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Abstract
In the era of foundation models and large lan-
guage models (LLMs), Euclidean space is the de
facto geometric setting. However, recent studies
highlight this choice comes with limitations. We
investigate the non-Euclidean characteristics of
LLMs on complex reasoning tasks, finding that
token embeddings and hidden states exhibit signif-
icant degree of hyperbolicity, indicating an under-
lying hyperbolic structure. To exploit this hyper-
bolicity, we propose Hyperbolic Low-Rank Adap-
tation (HoRA), which performs low-rank adap-
tation fine-tuning on LLMs in hyperbolic space.
HoRA operates directly on the hyperbolic mani-
fold, avoiding issues caused by exponential and
logarithmic maps when embedding and weight
matrices reside in Euclidean space. Experiments
show that HoRA obviously improves LLM per-
formance on complex reasoning tasks. Especially
the improvement is more obvious, up to 17.30%
over Euclidean LoRA on the hard-level AQuA
dataset.

1. Introduction
Large language models (LLMs) have shown remark-
able capabilities in understanding and generating human-
like text (Achiam et al., 2023; Touvron et al., 2023;
Gemma Team, 2024; Qin et al., 2023; Shen et al., 2024).
However, the default Euclidean geometry used for learning
representations may not always be optimal (Linial et al.,
1995; Suzuki et al., 2021). Recent studies have shown that
latent representations learned by deep neural networks ex-
hibit hyperbolic characteristics, suggesting an underlying
tree-like and hierarchical structure (Khrulkov et al., 2020;
Bdeir et al., 2023; Cetin et al., 2022). Hyperbolic space,
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Figure 1. An illustration of how hyperbolic space aids large lan-
guage models (LLMs) in understanding complex structures in rea-
soning tasks. In this example, the phrase How many is understood
as the parent node of addition and subtraction operations. This
hierarchical underlying hierarchical relationship is well captured
by hyperbolic space, thereby enhancing the reasoning capabilities
of LLMs.

with its negative curvature, is well-suited for modeling hi-
erarchical data, yielding remarkable performance (Nickel
& Kiela, 2017; 2018; Ganea et al., 2018a; Khrulkov et al.,
2020; Cetin et al., 2022).

We investigate the hyperbolicity1 of token embeddings and
last hidden states of LLMs on complex reasoning problems.
Figure 2 shows the hyperbolicity (δ) distribution generated
by LLaMA3-8B2 on the AQuA dataset (Ling et al., 2017),
with additional results provided in Section (2). The consis-
tently low δ values observed across all models suggest a
high degree of hyperbolic structure in the representations
learned by LLMs. Furthermore, our analysis reveals that
the learned representations of complex arithmetic reasoning
problems tend to have a larger δ value, or equivalently, a
lower degree of hyperbolicity than simpler ones, indicat-
ing that the complexity of the reasoning task influences the
embedding and hidden state geometry.

Based on the above findings and the recognized benefits of
hyperbolic geometry, a natural consideration is to develop
hyperbolic LLMs that explicitly incorporate hyperbolic in-
ductive bias. However, training LLMs from scratch can be
resource-intensive (Loshchilov & Hutter, 2017; Rajbhandari
et al., 2020), and incorporating Riemannian optimization

1Hyperbolicity is a geometric metric that quantifies the devi-
ation of a given metric space from an exact tree metric (Gromov,
1987).

2https://ai.meta.com/blog/meta-llama-3/
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Figure 2. Hyperbolicity distribution of token embeddings (left) and last hidden states (middle) generated by LLaMA3-8B on the AQuA
dataset. The δ value quantifies the degree of hyperbolicity, with values closer to 0 indicating higher hyperbolicity and a more tree-like
structure. For better clarity, we also provide δ values in other metric spaces (right), with details in Appendix C.2.

techniques (Kochurov et al., 2020; Smith, 2014; Bécigneul
& Ganea, 2018) and additional hyperbolic operations, like
Möbius addition (Ganea et al., 2018a; Chami et al., 2019;
Chen et al., 2021) could further increase computational de-
mands. As a more resource-efficient alternative, we propose
to build a low-rank adaptation method - one of the parameter-
efficient fine-tuning approaches (Houlsby et al., 2019; Hu
et al., 2021; Zaken et al., 2021; Liu et al., 2022a; Li et al.,
2022) in hyperbolic space, named HoRA. Besides, HoRA
is particularly advantageous given that existing LLMs are
all Euclidean, and not all fine-tuning downstream tasks re-
quire hyperbolic geometry. By using hyperbolic adapters
for specific tasks on a Euclidean foundation model, we can
leverage the benefits of both geometries while maintaining
computational efficiency.

Challenge Adapting LLMs in non-Euclidean embedding
spaces with existing techniques, i.e., simply applying expo-
nential and logarithmic maps with tangent space for weight
adaptation is problematic. This approach fails to fully cap-
ture the hyperbolic geometry, as the exponential and loga-
rithmic maps are mutually inverse when applied to repre-
sentations in the tangent space. Consequently, the inher-
ent properties of the hyperbolic space are not effectively
preserved, limiting the potential benefits of incorporating
non-Euclidean geometries into the adaptation process.

Proposed Work To address the above challenge, we de-
sign HoRA to operate low-rank adaptation directly on the
hyperbolic manifold without transformation to the tangent
space, thus preserving hyperbolic modeling capabilities and
counteracting the reduction. HoRA integrates hyperbolic
geometry into existing LLMs, enabling them to benefit from
hyperbolic characteristics while minimizing additional com-
putational costs.

Contributions (1) We comprehensively investigate the hy-
perbolicity of token embeddings and last hidden states in
LLMs for complex reasoning problems, revealing their
strong hyperbolic properties and the influence of problem
complexity on hyperbolicity. (2) We propose HoRA, a
parameter-efficient fine-tuning method that integrates hy-

Table 1. Averaged relative hyperbolicity (δ) values for four dif-
ferent datasets. Hyperbolicity is calculated using the Euclidean
distance within the original token embedding (‘Token’) and the last
hidden layer state (‘Hidden’) in LLMs. The accuracy of GPT-3.5
on each dataset is also shown, highlighting that AQuA is the most
challenging dataset. L - LLaMA, L3 - LLaMA-3, G - Gemma.
‘Token’ columns are shaded in gray.

MAWPS (87.4%) SVAMP (69.9%) GSM8K (56.4%) AQuA (38.9%)

Token Hidden Token Hidden Token Hidden Token Hidden

L-7B 0.08± 0.02 0.30± 0.03 0.09± 0.01 0.32± 0.03 0.10± 0.01 0.32± 0.03 0.10± 0.01 0.34± 0.02
L-13B 0.08± 0.01 0.27± 0.03 0.09± 0.01 0.28± 0.03 0.09± 0.01 0.29± 0.03 0.10± 0.01 0.30± 0.02
G-7B 0.11± 0.01 0.28± 0.05 0.11± 0.01 0.27± 0.05 0.11± 0.01 0.28± 0.04 0.12± 0.01 0.31± 0.04
L3-8B 0.06± 0.01 0.23± 0.02 0.07± 0.01 0.24± 0.02 0.07± 0.01 0.24± 0.02 0.08± 0.01 0.26± 0.02

Average 0.08± 0.01 0.27± 0.03 0.09± 0.01 0.28± 0.03 0.09± 0.01 0.28± 0.03 0.10± 0.01 0.30± 0.03
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Figure 3. Comparison of Hyperbolicity: Before and after fine-
tuning with LoRA.

perbolic geometry into LLMs while preserving hyperbolic
modeling capabilities. (3) We demonstrate that HoRA out-
performs existing methods, particularly on complex reason-
ing problems. Our work opens new avenues for exploring
the role of geometry in LLMs and provides insights for
developing geometrically-informed models for reasoning
tasks.

2. Investigation of Hyperbolicity in LLMs
δ-Hyperbolicity, a concept introduced by Gromov (Gro-
mov, 1987), serves as a measure of the extent to which a
metric space (X, d) deviates from an exact tree metric. We
consider prompt-level hyperbolicity, where each token in
each prompt is treated as a point in a discrete metric space
X . This space is spanned by the representations of all to-
kens within a prompt. To assess the overall hyperbolicity of
the LLMs on each dataset, we compute the average hyper-
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Table 2. Statistics of datasets
Dataset Total #Easy #Medium #Hard

MAWPS 238 189 49 0
SVAMP 1, 000 691 307 2
GSM8K 1, 319 1, 098 214 7
AQuA 254 24 178 52
Total 2, 811 2, 002 748 61

bolicity across all prompts within the respective dataset. We
evaluate the hyperbolicity at two levels: the token embed-
ding level and the last hidden layer of the LLMs.

Experimental Settings To investigate the presence of hyper-
bolicity in large language models (LLMs), we apply the four-
point algorithm3 to various open-source LLMs on arithmetic
reasoning datasets, including GSM8K (Cobbe et al., 2021),
AQuA (Ling et al., 2017), MAWPS (Koncel-Kedziorski
et al., 2016), and SVAMP (Patel et al., 2021), where the data
details are presented in Table 2. Following the approaches
outlined in (Khrulkov et al., 2020) and (Cetin et al., 2022),
we estimate the δ-hyperbolicity using the efficient algorithm
introduced by Fournier et al. (Fournier et al., 2015). To
obtain a scale-invariant measure, we also normalize δ by the
diameter of the metric space, diam(X), resulting in a rel-
ative hyperbolicity measure δrel = 2δ/diam(X) (Borassi
et al., 2015). This relative measure ranges from 0 to 1, with
values closer to 0 indicating a more hyperbolic, hierarchi-
cal, tree-like structure, and values closer to 1 suggesting a
perfectly non-hyperbolic space. In Figure 2, we present the
hyperbolicity in common metric spaces for reference.

Investigation Results Table 1 presents the average hy-
perbolicity values (δ) with standard deviations for various
LLMs on the respective datasets. The detailed hyperbolicity
distribution are presented in Figure 2 and Appendix F. The
results reveal several interesting observations:

(1) Both token embeddings and last hidden states exhibit
a high degree of hyperbolicity, with the largest δ value in
the table being 0.34. This indicates that the representation
spaces of LLMs possess a hyperbolic structure, which is
a desirable property for capturing the inherent structure of
complex reasoning tasks.
(2) Token embeddings consistently demonstrate a higher
degree of hyperbolicity compared to the last hidden states
across all datasets. This suggests that the initial input rep-
resentations are highly organized and exhibit strong non-
Euclidean patterns, which may be partially lost or trans-
formed during the processing of different tasks by the LLMs.
(3) Smaller degree of hyperbolicity indicates more difficulty
of the problem. There is a clear correlation between the
difficulty of the dataset and the hyperbolicity values. As
the complexity of the dataset increases, as indicated by the

3The detailed computation of hyperbolicity is given in Ap-
pendix C

lower accuracy scores of GPT-3.5, the corresponding δ val-
ues for the last hidden states also increase. This implies
that LLMs may struggle to fully capture and maintain the
hierarchical structure when dealing with more challenging
problems, resulting in lower performance. For instance,
AQuA, which is the most challenging dataset with an accu-
racy of 38.9%, exhibits the highest average δ value of 0.30
for the last hidden states. In contrast, MAWPS, which is the
least challenging dataset with an accuracy of 87.4%, has a
lower average δ value of 0.27 for the last hidden states. This
trend suggests that the ability of LLMs to preserve the hier-
archical structure of the input diminishes as the complexity
of the reasoning tasks increases.
(4) LoRA fine-tunning will increase the degree of hyper-
bolicity of learned representation. Figure 3 shows that fine-
tuning LLMs with LoRA reduces the δ values across all
datasets for both Gemma-7B and LLaMA3-8B models, in-
dicating an increased degree of hyperbolicity in the repre-
sentation spaces. This suggests that fine-tuning helps LLMs
better capture and learn the underlying hierarchical struc-
tures in arithmetic reasoning tasks.

3. Hyperbolic Low-Rank Adaptation for
LLMs

Based on the above investigation, we propose to build hyper-
bolic low-rank adaptation techniques into LLMs to better
capture and preserve the underlying geometries inherent
in these representations. The basic idea is illustrated in
Figure 1.

The core technique in the LoRA adapter involves linear
transformations. One of the primary methods for imple-
menting linear transformations on the Lorentz model of
hyperbolic geometry (Ganea et al., 2018b; Chami et al.,
2019) is based on the tangent space when considering the
learnable weights are in Euclidean. Given a hyperbolic vec-
tor xH and a transformation matrix W , this method first
maps xH to the tangent space at a local reference point,
typically the origin, using the logarithmic map. The matrix
W is then applied within this tangent space, resulting in:

W ⊗ xH = exp(W logKo (xH)). (1)

(Technical Challenge) However, the input from LLMs and
the transformation results are in Euclidean space, so we need
to apply an additional exponential map and a logarithmic
map on the basis of Equation (6) to align the Euclidean
representation. This leads to the expression:

zE = WLoRA(x
E) = WxE +∆WxE

= WxE + logKo (expKo (BA

xE︷ ︸︸ ︷
logKo (expKo (xE))︸ ︷︷ ︸

Transformation on xE

))

= WxE +BAxE ,

(2)
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Table 3. Accuracy comparison of various LLMs with PEFT meth-
ods on arithmetic reasoning problems. Results marked with (*)
are taken from Hu et al. (Hu et al., 2023). W.AVG. denotes the
weighted average accuracy. The results of LoRA on LLaMA-
7B/13B reproduced by us are shown in gray. The relative average
improvements with respect to LoRA are presented.

Base Model PEFT MAWPS SVAMP GSM8K AQuA W.AVG.
Proportion NA 8.5% 35.6% 46.9% 9.0% NA
Hyperbolicity NA 0.08 0.09 0.09 0.10 NA

GPT-3.5 None 87.4 69.9 56.4 38.9 62.3

LLaMA-7B

None 51.7 32.4 15.7 16.9 24.8
Prefix* 63.4 38.1 24.4 14.2 31.2
Series* 77.7 52.3 33.3 15.0 42.2
Parallel* 82.4 49.6 35.3 18.1 42.8
LoRA* 79.0 52.1 37.5 18.9 44.5
DoRA 79.0 48.4 39.0 16.4 −
LoRA 81.9 48.2 38.3 18.5 43.7
HoRA 79.0 49.1 39.1 20.5 (+10.8%) 44.3(+1.4%)

LLaMA-13B

None 65.5 37.5 32.4 15.0 35.5
Prefix 66.8 41.4 31.1 15.7 36.4
Series* 78.6 50.8 44.0 22.0 47.4
Parallel* 81.1 55.7 43.3 20.5 48.9
LoRA* 83.6 54.6 47.5 18.5 50.5
DoRA 83.8 55.6 OOT 21.4 −
LoRA 84.0 54.7 48.5 18.5 51.0
HoRA 83.2 54.8 49.0 21.7 (+17.3%) 51.5(+1.0%)

Gemma-7B
None 76.5 60.4 38.4 25.2 48.3
DoRA 91.6 75.3 OOT 24.8 −
LoRA 90.8 77.6 65.6 29.9 68.8
HoRA 90.3 79.5 66.6 32.6 (+9.0%) 70.1(+1.8%)

LLaMA3-8B
None 79.8 50.0 54.7 21.0 52.1
DoRA 94.5 80.3 OOT 33.1 −
LoRA 92.3 79.6 69.7 31.7 71.7
HoRA 91.6 81.5 71.8 34.2 (+7.9%) 73.5(+2.5%)

which simplifies back to the original LoRA, rendering the
method ineffective for our purposes.

Direct Lorentz Low-rank Transformation (LLR). To ad-
dress this challenge, we perform low-rank adaptation di-
rectly on the hyperbolic manifold without utilizing tangent
space:

zE = WLoRA(x
E) = WxE +∆WxE

= WxE + logKo (LLR(BA,

xH︷ ︸︸ ︷
expKo (xE))︸ ︷︷ ︸

Transformation on xH

),
(3)

where LLR represents the direct Lorentz Low-Rank Trans-
formation which is inspired by (Yang et al., 2024; Chen
et al., 2021),

LLR(BA,xH) = (

√
∥ByH∥22 +K,ByH), (4)

where yH = (

√
∥AxH∥22 +K,AxH), (5)

where the matrices A and B are still Euclidean parameters,
so we do not need to change the original optimizer. It is easy
to verify the whole low-rank transformation satisfies the
Lorentz constraint, thus preserving the hyperbolic geometry.

Time Complexity. HoRA has similar theoretical time com-
plexity as the Euclidean LoRA, which is O((d + 1) · r +
(r + 1) · k), where d and k represent the input and output
dimensions, respectively.

Implementation Details The exponential map scales the
original input space with an exponential operator, which is

Table 4. Ablation study

Dataset Model Methods

LoRA Tangent HoRA

AQUA Gemma-7B 29.9 30.5 32.6
LLaMA3-8B 31.7 32.0 34.2

SVAMP Gemma-7B 77.6 78.2 79.5
LLaMA3-8B 79.6 80.1 81.5

also observed in (Desai et al., 2023). To avoid numerical
overflow, before applying the exponential map in Equa-
tion (3), we perform L2 normalization on the input and
rescale it with a learnable norm scaling factor. The curva-
ture is set as a hyperparameter and searched within the range
of {0.1, 0.5, 1.0, 2.0}. To correctly use the exponential map,
following the approach in (Chami et al., 2019), we append
a zero to the beginning of the input vector x to obtain xE .
After applying the logarithmic map, the output vector z has
one additional dimension with zero value. Therefore, we
remove this extra dimension from z to maintain consistency
with the original input space.

3.1. Experimental Results

Table 2 presents the detailed statistics of these test datasets.
The “Ratio” represents the proportion of each dataset in the
total number of questions across all four datasets.

The experimental setting closely follows the approach
in (Hu et al., 2023). The training set for fine-tuning is
collected from GSM8K (Cobbe et al., 2021), MAWPS,
MAWPS-single (Koncel-Kedziorski et al., 2016), and con-
sists of 1,000 examples. To augment the reasoning ca-
pabilities, step-by-step rationales produced by ChatGPT
are also included for the training samples, as in (Hu et al.,
2023). As a result, a set of 10K math reasoning samples
is obtained for training. The test datasets include GSM8K
(Cobbe et al., 2021), AQuA (Ling et al., 2017), MAWPS
(Koncel-Kedziorski et al., 2016), and SVAMP (Patel et al.,
2021). Although GSM8K and MAWPS also appear in the
training set, there is no overlap between the training and
test sets. Table 3, Table 4 and Figure 4 present our main
experimental results. We have the following findings:

(1) Dataset Difficulty and Model Performance The perfor-
mance of the models is strongly related to the difficulty level
of the datasets. This holds true for both the base models
and the fine-tuned results. It is as complex problems require
more complex reasoning and a better understanding of the
underlying structure of the problem.

(2) Overall Performance of HoRA HoRA consistently
outperforms other Parameter-Efficient Fine-Tuning (PEFT)
methods across a range of base models and datasets, particu-
larly excelling in the more challenging arithmetic reasoning
problems. Notably, HoRA achieves the highest accuracy
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improvements on the AQuA dataset across all models, with
increases of up to 17.30% compared to LoRA. It also shows
robust performance improvements in the GSM8K dataset,
further demonstrating its effectiveness in enhancing model
reasoning capabilities under complex problem-solving sce-
narios.

(3) Performance with DoRA model and on MAWPS
Dataset Due to DoRA’s high time complexity, we were
unable to obtain an evaluation value for the DoRA model
on GSM8K within the limited timeframe. However, it is
important to note that our method is orthogonal to this ap-
proach and can be applied independently. Therefore, we
mainly compare with LoRA and show the effectiveness of
hyperbolic geometry. On the MAWPS dataset, HoRA’s
performance improvement is less significant compared to
other datasets, and in some cases, it is even lower than the
baseline PEFT. This can be attributed to the fact that our
model uses the same curvature for all datasets finetuning,
whereas simpler problems may not require the same level
of curvature as more complex ones. To address this issue,
we plan to explore adaptive curvature techniques that can
adjust to the complexity of individual questions in future
work. Despite this limitation, our method has still achieved
notable improvements compared to the base model.

(4) Ablation Study We conducted an ablation study using
the tangent-space method (Equation (2)) as a baseline to
compare with the proposed HoRA. The key difference lies
in the approach for the Low-rank Transformation. This
comparison helps evaluate the direct Lorentz Low-rank ap-
proach’s effectiveness. Both Equation (2) and HoRA in-
clude an additional rescaling operation (Section 3). The
tangent-space method can be seen as vanilla LoRA com-
bined with rescaling. This allows us to assess the impact of
normal rescaling. Table 4 shows our results. The tangent-
space method improves over the original LoRA due to the
flexibility introduced by the rescaling step, which is neces-
sary in hyperbolic geometry. Comparing HoRA with the
tangent-space method highlights the significant improve-
ments from incorporating hyperbolic geometry.

(5) The Effectiveness of Ranks The rank of adaptation
matrices A and B in HoRA is crucial for expressiveness and
efficiency. We experimented with various ranks using the
LLaMA3-8B model on the AQuA dataset. Figure 4 shows
that lower ranks generally reduce accuracy. However, the
performance gap between HoRA and LoRA increases as
rank decreases, demonstrating hyperbolic space’s effective-
ness.

(6) The Effectiveness of Curvatures Curvature in hyper-
bolic space is a critical hyperparameter in HoRA, affecting
its ability to capture underlying structures. We evaluated
different curvatures using the LLaMA3-8B model on the
AQuA dataset. Results in Figure 4 (right) show that K = 0.1
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(curvature = -10) excels on hard problems but underperforms
on easier ones. Increasing K (e.g., K=1.0) improves per-
formance on easier problems but reduces it on hard ones.
This suggests that larger curvatures better handle complex
structures, while smaller curvatures perform well on simpler
tasks. Performance decreases when the curvature becomes
too small, indicating an optimal range for K.

4. Conclusion
In this study, we investigated the non-Euclidean character-
istics of token embeddings and hidden states in LLMs on
complex reasoning tasks. Our findings revealed a high de-
gree of hyperbolicity in the representation spaces of LLMs,
with more complex problems exhibiting lower hyperbol-
icity. Building on these insights, we proposed HoRA, a
hyperbolic low-rank adaptation method that integrates hy-
perbolic geometry into the fine-tuning process of LLMs.
Through extensive experiments, we demonstrated the effec-
tiveness of HoRA in improving the performance of LLMs
on arithmetic reasoning tasks, particularly on medium and
hard-level datasets. By leveraging the inherent hyperbolic
structure of the data, HoRA enables LLMs to better cap-
ture and utilize the complex relationships present in the
problems, leading to enhanced reasoning capabilities.

Limitation The understanding of why embeddings in
LLMs exhibit hyperbolic properties is still limited, and
HoRA uses a fixed curvature for all datasets, which may
not be optimal for simpler and harder problems at the same
time. In future work, we will explore the theoretical foun-
dations of this phenomenon, investigate adaptive curvature
techniques, and provide a more robust framework for in-
tegrating hyperbolic geometry into LLMs to enhance the
generalizability of our approach.
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ResNet. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5419–5428, 2023.

Wang, X., Aitchison, L., and Rudolph, M. Lora ensembles
for large language model fine-tuning. arXiv preprint
arXiv:2310.00035, 2023.

Weng, Z., Ogut, M. G., Limonchik, S., and Yeung, S. Unsu-
pervised discovery of the long-tail in instance segmenta-
tion using hierarchical self-supervision. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2603–2612, 2021.

Xiong, B., Cochez, M., Nayyeri, M., and Staab, S. Hy-
perbolic embedding inference for structured multi-label
prediction. Advances in Neural Information Processing
Systems, 35:33016–33028, 2022.

Xu, Y., Xie, L., Gu, X., Chen, X., Chang, H., Zhang, H.,
Chen, Z., Zhang, X., and Tian, Q. Qa-lora: Quantization-
aware low-rank adaptation of large language models.
arXiv preprint arXiv:2309.14717, 2023.

Yang, M., Zhou, M., Kalander, M., Huang, Z., and King, I.
Discrete-time temporal network embedding via implicit
hierarchical learning in hyperbolic space. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 1975–1985, 2021.

Yang, M., Li, Z., Zhou, M., Liu, J., and King, I. HICF: Hy-
perbolic informative collaborative filtering. In Proceed-
ings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 2212–2221, 2022a.

Yang, M., Zhou, M., Li, Z., Liu, J., Pan, L., Xiong, H.,
and King, I. Hyperbolic graph neural networks: A
review of methods and applications. arXiv preprint
arXiv:2202.13852, 2022b.

Yang, M., Zhou, M., Liu, J., Lian, D., and King, I. HRCF:
Enhancing collaborative filtering via hyperbolic geomet-
ric regularization. In Proceedings of the ACM Web Con-
ference 2022, pp. 2462–2471, 2022c.

Yang, M., Zhou, M., Xiong, H., and King, I. Hyperbolic
temporal network embedding. IEEE Transactions on
Knowledge and Data Engineering, 2022d.

Yang, M., Zhou, M., Pan, L., and King, I. κHGCN: Tree-
likeness modeling via continuous and discrete curvature
learning. In Proceedings of the 29th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, pp.
2965–2977, 2023a.

Yang, M., Zhou, M., Ying, R., Chen, Y., and King, I. Hyper-
bolic representation learning: Revisiting and advancing.
In International Conference on Machine Learning, pp.
39639–39659. PMLR, 2023b.

Yang, M., Verma, H., Zhang, D. C., Liu, J., King, I., and
Ying, R. Hypformer: Exploring efficient hyperbolic
transformer fully in hyperbolic space. arXiv preprint
arXiv:2407.01290, 2024.

Zaken, E. B., Ravfogel, S., and Goldberg, Y. Bitfit:
Simple parameter-efficient fine-tuning for transformer-
based masked language-models. arXiv preprint
arXiv:2106.10199, 2021.

Zeng, Y. and Lee, K. The expressive power of low-rank
adaptation. arXiv preprint arXiv:2310.17513, 2023.

Zhang, Q., Chen, M., Bukharin, A., He, P., Cheng, Y.,
Chen, W., and Zhao, T. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Zhu, J., Greenewald, K., Nadjahi, K., Borde, H. S.
d. O., Gabrielsson, R. B., Choshen, L., Ghassemi, M.,
Yurochkin, M., and Solomon, J. Asymmetry in low-
rank adapters of foundation models. arXiv preprint
arXiv:2402.16842, 2024.

Zhu, Y., Feng, J., Zhao, C., Wang, M., and Li, L. Counter-
interference adapter for multilingual machine translation.
arXiv preprint arXiv:2104.08154, 2021.

8



Appendix

A. Related Work
Parameter Efficient Fine Tuning (PEFT) and LoRAs Fine-tuning LLMs (Foundation, 2022; 2023; Touvron et al., 2023)
for downstream tasks poses significant challenges due to their massive number of parameters, often reaching billions or
even trillions. To address this issue, PEFT methods have been proposed, which aim to train a small subset of parameters
while achieving better performance compared to full fine-tuning. PEFT methods can be broadly categorized into prompt-
based methods (Lester et al., 2021; Li & Liang, 2021; Qin et al., 2021), adapter-based methods (Houlsby et al., 2019;
Zhu et al., 2021),and reparameterization-based methods (Hu et al., 2021; Aghajanyan et al., 2020; Edalati et al., 2022).
Among these, LoRA (Hu et al., 2021) as the reparameterization-based method, has gained significant attention due to its
simplicity, effectiveness, and compatibility with existing model architectures. Variants of LoRA, such as LoRA+(Hayou
et al., 2024), DoRA (Liu et al., 2024) and AdaLoRA (Zhang et al., 2023), have been proposed to improve its performance
and efficiency. Recent research has also investigated the deployment of LoRA in resource-constrained environments (Sheng
et al., 2023; Li et al., 2024; Key et al., 2023), ensembles of multiple LoRAs (Wang et al., 2023; Ren et al., 2024), quantization
techniques (Dettmers et al., 2024; Xu et al., 2023; Li et al., 2023), and theoretical properties (Zeng & Lee, 2023; Zhu
et al., 2024). Despite these advances, existing methods operate within Euclidean space, ignoring the underlying structure
represented by LLMs. Our approach, as an orthogonal method, addresses this gap by integrating hyperbolic geometry into
LoRA.

Hyperbolic Representation Learning and Deep Learning Hyperbolic geometry has been successfully applied to various
neural network architectures and models (Yang et al., 2022b; Mettes et al., 2023; Peng et al., 2021), including shallow
hyperbolic neural networks (Ganea et al., 2018a;b; Chen et al., 2021; Shimizu et al., 2020), hyperbolic CNNs (Bdeir et al.,
2023; Van Spengler et al., 2023), and hyperbolic attention networks or Transformers (Gulcehre et al., 2018; Chen et al.,
2021; Shimizu et al., 2020). These models leverage the inductive biases of hyperbolic geometry to achieve remarkable
performance on various tasks and applications (Chami et al., 2019; Yang et al., 2022a; Sun et al., 2021; Khrulkov et al.,
2020; Cetin et al., 2022; Weng et al., 2021; Xiong et al., 2022; Yang et al., 2021; 2022c;d; Liu et al., 2022b; Chen et al.,
2022; Yang et al., 2023a;b). However, training LLMs from scratch remains computationally expensive (Kochurov et al.,
2020; Smith, 2014). To address this challenge and enable the efficient integration of hyperbolic geometry into LLMs, we
propose HoRA. This approach leverages the strengths of both hyperbolic geometry and LoRA to achieve efficient and
effective model training.

B. Preliminary
This section introduces key concepts: LoRA adapter, Lorentz model of hyperbolic geometry, hyperbolic linear transforma-
tions, and hyperbolicity.

LoRA Adapter The LoRA adapter offers an efficient approach for modifying large LLMs with minimal computational
overhead. Instead of retraining the entire model, LoRA focuses on adjusting specific components within the model’s
architecture to transform an input x into an output z. In practice, LoRA targets the weight matrices found in each
Transformer layer of an LLM. Typically, the weight W of the Transformer, which resides in the dimensions Rd×k, is adapted
through a low-rank approximation. This is achieved by introducing an additional term, ∆W , to the original weight matrix:

z = WLoRA(x) = Wx+∆Wx = Wx+BAx. (6)

Here, B ∈ Rd×r and A ∈ Rr×k represent two smaller, learnable matrices where r—the rank of these matrices—is
significantly less than either d or k. This design choice ensures that r ≪ min(d, k), thereby reducing the complexity of the
model adaptation. During the fine-tuning process, only the matrices A and B are adjusted, while the pre-existing weights W
are kept frozen. This method significantly decreases the number of parameters that need to be trained, from dk to (d+ k)r,
enhancing the efficiency of the fine-tuning process. As a result, LoRA enables the targeted adaptation of LLMs, allowing
them to transform an input x into an output z while maintaining high performance and adapting to new tasks or datasets
with a fraction of the computational resources typically required.

Hyperbolic Geometry Unlike the flat Euclidean geometry, hyperbolic geometry is characterized by a constant negative
curvature. We utilize the Lorentz model, also known as the hyperboloid model, for our study due to its ability to effectively
capture hierarchical structures and maintain numerical stability (Nickel & Kiela, 2018; Chen et al., 2021). The Lorentz
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model in n dimensions with curvature −1/K(K > 0) is defined as:

Ln
K = {x ∈ Rn+1 : ⟨x,x⟩L = −K,x0 > 0}, (7)

where ⟨·, ·⟩L is the Lorentzian inner product, given by: ⟨x,y⟩L = −x0y0 +
∑n

i=1 xiyi.

Tangent Space In the Lorentz model Ln
K , the tangent space at a point x is denoted as TxLn

K . It is defined as the set of all
vectors u that are orthogonal to x under the Lorentzian inner product:

TxLn
K := {u ∈ Rn+1 : ⟨u,x⟩L = 0}. (8)

To facilitate projection between the hyperboloid and its tangent spaces, we utilize two critical mappings: the exponential and
logarithmic maps. The exponential map at x, denoted expKx , projects a vector from the tangent space TxLn

K back onto the
hyperboloid. Conversely, the logarithmic map, denoted logKx , maps a point on the hyperboloid to the tangent space at x.

Consider a point x ∈ Ln
K and a tangent vector u ∈ TxLn

K . The exponential map, denoted as expKx : TxLn
K → Ln

K , assigns
to u the point expKx (u) := γ(1), where γ represents the unique geodesic that satisfies the initial conditions γ(0) = x and
γ̇(0) = u.

The exponential map can be explicitly expressed as follows:

expKx (u) = cosh

(
∥u∥L√

K

)
x+

√
K sinh

(
∥u∥L√

K

)
u

∥u∥L
, (9)

where cosh and sinh represent the hyperbolic cosine and sine functions, respectively, and ∥u∥L denotes the norm of the
tangent vector u in the tangent space.

The logarithmic map logKu (x) : Ln
K → TuLn

K plays an inverse role. It is defined by the equation:

logKu (x) =
cosh−1

(
− 1

K ⟨u,x⟩L
)

sinh
(
cosh−1

(
− 1

K ⟨u,x⟩L
)) (x+

1

K
⟨u,x⟩Lu

)
. (10)

The exponential and logarithmic maps establish a bijective projection between the tangent space and hyperbolic space.
Notably, logKx (expKx (u)) = u and expKu (logKu (x)) = x. Consequently, Equation (2) will cancel out the hyperbolic
operations. In addition, these operations are typically defined locally. However, in the context of hyperbolic representation
and deep learning, for efficient computation, existing works usually use the origin point o := {

√
K, 0, . . . , 0} ∈ Ln

K as a
common reference point.

C. δ-Hyperbolicity
δ-Hyperbolicity, a concept introduced by Gromov (Gromov, 1987), serves as a measure of the extent to which a metric
space (X, d) deviates from an exact tree metric. This concept is particularly relevant when investigating the hierarchical
properties of representation spaces learned by LLMs. A lower δ-hyperbolicity value, or equivalently, a higher degree of
hyperbolicity, indicates a more tree-like structure within the space. The δ-hyperbolicity of a space can be quantified using
the four-point condition.

C.1. δ-Hyperbolicity Computation

For any four points a, b, c, and w in the space, the Gromov product [a, c]w at point w is bounded below by the minimum of
the Gromov products [a, b]w and [b, c]w, minus a slack term δ:

[a, c]w ≥ min([a, b]w, [b, c]w)− δ, (11)

where the Gromov product [a, b]w is defined as:

[a, b]w =
1

2
(d(a,w) + d(b, w)− d(a, b)). (12)

A metric space X is considered δ-hyperbolic if the four-point condition holds for all points a, b, c, and w in the space. In
geodesic metric spaces, δ-hyperbolicity implies that geodesic triangles are δ-slim. This means that for any point on one side
of a triangle, there exists a point on one of the other sides within a distance of δ. In the case of an exact tree metric, where
the sides of any triangle intersect at a single point, the δ-hyperbolicity value is zero. This is because the four-point condition
is satisfied with equality for all points in the space.
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Table 5. Sample Questions. Easy, Medium, and Hard denote the difficulty level.

Easy The population of a city is 5,265,526. If there are 4,169,516 adults in the city, how many children are there in the
city?

Medium If 6x− y = 24 and y = 3x, what is the value of x?

Hard A rectangular solid, 3 x 4 x 15, is inscribed in a sphere so that all eight of its vertices are on the sphere. What is the
diameter of the sphere?

Table 6. The average relative hyperbolicity values (δ) were calculated for various difficulty levels. These averages were computed across
four datasets. The ‘Hard’ row are in gray.

LLaMA-7B LLaMA-13B LLaMA3-8B Gemma-7B

Token Hidden Token Hidden Token Hidden Token Hidden

Easy 0.09± 0.01 0.31± 0.03 0.09± 0.01 0.28± 0.03 0.07± 0.01 0.23± 0.02 0.11± 0.01 0.27± 0.05
Medium 0.10± 0.01 0.32± 0.03 0.09± 0.01 0.29± 0.03 0.07± 0.01 0.24± 0.02 0.11± 0.01 0.29± 0.04
Hard 0.11± 0.02 0.33± 0.03 0.10± 0.02 0.30± 0.02 0.08± 0.01 0.26± 0.02 0.12± 0.01 0.31± 0.03

C.2. Hyperbolicity on Different Metric Spaces

Figure 2 presents the hyperbolicity values in both continuous (i.e., Poincaré Space and Sphere Space) and discrete metric
spaces (i.e., Random Tree Graph, Dense Graph and PubMed Graph). We employ a consistent processing method, akin to the
one mentioned in the Section (2) for embedding spaces. Specifically, we sample 1000 4-tuples, compute the delta value for
each, and then take the maximum value.

For the Poincaré ball and sphere spaces, we use a two-dimensional model and calculate hyperbolicity based on their
respective geodesic distances. The PubMed graph is sourced from Sen et al. (Sen et al., 2008). The tree graph and dense
graph are generated using NetworkX (Hagberg et al., 2008). For these graphs, we first remove isolated nodes before
performing our calculations in a consistent manner. The shortest path distance on the graph is used as the distance measure,
analogous to the concept of geodesics in continuous spaces.

D. Difficulty Level and Hyperbolicity
In this study, we further utilize the GPT4-turbo API and manual review evaluation to label the difficulty level for each test
dataset, categorizing them into easy, medium, and hard levels. Easy-level questions are simple and can be solved in a single
step using basic arithmetic. Medium-level questions require multiple steps. Hard-level questions are advanced, requiring
complex reasoning. The detailed instructions are given in the Appendix E. Table 2 presents the detailed statistics of these
test datasets. The “Category” column denotes the question type, and the “Ratio” represents the proportion of each dataset in
the total number of questions across all four datasets. Table 5 further provides examples of easy, medium, and hard-level
questions for better understanding.

For the baseline model comparison, the LLaMA-7B and 13B base models mentioned in (Hu et al., 2023) are included,
as well as Prefix-Tuning (Li & Liang, 2021), Series Adapter (Houlsby et al., 2019), LoRA (Hu et al., 2021), and Parallel
Adapter (He et al., 2021). Additionally, the recently released base models Gemma-7B and LLaMA3-8B are fine-tuned
using LoRA for comparison. It is worth noting that the final results are not directly averaged, as the four datasets contain
different numbers of questions, for instance, 1,319 in GSM8K and 238 in MAWPS. Instead, a weighted average is performed
based on the number of questions in each dataset to ensure a fair comparison. For the LoRA implementation, it is inserted
simultaneously into both the Multi-head Attention layers and MLP layers in the base model. All experiments are run on a
single GPU: NVIDIA A40 or A100.

From the above labeling, it can be observed that at the dataset level, MAWPS is an easy-level dataset, SVAMP and GSM8K
are medium-level datasets, and AQuA is a hard-level dataset. This observation aligns with the reported hyperbolicity in
Table 1 and the accuracy of ChatGPT’s answers, further verifying the third point discovered in the experiments in Section 2:
a larger hyperbolicity value, or equivalently, a smaller degree of hyperbolicity indicates a more difficult problem.
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E. Instructions for Generating Difficulty Levels
To systematically assign a difficulty level to each question in the dataset, we employed a rigorous labeling method using the
GPT-4 Turbo API. Each question was evaluated three times to ensure consistency, and any discrepancies were resolved
through manual review.

Global Prompt: You will rate math problems based on their complexity. Level 0 is simple and can be solved in a
single step using basic arithmetic. Level 1 is intermediate, requiring multiple steps. Level 2 is advanced, requiring
complex reasoning.

Per Question Prompt: Please analyze the complexity of the following math problem based on the ear-
lier criteria. Here is the problem:

Output format: Output the numbers 0, 1, or 2.

The Global Prompt is provided at the beginning, while the Per Question Prompt is used for each question in the dataset.

To further investigate the relationship between problem complexity and hyperbolicity, we grouped the examples from
the dataset according to their difficulty levels: easy, medium, and hard. We then calculated the hyperbolicity values for
each difficulty level, and the results are presented in Table 6. The data in Table 6 reveals a strong correlation between
the complexity of the problems and their corresponding hyperbolicity values. Notably, hard-level problems exhibit lower
degrees of hyperbolicity compared to simple arithmetic problems. This finding suggests that LLMs can more readily discern
the hierarchical structure of simple problems, whereas they encounter challenges when dealing with hard-level problems.

This observation is further validated by the accuracy of LLMs’ predictions across different difficulty levels, with lower
accuracy rates observed for more complex problems (e.g., AQuA). The relationship between problem complexity and
hyperbolicity highlight the importance of considering the underlying geometry when evaluating and developing LLMs for
mathematical problem-solving tasks. This is also the problem that this work is to solve.

F. Comprehensive Hyperbolicity Distribution
In Figure 2, we display the hyperbolicity distribution of LLaMA-8B on the AQuA dataset due to space limitations. Here,
we present all observed hyperbolicity distributions. The mean and variance of these distributions are recorded in Table 1.
Additionally, we use a consistent colormap, where dark blue indicates lower values of hyperbolicity and lighter colors
indicate higher values of hyperbolicity.
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Figure 5. Hyperbolicity Distribution of Token Embedding by LLaMA-7B. Datasets: AQuA (left), GSM8K (middle), MAWPS (right).
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Figure 6. Hyperbolicity Distribution of Last Hidden Layer by LLaMA-7B. Datasets: AQuA (left), GSM8K (middle), MAWPS (right).
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Figure 7. Hyperbolicity Distribution of Last Hidden Layer by LLaMA-7B with LoRA. Datasets: AQuA (left), GSM8K (middle), MAWPS
(right).
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Figure 8. Hyperbolicity Distribution of Token Embedding by LLaMA2-13B. Data sets: AQuA (left), GSM8K (middle), MAWPS (right).
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Figure 9. Hyperbolicity Distribution of Last Hidden Layer by LLaMA2-13B. Datasets: AQuA (left), GSM8K (middle), MAWPS (right).
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Figure 10. Hyperbolicity Distribution of Last Hidden Layer by LLaMA-13B with LoRA. Datasets: AQuA (left), GSM8K (middle),
MAWPS (right).
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