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Abstract

The premise of identifiable and causal representation learning is to improve the
current representation learning paradigm in terms of generalizability or robustness.
Despite recent progress in questions of identifiability, more theoretical results
demonstrating concrete advantages of these methods for downstream tasks are
needed. In this paper, we consider the task of intervention extrapolation: predict-
ing how interventions affect an outcome, even when those interventions are not
observed at training time, and show that identifiable representations can provide an
effective solution to this task even if the interventions affect the outcome nonlin-
early. Our setup includes an outcome variable Y , observed features X , which are
generated as a nonlinear transformation of latent features Z, and exogenous action
variables A, which influence Z. The objective of intervention extrapolation is then
to predict how interventions on A that lie outside the training support of A affect
Y . Here, extrapolation becomes possible if the effect of A on Z is linear and the
residual when regressing Z on A has full support. As Z is latent, we combine the
task of intervention extrapolation with identifiable representation learning, which
we call Rep4Ex: we aim to map the observed features X into a subspace that
allows for nonlinear extrapolation in A. We show that the hidden representation
is identifiable up to an affine transformation in Z-space, which, we prove, is suffi-
cient for intervention extrapolation. The identifiability is characterized by a novel
constraint describing the linearity assumption of A on Z. Based on this insight, we
propose a flexible method that enforces the linear invariance constraint and can
be combined with any type of autoencoder. We validate our theoretical findings
through a series of synthetic experiments and show that our approach can indeed
succeed in predicting the effects of unseen interventions.

1 Introduction

Representation learning [see, e.g., 7, for an overview] underpins the success of modern machine
learning methods as evident, for example, in their application to natural language processing and
computer vision. Despite the tremendous success of such machine learning methods, it is still an
open question when and to which extent they generalize to unseen data distributions. It is further
unclear, which precise role representation learning can play in tackling this task.

To us, the main motivation for identifiable and causal representation learning [e.g., 51] is to overcome
this shortcoming. The core component of this approach involves learning a representation of the data
that reflects some causal aspects of the underlying model. Identifying this from the observational
distribution is referred to as the identifiability problem. Without any assumptions on the data
generating process, learning identifiable representations is not possible [24]. To show identifiability,
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Figure 1: In this paper, we consider the goal of intervention extrapolation, see (b). We are given
training data (yellow) that cover only a limited range of possible values of A. During test time
(grey), we would like to predict E[Y |do(A = a∗)] for previously unseen values of a∗. The function
a∗ 7→ E[Y |do(A = a∗)] (red) can be non-linear in a∗. We argue in Section 2 how this can be
achieved using control functions if the data follow a structure like in (a) and Z is observed. We
show in Section 3 that, under suitable assumptions, the problem is still solvable if we first have to
reconstruct the hidden representation Z (up to a transformation) from X . The representation is used
to predict E[Y |do(A = a∗)], so we learn a representation for intervention extrapolation (Rep4Ex).

previous works have explored various assumptions, including the use of auxiliary information
[25, 28], sparsity [36, 34], interventional data [9, 52, 1, 3, 10] and structural assumptions [20, 31].
However, this body of work has focused solely on the problem of identifiability. Despite its potential,
however, convincing theoretical results illustrating the benefits of such identification in solving
tangible downstream tasks are arguably scarce.

In this work, we consider the task of intervention extrapolation, that is, predicting how interventions
that were not present in the training data will affect an outcome. We study a setup with an outcome
Y ; observed features X which are generated via non-linear transformation of latent predictors Z; and
exogenous action variables A which influence Z. We assume the underlying data generating process
depicted in Figure 1a. The dimension of X can be larger than the dimension of Z and we allow for
potentially unobserved confounders between Y and Z (as depicted by the two-headed dotted arrow
between Z and Y ). Adapting notation from the independent component analysis (ICA) literature
[23], we refer to g0 as a mixing (and g−1

0 as an unmixing) function.

In this setup, the task of intervention extrapolation is to predict the effect of a previously unseen
intervention on the action variables A (with respect to the outcome Y ). Using do-notation [40],
we thus aim to estimate E[Y |do(A = a⋆)], where a⋆ lies outside the training support of A. Due
to this extrapolation, E[Y |do(A = a⋆)], which may be non-linear in a⋆, cannot be consistently
estimated by only considering the conditional expectation of Y given A (even though A is exogenous
and E[Y |do(A = a)] = E[Y |A = a] for all a in the support of A), see Figure 1b. We formally
prove this in Proposition 5. In this paper, the central assumption that permits learning identifiable
representation and subsequently solving the downstream task is that the effect of A on Z is linear,
that is, E[Z | A] =M0A for an unknown matrix M0.

The approach we propose in this paper, Rep4Ex-CF, successfully extrapolates the effects outside
the training support by performing two steps (see Figure 1a): In the first stage, we use (A,X) to
learn an encoder ϕ : X → Z that identifies, from the observed distribution of (A,X), the unmixing
function g−1

0 up to an affine transformation and thereby obtains a feature representation ϕ(X). To
do that, we propose to make use of a novel constraint based on the assumption of the linear effect
of A on Z, which, as we are going to see, enables identification. Since this constraint has a simple
analytical form, it can be added as a regularization term to an auto-encoder loss. In the second
stage, we use (A, ϕ(X), Y ) to estimate the interventional expression effect E[Y |do(A = a⋆)]. The
model in the second stage is adapted from the method of control functions in the econometrics
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literature [54, 21, 39], where one views A as instrumental variables. Figure 1b shows results of our
proposed method (Rep4Ex-CF) on a simulated data set, together with the outputs of and a standard
neural-network-based regression (MLP).

We believe that our framework provides a complementary perspective on causal representation
learning. Similar to most works in that area, we also view Z as the variables that we ultimately aim to
control. However, in our view, direct (or hard) interventions on Z are inherently ill-defined due to its
latent nature. We, therefore, consider the action variables A as a means to modify the latent variables
Z. As an example, in the context of reinforcement learning, one may view X as an observable state,
Z as a latent state, A as an action, and Y as a reward. Our aim is then to identify the actions that
guide us toward the desired latent state which subsequently leads to the optimal expected reward.
The ability to extrapolate to unseen values of A comes (partially) from the linearity of A on Z; such
extrapolation therefore becomes possible if we recover the true latent variables Z up to an affine
transformation. The problem of learning identifiable representations can then be understood as the
process of mapping the observed features X to a subspace that permits extrapolation in A. We refer
to this task of learning a representation for intervention extrapolation as Rep4Ex.

1.1 Relation to existing work

Some of the recent work on representation learning for latent causal discovery also relies on (unob-
served) interventions to show identifiability, sometimes with auxiliary information. These works often
assume that the interventions occur on one or a fixed group of nodes in the latent DAG [1, 10, 60]
or that they are exactly paired [9, 56]. Other common conditions include parametric assumptions
on the mixing function [44, 52, 3, 55] or precise structural conditions on the generative model
[12, 30, 59, 27, 32]. Unlike these works, we study interventions on exogenous (or "anchor") variables,
akin to simultaneous soft interventions on the latents. Identifiability is also studied in nonlinear ICA
[e.g., 22, 25, 28, 50], we discuss the relation in Appendix A.

The task of predicting the effects of new interventions has been explored in several prior works.
[38, 49, 60] consider learning the effects of new joint interventions based on observational distribution
and single interventions. [8] combine data from various regimes to predict intervention effects in
previously unobserved regimes. Closely related to our work, [19] focus on predicting causal responses
for new interventions in the presence of high-dimensional mediatorsX . Unlike our work, they assume
that the latent features are known and do not allow for unobserved confounders.

Our work is related to research that utilizes exogenous variables for causal effect estimation and
distribution generalization. Instrumental variable (IV) approaches [58, 5] exploit the existence of
the exogenous variables to estimate causal effects in the presence of unobserved confounders. Our
work draws inspiration from the control function approach in the IV literature [54, 21, 39]. Several
works [e.g., 43, 6, 46, 13, 45, 48] have used exogenous variables to increase robustness and perform
distribution generalization. While the use of exogenous variables enters similarly in our approach,
these existing works focus on a different task and do not allow for nonlinear extrapolation.

2 Intervention extrapolation with observed Z

To provide better intuition and insight into our approach, we start by considering a setup in which Z
is observed, which is equivalent to assuming that we are given the true underlying representation.
We now focus on the intervention extrapolation part, see Figure 1a (red box) with Z observed.
Consider an outcome variable Y ∈ Y ⊆ R, predictors Z ∈ Z ⊆ Rd, and exogenous action variables
A ∈ A ⊆ Rk. We assume the following structural causal model [40]

S :
{
A := ϵA Z :=M0A+ V Y := ℓ(Z) + U, (1)

where ϵA, V, U are noise variables and we assume that ϵA ⊥⊥ (V,U), E[U ] = 0, and M0 has full
row rank. Here, V and U may be dependent. We write Pdo(A=a) and E[·|do(A = a)] to denote the
distribution and the expectation under an intervention setting A := a. For any random variable B, we
denote by supp(B) the support of B in the observational distribution PS .

Our goal is to compute the effect of an unseen intervention on the action variables A (with respect to
the outcome Y ), that is, E[Y |do(A = a⋆)], where a⋆ /∈ supp(A). A naive approach to tackle this
problem is to estimate the conditional expectation E[Y |A = a] by regressing Y on A using a sample
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from the observational distribution of (Y,A). Despite A being exogenous, from (1) we only have that
E[Y |do(A = a)] = E[Y |A = a] for all a ∈ supp(A). As a⋆ lies outside the support of A, we face
the non-trivial challenge of extrapolation. Proposition 5 in Appendix C.2 affirms that relying solely
on the knowledge of the conditional expectation E[Y |A] is not sufficient to identify the effect of an
intervention outside the support of A. It is, however, possible to incorporate additional information
beyond the conditional expectation to help us identify E[Y |do(A = a⋆)]. In particular, inspired by
the method of control functions in econometrics, we propose to identify E[Y |do(A = a⋆)] from the
observational distribution of (A,X,Z) based on the following identities,

E[Y |do(A = a⋆)] = E[ℓ(Z)|do(A = a⋆)] + E[U |do(A = a⋆)]

= E[ℓ(M0a
⋆ + V )|do(A = a⋆)] + E[U |do(A = a⋆)]

= E[ℓ(M0a
⋆ + V )], (2)

where the last equality follows from E[U ] = 0 and the fact that, for all a⋆ ∈ A,PU,V = Pdo(A=a⋆)
U,V .

Now, since A ⊥⊥ V , we have E[Z | A] =M0A and M0 can be identified by regressing Z on A. V is
then identified with V = Z−M0A. V is called a control variable and, as argued by [39], for example,
it can be used to identify ℓ: defining λ : v 7→ E[U |V = v], we have for all z, v ∈ supp(Z, V )

E[Y |Z = z, V = v] = E[ℓ(Z) + U |Z = z, V = v] = ℓ(z) + E[U |Z = z, V = v]

= ℓ(z) + E[U |V = v] = ℓ(z) + λ(v), (3)

where in the second last equality, we have used that U ⊥⊥ Z | V (see Lemma 7 in Appendix C).

In general, (3) does not suffice to identify ℓ (e.g., V and Z are not necessarily independent of each
other). In our work, we utilize an assumption by [39] that puts restrictions on the joint support
of A and V and identifies ℓ on the set M0 supp(A) + supp(V ). Since M0 and V are identifiable,
too, this then allows us to compute, by (2), E[Y |do(A = a⋆)] for all a⋆ s.t. M0a

⋆ + supp(V ) ⊆
M0 supp(A)+supp(V ); thus, supp(V ) = Rd is a sufficient condition to identify E[Y |do(A = a⋆)]
for all a⋆ ∈ A. This support assumption, together with the additivity of V in (1), is key to ensure that
the nonlinear function ℓ can be inferred on all of Rd, allowing for nonlinear extrapolation. Similar
ideas have been used for extrapolation in a different setting and under different assumptions by [53].

In some applications, we may want to compute the effect of an intervention on A conditioned on Z,
that is, E[Y |Z = z,do(A = a⋆)]. We show in Appendix C.4 that this expression is identifiable, too.

3 Intervention extrapolation via identifiable representations

Section 2 illustrates the problem of intervention extrapolation in the setting where the latent predictors
Z are fully observed. We now consider the setup where we do not directly observe Z but instead we
observe X which are generated by applying a non-linear mixing function to Z. Formally, consider an
outcome Y ∈ Y ⊆ R, observable features X ∈ X ⊆ Rm, latent predictors Z ∈ Z = Rd, and action
variables A ∈ A ⊆ Rk. We model the underlying data generating process by the following SCM.

Setting 1 (Rep4Ex). We assume the SCM

S :

{
A := ϵA Z :=M0A+ V
X := g0(Z) Y := ℓ(Z) + U,

(4)

where ϵA, V, U are noise variables and we assume that the covariance matrix of ϵA is full-rank,
ϵA ⊥⊥ (V,U), E[U ] = 0, supp(V ) = Rd, and M0 has full row rank. Further, g0 and ℓ are
measurable functions and g0 is assumed to be injective. In this work, we only consider interventions
on A. For example, we do not require that the SCM models interventions on Z correctly.

Our goal is to compute E[Y |do(A = a⋆)] for some a⋆ /∈ supp(A). From (2), we have for all a⋆ ∈ A

E[Y |do(A = a⋆)] = E[ℓ(M0a
⋆ + V )]. (5)

Unlike the case where we observe Z, the task of identifying the unknown components on the right-
hand side of (5) becomes more intricate. In what follows, we show that if we can learn an encoder
ϕ : X → Z that identifies g−1

0 up to an affine transformation (see Definition 1 below), we can
construct a procedure that identifies the right-hand side of (5).
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Definition 1 (Affine identifiability). Assume Setting 1. An encoder ϕ : X → Z is said to identify g−1
0

up to an affine transformation (aff-identify for short) if there exists an invertible matrix Hϕ ∈ Rd×d

and a vector cϕ ∈ Rd such that

∀z ∈ Z : (ϕ ◦ g0)(z) = Hϕz + cϕ. (6)

We denote by κϕ : z 7→ Hϕz + cϕ the corresponding affine map.

Let ϕ : X → Z be an encoder that aff-identifies g−1
0 and κϕ : z 7→ Hϕz + cϕ be the corresponding

affine map. From (5), we have for all a⋆ ∈ A that

E[Y |do(A = a⋆)] = E[ℓ(M0a
⋆ + V )] = E[(ℓ ◦ κ−1

ϕ )(κϕ(M0a
⋆ + V ))]

= E[(ℓ ◦ κ−1
ϕ )(HϕM0a

⋆ + cϕ +Hϕ E[V ] +Hϕ(V − E[V ]))]

= E[(ℓ ◦ κ−1
ϕ )(Mϕa

⋆ + qϕ + Vϕ)], (7)

where we define

Mϕ := HϕM0, qϕ := cϕ +Hϕ E[V ], and Vϕ := Hϕ(V − E[V ]). (8)

We now outline how to identify the right-hand side of (7) by using the encoder ϕ. and formalize the
result in Theorem 2.

Identifying Mϕ, qϕ and Vϕ Using that ϕ aff-identifies g−1
0 , we have (almost surely) that

ϕ(X) = (ϕ ◦ g0)(Z) = HϕZ + cϕ = HϕM0A+HϕV + cϕ =MϕA+ qϕ + Vϕ. (9)

Now, since Vϕ ⊥⊥ A (following from V ⊥⊥ A), we can identify the pair (Mϕ, qϕ) by regressing ϕ(X)
on A. The control variable Vϕ can therefore be obtained as Vϕ = ϕ(X)− (MϕA+ qϕ).

Identifying ℓ ◦ κ−1
ϕ Defining λϕ : v 7→ E[U |Vϕ = v], we have, for all ω, v ∈ supp((ϕ(X), Vϕ)),

E[Y |ϕ(X) = ω, Vϕ = v]
(∗)
= E[Y |κϕ(Z) = ω, Vϕ = v] = E[Y |Z = κ−1

ϕ (ω), Vϕ = v]

= E[ℓ(Z) + U |Z = κ−1
ϕ (ω), Vϕ = v]

= (ℓ ◦ κ−1
ϕ )(ω) + E[U |Z = κ−1

ϕ (ω), Vϕ = v]

(∗∗)
= (ℓ ◦ κ−1

ϕ )(ω) + E[U |Vϕ = v] = (ℓ ◦ κ−1
ϕ )(ω) + λϕ(v), (10)

where the equality (∗) holds since ϕ aff-identifies g−1
0 and (∗∗) holds by Lemma 8, see Appendix C.

Similarly to the case in Section 2, the functions ℓ ◦ κ−1
ϕ and λϕ are identifiable (up to additive

constants) under some regularity conditions on the joint support of A and Vϕ [39]. We make this
precise in the following theorem, which summarizes the deliberations from this section. All proofs
can be found in Appendix D.

Theorem 2. Assume Setting 1 and let ϕ : X → Z be an encoder that aff-identifies g−1
0 . Further,

define the optimal linear function from A to ϕ(X) as1

(Wϕ, αϕ) := argmin
W∈Rd×k,α∈Rd

E[∥ϕ(X)− (WA+ α)∥2] (11)

and the control variable Ṽϕ := ϕ(X) − (WϕA + αϕ). Lastly, let ν : Z → Y and ψ : V → Y be
additive regression functions such that

∀ω, v ∈ supp((ϕ(X), Ṽϕ)) : E[Y |ϕ(X) = ω, Ṽϕ = v] = ν(ω) + ψ(v). (12)

If the functions ℓ, λϕ are differentiable and the interior of supp(A) is convex, then the following two
statements hold

(i) ∀a⋆ ∈ A : E[Y |do(A = a⋆)] = E[ν(Wϕa
⋆ + αϕ + Ṽϕ)]− (E[ν(ϕ(X))]− E[Y ]) (13)

(ii) ∀x ∈ Im(g0), a
⋆ ∈ A : E[Y |X = x,do(A = a⋆)] = ν(ϕ(x))+ψ(ϕ(x)− (Wϕa

⋆+αϕ)). (14)
1Here, Wϕ, αϕ and Ṽϕ are equal to Mϕ, qϕ and Vϕ, respectively, as shown in the proof. We introduce the

new notation to emphasize that the expressions are functions of the observational distribution.

5



4 Identification of the unmixing function g−1
0

Theorem 2 illustrates that intervention extrapolation can be achieved if one can identify the unmixing
function g−1

0 up to an affine transformation. In this section, we focus on the representation part (see
Figure 1a, blue box) and prove that such an identification is possible. The identification relies on
two key assumptions outlined in Setting 1: (i) the exogeneity of A and (ii) the linearity of the effect
of A on Z. These two assumptions give rise to a conditional moment restriction on the residuals
obtained from the linear regression of g−1

0 (X) on A. Recall that for all encoders ϕ : X → Z we
defined (αϕ,Wϕ) := argminα∈Rd,W∈Rd×k E[∥ϕ(X)− (WA+ α)∥2]. Under Setting 1, we have

∀a ∈ supp(A) : E[g−1
0 (X)− (Wg−1

0
A+ αg−1

0
) | A = a] = 0. (15)

The conditional moment restriction (15) motivates us to introduce the notion of linear invariance of
an encoder ϕ (with respect to A).
Definition 3 (Linear invariance). Assume Setting 1. An encoder ϕ : X → Z is said to be linearly
invariant (with respect to A) if the following holds

∀a ∈ supp(A) : E[ϕ(X)− (WϕA+ αϕ) | A = a] = 0. (16)

To establish identifiability, we consider an encoder ϕ : X → Z satisfying the following constraints.

(i) ϕ is linearly invariant and (ii) ϕ|Im(g0) is bijective, (17)

where ϕ|Im(g0) denotes the restriction of ϕ to the image of the mixing function g0. The second
constraint (invertibility) rules out trivial solutions of the first constraint (linear invariance). For
instance, a constant encoder ϕ : x 7→ c (for some c ∈ Rd) satisfies the linear invariance constraint but
it clearly does not aff-identify g−1

0 . Theorem 4 shows that, under the assumptions listed below, the
constraints (17) are necessary and sufficient conditions for an encoder ϕ to aff-identify g−1

0 .
Assumption 1 (Regularity conditions on g0). Assume Setting 1. The mixing function g0 is differen-
tiable and Lipschitz continuous.

Assumption 2 (Regularity conditions on V ). Assume Setting 1. First, the characteristic function of
the noise variable V has no zeros. Second, the distribution PV admits a density fV w.r.t. Lebesgue
measure such that fV is analytic on Rd.

Assumption 3 (Regularity condition on A). Assume Setting 1. The support of A, supp(A), contains
a non-empty open subset of Rk.

In addition to the injectivity assumed in Setting 1, Assumption 1 imposes further regularity conditions
on the mixing function g0. As for Assumption 2, the first condition is satisfied, for example, when the
distribution of V is infinitely divisible. The second condition requires that the density function of V
can be locally expressed as a convergent power series. Examples of such functions are the exponential
functions, trigonometric functions, and any linear combinations, compositions, and products of those.
Hence, Gaussians and mixture of Gaussians are examples of distributions that satisfy Assumption 2.
Lastly, Assumption 3 imposes a condition on the support of M0A, that is, the support of M0A has
non-zero Lebesgue measure.
Theorem 4. Assume Setting 1 and Assumptions 1, 2, and 3. Let Φ be a class of functions from X to
Z that are differentiable and Lipschitz continuous. It holds for all ϕ ∈ Φ that

ϕ satisfies (17) ⇐⇒ ϕ aff-identifies g−1
0 . (18)

5 A method for tackling Rep4Ex

5.1 First-stage: auto-encoder with MMR regularization

This section illustrates how to turn the identifiability result outlined in Section 4 into a practical
method that implements the linear invariance and invertibility constraints in (17). The method is
based on an auto-encoder [33, 18] with a regularization term that enforces the linear invariance
constraint (16). In particular, we adopt the the framework of maximum moment restrictions (MMRs)
introduced in [37] as a representation of the constraint (16). MMRs can be seen as the reproducing
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kernel Hilbert space (RKHS) representations of conditional moment restrictions. Formally, let H
be the RKHS of vector-valued functions [4] from A to Z with a reproducing kernel k and define
ψ := ψPX,A

: (x, a, ϕ) 7→ ϕ(x)− (Wϕa+ αϕ) (recall that Wϕ and αϕ depend on the observational
distribution PX,A). We can turn the conditional moment restriction in (16) into the MMR as follows.
Define the function

Q(ϕ) := sup
h∈H,∥h∥≤1

(E[ψ(X,A, ϕ)⊤h(A)])2. (19)

If the reproducing kernel k is integrally strictly positive definite (see [37, Definition 2.1]), then
Q(ϕ) = 0 if and only if the conditional moment restriction in (16) is satisfied.

One of the main advantages of using the MMR representation is that it can be written as a closed-form
expression. We have by [37, Theorem 3.3] that

Q(ϕ) = E[ψ(X,A, ϕ)⊤k(A,A′)ψ(X ′, A′, ϕ)], (20)

where (X ′, A′) is an independent copy of (X,A).

We now introduce our auto-encoder objective function2 with the MMR regularization. Let ϕ : X → Z
be an encoder and η : Z 7→ X be a decoder. Our (population) loss function is defined as

L(ϕ, η) := E[∥X − η(ϕ(X))∥2] + λQ(ϕ), (21)

where λ is a regularization parameter. In practice, we parameterize ϕ and η by neural networks,
use a plug-in estimator3 for (21) to obtain an empirical loss function, and minimize that loss with a
standard (stochastic) gradient descent optimizer. Here, the role of the reconstruction loss part in (21)
is to enforce the bijectivity constraint of ϕ|Im(g0) in (17). The regularization parameter λ controls the
trade-off between minimizing the mean squared error (MSE) and satisfying the MMR. We discuss
procedures to choose λ in Appendix E.2.

5.2 Second-stage: control function approach

Given a learned encoder ϕ, we can now implement the control function approach for estimating
E[Y |do(A = a⋆)], as per Theorem 2. We call the procedure Rep4Ex-CF. Algorithm 1 in Appendix E
outlines the details. In summary, we first perform the linear regression of ϕ(X) on A to obtain
(Ŵϕ, α̂ϕ), allowing us to compute the control variables V̂ = ϕ(X)− (ŴϕA− α̂ϕ). Subsequently,
we employ an additive regression model on (ϕ(X), V̂ ) to predict Y and obtain the additive regression
functions ν̂ and ψ̂. Finally, using the function ν̂, we compute an empirical average of the expectation
on the right-hand side of (13).

6 Experiments

In Appendix B, we conduct simulation experiments to empirically validate our theoretical findings.
First, we apply the MMR based auto-encoder introduced in Section 5.1 and show in Appendix B.1
that it can successfully recover the unmixing function g−1

0 up to an affine transformation. Second,
in Appendix B.2, we apply the full Rep4Ex-CF procedure, that is, the MMR based auto-encoder
along with the control function approach (see Section 5.2), to demonstrate that one can indeed predict
previously unseen interventions as suggested by Theorem 2.

7 Discussion

Our work highlights concrete benefits of identifiable representation learning. We introduce Rep4Ex,
the task of learning a representation that enables nonlinear intervention extrapolation and propose
corresponding theory and methodology. We regard this work only as a first step toward solving
this task. Developing alternative methods and relaxing some of the assumptions (e.g., allowing for
noise in the mixing function g0 and more flexible dependencies between A and Z) may yield more
powerful methods for achieving Rep4Ex.

2We consider a basic auto-encoder, but one can add MMR regularization to other variants too, e.g., [29],
adversarial-based [35], or diffusion-based [41].

3More precisely, we replace the expectations in (21) and (11) by empirical means (the latter expression enters
through ψ and Q(ϕ)).
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Figure 2: R-squared values for different methods as the intervention strength (α) increases. Each
point represents an average over 20 repetitions, and the error bar indicates its 95% confidence interval.
AE-MMR yields an R-squared close to 1 as α increases, indicating its ability to aff-identify g−1

0 , while
the two baseline methods yield significantly lower R-squared values.

Appendices
A Related work: nonlinear ICA

Identifiable representation learning has been studied within the framework of nonlinear ICA [e.g.,
22, 25, 28, 50]. [28] provide a unifying framework that leverages the independence structure of
latent variables Z conditioned on auxiliary variables. Although our actions A could be considered
auxiliary variables, the identifiability results and assumptions in [28] do not fit our setup and task.
Concretely, a key assumption in their framework is that the components of Z are independent when
conditioned on A. In contrast, our approach permits dependence among the components of Z even
when conditioned on A as the components of V in our setting can have arbitrary dependencies. More
importantly, [28] provide identifiability up to point-wise nonlinearities which is not sufficient for
intervention extrapolation. The main focus of our work is to provide an identification that facilitates a
solution to the task of intervention extrapolation. Some other studies in nonlinear ICA have shown
identifiability beyond point-wise nonlinearities [e.g., 42, 2]. However, the models considered in these
studies are not compatible with our data generation process either.

B Experiments

B.1 Identifying the unmixing function g−1
0

This section validates the result of affine identifiability , see Theorem 4. We consider the SCMs

S(α) :
{
A := ϵA Z := αM0A+ V X := g0(Z), (22)

where the complete specification of this SCM is given in Appendix F.1. The parameter α controls
the strength of the effect of A on Z. We set the dimension of X to 10 and consider two choices
d ∈ {2, 4} for the dimension of Z. Additionally, we set the dimension of A to the dimension of Z.

We sample 1’000 observations from the SCM (22) and learn an encoder ϕ using the regularized
auto-encoder (AE-MMR) as outlined in Section 5.1. As our baselines, we include a vanilla auto-encoder
(AE-Vanilla) and a variational auto-encoder (VAE) for comparison. We also consider an oracle
model (AE-MMR-Oracle) where we train the encoder and decoder using the true latent predictors Z
and then use these trained models to initialize the regularized auto-encoder. We refer to Appendix F.2
for the details on the network and parameter choices. Lastly, we consider identifiability of the
unmixing function g−1

0 only up to an affine transformation, see Definition 1. To measure the quality
of an estimate ϕ, we therefore linearly regress the true Z on the representation ϕ(X) and report the
R-squared for each candidate method. This metric is justified by Proposition 6.

Figure 2 illustrates the results with varying intervention strength (α). As α increases, our method,
AE-MMR, achieves higher R-squared values that appear to approach 1. This indicates that AE-MMR
can indeed recover the unmixing function g−1

0 up to an affine transformation. In contrast, the two
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Figure 3: Different estimations of the target of inference E[Y |do(A := ·)] as the training support γ
increases. The error bars represent the 95% confidence intervals over 10 repetitions. The training
points displayed are subsampled for the purpose of visualization. Rep4Ex-CF demonstrates the ability
to extrapolate beyond the training support, achieving nearly perfect extrapolation when γ = 1.2. In
contrast, the baseline MLP shows clear limitations in its ability to extrapolate.

baseline methods, AE-Vanilla and VAE, achieve significantly lower R-squared values, indicating
non-identifiablity without enforcing the linear invariance constraint, see also the scatter plots in
Figures 5 (AE-MMR) and 6 (AE-Vanilla) in Appendix G.

B.2 Predicting previously unseen interventions

In this section, we focus on the task of predicting previously unseen interventions as detailed in
Section 3. We use the following SCM as data generating process.

S(γ) :
{
A := ϵγA Z :=M0A+ V X := g0(Z) Y := ℓ(Z) + U, (23)

where ϵγA ∼ Unif([−γ, γ]k). Hence, the parameter γ determines the support of A in the observational
distribution. The complete specification of this SCM is provided in Appendix F.1.

Our approach, denoted by Rep4Ex-CF, follows the procedure outlined in Algorithm 1. In the first
stage, we employ AE-MMR as the regularized auto-encoder. In the second stage, we use a neural
network that enforces additivity in the output layer for the additive regression model. For comparison,
we include a neural-network-based regression model (MLP) of Y onA as a baseline. In all experiments
within this section, we use a sample size of 10’000 observations.

Figure 3 presents the results obtained with three different γ values (0.2, 0.7, 1.2) with one-dimensional
A and two-dimensional X . As anticipated, the neural-network-based regression model (MLP) fails to
extrapolate beyond the training support. Conversely, our approach, Rep4Ex-CF, demonstrates suc-
cessful extrapolation, with increased performance for higher γ. Furthermore, we conduct experiments
with multi-dimensional A and present the results in Appendix G.1. Solving the optimization problem
becomes more difficult but the outcomes echo the results observed with one-dimensional A.

C Further theoretical results

C.1 Further notation

In all appendices, we employ the following notation.
Notation. For a structural causal model (SCM) S, we denote by PS the observational distribution
entailed by S and the corresponding expectation by ES . When there is no ambiguity, we may omit
the superscript S. Further, we employ the do-notation to denote the distribution and the expectation
under an intervention. In particular, we write PS;do(A=a) and ES [·|do(A = a)] to denote the
distribution and the expectation under an intervention setting A := a, respectively, and Pdo(A=a) and
E[·|do(A = a)] if there is no ambiguity. Lastly, for any random variable B, we denote by suppS(B)
the support4 of B in the observational distribution PS . Again, when the SCM is clear from the
context, we may omit S and write supp(B) as the support in the observational distribution.

4The support of B ∈ B is defined as the set of all b ∈ B for which every open neighborhood of b (in B) has
positive probability.
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C.2 Regressing Y on A does not suffice

The proposition below shows that in our model class E[Y |do(A = a⋆)] is indeed not identifiable from
the conditional expectation E[Y |A] alone. Consequently, E[Y |do(A = a⋆)] cannot be consistently
estimated by simply regressing Y on A. (The result is independent of the fact whether Z is observed
or not and applies to the setting of unobserved Z in the same way, see Section 3. Furthermore, the
result still holds even when V and U are independent.)

Proposition 5 (Regressing Y on A does not suffice). There exist SCMs S1 and S2 of the form (1)
that satisfy all of the following conditions: (i) suppS1(V ) = suppS2(V ) = R; (ii) suppS1(A) =

suppS2(A); (iii) ∀a ∈ suppS1(A) : ES1 [Y |A = a] = ES2 [Y |A = a]; (iv) ∃B ⊆ A with positive
Lebesgue measure s.t. ∀a ∈ B : ES1 [Y |do(A = a)] ̸= ES2 [Y |do(A = a)].

C.3 Equivalent formulation of affine identifiability

Under Setting 1, we show an equivalent formulation of affine identifiability in Proposition 6 stressing
that Z can be reconstructed from ϕ(X). In our empirical evaluation (see Section B), we adopt this
formulation to define a metric for measuring how well an encoder ϕ aff-identifies g−1

0 .

Proposition 6 (Equivalent definition of affine identifiability). Assume Setting 1. An encoder ϕ :
X → Z aff-identifies g−1

0 if and only if there exists a matrix Jϕ ∈ Rd×d and a vector dϕ ∈ Rd s.t.

∀z ∈ Z : z = Jϕϕ(x) + dϕ, where x := g0(z). (24)

C.4 Identifying E[Y |Z = z,do(A = a⋆)] with observed Z

For all z ∈ supp(Z) and a⋆ ∈ A, we have

E[Y |Z = z,do(A = a⋆)] = ℓ(z) + E[U |Z = z,do(A = a⋆)]

= ℓ(z) + E[U |M0a
⋆ + V = z,do(A = a⋆)]

= ℓ(z) + E[U |V = z −M0a
⋆,do(A = a⋆)]

= ℓ(z) + E[U |V = z −M0a
⋆] since PU,V = Pdo(A=a⋆)

U,V ,

= ℓ(z) + λ(z −M0a
⋆),

where, ℓ and λ are identifiable by (3) if the interior of supp(A) is convex (we still assume that
supp(V ) = Rd), and the functions ℓ and λ are differentiable [39].

C.5 Some Lemmata

Lemma 7. Assume the underlying SCM (1). We have that U ⊥⊥ Z | V under PS .

Proof. In the SCM (1) it holds that A ⊥⊥ (U, V ) which by the weak union property of conditional
independence [e.g., 14, Theorem 2.4] implies that A ⊥⊥ U | V . This in turn implies (A, V ) ⊥⊥ U | V
[e.g., 14, Example 2.1]. Now, by Proposition 2.3 (ii) in [14] this is equivalent to the condition that for
all measurable and bounded functions g : A× R :→ R it almost surely holds that

E[g(A, V ) | U, V ] = E[g(A, V ) | V ]. (25)

Hence, for all f : Z → R measurable and bounded it almost surely holds that

E[f(Z) | U, V ] = E[f(M0A+ V ) | U, V ]

= E[f(M0A+ V ) | V ] by (25) with g : (a, v) 7→ f(M0a+ v)

= E[f(Z) | V ]. (26)

Again by Proposition 2.3 (ii) in [14], this is equivalent to U ⊥⊥ Z | V as desired. □

Lemma 8. Assume Setting 1. We have that U ⊥⊥ Z | Vϕ.

Proof. Since the function v 7→ Hϕ(v−E[V ]) is bijective, the proof follows from the same arguments
as given in the proof of Lemma 7. □
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Lemma 9. Assume Setting 1. Let ϕ : X → Z be an encoder. We have that

ϕ ◦ g0 is bijective =⇒ ϕ|Im(g0) is bijective . (27)

Proof. Let ϕ be an encoder such that ϕ ◦ g0 is bijective. We first show that ϕ|Im(g0) is injective by
contradiction. Assume that ϕ|Im(g0) is not injective. Then, there exist x1, x2 ∈ Im(g0) such that
ϕ(x1) = ϕ(x2) and x1 ̸= x2. Now consider z1, z2 ∈ Z with x1 = g0(z1) and x2 = g0(z2); clearly,
z1 ̸= z2. Using that ϕ ◦ g0 is injective, we have (ϕ ◦ g0)(z1) = ϕ(x1) ̸= ϕ(x2) = (ϕ ◦ g0)(z2) which
leads to the contradiction. We can thus conclude that ϕ|Im(g0) is injective.

Next, we show that ϕ|Im(g0) is surjective. Let z1, z2 ∈ Z . Since ϕ ◦ g0 is surjective, there exist
z̃1, z̃2 ∈ Z such that z1 = (ϕ ◦ g0)(z̃1) and z2 = (ϕ ◦ g0)(z̃2). Let x1 := g0(z̃1) ∈ Im(g0) and
x2 := g0(z̃2) ∈ Im(g0). We then have that z1 = ϕ(x1) and z2 = ϕ(x2) which shows that ϕ|Im(g0) is
surjective and concludes the proof. □

D Proofs

D.1 Proof of Proposition 5

Proof. We consider k = d = 1, that is, A ∈ R, Z ∈ R, Y ∈ R. We define the function p1V : R→ R
for all v ∈ R by

p1V (v) =


1
12 if v ∈ (−4, 2)
1
4 exp(−(v − 2)) if v ∈ (2,∞)
1
4 exp(v + 4) if v ∈ (−∞,−4)

and the function p2V : R→ R for all v ∈ R by

p2V (v) =


1
12 if v ∈ (−2, 1)
1
24 if v ∈ (−5,−2)
5
16 exp(−(v − 1)) if v ∈ (1,∞)
5
16 exp(v + 5) if v ∈ (−∞,−5).

These two functions are valid densities as we have for all v ∈ R that p1V (v) > 0, ∀v ∈ R : p2V (v) > 0,
and

∫∞
−∞ p1V (v) dv = 1,

∫∞
−∞ p2V (v) dv = 1. Furthermore, these two densities p1V (v) and p2V (v)

satisfy the following conditions,

(1) for all a ∈ (0, 1), it holds that∫ a+1

a−1

p1V (v) dv =
1

6
=

∫ a

a−2

p2V (v) dv, (28)

(2) for all a ∈ (−3,−2) the following holds∫ a+1

a−1

p1V (v) dv =

∫ a+1

a−1

1

4
exp(v + 4) dv

≥ 1

2
exp((a− 1) + 4)

≥ 1

2

>
1

12

=

∫ a

a−2

p2V (v) dv. (29)

Next, let S1 be the following SCM

S1 :


A := ϵA
Z := −A+ V

Y := 1(|Z| ≤ 1) + U,

(30)
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where ϵA ∼ Uniform(0,1), V ∼ P1
V , U ∼ P1

U independent such that ϵA ⊥⊥ (V,U), and E[U ] = 0.
Further, we assume that V admits a density p1V as defined above.

Next, we define the second SCM S2 as follows

S2 :


A := ϵA
Z := −A+ V

Y := 1(|Z + 1| ≤ 1) + U,

(31)

where ϵA ∼ Uniform(0,1), V ∼ P2
V , U ∼ P2

U independent such that ϵA ⊥⊥ (V,U), E[U ] = 0 and
V has the density given by p2V . By construction we have that suppS1(V ) = suppS2(V ) = R and
suppS1(A) = suppS2(A). Now, we show that the two SCMs S1 and S2 satisfy the third statement
of Proposition 5. Define c1 = 0 and c2 = 1. For i ∈ {1, 2}, we have for all a ∈ R that

ESi [Y | do(A = a)] = ESi [1(|Z + ci| ≤ 1) | do(A = a)] + ESi [U |do(A = a)]

= ESi [1(|V − a+ ci| ≤ 1) | do(A = a)] + ESi [U |do(A = a)]

(∗)
= ESi [1(|V − a+ ci| ≤ 1) | do(A = a)]

(∗∗)
= ESi [1(|V − a+ ci| ≤ 1)]

=

∫ ∞

−∞
1(|v − a+ ci| ≤ 1)piV (v) dv, (32)

where (∗) holds because ∀a ∈ A : PU = Pdo(A=a)
U and ESi [U ] = 0 and (∗∗) holds because ∀a ∈

A : PV = Pdo(A=a)
V . Since A is exogenous, we have for all i ∈ {1, 2} and a ∈ suppS1(A) = (0, 1)

that ESi [Y | do(A = a)] = ESi [Y | A = a]. From (32), we therefore have for all a ∈ (0, 1)

ES1 [Y | A = a] =

∫ ∞

−∞
1(|v − a| ≤ 1)p1V (v) dv

=

∫ a+1

a−1

p1V (v) dv

=

∫ a

a−2

p2V (v) dv by (28)

=

∫ ∞

−∞
1(|v − a+ 1| ≤ 1)p2V (v) dv

= ES2 [Y | A = a].

We have shown that the two SCMs S1 and S2 satisfy the first statement of Proposition 5. Lastly, we
show below that they also satisfy the fourth statement of Proposition 5. Define B := (−3,−2) ⊆ R
which has positive measure. From (32), we then have for all a ∈ (−3,−2)

ES1 [Y | do(A = a)] =

∫ ∞

−∞
1(|v − a| ≤ 1)p1V (v) dv

=

∫ a+1

a−1

p1V (v) dv

̸=
∫ a

a−2

p2V (v) dv by (29)

=

∫ ∞

−∞
1(|v − a+ 1| ≤ 1)p2V (v) dv

= ES2 [Y | do(A = a)],

which shows that S1 and S2 satisfy the forth condition of Proposition 5 and concludes the proof. □

D.2 Proof of Proposition 6

Proof. We begin by showing the ‘only if’ direction. Let ϕ : X → Z be an encoder that aff-identifies
g−1
0 . Then, by definition, there exists an invertible matrix Hϕ ∈ Rd×d and a vector cϕ ∈ Rd such that

∀z ∈ Z : (ϕ ◦ g0)(z) = Hϕz + cϕ. (33)
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We then have that

∀z ∈ Z : z = H−1
ϕ ϕ(x)−H−1

ϕ cϕ, where x := g0(z), (34)

which shows the required statement.

Next, we show the ‘if’ direction. Let ϕ : X → Z be an encoder for which there exists a matrix
Jϕ ∈ Rd×d and a vector dϕ ∈ Rd such that

∀z ∈ Z : z = Jϕϕ(x) + dϕ, where x := g0(z). (35)

Since Z = Rd, this implies that Jϕ is surjective and thus has full rank. We therefore have that

∀z ∈ Z : (ϕ ◦ g0)(z) = J−1
ϕ z − J−1

ϕ dϕ, (36)

which shows the required statement and concludes the proof.

□

D.3 Proof of Theorem 2

Proof. Let κϕ = z 7→ Hϕz + cϕ be the corresponding affine map of ϕ. From (7), we have for all
a⋆ ∈ A, that

E[Y |do(A = a⋆)] = E[(ℓ ◦ κ−1
ϕ )(Mϕa

⋆ + qϕ + Vϕ)], (37)

where Mϕ = HϕM0, qϕ = cϕ +Hϕ E[V ], and Vϕ = Hϕ(V − E[V ]) as defined in (8). To prove the
first statement, we thus aim to show that, for all a⋆ ∈ A,

E[ν(Wϕa
⋆ + αϕ + Ṽϕ)]− (E[ν(ϕ(X))]− E[Y ]) = E[(ℓ ◦ κ−1

ϕ )(Mϕa
⋆ + qϕ + Vϕ)]. (38)

To begin with, we show that Wϕ =Mϕ and αϕ = qϕ. We have for all α ∈ Rd,W ∈ Rd×d

E[∥ϕ(X)− (WA+ α)∥2]
= E[∥MϕA+ qϕ + Vϕ − α−WA∥2] from (9)

= E[∥(Mϕ −W )A+ (qϕ − α) + Vϕ∥2]
= E[∥(Mϕ −W )A+ (qϕ − α)∥2]

+ 2E[((Mϕ −W )A+ (qϕ − α))⊤Vϕ] + E[∥Vϕ∥2]
= E[∥(Mϕ −W )A+ (qϕ − α)∥2] + E[∥Vϕ∥2]. since A ⊥⊥ Vϕ and E[Vϕ] = 0

Since the covariance matrix of A has full rank, we therefore have that

(αϕ,Wϕ) = argmin
α∈Rd,W∈Rd×k

E[∥ϕ(X)− α−WA∥2] = (qϕ,Mϕ), (39)

and that Ṽϕ = ϕ(X)− (MϕA+ qϕ) = Vϕ, where the last equality holds by (9). Next, we show that
ν ≡ (ℓ ◦ κ−1

ϕ ). Since ℓ is differentiable, the function ℓ ◦ κ−1
ϕ is also differentiable.

We have supp(A, Vϕ) = supp(A, V ) = supp(A)×Rd. Thus, the interior of supp(A, Vϕ) is convex
(as the interior of supp(A) is convex) and its boundary has measure zero. Also, the matrix M0 has
full row rank. Moreover, using aff-identifiability and (4) we can write

ϕ(X) =MϕA+ qϕ + Vϕ

Y = ℓ ◦ κ−1
ϕ (ϕ(X)) + U,

where A ⊥⊥ (Vϕ, U). This is a simultaneous equation model (over the observed variables ϕ(X), A,
and Y ) for which the structural function is ℓ ◦ κ−1

ϕ and the control function is λϕ. We can therefore
apply Theorem 2.3 in [39] (see [17, Proposition 3] for a complete proof, including usage of convexity,
which we believe is missing in the argument of [39]) to conclude that ℓ ◦ κ−1

ϕ and λϕ are identifiable
from (10) up to a constant. That is,

ν ≡ (ℓ ◦ κ−1
ϕ ) + δ and ψ ≡ λϕ − δ (40)
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for some constant δ ∈ R. Combining with the fact that Wϕ =Mϕ and αϕ = qϕ, we then have, for
all a⋆ ∈ A,

E[ν(Wϕa
⋆ + αϕ + Ṽϕ)] = E[(ℓ ◦ κ−1

ϕ )(Mϕa
⋆ + qϕ + Vϕ)] + δ. (41)

Now, we use the assumption that E[U ] = 0 to deal with the constant term δ.

E[Y ] = E[ℓ(g−1
0 (X))] since E[U ] = 0 (42)

= E[((ℓ ◦ κ−1
ϕ ) ◦ (κϕ ◦ g−1

0 ))(X)] (43)

= E[(ℓ ◦ κ−1
ϕ )(ϕ(X))] since ϕ aff-identifies g−1

0 . (44)

Thus, we have

E[ν(ϕ(X))]− E[Y ] = E[(ℓ ◦ κ−1
ϕ )(ϕ(X)) + δ]− E[Y ] by (40)

= E[(ℓ ◦ κ−1
ϕ )(ϕ(X)) + δ]− E[(ℓ ◦ κ−1

ϕ )(ϕ(X))] by (44)

= δ. (45)

Combining (45) and (41), we have for all a⋆ ∈ A that

E[ν(Wϕa
⋆ + αϕ + Ṽϕ)]− (E[ν(ϕ(X))]− E[Y ]) = E[(ℓ ◦ κ−1

ϕ )(Mϕa
⋆ + qϕ + Vϕ)],

which yields (38) and concludes the proof of the first statement.

Next, we prove the second statement. We have for all x ∈ Im(g0) and a⋆ ∈ A, that

E[Y |X = x, do(A = a⋆)] = E[ℓ(Z) | X = x, do(A = a⋆)] + E[U |X = x,do(A = a⋆)]

= (ℓ ◦ g−1
0 )(x) + E[U |X = x, do(A = a⋆)]

= (ℓ ◦ g−1
0 )(x) + E[U |g0(Z) = x, do(A = a⋆)]

= (ℓ ◦ g−1
0 )(x) + E[U |g0(M0a

⋆ + V ) = x, do(A = a⋆)]

= (ℓ ◦ g−1
0 )(x) + E[U |V = g−1

0 (x)−M0a
⋆,do(A = a⋆)]

(∗)
= (ℓ ◦ g−1

0 )(x) + E[U |V = g−1
0 (x)−M0a

⋆]

= ((ℓ ◦ κ−1
ϕ ) ◦ (κϕ ◦ g−1

0 ))(x) + E[U |V = g−1
0 (x)−M0a

⋆]

(∗∗)
= (ℓ ◦ κ−1

ϕ )(ϕ(x)) + E[U |V = g−1
0 (x)−M0a

⋆] (46)

where the equality (∗) hold because ∀a⋆ ∈ A : PU,V = Pdo(A=a⋆)
U,V and (∗∗) follows from the fact

that ϕ aff-identifies g−1
0 . Next, define h := v 7→ Hϕ(v − E[V ]). We have for all x ∈ Im(g0) and

a⋆ ∈ A that

h(g−1
0 (x)−M0a

⋆) = Hϕ(g
−1
0 (x)−M0a

⋆ − E[V ])

= Hϕg
−1
0 (x)−HϕM0a

⋆ −Hϕ E[V ]

= Hϕg
−1
0 (x) + cϕ − (Mϕa

⋆ + qϕ)

= (ϕ ◦ g0 ◦ g−1
0 (x))− (Mϕa

⋆ + qϕ)

= ϕ(x)− (Mϕa
⋆ + qϕ)

= ϕ(x)− (Wϕa
⋆ + αϕ). from (39) (47)

Since the function h is bijective, combining (47) and (46) yields

E[Y |X = x,do(A = a⋆)] = (ℓ ◦ κ−1
ϕ )(ϕ(x)) + E[U |h(V ) = h(g−1

0 (x)−M0a
⋆)]

= (ℓ ◦ κ−1
ϕ )(ϕ(x)) + E[U |Vϕ = ϕ(x)− (Wϕa

⋆ + αϕ)]

= (ℓ ◦ κ−1
ϕ )(ϕ(x)) + λϕ(ϕ(x)− (Wϕa

⋆ + αϕ)).

Lastly, as argued in the first part of the proof, it holds from Theorem 2.3 in [39] that ν ≡ (ℓ◦κ−1
ϕ )+δ

and ψ ≡ λϕ − δ, for some constant δ ∈ R. We thus have that

∀x ∈ Im(g0), a
⋆ ∈ A : E[Y |X = x, do(A = a⋆)] = ν(ϕ(x)) + ψ(ϕ(x)− (Wϕa

⋆ + αϕ)),

which concludes the proof of the second statement. □
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D.4 Proof of Theorem 4

Proof. We begin the proof by showing the forward direction (ϕ satisfies (17) =⇒ ϕ satisfies (6)).
Let ϕ ∈ Φ be an encoder that satisfies (17). We then have for all a ∈ supp(A)

Wϕa+ αϕ = E[ϕ(X) | A = a]

= E[(ϕ ◦ g0)(M0A+ V ) | A = a]

= E[(ϕ ◦ g0)(M0a+ V )] since A ⊥⊥ V .

Define h := ϕ ◦ g0. Taking derivative with respect to a on both sides yields

Wϕ =
∂ E[h(M0a+ V )]

∂a
.

Next, we interchange the expectation and derivative using the assumptions that ϕ and g0 have bounded
derivative and the dominated convergence theorem. We have for all a ∈ supp(A)

Wϕ = E[
∂h(M0a+ V )

∂a
]

= E
[∂h(u)
∂u

∣∣∣∣
u=M0a+V

∂(M0a+ V )

∂a

]
by the chain rule

= E
[∂h(u)
∂u

∣∣∣∣
u=M0a+V

M0

]
. (48)

Defining h′ : z 7→ ∂h(u)
∂u

∣∣∣∣
u=z

and g : z 7→ h′(z)M0 −Wϕ, we have for all a ∈ supp(A)

0 = E[h′(M0a+ V )M0 −Wϕ]

= E[g(M0a+ V )]

=

∫
g(M0a+ v)fV (v)d v.

Define t :=M0a ∈ Rd and τ := t+ v, we then have for all t ∈ supp(M0A) that

0 =

∫
g(τ)fV (τ − t)d (τ − t)

=

∫
g(τ)fV (τ − t)d τ

=

∫
g(τ)f−V (t− τ)d τ. (49)

Recall that g is a function from Rd to Rd×k. Now, for an arbitrary (i, j) ∈ Rd × Rk define the
function gij(·) : Rd → R := g(·)ij . We then have for each element (i, j) and all t ∈ supp(M0A)
that

0 =

∫
gij(τ)f−V (t− τ)d τ. (50)

Next, let us define cij : t ∈ Rd 7→
∫
gij(τ)f−V (t− τ)d τ ∈ R. We now show that cij ≡ 0 where we

adapt the proof of [15, Proposition 2.3]. By Assumption 2, f−V is analytic on Rd, we thus have for
all τ ∈ Rd that the function t 7→ gij(τ)f−V (t− τ) is analytic on Rd. Moreover, since gij is bounded
the function t 7→ gij(τ)f−V (t− τ) is bounded, too. Thus, by [47, page 229], the function cij is then
also analytic on Rd. Using that M0 is surjective, we have by the open mapping theorem (see e.g.,
[11], page 54) that M0 is an open map. Now, since supp(A) contains a non-empty open subset of Rk

and M0 is an open map, we thus have from (50) that cij(t) = 0 on a non-empty open subset of Rd.
Then, by the identity theorem, the function cij is identically zero, that is,

cij ≡ 0. (51)

Next, we show that gij ≡ 0. Let L1 denote the space of equivalence classes of integrable functions
from Rd to R. For all t ∈ Rd, let us define ft(·) := f−V (t − ·) and Q := {ft | t ∈ Rd}. By
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Assumption 2, the characteristic function of V does not vanish. This implies that the characteristic
function of −V does not vanish either (since the characteristic function of −V is the complex
conjugate of the characteristic function of V ). We therefore have that the Fourier transform of
f−V has no real zeros. Then, we apply Wiener’s Tauberian theorem [57] and have that Q is dense
in L1. Using that Q is dense in L1, combining with (51) and the continuity of the linear form
ϕ̃ ∈ L1 7→

∫
gij(τ)ϕ̃(τ)d τ (continuity follows from boundedness of gij and Cauchy-Schwarz), it

holds that
∀ϕ̃ ∈ L1 :

∫
gij(τ)ϕ̃(τ)d τ = 0. (52)

From (52), we can then conclude that
gij(·) ≡ 0. (53)

Next, from (53) and the definition of g, we thus have for all a ∈ supp(A) and v ∈ Rd

h′(M0a+ v)M0 =Wϕ. (54)

As M0 has full row rank, it thus holds that

h′(M0a+ v) =WϕM
†
0 . (55)

We therefore have that the function h = ϕ ◦ g0 is an affine transformation. Furthermore, using that g0
is injective and ϕ|Im(g0) is bijective, the composition h = ϕ ◦ g0 is also injective. Therefore, there
exists an invertible matrix H ∈ Rd×d and a vector c ∈ Rd such that

∀z ∈ Rd : ϕ ◦ g0(z) = Hz + c, (56)

which concludes that proof of the forward direction.

Next, we show the backward direction of the statement (ϕ satisfies (6) =⇒ ϕ satisfies (17)). Let
ϕ ∈ Φ satisfy (17). Then, there exists an invertible matrix H ∈ Rd×d and a vector c ∈ Rd such that
∀z ∈ Rd : (ϕ ◦ g0)(z) = Hz + c. We first show the second condition of (17). By the invertibility of
H , the composition ϕ ◦ g0 is bijective. By Lemma 9, we thus have that ϕ|Im(g0) is bijective. Next,
we show the first condition of (17). Let µV := E[V ]. We have for all α ∈ Rd,W ∈ Rd×d

E[∥ϕ(X)− α−WA∥2]
= E[∥(ϕ ◦ g0)(Z)− α−WA∥2]
= E[∥HZ + c− α−WA∥2]
= E[∥H(M0A+ V ) + c− α−WA∥2]
= E[∥(HM0 −W )A+ (c− α) +HV ∥2]
= E[∥(HM0 −W )A+ (c+HµV − α) +H(V − µV )∥2]
= E[∥(HM0 −W )A+ (c+HµV − α)∥2]

+ 2E[((HM0 −W )A+ (c+HµV − α))⊤H(V − µV )] + E[∥H(V − µV )∥2]
= E[∥(HM0 −W )A+ (c+HµV − α)∥2] + E[∥H(V − µV )∥2]. since A ⊥⊥ V

Since the covariance matrix of A is full rank, we therefore have that

(αϕ,Wϕ)
def
= argmin

α∈Rd,W∈Rd×k

E[∥ϕ(X)− α−WA∥2] = (c+HµV , HM0). (57)

Then, we have for all a ∈ supp(A) that

E[ϕ(X)− αϕ −WϕA | A = a]
(∗)
= E[(ϕ ◦ g0)(Z)− (c+HµV )−HM0A | A = a]

= E[HZ + c− (c+HµV )−HM0A | A = a]

= E[H(M0A+ V ) + c− (c+HµV )−HM0A | A = a]

= E[HV −HµV | A = a]

(∗∗)
= HµV −HµV

= 0,

where the equality (∗) follows from (57) and (∗∗) holds by A ⊥⊥ V . This concludes the proof. □
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Algorithm 1: An algorithm for Rep4Ex
Input: observations (xi, ai, yi)ni=1, target interventions (a⋆j )

m
j=1, auto-encoder AE, additive

regression AR
// Train the auto-encoder
ϕ = AE((xi, ai)ni=1) ;
// Regress ϕ(X) on A

(Ŵϕ, α̂ϕ) = argminW,α

∑n
i=1 ∥ϕ(xi)− (Wai + α)∥2 ;

// Obtain the control variables
for i = 1 to n do

vi = ϕ(xi)− (Wai + α) ;
end
// Train additive regression
ν̂, ψ̂ = AR(yi ∼ ν(ϕ(xi)) + ψ(vi), i = 1 . . . n) ;
// Estimate E[Y |do(A = a⋆)]
for j = 1 to m do

ŷj =
∑n

i=1 ν̂(Ŵϕa
⋆
j + α̂ϕ + vi)−

∑n
i=1

(
ν̂(ϕ(xi))− yi

)
end
Output: (ŷj)mj=1

E Details on the algorithm

E.1 The algorithm for Rep4Ex

We here present a pseudo algorithm for Rep4Ex-CF, see Algorithm 1.

E.2 Heuristic for choosing regularization parameter λ

To select the regularization parameter λ in the regularized auto-encoder objective function (21), we
employ the following heuristic. Let Λ = {λ1, . . . , λm} be our candidate regularization parameters,
ordered such that λ1 > λ2 > · · · > λm. For each λi, we estimate the minimizer of (21) and calculate
the reconstruction loss. Additionally, we compute the reconstruction loss when setting λ = 0 as the
baseline loss. We denote the resulting reconstruction losses for different λi as Rλi (and R0 for the
baseline loss). Algorithm 2 illustrates how λ is chosen.

In our experiments, we set a cutoff parameter at 0.2 and for each setting execute the heuristic algorithm
only during the first repetition run to save computation time. Figure 4 demonstrates the effectiveness
of our heuristic. Here, our algorithm would suggest choosing λ = 102, which also corresponds to the
highest R-squared value.

Algorithm 2: Choosing λ parameter
Input: cut off parameter α
λ← λm ;
for i = 1 to m− 1 do

δi =
Rλi

R0
− 1 ;

if δi < α then
λ← λi ;
break

return λ

Another approach to choose λ is to apply the conditional moment test in [37] to test whether the
linear invariance constraint (16) is satisfied. Specifically, in a similar vein to [26, 48], we may select
the smallest possible value of λ for which the conditional moment test is not rejected.
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F Details on the experiments

F.1 Data generating processes (DGPs) in Section B

DGP for Section B.1 We consider the following underlying SCM

S(α) :
{
A := ϵA Z := αM0A+ V X := g0(Z) (58)

where ϵA ∼ Unif(−1, 1) and V ∼ N(0,Σ) are independent noise variables. Here, we consider a
four-layer neural networks with Leaky ReLU activation functions as the mixing function g0. The
parameters of the neural networks and the parameters of the SCM (22) including Σ and M0 are
randomly chosen, see below for more details. The parameter α controls the strength of the effect of
A on Z. In this experiment, we set the dimension of X to 10 and consider two choices d ∈ {2, 4} for
the dimension of Z. Additionally, we set the dimension of A to the dimension of Z.

DGP for Section B.2 We consider the following underlying SCM

S(γ) :
{
A := ϵγA Z :=M0A+ V X := g0(Z) Y := ℓ(Z) + U. (59)

where ϵγA ∼ Unif([−γ, γ]k) and V ∼ N(0,ΣV ) are independent noise variables. U is then generated
as U := h(V ) + ϵU , where ϵU ∼ N(0, 1). The parameter γ determines the support of A in the
observational distribution. Similar to Section B.1, we consider a four-layer neural networks with
Leaky ReLU activation functions as the mixing function g0 and the parameters of g0, ΣV , and M0

are randomly chosen as detailed below.

Details on other parameters In all experiments, we employ a neural network with the following
details as the mixing function g0:

• Activation functions: Leaky ReLU
• Architecture: three hidden layers with the hidden size of 16
• Initialization: weights are independently drawn from Unif(−1, 1).

As for the matrix M0, each element is indepedently drawn from Unif(−2, 2). The covariance ΣV is
generated by ΣV := AA⊤ + diag(V ), where A and V are indepedently drawn from Unif([0, 1]d).

For the functions h and ℓ in the case of multi-dimensional A in Section B.2, we employ the following
neural network:

• Activation functions: Tanh
• Architecture: one hidden layer with the hidden size of 64
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• Initialization: weights are independently drawn from Unif(−1, 1).

Lastly, in all experiments, we use the Gaussian kernel for the MMR term in the objective function
(21). The bandwidth of the Gaussian kernel is chosen by the median heuristic [e.g., 16].

F.2 Auto-encoder details

We employ the following hyperparameters for all autoencoders in our experiments. The same
architecture is utilized for both the encoder and decoder:

• Activation functions: Leaky ReLU
• Architecture: three hidden layers with the hidden size of 32
• Learning rate: 0.005
• Batch size: 256
• Optimizer: Adam optimizer with β1 = 0.9, β2 = 0.999

• Number of epochs: 1000.

For the variational auto-encoder, we employ a standard Gaussian prior with the same network
architecture and hyperparameters as defined above.

G Further details on experimental results

Figures 5 and 6 show reconstruction performance of the hidden variables for the experiment described
in Section B.1.
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G.1 Section B.2 continued: multi-dimensional A

Multi-dimensional A. Here, we consider multi-dimensional variables Z and A. Similar to Sec-
tion B.1, we set the dimension of X to 10, vary the dimension d of Z, and keep the dimension of
A equal to that of Z. We specify the functions h and ℓ using two-layer neural networks with the
hyperbolic tangent activation functions. For the training distribution, we generate A from a uniform
distribution over [−1, 1]d. To assess extrapolation performance, we generate 100 test points of A
from a uniform distribution over [−3,−1]d and calculate the mean squared error with respect to the
true E[Y |do(A := ·)]. In addition to the baseline MLP, we also include an oracle method, denoted
as Rep4Ex-CF-Oracle, where we directly use the true latent predictors Z instead of learning a
representation in the first stage. The outcomes for d ∈ {2, 4, 10} are depicted in Figure 7. Across
all settings, our proposed method, Rep4Ex-CF, consistently achieves markedly lower mean squared
error compared to the baseline MLP. Furthermore, the performance of Rep4Ex-CF is on par with that
of the oracle method Rep4Ex-CF-Oracle, indicating that the learned representations are close to the
true latent predictors (up to an affine transformation).
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Figure 7: MSEs of different methods for three distinct dimensionalities of A. The box plots illustrate
the distribution of MSEs based on 10 repetitions. Rep4Ex-CF yields substantially lower MSEs in
comparison to the baseline MLP. Furthermore, the MSEs achieved by Rep4Ex-CF are comparable to
those of Rep4Ex-CF-Oracle, underscoring the effectiveness of the representation learning stage.
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