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Abstract

The reward hypothesis is the hypothesis that “all of what we mean by goals and
purposes can be well thought of as the maximisation of the expected value of the
cumulative sum of a received scalar signal”(Sutton and Barto 2018). In this paper,
we will argue that this hypothesis is false. We will look at three natural classes of
reinforcement learning tasks (multi-objective reinforcement learning, risk-averse
reinforcement learning, and modal reinforcement learning), and then prove mathe-
matically that these tasks cannot be expressed using any scalar, Markovian reward
function. We thus disprove the reward hypothesis by providing many examples of
tasks which are both natural and intuitive to describe, but which are nonetheless
impossible to express using reward functions. In the process, we provide necessary
and sufficient conditions for when a multi-objective reinforcement learning prob-
lem can be reduced to ordinary, scalar reward reinforcement learning. We also call
attention to a new class of reinforcement learning problems (namely those we call
“modal” problems), which have so far not been given any systematic treatment in
the reinforcement learning literature.

1 Introduction

To use reinforcement learning (RL) to solve a task, it is necessary to first encode that task using
a reward function, i.e. as a function from state-action-next-state triples to reals (Sutton and Barto
2018). The reward hypothesis states that any task which a human might reasonably wish an RL agent
to complete can be expressed using such a reward function. In this paper, we analyse the reward
hypothesis mathematically. Moreover, we argue that our results disprove the reward hypothesis.
We will examine three classes of tasks, all of which are both intuitive to understand, and useful
in practical situations. We will then show that almost all tasks in each of these three classes are
impossible to express using ordinary reward functions.

The first class of problems we look at, in Section 2, is the single-policy version of multi-objective
RL (MORL). In such a problem, the agent receives multiple reward signals, and the aim is to learn a
single policy that achieves an optimal trade-off of those rewards according to some criterion (Roijers
et al. 2013; Liu, Xu, and Hu 2015). We will look at the question of which MORL problems can be
reduced to ordinary RL, and find that this can only be done for MORL problems that correspond to a
linear weighting of the rewards. This means that it cannot be done for the vast majority of all MORL
problems. The next class of problems we look at, in Section 3, is risks-sensitive RL. We show that
none of the standard risk-averse utility functions can be expressed using reward functions. The last
class of problems we look at, in Section 4, is something we call modal tasks. These are tasks where
the agent is evaluated not only based on what trajectories it generates, but also based on what it could
have done along those trajectories. We provide a formalisation of such tasks, and prove that they
cannot be formalised using ordinary reward functions. In Section 5, we discuss our results.
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1.1 Related Work

There has been a few recent papers which examine the expressivity of Markovian reward functions.
The first of these is the work by Abel et al. 2021, who demonstrate that there are tasks which cannot
be expressed using Markovian reward functions. We greatly extend their work by providing new
results that are significantly stronger. Another important paper is the work by Vamplew et al. 2022,
who argue that there are many important aspects of intelligence which can be captured by MORL,
but not by scalar RL. Like them, we also argue that MORL is a genuine extension of scalar RL, but
our approach is quite different. They focus on the question of whether MORL or (scalar) RL is a
better foundation for the development of general intelligence, and they provide qualitative arguments
and biological evidence. By contrast, we are more narrowly focused on what incentive structures can
be expressed by MORL and scalar RL, and our results are mathematical.

There is a large literature on single-policy MORL, constrained RL, and risk-sensitive RL. Some
notable examples of this work includes Achiam et al. 2017; Chow et al. 2017; Miryoosefi et al. 2019;
Tessler, Mankowitz, and Mannor 2019; Skalse et al. 2022c. This existing literature typically focuses
on the creation of algorithms for solving particular MORL problems, and has so far not tackled the
problem of characterising when MORL problems can be reduced to scalar RL. Modal RL has (to the
best of our knowledge) never been discussed explicitly in the literature before. However, it relates
to some existing work, such as side-effect avoidance (Krakovna et al. 2018; Krakovna et al. 2020a;
Turner, Ratzlaff, and Tadepalli 2020), and the work by Wang et al. 2020.

1.2 Preliminaries

We will assume that the reader is familiar with the basics of RL, which can be found in Sutton and
Barto 2018. An overview of our notation can be found in Appendix B.

MORL problems are formalised using Multi-Objective MDPs (MOMDPs), which are tuples
⟨S,A, τ, µ0, R⃗, γ⟩. The only place where MOMDPs differ from MDPs are R⃗, which is a func-
tion R⃗ : S ×A× S ⇝ Rk that, for each transition s, a, s′, returns k different rewards (for some k).
We denote the reward function that returns the i’th component of R⃗ as Ri, and use V π

i , Qπ
i , Ji, Gi,

etc, to refer to its value functions, Q-functions, evaluation function, return function, etc.

2 Multi-Objective Reinforcement Learning

In this section, we examine the MORL setting. We first need a general definition of what a single-
policy MORL problem is. Recall that a MOMDP ⟨S,A, τ, µ0, R⃗, γ⟩ by itself has no one canonical
objective to maximise. We therefore introduce the notion of a MORL objective:
Definition 2.1. A MORL objective over k rewards is a function O that takes k policy evaluation
functions J1 . . . Jk and returns a (total) ordering ≺O over the set of all policies Π.

Given a MOMDP M = ⟨S,A, τ, µ0, R⃗, γ⟩, a MORL objective O gives us an ordering over Π that
tells us when a policy is preferred over another. We use ≺M

O to denote the policy ordering that is
obtained when we apply O to M’s policy evaluation functions. We next give a few examples of some
interesting MORL objectives:
Definition 2.2. Given J1 . . . Jk, the LexMax objective ≺Lex is given by π1 ≺Lex π2 if and only if
there is an i ∈ {1 . . .m} such that Ji(π1) < Ji(π2), and Jj(π1) = Jj(π2) for j < i.
Definition 2.3. Given J1 . . . Jk, the MaxMin objective ≺Min is given by π1 ≺Min π2 ⇐⇒
mini Ji(π1) < mini Ji(π2).
Definition 2.4. Given J1 . . . Jk and some c1 . . . cm ∈ R, the MaxSat objective ≺Sat is given by
π1 ≺Sat π2 if and only if the number of rewards that satisfy Ji(π1) ≥ ci is larger than the number of
rewards that satisfy Ji(π2) ≥ ci.
Definition 2.5. Given J1, J2 and some c ∈ R, the ConSat objective ≺Con is given by π1 ≺Con π2 if
and only if either J1(π1) < c and J1(π1) < J1(π2), or if J1(π1), J1(π2) ≥ c and J2(π1) < J2(π2).

We next need to define what it means to reduce a MORL problem to a (scalar) RL problem:

Definition 2.6. A MOMDP M = ⟨S,A, τ, µ0, R⃗, γ⟩ with objective O is equivalent to the MDP
M̃ = ⟨S,A, τ, µ0, R̃, γ⟩ if and only if M̃ ’s policy order is ≺M

O .
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Note that M̃ must have the same states, actions, transition function, initial state distribution, and
discount factor, as M. This definition therefore says that M with O is equivalent to M̃ if M̃ is given
by replacing R⃗ = ⟨R1 . . . Rk⟩ with a single reward function R̃, and R̃ induces the same preferences
between all policies as O(J1 . . . Jk). We can now derive necessary and sufficient conditions for when
a MORL problem can be reduced to a scalar-reward RL problem.

Theorem 2.7. If a MOMDP M = ⟨S,A, τ, µ0, R⃗, γ⟩ with objective O is equivalent to an MDP
M̃ = ⟨S,A, τ, µ0, R̃, γ⟩, then J̃(π) =

∑k
i=1 wi · Ji(π) for some w1 . . . wk ∈ R. Moreover, M with

O is also equivalent to the MDP with reward R(s, a, s′) =
∑k

i=1 wi ·Ri(s, a, s
′).

This theorem effectively tells us that only linear MORL objectives can be represented using scalar-
reward RL! This imposes a harsh limitation on what kinds of tasks can be encoded using scalar
rewards. Theorem 2.7 also has the following corollary, which is useful for demonstrating when
some MORL objective cannot be expressed using scalar reward functions. Given an ordering ≺
over Π dependent on some evaluation functions J1 . . . Jk, we say that a function U : Π → R
represents ≺ if U(π1) < U(π2) ⇐⇒ π1 ≺ π2. We say that U is a linear representation if
U(π) = f(

∑k
i=1 wi · Ji(π)) for some w1 . . . wk ∈ R and some f that is strictly monotonic.

Corollary 2.8. If O(J1 . . . Jk) has a non-linear representation U , and M is a MOMDP whose
J-functions are J1 . . . Jk, then M with O is not equivalent to any MDP.

Therefore, we can prove that M with O is not equivalent to any MDP by finding a non-linear
representation of ≺M

O . In Appendix C, we prove that none of the MORL objectives given in
Definition 2.2-2.5 can be expressed using single-objective RL, except in a few degenerate edge cases.

3 Risk-Sensitive Reinforcement Learning

The next area we will look at is that of risk-sensitive reinforcement learning. An ordinary RL agent
tries to maximise the expectation of its reward function. However, there are many cases where it
is natural to want the agent to be risk-averse. In economics, risk-aversion is typically modelled by
using utility functions U(c) that are concave in some relevant quantity c (which might be money, for
example). A natural question is then whether a similar trick may be used with reward functions? We
will examine this question.

Some of the most common risk-averse utility functions includes exponential utility, isoelastic utility,
and quadratic utility. The exponential utility function is given by U(c) = −eαc, where α > 0
is a parameter controlling the degree of risk aversion. The isoelastic utility function is given by
U(c) = c1−α, for α > 0, α ̸= 1, or by U(c) = ln(c) (corresponding to the case when α = 1). The
quadratic utility function is given by U(c) = c−αc2, where α > 0. Since this function is decreasing
for sufficiently large c, its domain is typically restricted to (−∞, 1/2α]. We will examine each of
these, and show that none of them can be expressed using reward functions.

In this section, we will consider the domain of G to be the set of all coherent trajectories, not the
set of trajectories which are possible under some transition function τ . In other words, we consider
the set of all trajectories to be (S ×A)ω. The reason for this is that we do not want to presume any
prior knowledge of the environment. If we restrict the set of trajectories we consider, then some
risk-averse utility functions can become possible to express (consider the case of a tree-shaped MDP,
for example). Finally, we will say that R is constant if it has a constant value for all s, a, s′.
Theorem 3.1. For any non-constant reward function R1 and any constant α ̸= 0, there is no reward
function R2 such that G2(ξ) = −eαG1(ξ) for all valid trajectories ξ.
Theorem 3.2. For any non-constant reward function R1 and any constant α > 0, α ̸= 1, there is no
reward function R2 such that G2(ξ) = G1(ξ)

1−α for all valid trajectories ξ.
Theorem 3.3. For any non-constant reward function R1, there is no reward function R2 such that
G2(ξ) = ln(G1(ξ)) for all valid trajectories ξ.
Theorem 3.4. For any non-constant reward function R1 and any α > 0 where maxξ G1(ξ) ≤ 1

2α ,
there is no reward function R2 such that G2(ξ) = G1(ξ)− αG1(ξ)

2 for all ξ.

It would be desirable to strengthen these results, and provide necessary and sufficient conditions for
when it is possible to construct a reward R2 such that G2(ξ) = f(G1(ξ)) for some function f and
some (non-constant) reward R1. We consider this to be an important question for further work.
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4 Modal Reinforcement Learning

Consider an instruction such as “you should always be able to return to the start state”. This instruction
seems quite reasonable, but it is not obvious how to translate it into a reward function. Note that this
instruction is not telling the agent to actually return to the start state, it merely says that it should
maintain the ability to do so. To give a few other examples, consider instructions such as “you should
never enter a state from which it is possible to quickly enter an unsafe state”, “you should always be
able to press the emergency shutdown button”, or “you should never enter a state where you would
be unable to receive a feedback signal”. These instructions all seem very reasonable, and they are
expressed in terms of what should be possible or impossible along the trajectory of the agent, rather
than in terms of what in fact occurs along that trajectory. Given this background motivation, we can
now give a formal definition of modal tasks:
Definition 4.1. Given a set of states S and a set of actions A, a modal reward function R♢ is a
function R♢ : S×A×S × (S × A ⇝ S) → R which takes two states s, s′ ∈ S, an action a ∈ A,
and a transition function τ over S and A, and returns a real number.

R♢(s, a, s′, τ) is the reward that is obtained when transitioning from state s to s′ using action a
in an environment whose transition function is τ . Here we allow R♢ an unrestricted dependence
on τ , to make our results as general as possible, even if a practical algorithm for solving modal
tasks presumably would require restrictions on what this dependence can look like. As usual,
R♢ then induces a Q-function Q♢, value function V ♢, and evaluation function J♢, etc. Modal
reward functions can be used to express all the instructions we gave above. We say that a modal
reward R♢ and an ordinary reward R are contingently equivalent given a transition function τ if
J♢ and J induce the same ordering of policies given τ , and that they are robustly equivalent if J♢

and J induce the same ordering of policies for all τ . We use R♢
τ to denote the reward function

R♢
τ (s, a, s

′) = R♢(s, a, s′, τ). We will also use the following definition:

Definition 4.2. A modal reward function R♢ is trivial if there is a reward function R such that for
all τ , R and R♢

τ have the same policy ordering under τ .

The intuition here is that a trivial modal reward function does not actually depend on τ in any important
sense. Note that this is not necessarily to say that R♢

τ = R for all τ . For example, it could be the case
that R♢

τ is a scaled version of R, or that R♢
τ and R differ by potential shaping Ng, Harada, and Russell

1999, or that R♢
τ is modified in a way such that ES′∼τ(s,a)[R

♢
τ (s, a, S

′)] = ES′∼τ(s,a)[R(s, a, S′)],
since none of these differences affect the policy ordering.
Theorem 4.3. For any modal reward R♢ and any transition function τ , there exists a reward function
R that is contingently equivalent to R♢ given τ . Moreover, unless R♢ is trivial, there is no reward
function that is robustly equivalent to R♢.

In other words, every modal task can be expressed with ordinary reward function in each particular
environment, but no reward function expresses a (non-trivial) modal task in all environments.

5 Discussion

In this paper, we have studied the veracity of the reward hypothesis, by examining the ability of
Markovian reward functions to express different kinds of problems. We have looked at three classes
of tasks; multi-objective tasks, risk-sensitive tasks, and modal tasks, and found that reward functions
are unable to express most of the tasks in each of these three classes. We have also provided necessary
and sufficient conditions for when a multi-objective RL problem can be expressed using a single
reward function, and also drawn attention to a class of tasks which have just barely been explored
previously (namely modal tasks). Finally, we have also shown that many of these problems still can
be solved with RL, and even outlined some methods for how to extend these solutions, which rules
out the possibility that only tasks which can be expressed using reward functions can be effectively
learnt. We argue that our results show that the reward hypothesis is false – there are tasks, which are
natural to state and intuitive to understand, and which can be solved with RL methods, but which
cannot be expressed using scalar Markovian reward functions.
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A AI Risk Analysis

One of the central challenges in AGI safety is the question of how to specify instructions for AI
systems which are safe to pursue with arbitrary competence. It has been hypothesised that if a
sufficiently advanced AI system is directed towards some goal, and this goal does not incorporate
all the implicit intentions and preferences of the human user, then this AI system will by default be
incentivised to take harmful actions or pursue dangerous plans. For a more complete version of this
argument, see e.g. Omohundro 2008; Bostrom 2014; Russell 2019; Yudkowsky 2022. Moreover, the
dynamics that these arguments describe can be observed in real systems. It is widely acknowledged
that reward functions can be very difficult to specify, and that a misspecified reward function can
induce behaviour that is both surprising and undesirable, if not dangerous, even in current AI systems
(Krakovna et al. 2020b). It seems likely that this problem will continue to get worse as AI systems
become more advanced, unless the fundamental underlying problem is solved. This then implies that
we must develop better ways to specify safe instructions for AI systems.

There seems to be a widespread belief that Markovian reward functions must be expressive enough to
formalise any task in a satisfactory way. For example, the objective in a sequential decision-making
task is almost always formalised as a Markovian reward function (Russell and Norvig 2009; Sutton
and Barto 2018). Moreover, current work on specifying tasks which are difficult to formalise typically
creates a setup in which a Markovian reward function is learnt from data, in the form of e.g. feedback
(e.g. Christiano et al. 2017) or demonstrations (e.g. Adams, Cody, and Beling 2022). It is crucial,
therefore, to examine whether or not this assumption is true. As we have seen, there are many natural
tasks which cannot be expressed as Markovian reward functions.

The assumption that any natural task can be represented using Markovian reward functions might
come from a false analogy to utility functions. In their famous work, Neumann and Morgenstern
1947 show that any preference ordering over lotteries of a finite set of outcomes can be rationalised
by a utility function, given some very moderate assumptions. However, reward functions are not
utility functions. First, the VNM utility theorem assumes a finite choice set, but the set of possible
trajectories is in general uncountable. Second, not all distributions over trajectories can be represented
as policies. Third, reward functions have a special linear structure, and cannot express arbitrary
functions from trajectories to reals. The VNM utility theorem does therefore not carry over to the
reinforcement learning setting.

A better understanding of what can and cannot be expressed as Markovian reward functions will be
helpful for developing methods for aligning AI systems. First of all, most reward learning methods
will attempt to fit a Markovian reward function to some training data. However, as we have seen, it
might be that no Markovian reward function can represent the task that is exemplified in the data.
Similarly, if we develop RL methods that can learn tasks which are formalised in more expressive
languages, then that might also make it easier to formulate safe tasks for these systems. All in all, we
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hope that an improved understanding of the expressivity of Markovian reward functions will make it
less likely that misspecified rewards will be used in powerful (or otherwise safety critical) AI systems.

We do not anticipate any noteworthy risk of unintended negative externalities from this research.

B Notation

The standard RL setting is formalised using Markov Decision Processes (MDPs), which are tuples
⟨S,A, τ, µ0, R, γ⟩ where S is a set of states, A is a set of actions, τ : S × A ⇝ S is a transition
function, µ0 is an initial state distribution over S, R : S × A × S ⇝ R a reward function, where
R(s, a, s′) is the reward obtained if the agent moves from state s to s′ by taking action a, and
γ ∈ (0, 1) is a discount factor. Here, f : X ⇝ Y denotes a probabilistic mapping f from
X to Y . A state is terminal if τ(s, a) = s and R(s, a, s) = 0 for all a. A trajectory ξ is a
path s0, a0, s1 . . . in an MDP that is possible according to µ0 and τ . We use G to denote the
trajectory return function, where G(ξ) =

∑∞
t=0 γ

trt. A policy is a mapping π : S ⇝ A, and
Π is the set of all policies. Given a policy π, its value function V π : S → R is the function
where V π(s) is the expected future discounted reward when following π from s, and its Q-function
Qπ : S×A → R = ES′∼τ(s,a)[R(s, a, S′)+γ ·V π(S′)]. The policy evaluation function J : Π → R
is J(π) = ES0∼µ0

[V π(So)]. If a policy maximises J , then we say that this policy is optimal. We
denote optimal policies by π⋆, and their value function and Q-function by V ⋆ and Q⋆. Moreover,
given an MDP M, we say that M’s policy order is the ordering ≺ on Π induced by π1 ≺ π2 ⇐⇒
J(π1) < J(π2) for all π1, π2.

In this paper, we will say that a reward function R is trivial if J(π1) = J(π2) for all π1, π2. Moreover,
we say that R1 and R2 are equivalent if J1(π1) < J1(π2) ⇐⇒ J2(π1) < J2(π2) for all π1, π2, and
that they are opposites if J1(π1) < J1(π2) ⇐⇒ J2(π1) > J2(π2). for all π1, π2

C Inexpressible MORL Objectives

Theorem C.1. There is no MDP equivalent to M with LexMax, as long as M has at least two
reward functions that are neither trivial, equivalent, or opposites.

Proof. Suppose M with LexMax is equivalent to M̃ = ⟨S,A, τ, µ0, R̃, γ⟩. Let i be the smallest
number such that Ri is non-trivial, and let j be the smallest number greater than i such that Rj is
non-trivial, and not equivalent to or opposite of Ri. Then there are π1, π2 such that Ji(π1) = Ji(π2)

and Jj(π1) < Jj(π2), which means that π1 ≺M
Lex π2. Moreover, since J̃ represents ≺M

Lex, it follows
that there are no π, π′ such that Ji(π) < Ji(π

′) and J̃(π) > J̃(π′). Then Theorem 1 in Skalse et al.
2022a implies that Ri is equivalent to R̃. However, then J̃(π1) = J̃(π2), which means that J̃ cannot
represent ≺M

Lex.

Theorem C.2. There is no MDP equivalent to M with MaxMin, unless M has a reward function Ri

such that Ji(π) ≤ Jj(π) for all j ∈ {1 . . . k} and all π.

Proof. OM
Min is represented by the function U(π) = miniJi(π). Moreover, if M has no reward

function Ri such that Ji(π) ≤ Jj(π) for all j ∈ {1 . . . k} and all π then this representation is
non-linear. Corollary 2.8 then implies that M with MaxMin is not equivalent to any MDP.

Theorem C.3. There is no MDP equivalent to M with MaxSat, as long as M has at least one
reward Ri where Ji(π1) < ci and Ji(π2) ≥ ci for some π1, π2 ∈ Π.

Proof. Note that MaxSat(M) is represented by the function U(π) =
∑k

i=1 1[Ji(π) ≥ ci], where
1[Ji(π) ≥ ci] is the function that is equal to 1 when Ji(π) ≥ ci, and 0 otherwise. Moreover, U is not
strictly monotonic in any function that is linear in J1 . . . Jk. Corollary 2.8 thus implies that M with
MaxSat is not equivalent to any MDP.

Theorem C.4. There is no MDP equivalent to M with ConSat, unless either R1 and R2 are
equivalent, or maxπ J1(π) ≤ c.
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Proof. OM
Con is represented by U(π) = {J1(π) if J1(π) ≤ c, else J2(π)−minπ J2(π) + c}. More-

over, this representation is non-linear, unless either R1 and R2 are equivalent, or maxπ J1(π) ≤ c.
Corollary 2.8 then implies that M with ConSat is not equivalent to any MDP.

D Proofs

In this appendix, we provide the proofs of all of our theorems.

D.1 Multi-Objective Reinforcement Learning

Theorem D.1. If a MOMDP M = ⟨S,A, τ, µ0, R⃗, γ⟩ with objective O is equivalent to an MDP
M̃ = ⟨S,A, τ, µ0, R̃, γ⟩, then J̃(π) =

∑k
i=1 wi · Ji(π) for some w1 . . . wk ∈ R. Moreover, M with

O is also equivalent to the MDP with reward R(s, a, s′) =
∑k

i=1 wi ·Ri(s, a, s
′).

Proof. Suppose M with O is equivalent to an MDP M̃ = ⟨S,A, τ, µ0, R̃, γ⟩. First, let m : Π →
R|S||A| be the function that maps each policy π to the |S||A|-dimensional vector where

m(π)[s, a] =

∞∑
t=0

γtPξ∼π(St = s,At = a).

Moreover, for a reward function R, let R⃗ ∈ R|S||A| be the |S||A|-dimensional vector where

R⃗[s, a] = ES′∼τ(s,a)[R(s, a, S′)].

Note that we now have that J(π) = m(π) · R⃗, for any reward function R. Recall also that multiplica-
tion by an |S||A|-dimensional vector induces a linear function over R|S||A|. This means that, for any
reward function R, we can express its policy evaluation function J : Π → R as L ◦m, where L is a
linear function. In particular, J̃ = L̃ ◦m, and Ji = Li ◦m for each of Ri ∈ R⃗.

From the definition of MORL objectives, we have that J̃(π) is a function of J1(π) . . . Jk(π). This,
in turn, means that L̃(v) is a function of L1(v) . . . Lk(v), for any v ∈ Im(m). Let M be the
(|S||A| × k)-dimensional matrix that maps each vector v ∈ R|S||A| to ⟨L1(v), . . . , Lk(v)⟩ (in other
words, the matrix whose rows are R⃗1 . . . R⃗k). Since L̃(v) is a function of L1(v) . . . Lk(v), we have
that L̃ can be expressed as f ◦M for some function f . Since L̃ is a linear function, and since M
is a linear transformation, we that f must be a linear function as well. This means that there are
w1 . . . wk ∈ Rk such that f(x) =

∑k
i=1 wi · xi, which implies that L̃(v) =

∑m
i=1 wi · Li(v), and

further that J̃(π) =
∑k

i=1 wi · Ji(π). This completes the first part.

Next, let R(s, a, s′) =
∑

i1
kwi ·Ri(s, a, s

′). Straightforward algebra shows that J(π) =
∑k

i=1 wi ·
Ji(π). Now, since J = J̃ , and since M with O is equivalent to M̃, we have that M with O is
equivalent to the MDP with reward R. This completes the second part.

Corollary D.2. If O(J1 . . . Jk) has a non-linear representation U , and M is a MOMDP whose
J-functions are J1 . . . Jk, then M with O is not equivalent to any MDP.

Proof. Assume for contradiction that M with O is equivalent the MDP M̃ = ⟨S,A, τ, µ0, R̃, γ⟩.
Then J̃ represents O(J1 . . . Jk), and this in turn means that U must be strictly monotonic in J̃ .
Moreover, Theorem 2.7 implies that J̃ =

∑k
i=0 wi · Ji for some w1 . . . wk ∈ Rk. However, this

contradicts our assumptions.

D.2 Risk-Sensitive Reinforcement Learning

Lemma D.3. If R is non-constant, then for any state s there exists trajectories ζ1, ζ2, ζ3 starting in s
such that G(ζ1) ̸= G(ζ2), G(ζ2) ̸= G(ζ3), and G(ζ1) ̸= G(ζ3).

8



Proof. First note that if R is non-constant, then there must be some state s and some trajectories
ξ1, ξ2 starting in s such that G(ξ1) ̸= G(ξ2) (this follows from Theorem 3.8 in Skalse et al. 2022b).
We will establish that there is a ξ3 starting in s such that G(ξ3) ̸= G(ξ1) and G(ξ3) ̸= G(ξ2), and
then show that this implies that such trajectories exist for all states.

Suppose for contradiction that for any ξ3 starting in s, either G(ξ3) = G(ξ1) or G(ξ3) = G(ξ2).
Consider a transition ⟨s, a, s⟩, and let ζ1 = ⟨s, a, s⟩+ ξ1 and ζ2 = ⟨s, a, s⟩+ ξ2; we will do a case
enumeration, and show that either G(ζ1) or G(ζ2) must be distinct from both G(ξ1) and G(ξ2). Note
that G(ζ1) = R(s, a, s) + γG(ξ1) and G(ζ2) = R(s, a, s) + γG(ξ2).

Case 1: G(ζ1) = G(ξ1), G(ζ2) = G(ξ2). If R(s, a, s) + γG(ξ1) = G(ξ1) then R(s, a, s) =
(1− γ)G(ξ1), and similarly, if R(s, a, s) + γG(ξ2) = G(ξ2) then R(s, a, s) = (1− γ)G(ξ2). This
is a contradiction, since G(ξ1) ̸= G(ξ2) and γ ̸= 1.

Case 2: G(ζ1) = G(ζ2) = G(ξ1). If R(s, a, s) + γG(ξ1) = G(ξ1) then R(s, a, s) = (1− γ)G(ξ1).
Using R(s, a, s) + γG(ξ2) = G(ξ1), we get (1− γ)G(ξ1) + γG(ξ2) = γG(ξ1). By rearranging, we
get γ(G(ξ1)−G(ξ2)) = 0. This is a contradiction, since G(ξ1) ̸= G(ξ2) and γ ̸= 0.

Case 3: G(ζ1) = G(ζ2) = G(ξ2). This is analogous to Case 2.

Case 4: G(ζ1) = G(ξ2), G(ζ2) = G(ξ1). If R(s, a, s) + γG(ξ1) = G(ξ2) then R(s, a, s) =
G(ξ2)− γG(ξ2), and similarly, if R(s, a, s) + γG(ξ2) = G(ξ1) then R(s, a, s) = G(ξ1)− γG(ξ2).
Combining this, and rearranging, gives (1 + γ)G(ξ1) = (1 + γ)G(ξ2). This is a contradiction, since
G(ξ1) ̸= G(ξ2) and γ ̸= −1.

This exhausts all cases, which means that if R is non-constant, then there must be some state
s and some trajectories ζ1, ζ2, ζ3 starting in s such that G(ζ1) ̸= G(ζ2), G(ζ2) ̸= G(ζ3), and
G(ζ1) ̸= G(ζ3). Finally, note that this means that we can construct such trajectories for any state s′,
by simply composing a transition ⟨s′, a, s⟩ with each of ζ1, ζ2, ζ3.

Lemma D.4. If G2(ξ) = f(G1(ξ)) for all ξ and some f , then for any transition ⟨s, a, s′⟩ and any
trajectory ζ starting in s′, R2(s, a, s

′) = f(R1(s, a, s
′) + γG1(ζ))− γf(G1(ζ)).

Proof. Suppose that G2(ξ) = f(G1(ξ)) for all trajectories ξ. Let ⟨s, a, s′⟩ be an arbitrary transition,
let ζ be an arbitrary trajectory starting in s′, and let ξ = ⟨s, a, s′⟩ + ζ. We have that G2(ξ) =
R2(s, a, s

′) + γG2(ζ), and also that G2(ξ) = f(G1(ξ)), which implies that

R2(s, a, s
′) + γG2(ζ) = f(G1(ξ)).

Since G1(ξ) = R1(s, a, s
′) + γG1(ζ), this implies that

R2(s, a, s
′) + γG2(ζ) = f(R1(s, a, s

′) + γG1(ζ)).

By using the fact that G2(ζ) = f(G1(ζ)), and rearranging, we get that

R2(s, a, s
′) = f(R1(s, a, s

′) + γG1(ζ))− γf(G1(ζ)).

Since ⟨s, a, s′⟩ and ζ were chosen arbitrarily, this completes the proof.

Lemma D.5. For any non-constant reward R1 and any f that is injective on range(G1), if for any
y ∈ range(R1) and any γ ∈ (0, 1) there are at most two distinct x1, x2 such that f(y + γx1) −
γf(x1) = f(y + γx2)− γf(x2) then there is no reward R2 such that G2(ξ) = f(G1(ξ)) for all ξ.

Proof. Suppose for contradiction that G2(ξ) = f(G1(ξ)) for all ξ. Let ⟨s, a, s′⟩ be an arbitrary
transition. Applying Lemma D.4, we get that

R2(s, a, s
′) = f(R1(s, a, s

′) + γG1(ζ))− γf(G1(ζ))

for all trajectories ζ starting in s′. For clarity, let x = G1(ζ) and y = R1(s, a, s
′), so that f(y +

γx)− γf(x). By assumption, there can be at most two distinct values x1, x2 such that f(y+ γx1)−
γf(x1) = f(y+ γx2)− γf(x2). However, Lemma D.3 implies that there are at least three ζ1, ζ2, ζ3
starting in s′ with distinct values of G1. Since f is injective on range(G1), this means that there
are at least three distinct values of x for which f(y + γx)− γf(x) must be constant (and equal to
R2(s, a, s

′)), which is a contradiction.

Theorem D.6. For any non-constant reward function R1 and any constant α ̸= 0, there is no reward
function R2 such that G2(ξ) = −eαG1(ξ) for all valid trajectories ξ.
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Proof. With f(x) = −eαx, the expression in Lemma D.5 becomes −eα(y+γx)+γeαx. The derivative
of this expression with respect to x is γα(−eα(y+γx) + eαx), which has only one root when γ ̸= 0
and α ̸= 0. This means that there can be at most two distinct values x1, x2 such that −eα(y+γx1) +
γeαx1 = −eα(y+γx2) + γeαx2 . Since −eαx is injective, we can thus apply Lemma D.5, which
completes the proof.

Theorem D.7. For any non-constant reward function R1 and any constant α > 0, α ̸= 1, there is no
reward function R2 such that G2(ξ) = G1(ξ)

1−α for all valid trajectories ξ.

Proof. With f(x) = x1−α, the expression in Lemma D.5 becomes (y + γx)(1−α) − γx1−α. The
derivative of this expression with respect to x is γ(α− 1)(x−α − (γx+ y)−α), which has only one
root when γ ̸= 0 and α ̸∈ {0, 1}. This means that there can be at most two distinct values x1, x2

such that (y + γx1)
(1−α) − γx1−α

1 = (y + γx2)
(1−α) − γx1−α

2 . Since x1−α is injective, we can
thus apply Lemma D.5, which completes the proof.

Theorem D.8. For any non-constant reward function R1, there is no reward function R2 such that
G2(ξ) = ln(G1(ξ)) for all valid trajectories ξ.

Proof. With f(x) = ln(x), the expression in Lemma D.5 becomes ln(y + γx) − γ ln(x). The
derivative of this expression with respect to x is γ(1/(y+ γx)− 1/x), which has only one root when
γ ̸= 0. Since ln(x) is injective, we can thus apply Lemma D.5, which completes the proof.

Theorem D.9. For any non-constant reward function R1 and any α > 0 where maxξ G1(ξ) ≤ 1
2α ,

there is no reward function R2 such that G2(ξ) = G1(ξ)− αG1(ξ)
2 for all ξ.

Proof. With f(x) = x− αx2, the expression in Lemma D.5 becomes y + γx− α(y + γx)2. This
is a second-degree polynomial, which means that there can be at most two distinct values x1, x2

such that y + γx1 − α(y + γx1)
2 = y + γx2 − α(y + γx2)

2. Moreover, if maxξ G1(ξ) ≤ 1
2α then

f(x) = x− αx2 is injective on range(G1). We can thus apply Lemma D.5.

D.3 Modal Reinforcement Learning

Theorem D.10. For any modal reward R♢ and any transition function τ , there exists a reward
function R that is contingently equivalent to R♢ given τ . Moreover, unless R♢ is trivial, there is no
reward function that is robustly equivalent to R♢.

Proof. This is straightforward. For the first part, simply let R(s, a, s′) = R♢(s, a, s′, τ). The second
part is immediate from the definition of trivial modal reward functions.
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