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Figure 1: We deploy our UniTracker on a real humanoid robot, enabling it to perform a diverse range
of motions, including (1)stretching, (2)traditional Chinese martial arts, (3)dancing, (4)high kicks,
(5)ball-kicking, (6)various other common motions, and (7)challenging motions by fast adaption.

Abstract: Achieving expressive and generalizable whole-body motion control
is essential for deploying humanoid robots in real-world environments. In this
work, we propose UniTracker, a three-stage training framework that enables ro-
bust and scalable motion tracking across a wide range of human behaviors. In
the first stage, we train a teacher policy with privileged observations to generate
high-quality actions. In the second stage, we introduce a Conditional Variational
Autoencoder (CVAE) to model a universal student policy that can be deployed
directly on real hardware. The CVAE structure allows the policy to learn a global
latent representation of motion, enhancing generalization to unseen behaviors and
addressing the limitations of standard MLP-based policies under partial observa-
tions. Unlike pure MLPs that suffer from drift in global attributes like orientation,
our CVAE-student policy incorporates global intent during training by aligning a
partial-observation prior to the full-observation encoder. In the third stage, we in-
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troduce a fast adaptation module that fine-tunes the universal policy on harder mo-
tion sequences that are difficult to track directly. This adaptation can be performed
both for single sequences and in batch mode, further showcasing the flexibility and
scalability of our approach. We evaluate UniTracker in both simulation and real-
world settings using a Unitree G1 humanoid, demonstrating strong performance
in motion diversity, tracking accuracy, and deployment robustness.

Keywords: Whole-Body Humanoid Robot Tracker, Imitation Learning, Rein-
forcement Learning

1 Introduction

Humanoid robots have garnered growing interest in the robotics community for their human-like
morphology, which equips them with the potential to perform a wide range of tasks traditionally car-
ried out by humans. To function effectively in real-world, human-centric environments, these robots
must exhibit not only physical versatility but also robust and expressive motor control. Among the
key enablers of such capabilities is whole-body control, which coordinates multiple joints and limbs
to perform complex tasks while ensuring stability, expressiveness and adaptability.

Recent research has explored various control interfaces tailored to humanoid whole-body controller.
These can be broadly categorized into dense and sparse control signals. Dense signals, such as
teleoperation [1, 2, 3, 4, 5, 6], offline motion datasets [7, 8, 9, 10, 11, 12, 13], and video-based
motion estimation [14, 15], provide rich trajectory-level information. In contrast, sparse signals
such as high-level task commands and VR-based guidance [16, 17] offer minimal information and
often lead to reduced motion quality. In this work, we focus on universal whole-body motion
tracking, where the input is a reference motion sequence and the goal is to track it robustly and
expressively using a single policy.

A widely adopted paradigm for learning motion tracking policies is the teacher-student framework.
In this paradigm, a teacher policy is initially trained using full privileged observations to precisely
track reference motions within simulation environments. Subsequently, a student policy is learned
to imitate the teacher policy based solely on the partial observations available during deployment.
Despite its effectiveness, existing implementations of this framework, particularly those utilizing
simple MLP-based DAgger architectures [18] encounter three significant limitations. First, they
frequently fail to preserve the diversity inherent in the original reference motions during the distilla-
tion process, leading to behavior that is averaged and less expressive. Second, constrained by their
limited representational capacity, such models often exhibit poor generalization to unseen motion
sequences. Third, the absence of global contextual information during training gives rise to issues
such as orientation drift and broader inconsistencies in global behavior, which become particularly
pronounced when the policies are deployed on real-world humanoid robots.

To address the aforementioned limitations of existing teacher-student frameworks, we introduce
UniTracker, a unified and expressive whole-body tracking framework that integrates a Conditional
Variational Autoencoder (CVAE) [19] into the student policy architecture. By explicitly modeling
a structured latent space conditioned on future motion references, UniTracker enables the policy to
generate diverse and high-fidelity behaviors even under partial observations. From a probabilistic
standpoint, the latent variable captures the inherent ambiguity in the mapping from observations
to actions, allowing the policy to model a distribution over plausible motor behaviors rather than
collapsing to a single deterministic output. This capability enhances motion expressiveness and
significantly improves generalization across diverse and unseen movement patterns.

In addition, the CVAE-based framework also effectively addresses the challenge of missing global
context—often manifested as orientation drift and other global inconsistencies during deployment.
To this end, we employ task-aware feature modeling during training: the encoder is trained using
privileged, globally informative observations to infer a structured latent representation, while a prior
network is concurrently trained based only on the partial observations available at deployment time.
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Figure 2: An overview of UniTracker: In Stage 1, we train a teacher policy using oracle states via
goal-conditioned reinforcement learning. In Stage 2, we distill the policy into a deployable form
using a CVAE-based DAgger framework. In Stage 3, we introduce a fast adaptation module for
handling challenging motion sequences, implemented using a residual decoder. The training dataset
is derived from the AMASS dataset, filtered by PHC to remove physically infeasible motions.

The two distributions are aligned via a KL divergence objective. As a result, although the final
deployed policy operates under partial observability, it benefits from a latent space informed by
global context during training. This implicit incorporation of global information leads to more
coherent and globally consistent behaviors in real-world settings.

While this CVAE-based universal policy demonstrates strong performance across a wide range of
motions, it is neither necessary nor realistic to expect it to perfectly track all possible reference se-
quences—particularly those that are rare, highly dynamic, or lie far outside the training distribution.
To accommodate such challenging cases, we introduce a fast adaptation phase that fine-tunes the
universal policy in a task-specific manner. Leveraging the expressiveness and generality of the base
policy, this adaptation process enables rapid specialization with minimal training time. Moreover,
our framework supports both single-sequence adaptation and batch-mode adaptation, allowing for
scalable refinement when dealing with multiple difficult motions. This final phase complements the
universal policy by extending its practical applicability to edge cases, and highlights the modularity
and flexibility of our overall three-stage training framework.

We extensively evaluate UniTracker in both simulated environments and real-world deployment
scenarios. Experiments conducted on a 29-DoF Unitree G1 humanoid demonstrate that our pol-
icy is capable of tracking over 8,100 diverse motion sequences—including highly dynamic behav-
iors—using a single unified network. Compared to strong teacher-student baselines that do not in-
corporate CVAE-based modeling, UniTracker consistently achieves superior performance in terms
of tracking accuracy, robustness, and generalization to unseen motions.

Our main contributions are summarized as follows: i)A three-stage training framework for uni-
versal whole-body tracking: We design a modular pipeline comprising a privileged teacher for
data generation, a CVAE-based student policy for deployment under partial observations, and a
lightweight fast adaptation phase for motion-specific fine-tuning. ii)Diversity-aware and gloabl
context-integrated policy via CVAE modeling: We employ a Conditional Variational Autoen-
coder to capture motion diversity and encode global context, enabling expressive behaviors and
reducing global inconsistencies by aligning a globally-informed encoder with a partial-observation
prior. iii)Fast adaptation on top of a universal policy: We introduce a rapid fine-tuning mecha-
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nism that adapts the universal policy to challenging or out-of-distribution motions, supporting both
single-sequence and batch-level adaptation with minimal overhead. iv)Extensive validation on
real-world hardware: We demonstrate that UniTracker robustly tracks over 8,100 human motions
on a 29-DoF humanoid using a single policy, outperforming strong teacher-student baselines in ac-
curacy, robustness, and generalization.

2 Method

2.1 Problem Formulation

We formulate the problem of humanoid robot whole-body motion tracking as a goal-conditioned
reinforcement learning (RL) task, where a policy π is trained to track reference motions at the
whole-body level. The state st comprises the robot’s proprioceptive information spt and the goal sgt
which specifies the target state for all body parts. The reward function rt = R(spt , s

g
t ), defined in

terms of the agent’s proprioception and goal state, yields dense signals to guide policy optimization.
To better focus on motion tracking at the whole-body level, we fix the wrist joints of our 29-degree-
of-freedom (DoF) Unitree G1 robot[20], reducing the action space to 23 dimensions. The action
at ∈ R23 specifies target joint positions, which are executed via a PD controller to actuate the
robot. For policy optimization, we employ Proximal Policy Optimization (PPO) [21] to maximize
the expected cumulative discounted reward E

[∑T
t=1 γ

t−1rt

]
.

The remainder of this section is organized as follows. Section 2.2 introduces the construction of
a high-quality humanoid motion dataset for policy training. Section 2.3 describes the training of
an oracle policy in simulation, which is designed both to maximize the expressiveness of motion
tracking. Section 2.4 details the distillation of the oracle policy into a deployable student using a
CVAE-based framework. Section 2.5 presents our fast adaptation strategy, which enables rapid fine-
tuning based on the universal tracker. An overview of the proposed universal whole-body motion
tracking framework is provided in Figure 2.

2.2 Humanoid Motion Dataset Curation

A large-scale humanoid motion dataset serves as fuel for training a universal motion tracker. Our
dataset is primarily derived from the publicly available AMASS [22] dataset, filtered to exclude
interactions and sequences shorter than 10 frames. This yields a final training set of 11,313 human
motions, represented using the SMPL [23] parameters. The SMPL model parameterizes the human
body through shape parameters β ∈ R10, pose parameters θ ∈ R24×3 and root translation p ∈ R3.
S denotes the SMPL function, where S(β, θ, p) : β, θ, p → R6980×3 maps the SMPL parameters to
the positions of vertices of a triangular human mesh.

To bridge the embodiment gap between SMPL human model and humanoid robots, we employ a
two-stage retargeting approach inspired by H2O [4]. First, we carefully select 16 corresponding
body links and optimize the shape parameter β′ for humanoid robots by minimizing the distances
between selected links in the rest pose. Second, leveraging the optimized β′ alongside the origi-
nal pose θ and translation p from dataset, we perform gradient descent over the humanoid robot’s
root translation, root orientation and joint positions to minimize the distances between selected links
throughout the whole sequence. Additional regularization terms are added to avoid aggressive be-
haviors and ensure temporal smoothness.

2.3 Oracle Policy Training in Simulation

Oracle State Space Design. We train an oracle motion tracking policy
πorcale(at|sp−oracle

t , sg−oracle
t ) with all the state information accessible in simulators. The

proprioception is defined as sp−oracle
t ≜ [pt, qt, θt, ṗt, q̇t, ωt, at−1], which contains the

humanoid rigid-body position pt, orientation θt, linear velocity ṗt, angular velocity ωt,
joint position qt, joint velocity q̇t and previous action at−1. The goal state is defined as
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sg−oracle
t ≜ [p̂t+1 − pt, q̂t+1 − qt, θ̂t+1 ⊖ θt, v̂t+1 − vt, ω̂t+1 − ωt, p̂t+1 − proott , θ̂t+1 ⊖ θroott ],

which contains the one-frame difference between the reference pose (p̂t+1, q̂t+1, θ̂t+1, v̂t+1, ω̂t+1)
and the current pose. proott refers to the root translation and θroott refers to the root orientation of
the current pose. All these states are rotated to the local coordinate of the current pose.

Reward Design. We formulate the reward rt as a weighted sum of three components: 1) task re-
wards for motion tracking, 2)regularization, and 3) penalty, detailed in Table 3. We apply curriculum
learning to the regularization terms and penalty terms such that the policy could better focus on the
motion tracking task itself and gradually take the penalty and regularization into account for more
reasonable behaviors.

Early Termination and Reference State Initialization. In the early stage of training, the agent
is prone to falling, resulting in the collection of invalid data that hinders effective learning. To
address this issue, we follow prior works [24, 25] and introduce two early termination conditions: 1)
orientation: the projected gravity on x or y axis exceeds 0.8; 2) tracking tolerance: the average link
distance between the robot and reference motions is further than 0.5m. Proper task initialization is
also crucial for RL training. We employ the Reference State Initialization [24, 9] framework, where
the starting point of the reference motion is randomly sampled for the policy to track. The robot’s
initial state, including the root position, orientation, linear and angular velocities, as well as joint
positions and velocities, is then derived from the corresponding reference pose. This initialization
strategy substantially enhances motion tracking training by enabling the policy to learn different
motions phases in parallel, rather being constrained to a sequential learning process.

Domain Randomization. Domain randomization has been proved to be a critical source of robust-
ness and generalization for successful sim-to-real transfer [11, 4, 6]. Existing domain randomization
terms can be broadly categorized into two classes: asset property randomization and environmen-
tal dynamic randomization. Asset property randomization, focusing on parameters such as friction
coefficients, center of mass offsets, and link masses, aims to prevent the policy from overfitting to
a specific asset configuration. In contrast, environmental dynamic randomization, focusing on PD
gains, applied torques, or other external perturbations (e.g., pushing the robot), introduces dynamic
variations to simulate the environmental uncertainties encountered during real-world deployment.
While previous works typically apply both forms of randomization concurrently throughout training,
we propose decoupling them to better balance the tradeoff between motion tracking expressiveness
and robustness. Hence, in the first stage, we exclusively randomize asset properties to maximize the
policy’s ability to accurately track diverse motions. This approach not only builds an upper bound for
subsequent policies but also yields a proxy agent capable of generating high-quality action signals
in simulators.

2.4 Hierarchical Controller via Online Distillation

Deployable State Space Design. Since certain privileged information in the oracle state
space is unavailable in real-world deployment, we define a deployable state space based
on data accessible on humanoid robots. The proprioception is defined as sp−deploy

t ≜
[qt−25:t, q̇t−25:t, w

root
t−25:t, gt−25:t, at−25:t−1] where qt and q̇t denote joint positions and velocities,

wroot
t refers to the root angular velocity, gt is the gravity vector and at−1 is the previous action.

These terms are stacked over the past 25 steps to form the proprioceptive input. The goal state is
defined as sg−deploy

t ≜ [ĥt+1, θ̂
root
t+1 ⊖ θroott , v̂roott+1 , ŵ

root
t+1 − wroot

t , p̂t+1 − p̂roott+1 ], where ĥt+1 is the
reference pose height, θ̂roott+1 and θroott are the reference and current root orientations, v̂roott+1 and ŵroot

t+1

are the reference root linear and angular velocities, wroot
t is the current root angular velocity, p̂t+1

and p̂roott+1 are the reference rigid body and root positions. The first four terms are rotated into the
current pose’s local coordinate while the last term is rotated into the reference pose’s local frame.

Modeling Diversity with CVAE Our target is to obtain a deployable policy
πdeploy(at|sp−deploy

t , sg−deploy
t ) which maintains the expressiveness of the oracle policy to

the maximum. Given the deployable state space is partial and may lead to motion ambiguity, We
model the deployable policy as a conditional variational autoencoder (CVAE) to model the diversity.
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Specifically, we have a variational encoder ε(zt|sp−orcale
t , sg−oracle

t ) that computes the latent code
distribution based on the same observation with the teacher policy, a decoder D(at|sp−deploy

t , zt)

that produces action. We employ a learned conditional prior ρ(zt|sp−deploy
t , sg−deploy

t ) following
prior works which allows the model to learn different distributions based on proprioception. Using
the evidence lower bound, we have the objective function as:

logP (at|sp−d
t , sg−d

t ) ≥ Eε(z|sp−o
t ,sg−o

t )[logD(at|sp−d
t , zt)

−DKL(ε(zt|sp−o
t , sg−o

t )||ρ(zt|sp−d
t , sg−d

t ))]
(1)

where the prior, encoder and decoder are all modeled as diagonal Gaussian distribution. Following
prior works, we model the encoder as a residual to the prior and have:

ρ(zt|sp−d
t , sg−d

t ) = N(µρ(sp−d
t , sg−d

t ), σρ(sp−d
t , sg−d

t ))

ε(zt|sp−o
t , sg−o

t ) = N(µρ(sp−d
t , sg−d

t ) + µε(sp−o
t , sg−o

t ),

σε(sp−o
t , sg−o

t ))

D(at|sp−d
t , zt) = N(µD(sp−d

t , zt), σ
D(sp−d

t , zt))

(2)

To optimize the loss function, we use the action supervision signal provided by the oracle policy
and learn the deployable policy in an online distillation fashion. The loss function derived from the
objective above can be formulated as:

L = Laction + βLKL (3)

where Laction = ||adeployt −aoraclet ||22 and LKL is the KL divergence between the prior and encoder.

2.5 Fast Adaption on top of a Universal Policy

In this stage, we focus on motion references that the universal policy fails to reliably track. These
motions typically exhibit two challenging characteristics: they lie far outside the training data distri-
bution, and they involve highly dynamic behaviors that approach the physical limits of the humanoid
robot.

To address these cases, we introduce a lightweight residual decoder D(ãt|stp−deploy, st
g−deploy)

appended to the universal motion tracking framework, to enable fast adaptation to challenging mo-
tions. During training, we initialize the model with the universal policy checkpoint and freeze all
existing parameters. Only the residual decoder is fine-tuned using reinforcement learning, the reward
is the same as Section 2.3. The input to the residual decoder is identical to that of the prior network.
We directly use explicit motion references instead of latent representations for two main reasons.
First, such out-of-distribution motions may not be adequately captured by the learned CVAE prior.
Second, the goal at this stage is to quickly overfit to specific motion sequences rather than to main-
tain generalization. The final action applied to the environment is obtained by summing the output
of the universal policy and the residual correction:

afinalt = at + ãt, (4)

where at is the action predicted by the frozen universal policy, ãt is the residual generated by the
residual decoder.

3 Experimental Results

3.1 Experiment Setup

We evaluate UniTracker in both simulated and real-world environments. In simulation, policies are
trained using IsaacGym [26] with 8192 parallel environments under domain randomization [27].
The training data is derived from the AMASS dataset [22] and filtered by PHC [25]. We further
validate our approach through sim-to-sim transfer by deploying the trained policies in MuJoCo, and
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Methods All AMASS Train Dataset Successful AMASS Train Dataset
SR↑ MPKPE↓ Vel-Dist↓ Acc-Dist↓ MPKPE↓ Vel-Dist↓ Acc-Dist↓

(a) Compare with Baselines

Dagger without CVAE 88.21 84.79 5.60 2.97 84.70 5.03 2.41
Train from Scratch 72.11 103.94 8.78 6.33 98.61 8.47 6.31
Ours 91.83 82.62 4.27 1.83 78.95 3.65 1.39

(b) Ablation with Architecture Design

Actor with Explicit Reference 88.29 85.31 5.76 3.03 84.96 4.58 2.15
Actor without Explicit Reference 91.83 82.62 4.27 1.83 78.95 3.65 1.39

(c) Ablation with KL Residual

KL without Residual 85.49 91.24 6.02 4.68 90.79 6.01 4.23
KL with Residual 91.83 82.62 4.27 1.83 78.95 3.65 1.39

(d) Ablation with KL Coefficient

KL Coef = 1.0 81.18 97.23 7.75 6.04 96.53 5.39 2.41
KL Coef = 0.1 91.83 82.62 4.27 1.83 78.95 3.65 1.39
KL Coef = 0.01 86.10 89.88 7.99 5.47 88.01 5.23 2.37
KL Coef = 0.001 80.55 105.56 9.21 7.98 104.63 5.38 2.40

(e) Ablation with Future Window Size

Window Size = 1 90.77 85.98 5.20 3.12 85.00 4.79 2.91
Window Size = 5 91.83 82.62 4.27 1.83 78.95 3.65 1.39
Window Size = 10 91.28 82.14 4.77 1.95 78.78 3.90 1.87
Window Size = 20 90.29 82.96 5.01 1.78 80.24 4.33 1.48

(f) Ablation with Latent Dimension

Latent Dimension = 32 88.82 87.25 4.79 2.36 86.52 4.67 2.21
Latent Dimension = 64 91.83 82.62 4.27 1.83 78.95 3.65 1.39
Latent Dimension = 128 90.54 83.75 4.46 2.14 82.92 4.45 2.08
Latent Dimension = 256 90.72 83.99 4.21 1.97 83.71 4.19 1.77

(g) Analysis of CVAE diversity

Decoder with Stochastic Latent 91.77 83.21 4.59 1.82 79.07 3.72 1.33
Decoder with Deterministic Latent 91.83 82.62 4.27 1.83 78.95 3.65 1.39

Table 1: Baselines Comparison and Ablation Studies We compare our method with two baseline
approaches and observe that it consistently outperforms both. Additionally, we conduct ablation
studies on architectural design, KL residuals, KL coefficient, future window size, and latent di-
mensionality. Finally, we analyze the diversity of CVAE comparing the stochastic latent and the
deterministic latent. The final configuration is selected based on the best overall performance ob-
served across these settings.

conduct extensive ablation and comparative studies. Performance is assessed using four key metrics:
Success Rate (SR), Mean Per Keypoint Position Error (MPKPE), Velocity Distance(Vel-Dist) and
Acceleration Distance(Acc-Dist). SR reflects the overall viability and stability of the policy; MP-
KPE respectively quantify the accuracy of keypoint tracking in the world coordinate frame; Vel-Dist
quantifies the difference in joint velocities between the reference motion and the executed motion of
the robot; Acc-Dist quantifies the difference in joint acceleration between the reference motion and
the executed motion of the robot. For real-world evaluation, we deploy UniTracker on the Unitree
G1 humanoid robot, which stands 1.3 meters tall and has 29 degrees of freedom. We control 23
DoFs by locking the 6 wrist joints.

3.2 Baselines

What kind of motion tracker yields the best tracking performance? We include two baselines:
(1) a universal policy trained from scratch without the teacher-student architecture, and (2) a teacher-
student framework using DAgger in the second stage without a CVAE. Direct comparisons with prior
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Dagger with CVAE Dagger without CVAE

Figure 3: Generalization Capability of UniTracker in MuJoCo

methods are not included, as their implementations are not publicly available. Experimental results
in Table 1 show that UniTracker consistently outperforms our baselines across all evaluation metrics.

3.3 Ablation Studies

What model architecture best balances diversity, expressiveness and robustness? To answer
this question, we first investigated whether the RL actor (the decoder in the CVAE) should explicitly
take the reference motion as part of its input. We evaluated two variants: one where the actor input
is (stp−deploy, st

g−deploy, zt) and another where the reference motion is excluded. The results show
that when the actor receives the reference motion directly, the influence of the latent variable z
vanishes. In this case, the behavior of the model closely resembles that of a standard DAgger setup,
as the strong reference input causes the policy to ignore the latent guidance. We further evaluated
a pure DAgger setup with an MLP-based actor in the second stage. While this design performs
well on motions seen during training, it degrades noticeably on out-of-distribution (OOD) motions.
The strong reliance on explicit reference inputs reduces the policy’s robustness and its ability to
generalize to unseen or novel motion sequences.

In Figure 3, we evaluate the generalization capability of UniTracker in MuJoCo by testing it on a
challenging lateral squat motion, which demands strong balance control from the robot. Although
UniTracker cannot precisely track all keypoints of the reference motion, it successfully produces a
plausible lateral squat behavior while maintaining balance. In contrast, the DAgger baseline without
the CVAE fails to remain stable and results in the robot falling, highlighting the importance of latent
motion modeling for generalization to unseen motions. We have uploaded more real-world OOD
videos on our website, showcasing the generalization ability of our policy.

In Table 2, we evaluate the robustness of our policy by incrementally adding noise to the observa-
tions. In this table, a noise level of 0 indicates no observation noise, while higher levels correspond
to increasing noise intensity. We observe that UniTracker consistently outperforms the variant with-
out CVAE in both Success Rate (SR) and Mean Per Keypoint Position Error (MPkPE). Moreover,
UniTracker exhibits a slower degradation in performance as noise increases, indicating stronger
robustness under observation perturbations.

In Figure 5, we evaluate the global awareness of our CVAE-based framework using a walking se-
quence in the MuJoCo simulator. The results show that, under our framework, the robot is able
to walk in a straight line while closely following the reference trajectory. In contrast, the frame-
work without CVAE gradually deviates from the reference path, demonstrating the superiority of
our approach in maintaining global consistency.

What hyperparameter choices lead to the best performance in whole-body motion tracking?
We conduct ablation studies on three key hyperparameters in our framework: the CVAE latent di-
mension, the future window size of the reference motion used in the CVAE prior, and the weight
of the KL loss term. For the latent dimension, we experiment with values of 32, 64, 128, and 256.
We observe that a dimension of 64 yields the best performance. Larger latent sizes make the CVAE
harder to train and do not lead to further improvements. Results are shown in Table 1 For the future
window, which controls how many future frames of reference motion are included in the prior input,

8



Video-based Motion Estimation

Text-to-Motion Generation

A person kicks 
forward.

A person is punching 
forward.

A person is squatting 
down.

A person is extending 
his body.

A person is walking 
forward.

A person is dancing 
The waltz.

Figure 4: The Outcome of Downstream Applications in mujoco: We evaluate text-to-motion
generation and video-based motion estimation in the muJoCo simulator. The results demonstrate
that our policy can effectively track both types of reference motions

we test window sizes of 1, 5, 10, and 20 frames. The results indicate that using 5 future frames pro-
vides the best trade-off between responsiveness and stability. Lastly, we tune the KL loss coefficient
with values of 1.0, 0.1, 0.01, and 0.001. We find that setting the weight to 0.1 leads to the best policy
performance, effectively balancing latent regularization and reconstruction quality.

3.4 Downstream Applications

We evaluate two downstream applications of our framework: motion generation and video-based
motion estimation. For motion generation, we use the MDM [28] model to produce SMPL-
based [23] motion sequences conditioned on text input. These motions are then retargeted to the
G1 humanoid robot for tracking. Both MuJoCo [29] simulation and real-world results demonstrate
that our policy can accurately track motions generated from text prompts. For video estimation, we
record a long motion sequence using a monocular camera, and convert it to SMPL format using
GVHMR [30]. The resulting motion is retargeted to the G1 robot. Experiments in both MuJoCo and
the real world show that our policy successfully tracks the reconstructed motions. These two appli-
cations highlight the strong generalization capability of our policy across different types of reference
inputs.
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Dagger with CVAE Dagger without CVAE

Figure 5: Global Consistency of UniTracker in the MuJoCo Simulator

3.5 Light Weight Fast Adaption

We compared our fast adaptation module against a
training-from-scratch baseline. In the latter, the ob-
servations of our model remain consistent with those
of the second-stage student policy, and the reward
function is identical to that used in the fast adapta-
tion module. For evaluation, we selected three chal-
lenging motion sequences—Round-Horse Kick, Side
Kick, and Martial Art—along with the entire AMASS
test dataset. As shown in Figure 6, our fast adaptation
approach converges substantially faster than training
from scratch in terms of both episode length and cu-
mulative reward. These results underscore the advan-
tages of our second-stage universal policy and high-
light the effectiveness of the pretrained model in en-
abling rapid adaptation.

Methods All AMASS Train Dataset
SR↑ MPKPE↓

(a) Noise Level 0

Dagger without CVAE 88.21 84.79
Ours 91.83 82.62

(b) Noise Level 1

Dagger without CVAE 85.79 88.65
Ours 90.26 83.84

(c) Noise Level 2

Dagger without CVAE 79.58 93.71
Ours 86.79 87.31

Table 2: We evaluate the robustness of the
policy by incrementally adding noise to the
observations.

4 Related Work

4.1 Whole-Body Controller for Humanoid Robots

Whole-body control is essential for enabling humanoid robots to perform a wide variety of com-
plex tasks. Prior to the rise of reinforcement learning, researchers primarily relied on traditional
optimization-based control methods for humanoid whole-body control [31, 32, 33, 34, 35, 36, 37].
These approaches typically required explicit mathematical modeling of both the robot and its en-
vironment, followed by real-time optimization to compute the robot’s next action. However, such
methods often struggle to adapt to environmental variations, resulting in limited robustness. Addi-
tionally, they impose heavy computational demands during online execution.

To overcome these limitations, reinforcement learning (RL) has emerged as a powerful alternative,
offering the ability to learn adaptive, robust control policies directly from interaction with the envi-
ronment without relying on explicit modeling. Current reinforcement learning–based whole-body
controllers for humanoid robots can be categorized by the source of their control signals, including
teleoperation [1, 2, 3, 4, 5, 6], offline motion datasets [7, 8, 10, 11], video-based motion estima-
tion [14, 15] [5, 6], and high-level task commands [16, 17]. Teleoperation involves directly control-
ling the humanoid robot in real time using human input, often through motion capture systems or
wearable sensors, allowing the robot to mimic human movements with high fidelity. Representative
works in this area include Twist [1] and H2O [4], both of which adopt a two-stage teacher-student
framework. The primary difference lies in the design of the policy’s observation space. Offline
motion datasets consist of pre-collected human or humanoid motion sequences, which are used as
references for training control policies through motion imitation. Representative works are Ex-
body [11] and Exbody2 [10], which begins by carefully curating an offline motion dataset and then
decouples upperand lower-body motions as much as possible, aiming to maintain stability in the
lower body while encourage diversity and expressiveness in the upper body. In addition, the most
recent work, GMT [12], is the first to demonstrate tracking of 8,000 motions using a single unified
policy. Video-based motion estimation methods leverage visual input from videos to extract hu-
man motion data, which can then be used to guide humanoid robot control policies. This approach
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Figure 6: Fast Adaption of Challenging Motions

Name Function Weight

tracking keypoints exp(||ptref − pt||) 1.6

tracking feet position exp(||ptfeet
ref − ptfeet ||) 2.1

tracking body rotation exp(||rt − rt
ref ||) 0.5

tracking joint position exp(||qtref − qt||) 0.75

tracking joint velocity exp(|| ˙qtref − q̇t||) 0.5

tracking body linear velocity exp(|| ˙ptref − ṗt||) 0.5

tracking body angular velocity exp(||ṙt − ˙rtref ||) 0.5

action rate −||at − at−1|| -0.5

torque −τ -1e-6

slippage −||vtfoot ∗ Ft
contact|| -1.0

termination 1.0 -200.0

Table 3: Definition of Reward Functions

enables learning from large-scale, diverse motion sources without requiring direct human demon-
stration. A representative work is VideoMimic [14], which develops a real-to-sim-to-real pipeline to
model both the robot and its surrounding environment. Task commands refer to high-level, sparse
control signals that specify desired outcomes or goals, such as walking direction or target position,
rather than detailed joint-level motions, enabling efficient whole-body control through abstraction.
Representative works include Hover [16]and HugWBC [17]. Hover unifies multiple control modes
into a single policy, enabling seamless transitions while retaining the strengths of each mode, thus
providing a robust and scalable humanoid control solution. HugWBC designs a general task and be-
havior command space and employs techniques such as symmetrical loss and intervention training.
This enables real-world humanoid robots to perform a variety of natural gaits—including walking,
jumping, and hopping.
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5 Conclusion
In this work, we present UniTracker, a unified and scalable framework for whole-body motion track-
ing in humanoid robots. Built upon a three-stage training pipeline, our approach begins with a priv-
ileged teacher policy that enables high-fidelity motion tracking and effective data curation. We then
introduce a CVAE-based student policy that achieves robust deployment under partial observations
by modeling motion diversity and implicitly incorporating global context. To further extend the sys-
tem’s adaptability, we propose a lightweight residual decoder for fast adaptation to highly dynamic
or out-of-distribution motions. We validate UniTracker extensively in both simulation and real-
world settings using a 29-DoF Unitree G1 humanoid. Our method successfully tracks over 8,100
motion sequences with a single policy, outperforming strong teacher-student baselines in terms of
accuracy, generalization, and robustness. The results demonstrate the effectiveness of combining
generative modeling with hierarchical policy distillation and residual adaptation for expressive and
general-purpose humanoid control.
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