq

∂Xk
jp

Rearranging the terms gives us

αkjp =
∑

m:k→m

∑
l∈V

dm∑
q=1

∑
i∈V

∑
c∈[C]

gic ·
∂ŷic
∂Xm

lq

 · ∂Xm
lq

∂Xk
jp

=
∑

m:k→m

∑
l∈V

dm∑
q=1

αmlq ·
∂Xm

lq

∂Xk
jp

,

where we simply used Definition 1 in the second step. However, the resulting term simply gives us
αkjp =

∑
m:k→m

∂(αααm�Xm)

∂Xk
jp

∣∣∣
allαααm s.t. k→m

which conditions on, or treats as a constant, the term αααm

for all m > k such that k → m according to our notation convention. This finishes the proof of part
2 adapted to skip connections.

A.6 COMPARISON OF IGLU WITH VR-GCN, MVS-GNN AND GNNAUTOSCALE

We highlight the key difference between IGLU and earlier works that cache intermediate results for
speeding up GNN training below.

A.6.1 VRGCN V/S IGLU

1. Update of Cached Variables: VR-GCN (Chen et al., 2018a) caches only historical embed-
dings, and while processing a single mini-batch these historical embeddings are updated
for a sampled subset of the nodes. In contrast IGLU does not update any intermediate
results after processing each mini-batch. These are updated only once per epoch, after all
parameters for individual layers have been updated.

2. Update of Model Parameters: VR-GCN’s backpropagation step involves update of model
parameters of all layers after each mini-batch. In contrast IGLU updates parameters of only
a single layer at a time.

3. Variance due to Sampling: VR-GCN incurs additional variance due to neighborhood
sampling which is then reduced by utilizing historical embeddings for some nodes and by
computing exact embeddings for the others. IGLU does not incur such variance since IGLU
uses all the neighbors.

A.6.2 MVS-GNN V/S IGLU

MVS-GNN (Cong et al., 2020) is another work that caches historical embeddings. It follows a nested
training strategy wherein firstly a large batch of nodes are sampled and mini-batches are further

18

Published as a conference paper at ICLR 2022

created from this large batch for training. MVS-GNN handles variance due to this mini-batch creation
by performing importance weighted sampling to construct mini-batches.

1. Update of Cached Variables and Variance due to Sampling: Building upon VR-GCN,
to reduce the variance in embeddings due to its sampling of nodes at different layers,
MVS-GNN caches only embeddings and uses historical embeddings for some nodes and
recompute the embeddings for the others. Similar to VR-GCN, these historical embeddings
are updated as and when they are part of the mini-batch used for training. As discussed
above, IGLU does not incur such variance since IGLU uses all the neighbors.

2. Update of Model Parameters: Update of model parameters in MVS-GNN is similar to
that of VR-GCN, where backpropagation step involves update of model parameters of all
layers for each mini-batch. As described already, IGLU updates parameters of only a single
layer at a time.

A.6.3 GNNAUTOSCALE V/S IGLU

GNNAutoScale (Fey et al., 2021) extends the idea of caching historical embeddings from VR-GCN
and provides a scalable solution.

1. Update of intermediate representations and model parameters: While processing a
minibatch of nodes, GNNAutoScale computes the embeddings for these nodes at each layer
while using historical embeddings for the immediate neighbors outside the current minibatch.
After processing each mini-batch, GNNAutoScale updates the historical embeddings for
nodes considered in the mini-batch. Similar to VR-GCN and MVS-GNN, GNNAutoScale
updates all parameters at all layers while processing a mini-batch of nodes. In contrast
IGLU does not update intermediate results (intermediate representations in Algorithm 1 and
incomplete gradients in Algorithm 2) after processing each minibatch. In fact, these are
updated only once per epoch, after all parameters for individual layers have been updated.

2. Partitioning: GNNAutoScale relies on the METIS clustering algorithm for creating mini-
batches that minimize inter-connectivity across batches. This is done to minimize access
to historical embeddings and reduce staleness. This algorithm tends to bring similar nodes
together, potentially resulting in the distributions of clusters being different from the original
dataset. This may lead to biased estimates of the full gradients while training using mini-
batch SGD as discussed in Section 3.2, Page 5 of Cluster-GCN (Chiang et al., 2019). IGLU
does not rely on such algorithms since it’s parameter updates are concerned with only a
single layer and also avoids potential additional bias.

Similarity of IGLU with GNNAutoScale: Both of the methods avoid a neighborhood sampling
step, thereby avoiding additional variance due to neighborhood sampling and making use of all the
edges in the graph. Both IGLU and GNNAutoScale propose methods to reduce the neighborhood
explosion problem, although in fundamentally different manners. GNNAutoScale does so by pruning
the computation graph by using historical embeddings for neighbors across different layers. IGLU on
the other hand restricts the parameter updates to a single layer at a time by analyzing the gradient
structure of GNNs therefore alleviating the neighborhood explosion problem.

A.6.4 SUMMARY OF IGLU’S TECHNICAL NOVELTY AND CONTRAST WITH CACHING BASED
RELATED WORKS

To summarize, IGLU is fundamentally different from these methods that cache historical embeddings
in that it changes the entire training procedure of GCNs in contrast with the aforementioned caching
based methods as follows:

• The above methods still follow standard SGD style training of GCNs in that they update
the model parameters at all the layers after each mini-batch. This is very different from
IGLU’s parameter updates that concern only a single layer while processing a mini-batch.

• IGLU can cache either incomplete gradients or embeddings which is different from the
other approaches that cache only embeddings. This provides alternate approaches for
training GCNs and we demonstrate empirically that caching incomplete gradients, in fact,
offers superior performance and convergence.

19

Published as a conference paper at ICLR 2022

• Unlike GNNAutoScale and VR-GCN that update some of the historical embeddings after
each mini-batch is processed, IGLU’s caching is much more aggressive and the stale
variables are updated only once per epoch, after all parameters for all layers have been
updated.

• Theoretically, we provide good convergence rates and bounded bias even while using
stale gradients, which has not been discussed in any prior works.

These are the key technical novelties of our proposed method and they are a consequence of a careful
understanding of the gradient structure of GCN’s themselves.

A.6.5 EMPIRICAL COMPARISON WITH GNNAUTOSCALE

We provide an empirical comparison of IGLU with GNNAutoScale and summarize the results in
Table 7 and Figure 6. It is important to note that the best results for GNNAutoScale as reported
by the authors in the paper, correspond to varying hyperparameters such as number of GNN layers
and different embedding dimensions across methods, datasets and architectures. However, for the
experiments covered in the main paper, we use 2 layer settings for PPI-Large, Flickr and Reddit and 3
layer settings for OGBN-Arxiv and OGBN-Proteins datasets consistently for IGLU and the baseline
methods, as motivated by literature. We also ensure that the embedding dimensions are uniform
across IGLU and the baselines. Therefore, to ensure a fair comparison, we perform additional
experiments with these parameters for GNNAutoScale set to values that are consistent with our
experiments for IGLU and the baselines. We train GNNAutoScale with three variants, namely GCN,
GCNII (Chen et al., 2020) and PNA (Corso et al., 2020) and report the results for each of the variant.
We also note here that GNNAutoScale was implemented in PyTorch (Paszke et al., 2019) while
IGLU was implemented in TensorFlow (Abadi et al., 2016). While this makes a wall-clock time
comparison unsuitable as discussed in Appendix B.2, we still provide a wall-clock time comparison
for completeness. We also include the best performance numbers for GNNAutoScale on these
datasets (as reported by the authors in Table 5, Page 9 of the GNNAutoScale paper) across different
architectures. Note that we do not provide comparisons on the OGBN-Proteins dataset since we ran
into errors while trying to incorporate the dataset into the official implementation of GNNAutoScale.

Results: Figure 6 provides convergence plots comparing IGLU with the different architectures of
GNNAutoScale and Table 7 summarizes the test performance on PPI-Large, Flickr, Reddit and OGBN-
Arxiv (transductive) datasets. From the table, we observe that IGLU offers competitive performance
compared to the GCN variant of GAS for the majority of the datasets. We also observe from Figure
6 that IGLU offers significant improvements in training time with rapid early convergence on the
validation set. We note that more complex architectures such as GCNII and PNA offer improvements
in performance to GNNAutoScale. IGLU being architecture agnostic can be incorporated with these
architectures for further improvements in performance. We leave this as an avenue for future work.

A.7 DETAILED DESCRIPTION OF ALGORITHMS 1 AND 2

We present Algorithms 1 and 2 again below (as Algorithms 3 and 4 respectively) with details of each
step.

IGLU: backprop order Algorithm 3 implements the IGLU algorithm in its backprop variant. Node
embeddings Xk, k ∈ [K] are calculated and kept stale. They are not updated even when model
parameters Ek, k ∈ [K] get updated during the epoch. On the other hand, the incomplete task
gradients αααk, k ∈ [K] are kept refreshed using the recursive formulae given in Lemma 1. For sake of
simplicity, the algorithm been presented with staleness duration of one epoch i.e. Xk are refreshed at
the beginning of each epoch. Variants employing shorter or longer duration of staleness can be also
explored simply by updating Xk, k ∈ [K] say twice in an epoch or else once every two epochs.

IGLU: inverted order Algorithm 4 implements the IGLU algorithm in its inverted variant. Incom-
plete task gradients αααk, k ∈ [K] are calculated once at the beginning of every epoch and kept stale.
They are not updated even when node embeddings Xk, k ∈ [K] get updated during the epoch. On
the other hand, the node embeddings Xk, k ∈ [K] are kept refreshed. For sake of simplicity, the
algorithm been presented with staleness duration of one epoch i.e. αααk are refreshed at the beginning
of each epoch. Variants employing shorter or longer durations of staleness can be also explored

20

Published as a conference paper at ICLR 2022

Table 7: Test Accuracy of IGLU compared to GNNAutoScale. * - We perform experiments using
GNNAutoScale in a setting identical to IGLU with 2-layer models on PPI-Large, Reddit and Flickr
datasets and 3-layer models on OGBN-Arxiv dataset (transductive) and report the performance.
For completeness, we also include the best results from GNNAutoScale for comparison. We were
unable to perform experiments with GNNAutoScale on the Proteins dataset, and hence omit it for
comparison. We observe that IGLU performs competitively with GNNAutoScale for models like
GCN on most of the datasets. IGLU being architecture agnostic can be further combined with varied
architectures like GCNII and PNA to obtain gains offered by these architecture.

Algorithm PPI-Large Reddit Flickr Arxiv (Trans)
Our Experiments*

GAS-GCN 0.983 0.954 0.533 0.710
GAS-GCNII 0.969 0.964 0.539 0.724
GAS-PNA 0.917 0.970 0.555 0.714

Best Results: GNNAutoScale, (From Table 5, Page 9)
GAS-GCN 0.989 0.954 0.540 0.716

GAS-GCNII 0.995 0.967 0.562 0.730
GAS-PNA 0.994 0.971 0.566 0.725

IGLU 0.987 ± 0.004 0.964 ± 0.001 0.515 ± 0.001 0.719 ± 0.002

0 20 40 60 80
Wall Clock Time(s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
icr

o-
F1

PPI-Large

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Wall Clock Time(s)

0.2

0.4

0.6

0.8

1.0

M
icr

o-
F1

Reddit

0 1 2 3 4 5 6
Wall Clock Time(s)

0.1

0.2

0.3

0.4

0.5

M
icr

o-
F1

Flickr

0 5 10 15 20 25 30 35 40
Wall Clock Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
icr

o-
F1

OGBN-Arxiv

GNNAutoScale (GCN)
GNNAutoScale (GCNII)
GNNAutoScale (PNA)
IGLU

Figure 6: Wall Clock Time vs Validation Accuracy on different datasets as compared to GN-
NAutoScale. We perform experiments using GNNAutoScale in a setting identical to IGLU with
2-layer models on PPI-Large, Reddit and Flickr datasets and 3-layer models on OGBN-Arxiv dataset
and report the performance. IGLU offers competitive performance and faster convergence across the
datasets.

simply by updating αααk say twice in an epoch or else once every two epochs. This has been explored
in Section 4.2 (see paragraph on "Analysis of Degrees of Staleness.").

21

Published as a conference paper at ICLR 2022

Algorithm 3 IGLU: backprop order

Input: GCN G, initial features X0, task loss L
1: Initialize model parameters Ek, k ∈ [K],WK+1

2: for epoch = 1, 2, . . . do
3: for k = 1 . . .K do
4: Refresh Xk ← f(Xk−1;Ek) //Xk will be kept stale till next epoch
5: end for
6: Ŷ ← XKWK+1 //Predictions
7: G←

[
∂`i
∂ŷic

]
N×C

//The loss derivative matrix

8: Compute ∂L
∂WK+1 ← (XK)>G //Using Lemma 1.1 here

9: Update WK+1 ←WK+1 − η · ∂L
∂WK+1

10: Refresh αααK ← G(WK+1)> //Using Lemma 1.2 here
11: for k = K . . . 2 do
12: Compute ∂L

∂Ek ← ∂(αααk�Xk)
∂Ek

∣∣∣
αααk

, //Using Lemma 1.1 here

13: Update Ek ← Ek − η · ∂L
∂Ek

14: Refresh αααk−1 ← ∂(αααk�Xk)
∂Xk−1

∣∣∣
αααk

//Using Lemma 1.2 here

15: end for
16: end for

Algorithm 4 IGLU: inverted order

Input: GCN G, initial features X0, task loss L
1: Initialize model parameters Ek, k ∈ [K],WK+1

2: for k = 1 . . .K do
3: Xk ← f(Xk−1;Ek) //Do an initial forward pass
4: end for
5: for epoch = 1, 2, . . . do
6: Ŷ ← XKWK+1 //Predictions
7: G←

[
∂`i
∂ŷic

]
N×C

//The loss derivative matrix

//Use Lemma 1.2 to refresh αααk, k ∈ [K].
8: Refresh αααK ← G(WK+1)>

9: for k = K . . . 2 do
10: Refresh αααk−1 ← ∂(αααk�Xk)

∂Xk−1

∣∣∣
αααk

11: end for
//These αααk, k ∈ [K] will now be kept stale till next epoch

12: for k = 1 . . .K do
13: Compute ∂L

∂Ek ← ∂(αααk�Xk)
∂Ek

∣∣∣
αααk

, //Using Lemma 1.1 here

14: Update Ek ← Ek − η · ∂L
∂Ek

15: Refresh Xk ← f(Xk−1;Ek)
16: end for
17: Compute ∂L

∂WK+1 ← (XK)>G //Using Lemma 1.1 here

18: Update WK+1 ←WK+1 − η · ∂L
∂WK+1

19: end for

A.8 OGBN-PROTEINS: VALIDATION PERFORMANCE AT A MINI-BATCH LEVEL

The performance analysis in the main paper was plotted at a coarse granularity of an epoch. We refer
to an epoch as one iteration of steps 6 to 18 (both inclusive) in Algorithm 4. For a finer analysis of
IGLU’s performance on the OGBN-Proteins dataset, we measure the Validation ROC-AUC at the
granularity of a mini-batch. As mentioned in the “SGD Implementation" paragraph in Page 5 below
the algorithm description in the main paper, steps 14 and 18 in Algorithm 4 are implemented using
mini-batch SGD. Recall that OGBN-Proteins used a 3 layer GCN. For the proteins dataset we have ∼
170 mini-batches for training. We update the parameters for each layer using all the mini-batches

22

Published as a conference paper at ICLR 2022

from the layer closest to the input to the layer closest to the output as detailed in Algorithm 4. To
generate predictions, we compute partial forward passes after the parameters of each layer is updated.
We plot the validation ROC-AUC as the first epoch progresses in Figure 7. We observe that when the
layer closest to the input is trained (Layer 1 in the figure), IGLU has an ROC-AUC close to 0.5 on the
validation set. Subsequently once the second layer (Layer 2 in the figure) is trained, we observe that
the validation ROC-AUC improves from around ∼ 0.51 to ∼ 0.57 and finally once the layer closest
to the output is trained (Layer 3 in the figure), the ROC-AUC progresses quickly to a high validation
ROC-AUC of ∼ 0.81. In the figure in the main paper the high validation score reflects the result at
the end of the first epoch. Training the GCN using a total of ∼ 510 minibatches (∼ 170 per layer)
approximately takes 5 seconds as depicted in Figure 2 in the main paper.

0 100 200 300 400 500
Minibatch Count

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Va
lid

at
io

n
M

icr
o-

F1

OGBN-Proteins: Layer-wise Validation Micro-F1 vs Minibatch Count, Epoch 1

Layer 1
Layer 2
Layer 3

Figure 7: Fine-grained Validation ROC-AUC for IGLU on the Proteins Dataset for Epoch 1.
We depict the value of Validation ROC - AUC at the granularity of a minibatch for the first epoch.
We observe that the Validation ROC-AUC begins with a value close to 0.5 and quickly reaches an
ROC-AUC of 0.81 by the end of the first epoch. As mentioned in the text, Proteins uses a 3 layer
GCN and each layer processes ∼ 170 mini-batches.

B DATASET STATISTICS AND ADDITIONAL EXPERIMENTAL RESULTS

B.1 DATASET STATISTICS

Table 8 provides details on the benchmark node classification datasets used in the experiments.
The following five benchmark datasets were used to empirically demonstrate the effectiveness of
IGLU: predicting the communities to which different posts belong in Reddit‡ (Hamilton et al.,
2017), classifying protein functions across various biological protein-protein interaction graphs in
PPI-Large§ (Hamilton et al., 2017), categorizing types of images based on descriptions and common
properties in Flickr¶ (Zeng et al., 2020), predicting paper-paper associations in OGBN-Arxiv|| (Hu
et al., 2020) and categorizing meaningful associations between proteins in OGBN-Proteins** (Hu
et al., 2020).

B.2 COMPARISON WITH ADDITIONAL BASELINES

In addition to the baselines mentioned in Table 1, Table 9 compares IGLU to LADIES (Zou et al.,
2019), L2-GCN (You et al., 2020), AS-GCN (Huang et al., 2018), MVS-GNN (Cong et al., 2020),
FastGCN (Chen et al., 2018b), SIGN (Frasca et al., 2020), PPRGo (Bojchevski et al., 2020) and Bandit
Sampler’s (Liu et al., 2020) performance on the test set. However, a wall-clock time comparison with

‡http://snap.stanford.edu/graphsage/reddit.zip
§http://snap.stanford.edu/graphsage/ppi.zip
¶https://github.com/GraphSAINT/GraphSAINT - Google Drive Link
||https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

**https://ogb.stanford.edu/docs/nodeprop/#ogbn-proteins

23

http://snap.stanford.edu/graphsage/reddit.zip
http://snap.stanford.edu/graphsage/ppi.zip
https://drive.google.com/drive/folders/1apP2Qn8r6G0jQXykZHyNT6Lz2pgzcQyL
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
https://ogb.stanford.edu/docs/nodeprop/#ogbn-proteins

Published as a conference paper at ICLR 2022

Table 8: Datasets used in experiments along with their statistics. MC refers to a multi-class
problem, whereas ML refers to a multi-label problem.

Dataset # Nodes # Edges Avg. Degree # Features # Classes Train/Val/Test
PPI-Large 56944 818716 14 50 121 (ML) 0.79/0.11/0/10

Reddit 232965 11606919 60 602 41 (MC) 0.66/0.10/0.24
Flickr 89250 899756 10 500 7 (MC) 0.5/0.25/0.25

OGBN-Proteins 132534 39561252 597 8 112 (ML) 0.65/0.16/0.19
OGBN-Arxiv 169343 1166243 13 128 40 (MC) 0.54/0.18/0.28

these methods is not provided since the author implementations of LADIES, L2GCN, MVS-GNN and
SIGN are in PyTorch (Paszke et al., 2019) which has been shown to be less efficient than Tensorflow
(Chiang et al., 2019; Abadi et al., 2016) for GCN applications. Also, the official AS-GCN, FastGCN
and Bandit Sampler implementations released by the authors were for 2 layer models only, whereas
some datasets such as Proteins and Arxiv require 3 layer models for experimentation. Attempts to
generalize the code to a 3 layer model ran into runtime errors, hence the missing results are denoted
by ** in Table 9 and these methods are not considered for a timing analysis. MVS-GNN also runs
into a runtime error on the Proteins dataset denoted by ||. IGLU continues to significantly outperform
all additional baselines on all the datasets.

Table 9: Performance on Test Set for IGLU compared to additional algorithms. The metric is
ROC-AUC for Proteins and Micro-F1 for the others IGLU still retains the state-of-the-art results
across all datasets even when compared to these new baselines. MVS-GNN ran into runtime error on
the Proteins dataset (denoted by ||). AS-GCN, FastGCN and BanditSampler run into a runtime error
on datasets that require more than two layers (denoted by ∗∗). Please refer to section B.2 for details.

Algorithm PPI-Large Reddit Flickr Proteins Arxiv
LADIES 0.548 ± 0.011 0.923 ± 0.008 0.488 ± 0.012 0.636 ± 0.011 0.667 ± 0.002
L2GCN 0.923 ± 0.008 0.938 ± 0.001 0.485 ± 0.001 0.531 ± 0.001 0.656 ± 0.004
ASGCN 0.687 ± 0.001 0.958 ± 0.001 0.504 ± 0.002 ** **

MVS-GNN 0.880 ± 0.001 0.950 ± 0.001 0.507 ± 0.002 || 0.695 ± 0.003
FastGCN 0.513 ± 0.032 0.924 ± 0.001 0.504 ± 0.001 ** **

SIGN 0.970 ± 0.003 0.966 ± 0.003 0.510 ± 0.001 0.665 ± 0.008 0.649 ± 0.003
PPRGo 0.626 ± 0.002 0.946 ± 0.001 0.501 ± 0.001 0.659 ± 0.006 0.678 ± 0.003

BanditSampler 0.905 ± 0.003 0.957 ± 0.000 0.513 ± 0.001 ** **
IGLU 0.987 ± 0.004 0.964 ± 0.001 0.515 ± 0.001 0.784 ± 0.004 0.718 ± 0.001

Table 10: Per epoch time (in seconds) for different methods as the number of layers increase
on the OGBN-Proteins dataset. ClusterGCN ran into a runtime error on this dataset as noted earlier.
VRGCN ran into a runtime error for a 4 layer model (denoted by ||). IGLU and GraphSAINT scale
almost linearly with the number of layers. It should be noted that these times strictly include only
optimization time. GraphSAINT has a much lower per-epoch time than IGLU because of the large
sizes of subgraphs per batch (∼ 10000 nodes), while IGLU uses minibatches of size of 512. This
results in far less gradient updates within an epoch for GraphSAINT when compared with IGLU,
resulting in a much smaller per-epoch time but requiring more epochs overall. Please refer to section
B.3.1 for details.

Number of Layers
Method 2 3 4

GraphSAGE 2.6 14.5 163.1
VR-GCN 2.3 21.5 ||

GraphSAINT 0.45 0.61 0.76

IGLU 2.97 5.27 6.99

24

Published as a conference paper at ICLR 2022

Table 11: Test Performance (ROC-AUC) at Best Validation for different methods as the number
of layers increase on the OGBN-Proteins Dataset. Results are reported for a single run but trends
were observed to remain consistent across repeated runs. VRGCN ran into runtime error for 4 layers
(denoted by ||). IGLU offers steady increase in performance as the number of layers increase, as well
as state-of-the-art performance throughout. GraphSAGE shows a decrease in performance on moving
from 3 to 4 layers while GraphSAINT shows only a marginal increase in performance. Please refer
to section B.3.2 for details.

Number of Layers
Method 2 3 4

GraphSAGE 0.755 0.759 0.742
VR-GCN 0.732 0.749 ||

GraphSAINT 0.752 0.764 0.767

IGLU 0.768 0.783 0.794

2 3 4
Layers

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

AU
C

Test Convergence AUC (Higher the better)
VR-GCN
GraphSAGE
GraphSAINT
IGLU

Figure 8: Test Convergence AUC plots across different number of layers on the OGBN-Proteins
dataset. IGLU has consistently higher AUTC values compared to the other baselines, demonstrating
increased stability, faster convergence and better generalization. GraphSAGE suffers from neighbor-
hood explosion problem and the training became very slow as noted earlier. This results in a decrease
in the AUTC while going from 3 to 4 layers. GraphSAGE’s AUTC for 4 layers is only 0.313, and is
thus not visible in the plot. VRGCN also suffers from the neighborhood explosion problem and runs
into runtime errors for a 4 layer model. ClusterGCN runs into runtime error for the OGBN-Proteins
for all of 2, 3 and 4 layers and is therefore not present in this analysis. Please refer to Section B.3.2
for details.

B.3 TIMING ANALYSIS FOR SCALING TO MORE LAYERS

To compare the scalability and performance of different algorithms for deeper models, models with
2, 3 and 4 layers were trained for IGLU and the baseline methods. IGLU was observed to offer a
per-epoch time that scaled roughly linearly with the number of layers as well as offer the highest
gain in test performance as the number of layers was increased.

B.3.1 PER EPOCH TRAINING TIME

Unlike neighbor sampling methods like VRGCN and GraphSAGE, IGLU does not suffer from the
neighborhood explosion problem as the number of layers increases, since IGLU updates involve
only a single layer at any given time. We note that GraphSAINT and ClusterGCN also do not suffer
from the neighborhood explosion problem directly since they both operate by creating GCNs on
subgraphs. However, these methods may be compelled to select large subgraphs or else suffer from
poor convergence. To demonstrate IGLU’s effectiveness in solving the neighborhood explosion
problem, the per-epoch training times are summarized as a function of the number of layers in Table

25

Published as a conference paper at ICLR 2022

10 on the Proteins dataset. A comparison with ClusterGCN could not be provided as since it ran into
runtime errors on this dataset. In Table 10, while going from 2 to 4 layers, GraphSAINT was observed
to require ∼ 1.6× more time per epoch while IGLU required ∼ 2.3× more time per epoch, with both
methods scaling almost linearly with respect to number of layers as expected. However, GraphSAGE
suffered a ∼ 62× increase in time taken per epoch in this case, suffering from the neighborhood
explosion problem. VRGCN ran into a run-time error for the 4 layer setting (denoted by || in Table
10). Nevertheless, even while going from 2 layers to 3 layers, VRGCN and GraphSAGE are clearly
seen to suffer from the neighborhood explosion problem, resulting in an increase in training time per
epoch of almost ∼ 9.4× and ∼ 5.6× respectively.

We note that the times for GraphSAINT in Table 10 are significantly smaller than those of IGLU even
though earlier discussion reported IGLU as having the fastest convergence. However, there is no
contradiction – GraphSAINT operates with very large subgraphs, with each subgraph having almost
10 % of the nodes of the entire training graph (∼ 10000 nodes in a minibatch), while IGLU operates
with minibatches of size 512, resulting in IGLU performing a lot more gradient updates within an
epoch, as compared with GraphSAINT. Consequently, IGLU also takes fewer epochs to converge
to a better solution than GraphSAINT, thus compensating for the differences in time taken per
epoch.

B.3.2 TEST CONVERGENCE AUC

This section explores the effect of increasing the number of layers on convergence rate, optimization
time, and final accuracy, when scaling to larger number of layers. To jointly estimate the efficiency
of a method in terms of wall clock time and test performance achieved, the area under the test
convergence plots (AUTC) for various methods was computed. A method that converged rapidly and
that too to better performance levels would have a higher AUTC than a method that converges to
suboptimal values or else converges very slowly. To fairly time all methods, each method was offered
time that was triple of the time it took the best method to reach its highest validation score. Defining
the cut-off time this way ensures that methods that may not have rapid early convergence still get
a fair chance to improve by having better final performance, while also simultaneously penalizing
methods that may have rapid early convergence but poor final performance. We rescale the wall clock
time to be between 0 and 1, where 0 refers to the start of training while 1 refers to the cut-off time.

Results: Figure 8 summarizes the AUTC values. IGLU consistently obtains higher AUC values than
all methods for all number of layers demonstrating its stability, rapid convergence during early phases
of training and ability to generalize better as compared to other baselines. GraphSAGE suffered from
neighborhood explosion leading to increased training times and hence decreased AUC values as the
number of layers increase. VR-GCN also suffered from the same issue, and additionally ran into a
run-time error for 4 layer models.

Test Performance with Increasing Layers: Table 11 summarizes the final test performances for
different methods, across different number of layers. The performance for some methods is inconsis-
tent as the depth increases whereas IGLU consistently outperforms all the baselines in this case as
well with gains in performance as we increase the number of layers hence making it an attractive
technique to train deeper GCN models.

B.4 SCALABILITY TO LARGER DATASETS: OGBN - PRODUCTS

To demonstrate the ability of IGLU to scale to very large datasets, we performed experiments on the
OGBN-Products dataset (Hu et al., 2020), one of the largest datasets in the OGB collection, with its
statistics summarized in Table 12.

Table 12: Statistics for the OGB-Products datasets. MC refers to a multi-class problem, whereas
ML refers to a multi-label problem.

Dataset # Nodes # Edges Avg. Degree # Features # Classes Train/Val/Test
OGBN-Products 2,449,029 61,859,140 50.5 100 47 (MC) 0.08/0.02/0.90

To demonstrate scalability, we conducted experiments in the transductive setup since this setup
involves using the full graph. In addition, this was the original setup in which the dataset was

26

Published as a conference paper at ICLR 2022

Table 13: Performance on the OGBN-Products Test Set for IGLU compared to baseline algo-
rithms. IGLU outperforms all the baseline methods on this significantly large dataset as well.

Algorithm Test Micro-F1
GCN 0.760 ± 0.002

GraphSAGE 0.787 ± 0.004
ClusterGCN 0.790 ± 0.003
GraphSAINT 0.791 ± 0.002
SIGN (3,3,0) 0.771 ± 0.001
SIGN (5,3,0) 0.776 ± 0.001

IGLU 0.793 ± 0.003

benchmarked, therefore allowing for a direct comparison with the baselines (results taken from
Table 4 in OGB (Hu et al., 2020) and Table 6 in SIGN (Frasca et al., 2020)). We summarize the
performance results in the Table 13, reporting Micro-F1 as the metric. We however do not provide
timing comparisons with the baseline methods since IGLU is implemented in TensorFlow while the
baselines in the original benchmark Hu et al. (2020) are implemented in PyTorch. This therefore
renders a direct comparison of wall-clock time unsuitable. Please refer to Appendix B.2 for more
details.

We observe that IGLU is able to scale to the OGBN-Products dataset with over 2.4 million nodes and
outperforms all of the baseline methods.

B.5 APPLICABILITY OF IGLU IN THE TRANSDUCTIVE SETTING: OGBN-ARXIV AND
OGBN-PROTEINS

In addition to the results in the inductive setting reported in the main paper, we perform additional ex-
periments on the OGBN-Arxiv and OGBN-Proteins dataset in the transductive setting to demonstrate
IGLU’s applicability across inductive and transductive tasks and compare the performance of IGLU
to that of transductive baseline methods in Table 14 (results taken from OGB (Hu et al., 2020)).

Table 14: Comparison of IGLU’s Test performance with the baseline methods in the trans-
ductive setting on the OGBN-Arxiv and OGBN-Proteins datasets. The metric is Micro-F1 for
OGBN-Arxiv and ROC-AUC for OGBN-Proteins.

Algorithm OGBN-Arxiv OGBN-Proteins
GCN 0.7174 ± 0.0029 0.7251± 0.0035

GraphSAGE 0.7149 ± 0.0027 0.7768 ± 0.0020
IGLU 0.7193 ± 0.0018 0.7840 ± 0.0061

We observe that even in the transductive setting, IGLU outperforms the baseline methods on both the
OGBN-Arxiv and OGBN-Proteins datasets.

B.6 ARCHITECTURE AGNOSTIC NATURE OF IGLU

To demonstrate the applicability of IGLU to a wide-variety of architectures, we perform experiments
on IGLU with Graph Attention Networks (GAT) (Veličković et al., 2018), GCN (Kipf & Welling,
2017) and GraphSAGE (Hamilton et al., 2017) based architectures and summarize the results for
the same in Table 15 and 16 respectively as compared to these baseline methods. We use the Cora,
Citeseer and Pubmed datasets as originally used in Veličković et al. (2018) for comparison with the
GAT based architecture and the OGBN-Arxiv dataset for comparison with GCN and GraphSAGE
based architectures (baseline results as originally reported in (Hu et al., 2020)).

We observe that the IGLU+GAT, IGLU+GCN and IGLU+GraphSAGE outperforms the baseline
methods across datasets, thereby demonstrating the architecture agnostic nature of IGLU.

27

Published as a conference paper at ICLR 2022

Table 15: Comparison of IGLU +GAT’s test
performance with the baseline GAT on differ-
ent datasets.

Algorithm Cora Citeseer Pubmed
GAT 0.823 ± 0.007 0.711 ± 0.006 0.786 ± 0.004

IGLU + GAT 0.829 ± 0.004 0.717 ± 0.005 0.787 ± 0.002

Table 16: Comparison of IGLU’s test perfor-
mance with GCN and GraphSAGE architec-
tures with the baseline methods on the OGBN-
Arxiv dataset.

Algorithm OGBN-Arxiv
GCN 0.7174 ± 0.0029

GraphSAGE 0.7149 ± 0.0027
IGLU + GCN 0.7187 ± 0.0014

IGLU + GraphSAGE 0.7155 ± 0.0032

B.7 EXPERIMENTS USING A SMOOTH ACTIVATION FUNCTION: GELU

To understand the effect of using non-smooth vs smooth activation functions on IGLU, we perform
experiments using the GELU (Hendrycks & Gimpel, 2020) activation function which is a smooth
function and in-line with the objective smoothness assumptions made in Theorem 2.

GELU(x) = xP (X ≤ x) = xΦ(x) = x · 1

2
[1 + erf(x/

√
2)]

We compare the performance of IGLU using ReLU and GELU on all the 5 datasets in the main paper
and summarize the results in Table 17.

Table 17: Effect of Non-smooth vs Smooth activation functions: Test Performance of IGLU
on different datasets using ReLU and GELU activation functions. Metrics are the same for the
datasets as reported in Table 1 of the main paper. Results reported are averaged over five different
runs.

Dataset ReLU GELU
PPI-Large 0.987 ± 0.004 0.987 ± 0.000

Reddit 0.964 ± 0.001 0.962 ± 0.000
Flickr 0.515 ± 0.001 0.516 ± 0.001

Proteins 0.784 ± 0.004 0.782 ± 0.002
Arxiv 0.718 ± 0.001 0.720 ± 0.002

We observe that IGLU is able to enjoy very similar performance across both GELU and ReLU as the
activation functions, thereby justifying the practicality of our smoothness assumptions.

B.8 ANALYSIS ON DEGREE OF STALENESS: BACKPROP ORDER OF UPDATES

To understand the effect of more frequent updates in the backprop variant, we performed additional
experiments using the backprop variant on the PPI-Large dataset and varied the frequency of updates,
the results of which are reported in Table 18 for a single run. We fix the hyperparameters and train
for 200 epochs.

Table 18: Accuracy vs different update frequency on PPI-Large: Backprop Order

Update Frequency Train Micro-F1 Validation Micro-F1 Test Micro-F1
0.5 0.761 0.739 0.756
1 0.805 0.778 0.796
2 0.794 0.769 0.784

We observe that more frequent updates help stabilize training better. We also observe that update
frequencies 1 and 2 perform competitively, and both significantly outperform update frequency 0.5.

However we note that with higher update frequency, we incur an additional computational cost since
we need to re-compute embeddings more frequently. We believe that both improved stability and
competitive performance can be attributed to the fresher embeddings, which are otherwise kept stale

28

Published as a conference paper at ICLR 2022

within an epoch in this order of updates. The experiment with frequency 0.5 has a slower convergence
and comparatively poor performance as expected.

B.9 CONVERGENCE - TRAIN LOSS VS WALL CLOCK TIME

0 20 40 60 80 100
Wall Clock Time

0.0

0.2

0.4

0.6

Tr
ai

n
Lo

ss

PPI-Large

0 5 10 15 20 25
Wall Clock Time

0.0

0.5

1.0

1.5

Tr
ai

n
Lo

ss

Reddit

0 1 2 3 4 5
Wall Clock Time

1.0

1.2

1.4

1.6

1.8

2.0

Tr
ai

n
Lo

ss

Flickr

0 20 40 60 80 100
Wall Clock Time

0.2

0.3

0.4

0.5

Tr
ai

n
Lo

ss

OGBN-Proteins

0 10 20 30 40 50 60
Wall Clock Time

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

n
Lo

ss
OGBN-Arxiv

GCN
GraphSAGE
VRGCN
GraphSAINT
ClusterGCN
IGLU

Figure 9: Training Loss curves of different methods on the benchmark datasets against Wall
clock time.

Figure 9 provides train loss curves for all datasets and methods in Table 1. IGLU is able to achieve a
lower training loss faster compared to all the baselines across datasets.

C THEORETICAL PROOFS

In this section we provide a formal restatement of Theorem 2 as well as its proof. We also provide
the proof of Lemma 1 below.

C.1 PROOF FOR LEMMA 1

Proof of Lemma 1 We consider the two parts of Lemma 1 separately and consider two cases while
proving each part. For each part, Case 1 pertains to the final layer and Case 2 considers intermediate
layers.

Clarification about some Notation in the statements of Definition 1 and Lemma 1: The notation
∂(G�Ŷ)

∂Xk
jp

∣∣∣
G

is meant to denote the partial derivative w.r.t Xk
jp but while keeping G fixed i.e. treated

as a constant or being “conditioned upon” (indeed both G and Ŷ depend on Xk
jp but the definition

keeps G fixed while taking derivatives). Similarly, in Lemma 1 part 1, αααk is fixed (treated as a
constant) in the derivative in the definition of ∂L/∂Ek and in part 2, αααk+1 is fixed (treated as a
constant) in the derivative in the definition of αααk.

Recalling some Notation for sake of completeness: We recall that xki is the k-th layer embedding
of node i. yi is the C-dimensional ground-truth label vector for node i and ŷi is the C-dimensional
predicted score vector for node i. K is total number of layers in the GCN. Li denotes the loss on the
i-th node and L denotes the total loss summed over all nodes. dk is the embedding dimensionality
after the k-th layer.

Proof of Lemma 1.1 We analyze two cases

29

Published as a conference paper at ICLR 2022

Case 1 (k = K i.e. final layer): Recall that the predictions for node i are obtained as ŷi =
(WK+1)>xKi . Thus we have

∂L
∂WK+1

=
∑
i∈V

∑
c∈[C]

∂Li
∂ŷic

∂ŷic
∂WK+1

.

Now, ∂Li

∂ŷic
= gic by definition. If we let wK+1

c denote the c-th column of the dk × C matrix WK+1,
then it is clear that ŷic depends only on wK+1

c and xKi . Thus, we have

∂ŷic
∂WK+1

=
∂ŷic

∂wK+1
c

· e>c = (xKi)>e>c ,

where ec is the c-th canonical vector in C-dimensions with 1 at the c-th coordinate and 0 everywhere
else. This gives us

∂L
∂WK+1

=
∑
i∈V

(xKi)>
∑
c∈[C]

gic · e>c = (XK)>G

Case 2 (k < K i.e. intermediate layers): We recall that Xk stacks all k-th layer embeddings as an
N × dk matrix and Xk = f(Xk−1;Ek) where Ek denotes the parameters (weights, offsets, scales)
of the k-th layer. Thus we have

∂L
∂Ek

=
∑
i∈V

∑
c∈[C]

∂L
∂ŷic

∂ŷic
∂Ek

.

As before, ∂L
∂ŷic

= gic by definition and we have

∂ŷic
∂Ek

=
∑
j∈V

dk∑
p=1

∂ŷic
∂Xk

jp

∂Xk
jp

∂Ek

This gives us

∂L
∂Ek

=
∑
i∈V

∑
c∈[C]

gic ·
∑
j∈V

dk∑
p=1

∂ŷic
∂Xk

jp

∂Xk
jp

∂Ek
=
∑
j∈V

dk∑
p=1

αkjp ·
∂Xk

jp

∂Ek
=
∂(αααk �Xk)

∂Ek

∣∣∣∣
αααk

,

where we used the definition of αkjp in the second step and used a “conditional” notation to get the

third step. We reiterate that ∂(αααk�Xk)
∂Ek

∣∣∣
αααk

implies that αααk is fixed (treated as a constant) while taking

the derivative. This “conditioning” is critical since αααk also depends on Ek. This concludes the proof.

Proof of Lemma 1.2: We consider two cases yet again and use Definition 1 that tells us that

αkjp =
∑
i∈V

∑
c∈[C]

gic ·
∂ŷic
∂Xk

jp

Case 1 (k = K): Since ŷi = (WK+1)>xKi , we know that ŷic depends only on xKi and wK+1
c where

as before, wK+1
c is the c-th column of the matrix WK+1. This gives us ∂ŷic

∂XK
jp

= 0 if i 6= j and
∂ŷic
∂XK

jp
= wKpc if i = j where wKpc is the (p, c)-th entry of the matrix WK+1 (or in other words, the

p-th coordinate of the vector wK+1
c). This tells us that

αKjp =
∑
i∈V

∑
c∈[C]

gic ·
∂ŷic
∂XK

jp

=
∑
c∈[C]

gjc · wKpc,

which gives us αααK = G(WK+1)>.

Case 2 (k < K): By Definition 1 we have

αkjp =
∑
i∈V

∑
c∈[C]

gic ·
∂ŷic
∂Xk

jp

=
∑
i∈V

∑
c∈[C]

gic ·
∑
l∈V

dk+1∑
q=1

∂ŷic

∂Xk+1
lq

∂Xk+1
lq

∂Xk
jp

30

Published as a conference paper at ICLR 2022

Rearranging the terms gives us

αkjp =
∑
l∈V

dk+1∑
q=1

∑
i∈V

∑
c∈[C]

gic ·
∂ŷic

∂Xk+1
lq

 · ∂Xk+1
lq

∂Xk
jp

=
∑
l∈V

dk+1∑
q=1

αk+1
lq ·

∂Xk+1
lq

∂Xk
jp

,

where we simply used Definition 1 in the second step. However, the resulting term is simply
∂(αααk+1�Xk+1)

∂Xk
jp

∣∣∣
αααk+1

which conditions on, or treats as a constant, the term αααk+1 according to our

notation convention. This finishes the proof of part 2.

C.2 STATEMENT OF CONVERGENCE GUARANTEE

The rate for full-batch updates, as derived below, is O
(

1

T
2
3

)
. This fast rate offered by full-batch

updates is asymptotically superior to the O
(

1√
T

)
rate offered by mini-batch SGD updates. This is

due to the additional variance due to mini-batch construction that mini-batch SGD variants have to
incur.

Theorem 4 (IGLU Convergence (Final)). Suppose the task loss function L has H-smooth and an
architecture that offers bounded gradients and Lipschitz gradients as quantified below, then if IGLU
in its inverted variant (Algorithm 2) is executed with step length η and a staleness count of τ updates
per layer as in steps 7, 10 in Algorithm 2, then within T iterations, we must have

1. ‖∇L‖22 ≤ O
(

1/T
2
3

)
if model update steps are carried out on the entire graph in a

full-batch with step length η = O
(

1/T
1
3

)
and τ = O (1).

2. ‖∇L‖22 ≤ O
(

1/
√
T
)

if model update steps are carried out using mini-batch SGD with

step length η = O
(

1/
√
T
)

and τ = O
(
T

1
4

)
.

It is curious that the above result predicts that when using mini-batch SGD, a non-trivial amount
of staleness (τ = O

(
T

1
4

)
as per the above result) may be optimal and premature refreshing of

embeddings/incomplete gradients may be suboptimal as was also seen in experiments reported in
Table 2 and Figure 4. Our overall proof strategy is the following

1. Step 1: Analyze how lazy updates in IGLU affect model gradients

2. Step 2: Bound the bias in model gradients in terms of staleness due to the lazy updates

3. Step 3: Using various properties such as smoothness and boundedness of gradients, obtain
an upper bound for the bias in the gradients in terms of number of iterations since last update

4. Step 4: Use the above to establish the convergence guarantee

We will show the results for the variant of IGLU that uses the inverted order of updates as given in
Algorithm 2. A similar proof technique will also work for the variant that uses the backprop order of
updates. Also, to avoid clutter, we will from hereon assume that a normalized total loss function is
used for training i.e. L = 1

N

∑
i∈V `i where N = |V| is the number of nodes in the training graph.

C.3 STEP 1: PARTIAL STALENESS AND ITS EFFECT ON MODEL GRADIENTS

A peculiarity of the inverted order of updates is that the embeddings Xk, k ∈ [K] are never stale in
this variant. To see this, we use a simple inductive argument. The base case of X0 is obvious – it is
never stale since it is never meant to be updated. For the inductive case, notice how, the moment any
parameter Ek is updated in step 7 of Algorithm 2 (whether by mini-batch SGD or by full-batch GD),
immediately thereafter in step 8 of the algorithm, Xk is updated using the current value of Xk−1

and Ek. Since by induction Xk−1 never has a stale value, this shows that Xk is never stale either,
completing the inductive argument.

31

Published as a conference paper at ICLR 2022

This has an interesting consequence: by Lemma 1, we have ∂L
∂Ek = 1

N
∂(αααk�Xk)

∂Ek

∣∣∣
αααk

(notice the addi-

tional 1/N term since we are using a normalized total loss function now). However, as ∂(αααk�Xk)
∂Ek

∣∣∣
αααk

is completely defined given Ek,αααk and Xk−1 and by the above argument, Xk−1 never has a stale
value. This shows that the only source of staleness in ∂L

∂Ek is the staleness in values of the incomplete
task gradient αααk. Similarly, it is easy to see that the only source of staleness in ∂L

∂WK+1 = (XK)>G
is the staleness in G.

The above argument is easily mirrored for the backprop order of updates where an inductive argument
similar to the one used to argue above that Xk values are never stale in the inverted update variant,
would show that the incomplete task gradient αααk values are never stale in the backprop variant and
the only source of staleness in ∂L

∂Ek would then be the staleness in the Xk values.

C.4 STEP 2: RELATING THE BIAS IN MODEL GRADIENTS TO STALENESS

The above argument allows us to bound the bias in model gradients as a result of lazy updates. To
avoid clutter, we will present the arguments with respect to the Ek parameter. Similar arguments
would hold for the WK+1 parameter as well. Let α̃ααk,αααk denote the stale and actual values of the
incomplete task gradient relevant to Ek. Let ∂̃L

∂Ek = ∂(α̃ααk�Xk)
∂Ek

∣∣∣
α̃ααk

be the stale gradients used by

IGLU in its inverted variant to update Ek and similarly let ∂L
∂Ek = ∂(αααk�Xk)

∂Ek

∣∣∣
αααk

be the true gradient
that could have been used had there been no staleness.

We will abuse notation and let the vectorized forms of these incomplete task gradients be denoted
by the same symbols i.e. we stretch the matrix αααk ∈ RN×dk into a long vector denoted also by
αααk ∈ RN ·dk . Let dim(Ek) denote the number of dimensions in the model parameter Ek (recall that
Ek can be a stand-in for weight matrices, layer norm parameters etc used in layer k of the GCN).

Similarly, we let Zkjp ∈ Rdim(Ek), j ∈ [N], p ∈ [dk] denote the vectorized form of the gradient
∂Xk

ip

∂Ek

and let Zk ∈ RN ·dk×dim(Ek) denote the matrix with all these vectors Zkjp stacked up.

As per the above notation, it is easy to see that the vectorized form of the model gradient is given by

∂L
∂Ek

=
(Zk)>αααk

N
∈ Rdim(Ek)

The 1/N term appears since we are using a normalized total loss function. This also tells us that∥∥∥∥∥ ∂̃L∂Ek − ∂L
∂Ek

∥∥∥∥∥
2

=

√
(α̃ααk −αααk)>(Zk(Zk)>)(α̃ααk −αααk)

N
≤

∥∥∥α̃ααk −αααk∥∥∥
2
· σmax(Zk)

N
, (2)

where σmax(Zk) is the largest singular value of the matrix Zk.

C.5 STEP 3: SMOOTHNESS AND BOUNDED GRADIENTS TO BOUND GRADIENT BIAS

The above discussion shows how to bound the bias in gradients in terms of staleness in the in-
complete task gradients. However, to utilize this relation, we assume that the loss function L is
H-smooth which is a standard assumption in literature. We will also assume that the network offers
bounded gradients. Specifically, for all values of model parameters Ek, k ∈ [K],WK+1 we have

‖G‖2 ,
∥∥∥∥∂Xk

ip

∂Ek

∥∥∥∥
2

,
∥∥ ∂L
∂Ek

∥∥
2
,
∥∥∥∂Xk+1

∂Xk

∥∥∥
2
,
∥∥αααk∥∥

2
≤ B. For sake of simplicity, we will also assume the

same bound on parameters e.g.
∥∥WK

∥∥
2
≤ B. Assuming bounded gradients and bounded parameters

is also standard in literature. However, whereas works such as Chen et al. (2018a) assume bounds on
the sup-norm i.e. L∞ norm of the gradients, our proofs only require an L2 norm bound.

We will now show that if the model parameters Ẽk, k ∈ [K], W̃K+1 undergo gradient updates to their
new valuesEk, k ∈ [K],WK+1 and the amount of travel is bounded by r > 0 i.e.

∥∥∥Ẽk − Ek∥∥∥
2
≤ r,

then we have
∥∥∥α̃ααk −αααk∥∥∥

2
≤ Ik · r where α̃ααk,αααk are the incomplete task gradients corresponding to

32

Published as a conference paper at ICLR 2022

respectively old and new model parameter values and Ik depends on various quantities such as the
smoothness parameter and the number of layers in the network.

Lemma 1 (part 2) tells us that for the final layer, we have αααK = G(WK+1)> as well as for any
k < K, we have αααk = ∂(αααk+1�Xk+1)

∂Xk

∣∣∣
αααk+1

. We analyze this using an inductive argument.

1. Case 1: k = K (Base Case): In this case we have

α̃ααK −αααK = G̃(W̃K+1)> −G(WK+1)>

= (G̃−G)(W̃K+1)> + G(W̃K+1 −WK+1)>

Now, the travel condition tells us that
∥∥∥W̃K+1 −WK+1

∥∥∥
2
≤ r, boundedness tells us that

‖G‖2 ,
∥∥∥W̃K+1

∥∥∥
2
≤ B. Also, since the loss function is H-smooth, the task gradients are

H-Lipschitz which implies along with the travel condition that
∥∥∥G̃−G

∥∥∥
2
≤ H · r. Put

together this tells us that ∥∥∥α̃ααK −αααK∥∥∥
2
≤ (H + 1)B · r,

telling us that IK ≤ (H + 1)B.

2. Case 2: k < K (Inductive Case): In this case, let X̃k and Xk denote the embeddings with
respect to the old and new parameters respectively. Then we have

α̃ααk −αααk =
∂(α̃ααk+1 � X̃k+1)

∂X̃k

∣∣∣∣∣
α̃ααk+1

− ∂(αααk+1 �Xk+1)

∂Xk

∣∣∣∣
αααk+1

=
∂(α̃ααk+1 � X̃k+1)

∂X̃k

∣∣∣∣∣
α̃ααk+1

− ∂(αααk+1 � X̃k+1)

∂X̃k

∣∣∣∣∣
αααk+1︸ ︷︷ ︸

(P)

+
∂(αααk+1 � X̃k+1)

∂X̃k

∣∣∣∣∣
αααk+1

− ∂(αααk+1 �Xk+1)

∂Xk

∣∣∣∣
αααk+1︸ ︷︷ ︸

(Q)

By induction we have
∥∥∥α̃ααk+1 −αααk+1

∥∥∥
2
≤ Ik+1 · r and bounded gradients tells us∥∥∥∂X̃k+1

∂X̃k

∥∥∥
2
≤ B giving us ‖(P)‖2 ≤ Ik+1B · r. To analyze the term ‖(Q)‖2, recall

that we have Xk+1 = f(Xk;Ek+1) and since the overall task loss is H smooth, so must be
the function f . Abusing notation to let H denote the Lipschitz constant of the network gives
us
∥∥∥X̃k −Xk

∥∥∥
2
≤ H · r. Then we have

∂(X̃k+1)

∂X̃k
− ∂Xk+1

∂Xk
= f ′(X̃k; Ẽk+1)− f ′(Xk;Ek+1)

= f ′(X̃k; Ẽk+1)− f ′(Xk; Ẽk+1)︸ ︷︷ ︸
(M)

+ f ′(Xk; Ẽk+1)− f ′(Xk;Ek+1)︸ ︷︷ ︸
(N)

Applying smoothness, we have ‖(M)‖2 ≤ H2 · r as well as ‖(N)‖2 ≤ H · r. Together
with bounded gradients that gives us

∥∥αααk+1
∥∥

2
≤ B, we have ‖(Q)‖2 ≤ BH(H + 1) · r.

Together, we have ∥∥∥α̃ααk −αααk∥∥∥
2
≤ B(H(H + 1) + Ik+1) · r,

telling us that Ik ≤ B(H(H + 1) + Ik+1).

The above tells us that in Algorithm 2, suppose the parameter update steps i.e. step 7 and step 10
are executed by effecting τ mini-batch SGD steps or else τ full-batch GD steps each time, with

33

Published as a conference paper at ICLR 2022

step length η, then the amount of travel in any model parameter is bounded above by τηB i.e.∥∥∥Ẽk − Ek∥∥∥
2
≤ τηB and so on. Now, incomplete task gradients αααk are updated only after model

parameters for all layers have been updated once and the algorithm loops back to step 6. Thus,
Lipschitzness of the gradients tells us that the staleness in the incomplete task gradients, for any
k ∈ [K], is upper bounded by ∥∥∥α̃ααk −αααk∥∥∥

2
≤ τη · IB,

where we take I = maxk≤K Ik for sake of simplicity. Now, since
∥∥∥∥∂Xk

ip

∂Ek

∥∥∥∥
2

≤ B as gradients are

bounded, we have σmax(Zk) ≤ N · dkB. Then, combining with the result in Equation (2) gives us∥∥∥∥∥ ∂̃L∂Ek − ∂L
∂Ek

∥∥∥∥∥
2

≤ τη · IB2dk

Taking in contributions of gradients of all layers and the final classifier layer gives us the bias in the
total gradient using triangle inequality as∥∥∥∇̃L −∇L∥∥∥

2
≤
∑
k∈[K]

∥∥∥∥∥ ∂̃L∂Ek − ∂L
∂Ek

∥∥∥∥∥
2

+

∥∥∥∥∥ ∂̃L
∂WK+1

− ∂L
∂WK+1

∥∥∥∥∥
2

≤ τη · IB2dmax(K + 1),

where dmax = maxk∈K dk is the maximum embedding dimensionality of any layer.

C.6 STEP 4 (I): CONVERGENCE GUARANTEE (MINI-BATCH SGD)

Let us analyze convergence in the case when updates are made using mini-batch SGD in steps 7,
10 of Algorithm 2. The discussion above establishes an upper bound on the absolute bias in the
gradients. However, our proofs later require a relative bound which we tackle now. Let us decide to
set the step length to η = 1

C
√
T

for some constant C > 0 that will be decided later and also set some
value φ < 1. Then two cases arise

1. Case 1: The relative gradient bias is too large i.e. τη · IB2dmax(K + 1) > φ · ‖∇L‖2. In
this case we are actually done since we get

‖∇L‖2 ≤
τ · IB2dmax(K + 1)

φ · C
√
T

,

i.e. we are already at an approximate first-order stationary point.

2. Case 2: The relative gradient bias is small i.e. τη · IB2dmax(K + 1) ≤ φ · ‖∇L‖2. In this
case we satisfy the relative bias bound required by Lemma 5 (part 2) with δ = φ.

This shows that either Case 1 happens in which case we are done or else Case 2 keeps applying which
means that Lemma 5 (part 2) keeps getting its prerequisites satisfied. If Case 1 does not happen for T
steps, then Lemma 5 (part 2) assures us that we will arrive at a point where

E
[
‖∇L‖22

]
≤ 2C(L0 − L∗) +Hσ2/C

(1− φ)
√
T

where L0,L∗ are respectively the initial and optimal values of the loss function which we recall
is H-smooth and σ2 is the variance due to mini-batch creation and we set η = 1

C
√
T

. Setting

C =
√

Hσ2

2(L0−L∗) tells us that within T steps, either we will achieve

‖∇L‖22 ≤
2τ2 · I2B4d2

max(K + 1)2(L0 − L∗)
φ2Hσ2T

,

or else we will achieve

E
[
‖∇L‖22

]
≤

2σ
√

2(L0 − L∗)H
(1− φ)

√
T

34

Published as a conference paper at ICLR 2022

Setting τ = T
1
4 ·
(√

σ3H
√
H

(L0−L∗)
1
4 IB2dmax(K+1)

)
balances the two quantities in terms of their dependence

on T (module absolute constants such as φ). Note that as expected, as the quantities I,B, dmax,K
increase, the above limit on τ goes down i.e. we are able to perform fewer and fewer updates to the
model parameters before a refresh is required. This concludes the proof of Theorem 4 for the second
case.

C.7 STEP 4 (II): CONVERGENCE GUARANTEE (FULL-BATCH GD)

In this case we similarly have either the relative gradient bias to be too large in which case we get

‖∇L‖2 ≤
τη · IB2dmax(K + 1)

φ
,

or else we satisfy the relative bias bound required by Lemma 5 (part 1) with δ = φ. This shows that
either Case 1 happens in which case we are done or else Case 2 keeps applying which means that
Lemma 5 (part 1) keeps getting its prerequisites satisfied. If Case 1 does not happen for T steps, then
Lemma 5 (part 1) assures us that we will arrive at a point where

‖∇L‖22 ≤
2(L0 − L∗)
η(1− φ)T

In this case, for a given value of τ , setting η =
(

2(L0−L∗)
(1−φ)τ2I2B4d2max(K+1)2T

) 1
3

gives us that within T
iterations, we must achieve

‖∇L‖22 ≤
(

2τ(L0 − L∗)IB2dmax(K + 1)

(1− φ)

) 2
3

· 1

T
2
3

In this case, it is prudent to set τ = O (1) so as to not deteriorate the convergence rate. This concludes
the proof of Theorem 4 for the first case.

C.8 GENERIC CONVERGENCE RESULTS

Lemma 5 (First-order Stationarity with a Smooth Objective). Let f : ΘΘΘ → R be an H-smooth
objective over model parameters θ ∈ ΘΘΘ that is being optimized using a gradient oracle and the
following update for step length η:

θθθt+1 = θθθt − η · gt

Let θθθ∗ be an optimal point i.e. θθθ∗ ∈ arg minθθθ∈ΘΘΘ f(θθθ). Then, the following results hold depending
on the nature of the gradient oracle:

1. If a non-stochastic gradient oracle with bounded bias is used i.e. for some δ ∈ (0, 1), for all
t, we have gt = ∇f(θθθt) + ∆∆∆t where ‖∆∆∆t‖2 ≤ δ · ‖∇f(θθθt)‖2 and if the step length satisfies
η ≤ (1−δ)

2H(1+δ2) , then for any T > 0, for some t ≤ T we must have

∥∥∇f(θθθt)
∥∥2

2
≤ 2(f(θθθ0)− f(θθθ∗))

η(1− δ)T

2. If a stochastic gradient oracle is used with bounded bias i.e. for some δ ∈ (0, 1), for all
t, we have E [|gtθθθt] = ∇f(θθθt) + ∆∆∆t where ‖∆∆∆t‖2 ≤ δ · ‖∇f(θθθt)‖2, as well as bounded

variance i.e. for all t, we have E
[
| ‖gt −∇f(θθθt)−∆∆∆t‖22θθθt

]
≤ σ2 and if the step length

satisfies η ≤ (1−δ)
2H(1+δ2) , as well as η = 1

C
√
T

for some C > 0, then for any T > 4H2(1+δ2)2

C2(1−δ)2 ,
for some t ≤ T we must have

E
[∥∥∇f(θθθt)

∥∥2

2

]
≤ 2C(f(θθθ0)− f(θθθ∗)) +Hσ2/C

(1− δ)
√
T

35

Published as a conference paper at ICLR 2022

Proof (of Lemma 5). To prove the first part, we notice that smoothness of the objective gives us

f(θθθt+1) ≤ f(θθθt) +
〈
∇f(θθθt), θθθt+1 − θθθt

〉
+
H

2

∥∥θθθt+1 − θθθt
∥∥2

2

Since we used the update θθθt+1 = θθθt − η · gt and we have gt = ∇f(θθθt) + ∆∆∆t, the above gives us

f(θθθt+1) ≤ f(θθθt)− η ·
〈
∇f(θθθt),gt

〉
+
Hη2

2

∥∥gt∥∥2

2

= f(θθθt)− η ·
〈
∇f(θθθt),∇f(θθθt) + ∆∆∆t

〉
+
Hη2

2

(∥∥∇f(θθθt) + ∆∆∆t
∥∥2

2

)
= f(θθθt)− η ·

∥∥∇f(θθθt)
∥∥2

2
− η ·

〈
∇f(θθθt),∆∆∆t

〉
+
Hη2

2

(∥∥∇f(θθθt) + ∆∆∆t
∥∥2

2

)
Now, the Cauchy-Schwartz inequality along with the bound on the bias gives us−η · 〈∇f(θθθt),∆∆∆t〉 ≤
ηδ · ‖∇f(θθθt)‖22 as well as ‖∇f(θθθt) + ∆∆∆t‖22 ≤ 2(1 + δ2) · ‖∇f(θθθt)‖22. Using these gives us

f(θθθt+1) ≤ f(θθθt)− η(1− δ − ηH(1 + δ2)) ·
∥∥∇f(θθθt)

∥∥2

2

≤ f(θθθt)− η(1− δ)
2

·
∥∥∇f(θθθt)

∥∥2

2
,

since we chose η ≤ (1−δ)
2H(1+δ2) . Reorganizing, taking a telescopic sum over all t, using f(θθθT+1) ≥

f(θθθ∗) and making an averaging argument tells us that since we set , for any T > 0, it must be the
case that for some t ≤ T , we have∥∥∇f(θθθt)

∥∥2

2
≤ 2(f(θθθ0)− f(θθθ∗))

η(1− δ)T
This proves the first part. For the second part, we yet again invoke smoothness to get

f(θθθt+1) ≤ f(θθθt) +
〈
∇f(θθθt), θθθt+1 − θθθt

〉
+
H

2

∥∥θθθt+1 − θθθt
∥∥2

2

Since we used the update θθθt+1 = θθθt − η · gt, the above gives us

f(θθθt+1) ≤ f(θθθt)− η ·
〈
∇f(θθθt),gt

〉
+
Hη2

2

∥∥gt∥∥2

2

= f(θθθt)− η ·
〈
∇f(θθθt),gt

〉
+
Hη2

2

(∥∥∇f(θθθt) + ∆∆∆t
∥∥2

2
+
∥∥gt −∇f(θθθt)−∆∆∆t

∥∥2

2

)
−Hη2

〈
∇f(θθθt) + ∆∆∆t,gt −∇f(θθθt)−∆∆∆t

〉
Taking conditional expectations on both sides gives us

E
[
| f(θθθt+1)θθθt

]
≤ f(θθθt)− η ·

∥∥∇f(θθθt)
∥∥2

2
− η ·

〈
∇f(θθθt),∆∆∆t

〉
+
Hη2

2

(∥∥∇f(θθθt) + ∆∆∆t
∥∥2

2
+ σ2

)
Now, the Cauchy-Schwartz inequality along with the bound on the bias gives us−η · 〈∇f(θθθt),∆∆∆t〉 ≤
ηδ · ‖∇f(θθθt)‖22 as well as ‖∇f(θθθt) + ∆∆∆t‖22 ≤ 2(1 + δ2) · ‖∇f(θθθt)‖22. Using these and applying a
total expectation gives us

E
[
f(θθθt+1)

]
≤ E

[
f(θθθt)

]
− η(1− δ − ηH(1 + δ2)) · E

[∥∥∇f(θθθt)
∥∥2

2

]
+
Hη2

2
· σ2

≤ E
[
f(θθθt)

]
− η(1− δ)

2
· E
[∥∥∇f(θθθt)

∥∥2

2

]
+
Hη2

2
· σ2

where the second step follows since we set η ≤ (1−δ)
2H(1+δ2) . Reorganizing, taking a telescopic sum

over all t, using f(θθθT+1) ≥ f(θθθ∗) and making an averaging argument tells us that for any T > 0, it
must be the case that for some t ≤ T , we have

E
[∥∥∇f(θθθt)

∥∥2

2

]
≤ 2(f(θθθ0)− f(θθθ∗))

η(1− δ)T
+
Hησ2

1− δ
However, since we also took care to set η = 1

C
√
T

, we get

E
[∥∥∇f(θθθt)

∥∥2

2

]
≤ 2C(f(θθθ0)− f(θθθ∗)) +Hσ2/C

(1− δ)
√
T

which proves the second part and finishes the proof.

36

	Introduction
	Related Works
	IGLU: effIcient Gcn training via Lazy Updates
	Empirical Evaluation
	Results
	Ablation studies

	Discussion and Future Work
	Additional Implementation Details
	Hardware
	Time and Memory Overheads for Various Methods
	Memory Analysis for IGLU
	Hyperparameter Configurations for IGLU and baselines
	Incorporating Residual Connections, Batch Normalization and Virtual Nodes in IGLU
	Comparison of IGLU with VR-GCN, MVS-GNN and GNNAutoScale
	VRGCN v/s IGLU
	MVS-GNN v/s IGLU
	GNNAutoScale v/s IGLU
	Summary of IGLU's Technical Novelty and Contrast with Caching based related works
	Empirical Comparison with GNNAutoScale

	Detailed Description of Algorithms 1 and 2
	OGBN-Proteins: Validation performance at a mini-batch level

	Dataset Statistics and Additional Experimental Results
	Dataset Statistics
	Comparison with additional Baselines
	Timing Analysis for scaling to more layers
	Per Epoch Training Time
	Test Convergence AUC

	Scalability to Larger Datasets: OGBN - Products
	Applicability of IGLU in the transductive setting: OGBN-Arxiv and OGBN-Proteins
	Architecture agnostic nature of IGLU
	Experiments Using a Smooth Activation Function: GELU
	Analysis on Degree of Staleness: Backprop Order of Updates
	Convergence - Train Loss vs Wall Clock Time

	Theoretical Proofs
	Proof for Lemma 1
	Statement of Convergence Guarantee
	Step 1: Partial Staleness and its Effect on Model Gradients
	Step 2: Relating the Bias in Model Gradients to Staleness
	Step 3: Smoothness and Bounded Gradients to Bound Gradient Bias
	Step 4 (i): Convergence Guarantee (mini-batch SGD)
	Step 4 (ii): Convergence Guarantee (full-batch GD)
	Generic Convergence Results

