
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SRSA: SKILL RETRIEVAL AND ADAPTATION FOR
ROBOTIC ASSEMBLY TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Enabling robots to learn novel tasks in a data-efficient manner is a long-standing
challenge. Common strategies involve carefully leveraging prior experiences, es-
pecially transition data collected on related tasks. Although much progress has
been made in developing such strategies for general pick-and-place manipula-
tion, far fewer studies have investigated contact-rich assembly tasks, where pre-
cise control is essential. In this work, we present SRSA (Skill Retrieval and
Skill Adaptation), a novel framework designed to address this problem by uti-
lizing a pre-existing skill library containing policies for diverse assembly tasks.
The challenge lies in identifying which skill from the library is most relevant
for fine-tuning on a new task. Our key hypothesis is that skills showing higher
zero-shot success rates on a new task are better suited for rapid and effective
fine-tuning on that task. To this end, we propose to predict the transfer success
for all skills in the skill library on a novel task, and then use this prediction to
guide the skill retrieval process. Through extensive experiments, we demonstrate
that SRSA significantly outperforms the leading baseline, achieving a 22% rela-
tive improvement in success rate, 3.7x higher stability, and 2.4x greater sample
efficiency when retrieving and fine-tuning skills on unseen tasks. Moreover, in
a continual learning setup, SRSA efficiently learns policies for new tasks and
incorporates them into the skill library, enhancing future policy learning. Ad-
ditionally, policies trained with SRSA in simulation achieve a 90% mean suc-
cess rate when deployed in the real world. Please visit our project webpage at
https://srsa2024.github.io/ for videos.

1 INTRODUCTION

Humans excel at solving new tasks with few demonstrations or trial-and-error interactions. In robot
learning, a key challenge is to similarly enable robots to learn control policies from sensor-based
observations in a data-efficient manner. Achieving data-efficient learning is crucial for deploying
robots in diverse real-world environments, such as the household and industry. A compelling ap-
proach to efficient policy learning is the development of a foundation model or generalist policy
that spans multiple tasks because it offers long-term efficiency gains by providing a strong base for
adaptation to novel tasks. Significant advancements have been made in manipulation tasks, particu-
larly in visual pre-training (Parisi et al., 2022; Nair et al., 2022), multi-task policy learning (Shridhar
et al., 2022; Goyal et al., 2024), and policy generalization (Jang et al., 2022; Ebert et al., 2021).

Despite this progress, efficiently solving new tasks in contact-rich environments, such as robotic as-
sembly, remains underexplored. Robotic assembly plays a critical role in industries like automotive,
aerospace, and electronics, but learning assembly policies is uniquely difficult. These tasks require
contact-rich interactions with high levels of precision and accuracy, compounded by the physical
complexity of the environments, part variability, and strict reliability standards. Much of the exist-
ing research focuses on training specialist (i.e., single-task) policies for individual assembly tasks
(Spector & Di Castro, 2021; Spector et al., 2022; Tang et al., 2023). Building on the strengths
of these specialist approaches, we propose a novel method for tackling new assembly tasks. Our
approach leverages a skill library – a collection of diverse specialist policies and associated infor-
mation (such as object geometry and task-relevant trajectories) for various assembly tasks. These
policies and data, regardless of the training strategies or learning approaches used to develop them,
can be harnessed to efficiently solve previously-unseen assembly challenges.

1

https://srsa2024.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Retriever

Predicted Transfer Success

0.0 1.00.5

… …

Adapter

Skill Library

New Task Retrieved Skill

Replay
Buffer

Figure 1: Overview of SRSA. We address assembly tasks, where the goal is to use a robot arm to
insert diverse plugs (i.e., the white parts) into or onto corresponding sockets (i.e., the green parts).
Specifically, we propose to predict the transfer success of applying prior skills (i.e., policies) to a
new task, retrieve the skill with the highest predicted success rate, and fine-tune it on the new task.
During fine-tuning, we accelerate and stabilize adaptation by incorporating imitation learning of
high-rewarding transitions from the agent’s own replay buffer.

To utilize prior task experiences, previous work on general pick-and-place tasks has explored meth-
ods such as imitating state-action pairs from expert demonstrations (Du et al., 2023; Lin et al., 2024;
Kuang et al., 2024) and encoding sub-task skills as macro-action choices (Lynch et al., 2020; Pertsch
et al., 2021; Nasiriany et al., 2022). Unlike these approaches, which focus on reusing data or sub-
task skills, our approach centers on adapting policies from previous tasks to solve novel tasks. These
policies encapsulate essential task-solving knowledge in a generative form, making them a valuable
starting point for further refinement. Despite having access to a library of policies, identifying the
most relevant ones for fine-tuning on new tasks is still an open question, and the success of fine-
tuning hinges on making the right selection. In this paper, we introduce SRSA (Skill Retrieval and
Skill Adaptation), a novel framework designed to retrieve policies for similar tasks and adapt them
to new tasks, as illustrated in Fig. 1. The key contributions of this paper are as follows:

(1) Skill Retrieval Method: We propose a skill retrieval method that simultaneously and explicitly
learns embeddings for three fundamental components of assembly tasks: part geometry, interaction
dynamics, and expert action choices. We subsequently introduce a novel objective that leverages
these embeddings to predict transfer success across any source policy and target task, implicitly
capturing additional critical factors for policy transfer. This approach enables the effective retrieval
of relevant skills, resulting in higher zero-shot transfer success when applied to new tasks.

(2) Skill Adaptation Method: We propose a skill adaptation method that fine-tunes retrieved skills
on new tasks while incorporating a self-imitation learning method (Oh et al., 2018) to enhance per-
formance and stability during fine-tuning. In a simulation-based, dense-reward setting explored in
the leading assembly baseline (Tang et al., 2024), SRSA achieves a relative improvement of 22% in
success rate with 2.4x faster training and 3.7x greater stability. In simulation-based, sparse-reward
settings without demonstrations or curriculum (closely aligning with real-world fine-tuning scenar-
ios), SRSA outperforms the baseline with a relative improvement of 139% in success rate. Further-
more, we demonstrate that policies fine-tuned in simulation can be directly transferred to real-world
robots, achieving a 90% average success rate without the need for additional retraining. This capa-
bility of effectively fine-tuning policies in simulation on novel tasks, and transferring these policies
to the real world in zero-shot, highlights the potential for deploying high-performance solutions in
real-world assembly tasks.

(3) Continual Learning with Skill-Library Expansion: Rather than training numerous specialist
(i.e., single-task) policies from scratch, we propose gradually expanding a small set of initial skills
via retrieval and adaptation to cover a broader range of tasks. This strategy improves sample effi-
ciency by over 80% compared to the baseline (Tang et al., 2024) and keeps consistently efficient
as the skill library and target tasks evolve. SRSA provides an efficient solution for accumulating a
large-scale collection of skills.

2 RELATED WORK

Robotic Assembly Tasks Robotic assembly is a critical manufacturing process in the automotive,
aerospace, electronics, and medical device industries, but adaptive robotic assembly (e.g., robustness

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to part types, initial part poses, perceptual noise, control error, and environmental perturbations)
is largely unsolved. Research on adaptive assembly has seen significant growth in recent years
(Beltran-Hernandez et al., 2020; Luo et al., 2021; Narang et al., 2022; Tang et al., 2023; Zhang et al.,
2023). Despite advancements in datasets and real-world benchmarks for assembling small, realistic
parts (Kimble et al., 2020; 2022; Willis et al., 2022; Tian et al., 2022), the exploration of policy
learning across a wide variety of parts remains relatively limited. Most recent efforts in robotic
assembly have concentrated on perception (Fu et al., 2022; Wen et al., 2022) or planning (Tian et al.,
2022; 2024), rather than learning policies that are robust to disturbances and noise. Additionally,
the policy-learning efforts that have addressed the widest range of assemblies have typically been
restricted to <30 parts (Spector & Di Castro, 2021; Spector et al., 2022; Zhao et al., 2022). The
largest study, AutoMate (Tang et al., 2024), introduced a diverse dataset featuring 100 assembly
tasks with simulation environments and 3D-printable parts, and explores policy learning across these
tasks. However, its approach primarily focuses on learning specialist (i.e., single-task) policies from
scratch without leveraging prior experience or knowledge from related tasks. In contrast, our goal
is to solve novel assembly tasks by leveraging skills from previously-solved assembly tasks.

Retrieval-based Policy Learning Many studies have explored techniques for utilizing datasets from
other tasks for pretraining, such as visual pretraining (Parisi et al., 2022; Nair et al., 2022; Xiao et al.,
2022) and multi-task imitation learning (Jang et al., 2022; Ebert et al., 2021; Shridhar et al., 2022).
Recently, in robotic manipulation, some works have investigated how to incorporate offline data
from other tasks during policy learning, i.e., retrieving prior data according to expert demonstra-
tions on the target task (Nasiriany et al., 2022; Belkhale et al., 2024; Shao et al., 2021; Zha et al.,
2024). For instance, Du et al. (2023) selects pertinent state-action pairs based on visual and action
similarity from offline, unlabeled datasets and jointly trains a policy using a small amount of expert
demonstrations and the queried data via imitation learning. Lin et al. (2024), on the other hand,
emphasizes motion similarity rather than semantic similarity by retrieving state-action pairs based
on optical flow representations, followed by few-shot imitation learning with expert demonstrations
and the retrieved data. Kuang et al. (2024) takes a different approach by extracting a unified af-
fordance representation from diverse data sources and hierarchically retrieving and transferring 2D
affordance information based on language instructions to perform zero-shot robotic manipulation.
These works primarily study data retrieval for general pick-and-place manipulation tasks. (Zhu
et al., 2024) instead introduce a policy retriever to access relevant strategies from an external policy
memory bank and a policy generator to assimilate these strategies to formulate effective responses to
pick-and-place tasks. In contrast to these works, we focus on challenging contact-rich manipulation
tasks, specifically investigating policy retrieval for such environments.

Embedding Learning for Task and Skills Task embedding learning has been extensively explored
in meta-reinforcement learning and multi-task reinforcement learning problems, where shared
knowledge across tasks can significantly enhance learning efficiency for new tasks. Most previous
approaches focus on capturing task features related to visual appearance in 2D images or dynamics
in transitions (James et al., 2018; Rakelly et al., 2019; Lee et al., 2020). Contrastive learning is
often employed to bring similar tasks closer together in the embedding space while pushing dissim-
ilar tasks farther apart (James et al., 2018). Skill embedding learning, on the other hand, leverages
unstructured prior experiences (i.e., temporally extended actions that encapsulate useful behaviors)
and repurposes them to solve downstream tasks. Existing methods typically train a high-level policy
where the action space consists of the extracted skills (Pertsch et al., 2021; Nasiriany et al., 2022;
Hausman et al., 2018; Sharma et al., 2019; Lynch et al., 2020). Although most previous approaches
use skills to solve subtasks and combine sequences of skills for long-horizon tasks, we focus on
selecting and adapting a single relevant skill for a new task, which is typically short-horizon but
challenging to train due to exploration challenges and precise control requirements. Additionally,
we integrate multiple embedding-learning approaches by jointly capturing three fundamental com-
ponents of assembly tasks: part geometry, interaction dynamics, and expert actions. We consolidate
these perspectives for more robust task representation.

3 PROBLEM SETUP

In this work, we consider the problem setting of solving a new target task leveraging pre-existing
skills from a skill library. This library contains policies, each designed to solve a specific previously-
encountered task. Our approach is motivated by situations where an agent can draw on knowledge

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

from previously-learned policies to adapt quickly to a new task at hand (Rusu et al., 2016; Tirinzoni
et al., 2019; Huang et al., 2021).

Similar to the multi-task reinforcement learning (RL) formulation (Borsa et al., 2016; Sodhani et al.,
2021; Calandriello et al., 2014), we consider a task space T where each task T ∈ T is defined as a
Markov decision process (MDP) (S,A, p, r, γ, ρ). In this formulation, S represents the state space,
A the action space, p(st+1|st, at) the transition dynamics, r(st, at) the reward function, γ ∈ [0, 1)
the discount factor, and ρ the initial state distribution.

(b) 3D-printed assembly parts in real world

(c) Keyframes of assembly tasks in real-world deployment

01029 01053 01079 01129 01136

(a) Various assembly tasks in simulation

00211

00213

00255

00319

00320

00329

00506

00514

00537

00648

00649

00652

00863

01026

01029

01129

01132

01136

01041

01053

01079

Figure 2: Illustration of assembly tasks in AutoMate and SRSA. (a) Samples of assembly tasks
in the AutoMate benchmark. (b) 3D-printed parts of corresponding real-world assembly tasks in
SRSA. (c) Keyframes from video recordings of our real-world deployments of performant policies.

.
Our study focuses on two-part assembly tasks, as depicted in Fig. 2. Following the setup of Auto-
Mate (Tang et al., 2024), each environment includes a Franka robot, a plug (i.e., a part to be inserted),
and a socket (i.e., the part that mates with the given plug). In the initial state, we randomize the robot
configuration and socket pose, as well as the position of the plug within the robot’s gripper. The goal
of each task is to insert a unique plug into its corresponding socket (see Appendix A.1 for details).

The state space S consists of the robot arm’s joint angles and velocities, the end-effector pose and
its linear/angular velocities, the current plug pose, and the end-effector goal pose. The action space
A consists of incremental pose targets for a task-space impedance controller. As described in (Tang
et al., 2024), although assembly trajectories are infeasible to procedurally generate, disassembly
paths can be easily generated, serving as reverse demonstrations that can be used by a reinforcement
learning (RL) agent. Specifically, the RL reward function is composed of terms that penalize the
distance to the goal, penalize simulation error, reward task difficulty in a curriculum, and imitate the
reversed disassembly paths. The assembly tasks all share the same state space S and action space
A, but vary in part geometries, transition dynamics p, and initial state distribution ρ.

Given a target task T ∈ T , we assume access to a prior task set Tprior = {T1, T2, · · · , Tn} ⊆ T .
With policy space Π : S → A, the skill library contains policies Πprior = {π1, π2, · · · , πn} ⊆ Π
that solve each of the prior tasks, respectively. To solve a target task, the goal of RL is to find a
policy π(at|st) that produces an action for each state to maximize the expected return. We propose
to first retrieve a skill (i.e., policy) for the most relevant prior task (Sec. 4.1), and then rapidly and
effectively adapt to the target task by fine-tuning the retrieved skill (Sec. 4.2).

4 METHOD

4.1 SKILL RETRIEVAL

To effectively retrieve skills from Πprior that are useful for a new target task T , we require a means
to measure the potential of applying a source policy πsrc ∈ Πprior to task T . Concretely, we aim
to obtain a function F : Π× T → R, which takes as input a source policy and a target task and
produces a scalar score measuring how well the source policy can be adapted to the target task.

According to the simulation lemma in RL theory (Agarwal et al., 2019), the difference in expected
value when applying the same policy to different tasks primarily depends on their difference in tran-
sition dynamics and initial state distributions. If we execute a source policy πsrc on both the source
task Tsrc and the target task Ttrg , the success rates rsrc,src and rsrc,trg (on Tsrc and Ttrg, respec-
tively) reflect the expected value. Notably, similar success rates on these tasks indicate that their
transition dynamics functions and initial state distributions might also be similar. Here, our success

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

rate on the source task rsrc,src will naturally be high, because the source policy πsrc is already an
expert policy on Tsrc. Thus, when the zero-shot transfer success rate rsrc,trg (i.e., applying πsrc

directly to Ttrg) is also high (e.g., similar to rsrc,src), it suggests that the two tasks might be closely
aligned in terms of their dynamics. Details are in Appendix A.2.

We then hypothesize that fine-tuning a source policy on a target task with similar dynamics will
be efficient, because it only requires adaptation to the small difference in dynamics. Therefore, we
propose using zero-shot transfer success as a metric to gauge the potential of efficiently adapting a
source policy on a target task. To identify a source policy with high zero-shot transfer success on a
given target task, we propose to learn a function F to predict the zero-shot transfer success for any
pair of source policy πsrc and target task Ttrg . The prediction F (πsrc, Ttrg) serves as an indicator of
whether πsrc is a strong candidate to initiate fine-tuning for the target task Ttrg . Below, we describe
the featurization of the source policies and target tasks in Sec. 4.1.1 and explain the approach to
transfer success prediction with input features in Sec. 4.1.2.

Geometry Feature zG

Encoder EG

Decoder DG

Point Cloud

Reconstruction

st-hat-h …… st-1at-1

Disassembly Trajectory

Dynamics Feature zD

stat st+1

Encoder ED

Forward
Model DD

s’t+1

(a) (b)

st-hat-h …… st-1at-1

Action Feature zA

Disassembly Trajectory

a’t-ha’t-h+1 ……a’t-1

(c)

Encoder EA

Decoder DA

Source Task
Embedding

Geometry

Dynamics

Action

Target Task
Embedding

Geometry

Dynamics

Action

Transfer Success

(d)

Figure 3: Illustration of our skill retrieval approach. We decompose the skill retrieval into task
feature learning (abc) and transfer success prediction (d). (a) Geometry features are learned from
point-cloud input using a PointNet autoencoder. (b) Dynamics features are learned from transition
segments using a state-prediction objective. (c) Expert-action features are learned from transition
segments using an action-prediction objective. (d) The zero-shot transfer success rate (of applying
a source policy to a target task) is predicted using task features from source and target tasks.

4.1.1 LEARNING TASK FEATURES

In order to train the prediction function F , we construct a dataset of tuples (πsrc, Ttrg, rsrc,trg),
where rsrc,trg denotes the success rate for zero-shot transfer of a source policy πsrc when applied
to a target task Ttrg. However, due to the limited number of (πsrc, Ttrg) pairs (specifically, during
training, we have n× n pairs for a total of n tasks in Tprior), we need a strong featurization of both
the source policy and target task for efficient learning of F .

The source policy πsrc is an expert policy for the corresponding source task Tsrc, and there is a
one-to-one mapping between policies and tasks in the skill library. Thus, we can utilize the features
of the source task to represent the source policy. For assembly tasks, each task differs along three
fundamental axes: part geometry, interaction dynamics, and expert actions that solve the task. Thus,
we propose a framework that jointly captures features of geometry, dynamics, and expert actions to
represent the tasks, allowing us to efficiently learn the transfer success predictor F (Fig. 3).

When learning geometry features, we assume access to object meshes for both seen and novel tasks;
this assumption is well-grounded in industry, where CAD models are widely available, allowing us
to learn embeddings of 3D geometry. However, learning features for dynamics and expert actions
poses a unique challenge. For new assembly tasks, we assume that expert demonstrations are not
available, as these are typically tedious to obtain and often suboptimal for assembly tasks. This
deficit prevents us from easily computing dynamics or action embeddings.

We draw insight from (Tian et al., 2022; Tang et al., 2024), which noted that, while procedurally
generating assembly demonstrations for new tasks is intractable (narrow-passage problem), disas-
sembly paths can be trivially generated by employing a compliant low-level controller to lift an
inserted plug from its socket and move it to a randomized pose. We propose learning features for
dynamics and expert actions by using these disassembly paths and hypothesize that such features
are useful for predicting transfer success for assembly; we later empirically support this hypothesis.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Using the parts’ point clouds or transition sequences from disassembly, we learn encoders EG, ED,
and EA to capture features zG (representing geometry), zD (representing forward dynamics), and
zA (representing expert actions). We also train decoders DG, DD, and DA conditioned on these
features to predict point cloud for geometry, next state for dynamics, and action sequence for expert
action choices. In Appendix A.4, we explain the implementation details for learning these features.

4.1.2 PREDICTING TRANSFER SUCCESS

We consolidate task features to develop the transfer success prediction function F . During training,
we formulate any two tasks from the prior task set Tprior as a source-target task pair. For each
pair (πsrc, Ttrg), we evaluate the source policy πsrc on the target task Ttrg to obtain the zero-
shot transfer success rate rsrc,trg. This process enables us to collect a training dataset of tuples
(πsrc, Ttrg, rsrc,trg) from the prior skill library. As explained in Sec. 4.1.1, we feed the point cloud
and transition segments into encoders. The features of geometry, dynamics, and expert action are
concatenated together to get task features zsrc and ztrg. Then the concatenated task features go
through an MLP to predict the transfer success rsrc,trg, as illustrated in Fig. 3(d). Formally, we train
the function F to minimize the objective function (Eq. 1):

L= ∥F (πsrc, Ttrg)− rsrc,trg∥2 = ∥MLP (zsrc, ztrg)− rsrc,trg∥2

= ∥MLP (EG(Psrc), ED(τsrc), EA(τsrc), EG(Ptrg), ED(τtrg), EA(τtrg))− rsrc,trg∥2 (1)

At test time, we use the function F to predict the transfer success of applying any prior
policy to a new task Ttrg as F (πsrc, Ttrg). For inputs to the function F , we sample
the point clouds P1, P2, · · · , Pm from parts’ meshes and transition segments τ1, τ2, · · · , τm
from disassembly trajectories. We compute the averaged prediction for these samples,
i.e. F (πsrc,Ttrg)=

1
m

∑m
i=1 MLP (EG(Psrc,i),ED(τsrc,i),EA(τsrc,i),EG(Ptrg,i),ED(τtrg,i),EA(τtrg,i)). In this

manner, we infer the predicted transfer success F (πsrc, Ttrg) for all source policies πsrc in the prior
skill library Πprior = {π1, π2, · · · , πn}. Our retrieved policy is the source policy with the highest
predicted transfer success, defined as argmaxπsrc

F (πsrc, Ttrg).

4.2 SKILL ADAPTATION

As mentioned in Sec. 3, our ultimate goal is to solve the new task as an RL problem. The retrieved
skill is used to initialize the policy network πθ(at|st), and we subsequently use proximal policy
optimization (PPO) (Schulman et al., 2017) to fine-tune the policy on the target task.

This initialization provides a strong start for policy learning, as the initial trials with the retrieved
skills can achieve a reasonable success rate. Inspired by self-imitation learning (Oh et al., 2018), we
fully exploit these positive experiences gained during the initial phase of fine-tuning. We maintain
a replay buffer D = {(st, at, Rt)} to store the transitions encountered throughout training, where
Rt =

∑∞
k=t γ

k−trk is the discounted sum of rewards. We prioritize the state-action pairs (st, at)
based on Rt and imitate those pairs with high rewards. The objective function is defined in Eq. 2:

Lsil = E(s,a,R)∈D[Lsil
policy + βLsil

value] (2)

where Lsil
policy = − log πθ(a|s)(R− Vθ(s))+, Lsil

value =
1
2∥(R− Vθ(s))+∥2, (·)+ = max(·, 0), and

πθ and Vθ are the policy and value function parameterized by θ (see details in Appendix A.3).

As training progresses, the agent collects higher rewards on the target task, leading to an expanding
replay buffer filled with improved experiences. As analyzed in (Tang, 2020), this self-imitation
mechanism accelerates the agent’s convergence to encountered high-reward behavior, even though
it may introduce some bias into the policy. In our case, the behavior derived from the retrieved skill
is advantageous for the target task. We find that self-imitation learning significantly enhances and
stabilizes policy fine-tuning, proving especially beneficial in sparse-reward scenarios.

4.3 CONTINUAL LEARNING WITH SKILL-LIBRARY EXPANSION

Continual learning investigates learning various tasks in a sequential fashion. The primary objec-
tive is to overcome the forgetting of previously-learned tasks and to leverage the earlier knowl-
edge for better performance and/or faster convergence on incoming tasks (Ring, 1994; Xu & Zhu,
2018; Abel et al., 2024). We integrate SRSA in the continual-learning setup and gradually expand

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the skill library. Specifically, we begin with an initial skill library Πprior corresponding to prior
tasks Tprior. When faced with a new batch of tasks T j = {T1, T2, · · · , Tk}, we apply SRSA to
retrieve and fine-tune policies for each new task Ti. The learned policies are then incorporated as
Tprior = Tprior ∪ {Ti}; Πprior = Πprior ∪ {πi}. This approach allows us to efficiently tackle new
tasks by leveraging the skill library and simultaneously prevent the forgetting of previously learned
tasks by maintaining the skill library. See Appendix A.3 for the algorithm pseudocode.

5 EXPERIMENTS

We design experiments to answer the following questions: (1) Compared with baseline retrieval
approaches, can SRSA retrieve source policies that achieve a better zero-shot transfer success rate on
target tasks? (2) Can SRSA improve learning performance, stability, and efficiency on target tasks?
(3) Can we deploy high-performing policies from simulation in zero-shot to the real-world? (4)
Can SRSA be applied in the continual-learning scenario to improve learning efficiency by gradually
expanding its skill library? We investigate these questions on the AutoMate benchmark, which
consists of 100 two-part assembly tasks with diverse parts, enabling us to study challenging contact-
rich assembly tasks in simulation and the real world.

5.1 SKILL RETRIEVAL

AutoMate provides meshes and disassembly trajectories for each task. We use these data to learn the
task embedding for retrieval. We compare SRSA to the following retrieval strategies as baselines.
Signature: retrieve the task with the closest path signature representing disassembly trajectories as
a collection of path integrals (Tang et al., 2024) Behavior: retrieve the task with the closest VAE
embedding of state-action pairs on disassembly trajectories. Forward: retrieve the task with closest
latent vector for transition sequence τ on disassembly trajectories, where the latent vector is used
to predict forward dynamics. Geometry: retrieve the task with closest PointNet encoding for point
clouds of the assembly assets. Implementation details can be found in Appendix A.4.

Overall0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
an

sf
er

 S
uc

ce
ss

Signature
Behavior
Forward
Geometry
SRSA

01029 01036 01041 01053 01079 01092 01102 01125 01129 011360.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

 S
uc

ce
ss

Optimal Signature Behavior Forward Geometry SRSA

Figure 4: Transfer success of retrieved skills when applied to test tasks. For each test task, we
retrieve a policy from the prior skill library using 5 different approaches (4 baselines and SRSA). We
train each approach for 3 random seeds if it involves training neural networks. Left: We illustrate
success rate averaged on 10 test tasks. Right: For each test task, we show the mean and standard
deviation of transfer success over 3 seeds. Overall, SRSA substantially outperforms baselines.

Given 100 tasks in AutoMate benchmark, we split the task set to have 90 prior tasks to build the
skill library and10 tasks as the new test tasks to solve. For both our and baseline methods, we train
the retrieval model for three runs with different random seeds, and report the average and standard
deviation of transfer success over three runs. Fig. 4 shows the result on the test task set. SRSA
performs best or second-best on all test tasks, except for one very challenging assembly where all
methods perform poorly (01029). In Appendix A.5, we additionally show the comparison for other
choices to split prior and test task sets. Overall, SRSA retrieves source policies that obtain around
20% higher success rates on the target tasks, compared with baselines.

5.2 SKILL ADAPTATION

In this section, we investigate policy learning on test tasks given the skill library. We compare
AutoMate (i.e., learning specialist policies from scratch (Tang et al., 2024)) and SRSA (i.e., fine-
tuning retrieved specialist policy with self-imitation learning). Details are in Appendix A.4.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01036

SRSA (dense reward)
AutoMate (dense reward)
SRSA (sparse reward)
AutoMate (sparse reward)

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01041

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01053

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01079

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01092

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01102

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01125

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01129

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01136

Figure 5: Learning curves on test tasks. The x-axis and y-axis represent training epochs (where
each epoch consists of 128 environment steps over 256 parallel environments) and success rate,
respectively. The solid line shows the mean success rate over 5 runs with different random seeds,
and the shaded area denotes the standard deviation.

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

Success Rate

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

N
um

be
r o

f T
ra

in
in

g
E

po
ch

s
R

eq
ui

re
d SRSA

AutoMate

Figure 6: Sample efficiency of policy
learning on test set. To achieve a desired
success rate (here, 0.70, 0.75, 0.80, 0.85,
or 0.90), we identify how many training
epochs are required for each run. We il-
lustrate the mean and standard deviation
across 5 runs with the points and error bars
in the figure, averaged over 10 test tasks.

We consider both the dense-reward setting (identical
to AutoMate) and the sparse-reward setting, without
the use of disassembly demonstrations or a curriculum.
The sparse-reward setting only provides a non-zero re-
ward signal to the agent when the assembly task suc-
ceeds. It is designed to emulate the real-world RL fine-
tuning setting, where dense-reward information can be
much more challenging to acquire.

Fig. 5 shows learning curves on the test task set. In
the dense-reward setting, SRSA achieves strong per-
formance with a fewer number of training epochs.
In the sparse-reward setting, AutoMate struggles to
achieve a reasonable success rate, whereas SRSA ben-
efits from the retrieved skill initialization and self-
imitation learning to reach higher performance. Addi-
tionally, in both settings, the learning curves of Auto-
Mate exhibit instability with fluctuating success rates
as training goes on. In Tab. 2 and Tab. 3 in Ap-
pendix A.5, we summarize the success rate at the last
epoch of training. In the dense-reward setting, SRSA
reaches a mean success rate of 84.7% better than Auto-
Mate (69.4%), corresponding to a relative improvement of 22% in performance with a substantially
smaller standard deviation, i.e. 3.7x greater stability. In the sparse-reward setting, SRSA delivers
a remarkable 139% relative improvement in average success rate compared to the baseline. Fig. 6

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

demonstrates the number of training epochs required to reach a desired success rate in the dense-
reward setting. Averaged over 10 test tasks, SRSA requires far fewer training samples, i.e., at least
2.4 times fewer training epochs, to achieve an arbitrary success threshold.

5.3 REAL-WORLD DEPLOYMENT Asset ID 01029 01053 01079 01129 01136 Overall
AutoMate 7/10 1/10 7/10 4/10 8/10 54%

SRSA 9/10 8/10 8/10 10/10 10/10 90%

Figure 7: Real-world evaluation. We take the best
checkpoint of policies across 5 runs within 500 epochs
and report the success rate over 10 trials for each task.

We now deploy the trained specialist poli-
cies in the real world. As in (Tang et al.,
2024), we place the robot in lead-through
(a.k.a., manual guide mode), grasp a plug,
guide it into the socket, and record the pose
as a target pose. We then programmatically
lift the plug until free from contact, apply a perturbation for the position and rotation of the end ef-
fector, and deploy a policy to assembly the plug into the socket. Such conditions emulate the control
error and perceptual noise that are experienced in full assembly pipelines. In Tab. 7, we record
the performance of the best checkpoint over 500 training epochs. In this relatively-brief training
time, SRSA reaches higher success rates than the baseline for real-world assembly tasks. We show
keyframes of real-world assembly tasks in Fig. 2(c). For videos of the policy execution, please refer
to the project website https://srsa2024.github.io/.

5.4 CONTINUAL LEARNING

0.5 0.6 0.7 0.8

Success Rate

20
0

30
0

40
0

50
0

60
0

70
0

80
0

N
um

be
r o

f T
ra

in
in

g
E

po
ch

s
R

eq
ui

re
d

SRSA
AutoMate

(a)

1 2 3 4 5 6 7 8 9
Batch

0

20
0

40
0

60
0

80
0

10
00

N
um

be
r o

f E
po

ch
s

AutoMate
SRSA

(b)
Figure 8: (a) Sample efficiency of continual policy learning.. We report the number of training
epochs required to reach desired success rates (0.5, 0.6, 0.7, 0.8). We calculate the mean and stan-
dard deviation of required training epochs over 5 runs, and report the average over 90 tasks. (b)
Number of training epochs required in continual learning. We sequentially introduce 9 batches
of new tasks for policy learning, with each batch containing 10 new tasks. For each batch, we show
the mean and standard deviation of training epochs required to reach a success rate of 0.8. Obvi-
ously, SRSA requires less number of training epochs to reach a good success rate.

We study the continual-learning setting to obtain policies for each of the 100 AutoMate tasks. Rather
than training 100 policies from scratch in parallel, we start from a skill library with 10 tasks, and train
10 new policies for 10 new tasks utilizing the skill library. We repeat this process for 9 iterations,
eventually covering the entire benchmark. Essentially, we have a skill library that is gradually
expanded with an increasing number of specialist policies.

In Fig. 8, we compare the sample efficiency of SRSA and AutoMate when learning specialist policies
for 90 tasks outside the initial skill library. We consider different desired success rates, and report
the number of training epochs required to reach each success rate. Overall, SRSA requires fewer
training epochs to reach the desired success rate, demonstrating an 84% relative improvement in
sample efficiency (Fig. 8(a)). For each batch of new tasks, SRSA is more efficient than the baseline
regardless of the skill library and target tasks (Fig. 8(b)). In Fig. 14 in Appendix, we show the success
rates for the highest-reward checkpoints encountered in 5 runs for each task. SRSA achieves an
average success rate of 79% compared to AutoMate’s 70% across 100 tasks, while also exhibiting
better training efficiency. In Appendix A.5, we present learning results for another ordering of
batches of tasks, showing that the advantage of SRSA is agnostic to the order of encountering new
tasks.

9

https://srsa2024.github.io/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 ABLATION STUDY

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01029

SRSA-Geom
SRSA-noSIL
SRSA-Gen
SRSA

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01053

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01079

Figure 9: Comparison for variants of SRSA with different changing component. For each
method, we have 5 runs with different random seeds. The learning curves show mean and standard
deviation of success rate over these runs. We show learning curves for more tasks in Appendix A.5.

Effect of Skill Retrieval In order to verify the effect of skill retrieval, we conduct skill adaptation
with retrieved skills using only a geometry embedding, i.e., the second best skill-retrieval approach
evaluated in Fig. 3. Fig. 9 shows the performance of policy fine-tuning for both our skill retrieval
approach (SRSA) and the geometry-based skill retrieval (SRSA-Geom). One can observe that re-
trieving a worse skill hinders learning efficiency, which starts from a lower success rate and requires
more training epochs to reach high performance. This shows that our retrieval approach with better
zero-shot transfer success also improves adaptation efficiency.

Effect of Self-imitation Learning To demonstrate the benefits of self-imitation learning (SIL) in
policy fine-tuning, we compare SRSA to the variant without this component (SRSA-noSIL). In
Fig. 9, SRSA outperforms the variant in terms of learning stability. In particular, SRSA-noSIL
suffers from more fluctuations during fine-tuning and a larger standard deviation of success rate
(shaded area) across runs with different seeds.

Effect of Generalist Policy We analyze whether fine-tuning a generalist policy outperforms fine-
tuning a selected specialist policy. For policy initialization, we use the generalist policy for 20
training tasks from (Tang et al., 2024) Although it does not cover numerous tasks, it is the strongest
generalist policy reported to date that can solve a diverse set of assembly tasks with an > 80%
success rate (Tang et al., 2024). Fig. 9 shows the learning curves of fine-tuning the generalist policy
on unseen tasks (SRSA-Gen). We observe that SRSA-Gen provides a weaker initialization compared
to SRSA. This may be because the generalist policy’s knowledge from the training tasks is less
specialized than the skills retrieved by SRSA. Also, the adaptation is less efficient, possibly due to
the larger neural network in generalist policy, which requires more fine-tuning to adapt to new tasks.

7 CONCLUSION

In this paper, we propose a pipeline to retrieve and adapt specialist policies to solve new assembly
tasks. To learn a retrieval model, we jointly learn features from geometry, dynamics and expert
actions to represent tasks, and predict transfer success to implicitly capture other transfer-related
factors from tasks. By combining skill retrieval with policy fine-tuning and self-imitation learning,
our method efficiently learns simulation-based policies. We demonstrate that these policies are
transferable to real-world robots for assembly tasks. Additionally, we demonstrate that our approach
can be used to continuously expand a skill library through efficient learning of various skills.

Our work has three key limitations: First, although we train policies for all assembly tasks in a
leading benchmark (Tang et al., 2024), we do not address assemblies requiring rotational or helical
motion (e.g., nut-and-bolt assembly). Second, we primarily concentrate on learning specialist (i.e.,
single-task) policies; future work could explore training generalist (i.e., multi-task) policies, and
furthermore, incorporating knowledge from both specialist and generalist policies to solve novel
tasks with even greater efficiency. Third, although our real-world success rates outperform the
state-of-the-art in sim-to-real transfer for our examined tasks, they still fall short of 95+% success
rates required for industry-level deployment. We believe that RL fine-tuning directly in real-world
settings could help bridge the sim-to-real gap and further improve success rates.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David Abel, André Barreto, Benjamin Van Roy, Doina Precup, Hado P van Hasselt, and Satinder
Singh. A definition of continual reinforcement learning. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet, Quon Vuong, Jonathan Tompson, Yevgen
Chebotar, Debidatta Dwibedi, and Dorsa Sadigh. Rt-h: Action hierarchies using language. arXiv
preprint arXiv:2403.01823, 2024.

Cristian C. Beltran-Hernandez, Damien Petit, Ixchel G. Ramirez-Alpizar, and Kensuke Harada.
Variable compliance control for robotic peg-in-hole assembly: A deep-reinforcement-learning
approach. Applied Sciences, 2020.

Diana Borsa, Thore Graepel, and John Shawe-Taylor. Learning shared representations in multi-task
reinforcement learning. arXiv preprint arXiv:1603.02041, 2016.

Daniele Calandriello, Alessandro Lazaric, and Marcello Restelli. Sparse multi-task reinforcement
learning. Advances in neural information processing systems, 27, 2014.

Maximilian Du, Suraj Nair, Dorsa Sadigh, and Chelsea Finn. Behavior retrieval: Few-shot imitation
learning by querying unlabeled datasets. arXiv preprint arXiv:2304.08742, 2023.

Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic
skills with cross-domain datasets. arXiv preprint arXiv:2109.13396, 2021.

Bowen Fu, Sek Kun Leong, Xiaocong Lian, and Xiangyang Ji. 6d robotic assembly based on rgb-
only object pose estimation. In 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4736–4742. IEEE, 2022.

Ankit Goyal, Valts Blukis, Jie Xu, Yijie Guo, Yu-Wei Chao, and Dieter Fox. Rvt-2: Learning precise
manipulation from few demonstrations. arXiv preprint arXiv:2406.08545, 2024.

Yijie Guo, Qiucheng Wu, and Honglak Lee. Learning action translator for meta reinforcement
learning on sparse-reward tasks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 6792–6800, 2022.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on Learn-
ing Representations, 2018.

Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, and Kun Zhang. Adarl: What, where, and
how to adapt in transfer reinforcement learning. arXiv preprint arXiv:2107.02729, 2021.

Stephen James, Michael Bloesch, and Andrew J Davison. Task-embedded control networks for
few-shot imitation learning. In Conference on robot learning, pp. 783–795. PMLR, 2018.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In Confer-
ence on Robot Learning, pp. 991–1002. PMLR, 2022.

Kenneth Kimble, Karl Van Wyk, Joe Falco, Elena Messina, Yu Sun, Mizuho Shibata, Wataru Ue-
mura, and Yasuyoshi Yokokohji. Benchmarking protocols for evaluating small parts robotic as-
sembly systems. IEEE robotics and automation letters, 5(2):883–889, 2020.

Kenneth Kimble, Justin Albrecht, Megan Zimmerman, and Joe Falco. Performance measures to
benchmark the grasping, manipulation, and assembly of deformable objects typical to manufac-
turing applications. Frontiers in Robotics and AI, 9:999348, 2022.

11

https://www.mdpi.com/2076-3417/10/19/6923
https://www.mdpi.com/2076-3417/10/19/6923

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuxuan Kuang, Junjie Ye, Haoran Geng, Jiageng Mao, Congyue Deng, Leonidas Guibas, He Wang,
and Yue Wang. Ram: Retrieval-based affordance transfer for generalizable zero-shot robotic
manipulation. arXiv preprint arXiv:2407.04689, 2024.

Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, and Jinwoo Shin. Context-aware dynam-
ics model for generalization in model-based reinforcement learning. In International Conference
on Machine Learning, pp. 5757–5766. PMLR, 2020.

Li-Heng Lin, Yuchen Cui, Amber Xie, Tianyu Hua, and Dorsa Sadigh. Flowretrieval: Flow-guided
data retrieval for few-shot imitation learning. arXiv preprint arXiv:2408.16944, 2024.

Jianlan Luo, Oleg Sushkov, Rugile Pevceviciute, Wenzhao Lian, Chang Su, Mel Vecerik, Ning Ye,
Stefan Schaal, and Jon Scholz. Robust multi-modal policies for industrial assembly via rein-
forcement learning and demonstrations: A large-scale study. arXiv preprint arXiv:2103.11512,
2021.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Conference on robot learning, pp. 1113–
1132. PMLR, 2020.

Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao, Zhiao Huang, Zhi-
wei Jia, and Hao Su. Maniskill: Generalizable manipulation skill benchmark with large-scale
demonstrations. arXiv preprint arXiv:2107.14483, 2021.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
sal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Yashraj Narang, Kier Storey, Iretiayo Akinola, Miles Macklin, Philipp Reist, Lukasz Wawrzyniak,
Yunrong Guo, Adam Moravanszky, Gavriel State, Michelle Lu, et al. Factory: Fast contact for
robotic assembly. arXiv preprint arXiv:2205.03532, 2022.

Soroush Nasiriany, Tian Gao, Ajay Mandlekar, and Yuke Zhu. Learning and retrieval from prior
data for skill-based imitation learning. arXiv preprint arXiv:2210.11435, 2022.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International
conference on machine learning, pp. 3878–3887. PMLR, 2018.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising
effectiveness of pre-trained vision models for control. In international conference on machine
learning, pp. 17359–17371. PMLR, 2022.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pp. 188–204. PMLR, 2021.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Mark Bishop Ring. Continual learning in reinforcement environments. The University of Texas at
Austin, 1994.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Lin Shao, Toki Migimatsu, Qiang Zhang, Karen Yang, and Jeannette Bohg. Concept2robot: Learn-
ing manipulation concepts from instructions and human demonstrations. The International Jour-
nal of Robotics Research, 40(12-14):1419–1434, 2021.

12

https://arxiv.org/pdf/2103.11512.pdf
https://arxiv.org/pdf/2103.11512.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. In Conference on robot learning, pp. 894–906. PMLR, 2022.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning, pp. 9767–9779. PMLR,
2021.

Oren Spector and Dotan Di Castro. Insertionnet-a scalable solution for insertion. IEEE Robotics
and Automation Letters, 6(3):5509–5516, 2021.

Oren Spector, Vladimir Tchuiev, and Dotan Di Castro. Insertionnet 2.0: Minimal contact multi-
step insertion using multimodal multiview sensory input. In 2022 International Conference on
Robotics and Automation (ICRA), pp. 6330–6336. IEEE, 2022.

Bingjie Tang, Michael A Lin, Iretiayo Akinola, Ankur Handa, Gaurav S Sukhatme, Fabio Ramos,
Dieter Fox, and Yashraj Narang. Industreal: Transferring contact-rich assembly tasks from simu-
lation to reality. arXiv preprint arXiv:2305.17110, 2023.

Bingjie Tang, Iretiayo Akinola, Jie Xu, Bowen Wen, Ankur Handa, Karl Van Wyk, Dieter Fox,
Gaurav S Sukhatme, Fabio Ramos, and Yashraj Narang. Automate: Specialist and generalist
assembly policies over diverse geometries. arXiv preprint arXiv:2407.08028, 2024.

Yunhao Tang. Self-imitation learning via generalized lower bound q-learning. Advances in neural
information processing systems, 33:13964–13975, 2020.

Yunsheng Tian, Jie Xu, Yichen Li, Jieliang Luo, Shinjiro Sueda, Hui Li, Karl DD Willis, and Woj-
ciech Matusik. Assemble them all: Physics-based planning for generalizable assembly by disas-
sembly. ACM Transactions on Graphics (TOG), 41(6):1–11, 2022.

Yunsheng Tian, Karl DD Willis, Bassel Al Omari, Jieliang Luo, Pingchuan Ma, Yichen Li, Farhad
Javid, Edward Gu, Joshua Jacob, Shinjiro Sueda, et al. Asap: automated sequence planning for
complex robotic assembly with physical feasibility. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4380–4386. IEEE, 2024.

Andrea Tirinzoni, Mattia Salvini, and Marcello Restelli. Transfer of samples in policy search via
multiple importance sampling. In International Conference on Machine Learning, pp. 6264–
6274. PMLR, 2019.

Weikang Wan, Haoran Geng, Yun Liu, Zikang Shan, Yaodong Yang, Li Yi, and He Wang. Unidex-
grasp++: Improving dexterous grasping policy learning via geometry-aware curriculum and iter-
ative generalist-specialist learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 3891–3902, 2023.

Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. You only demonstrate once:
Category-level manipulation from single visual demonstration. arXiv preprint arXiv:2201.12716,
2022.

Karl DD Willis, Pradeep Kumar Jayaraman, Hang Chu, Yunsheng Tian, Yifei Li, Daniele Grandi,
Aditya Sanghi, Linh Tran, Joseph G Lambourne, Armando Solar-Lezama, et al. Joinable: Learn-
ing bottom-up assembly of parametric cad joints. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 15849–15860, 2022.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control. arXiv preprint arXiv:2203.06173, 2022.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. Advances in neural information processing
systems, 31, 2018.

Lihan Zha, Yuchen Cui, Li-Heng Lin, Minae Kwon, Montserrat Gonzalez Arenas, Andy Zeng, Fei
Xia, and Dorsa Sadigh. Distilling and retrieving generalizable knowledge for robot manipulation
via language corrections. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 15172–15179. IEEE, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xiang Zhang, Changhao Wang, Lingfeng Sun, Zheng Wu, Xinghao Zhu, and Masayoshi Tomizuka.
Efficient sim-to-real transfer of contact-rich manipulation skills with online admittance residual
learning. In Conference on Robot Learning, pp. 1621–1639. PMLR, 2023.

Tony Z Zhao, Jianlan Luo, Oleg Sushkov, Rugile Pevceviciute, Nicolas Heess, Jon Scholz, Stefan
Schaal, and Sergey Levine. Offline meta-reinforcement learning for industrial insertion. In 2022
international conference on robotics and automation (ICRA), pp. 6386–6393. IEEE, 2022.

Yichen Zhu, Zhicai Ou, Xiaofeng Mou, and Jian Tang. Retrieval-augmented embodied agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
17985–17995, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ROBOT SETUP

Bench Vise

Plug

Socket

Figure 10: Real-world experimental setup. A Franka Panda robot and a bench vise are mounted
to a tabletop. At the beginning of each episode, a 3D-printed plug is grasped by the robot gripper
and and a 3D-printed socket is haphazardly placed in the bench vise. The task is to control the robot
arm and fully insert the plug into the socket.

A.2 MOTIVATION WITH THEORETICAL PERSPECTIVE

Transferring knowledge from a source task to a target task can improve training efficiency and
asymptotic performance. Consider a source task Tj and target task Ti, which are MDPs that share
state space S , action space A, and reward function r, but have distinct transition functions pi, pj
and initial state distributions ρi, ρj . To measure the transferability of a policy, we apply the same
policy on both tasks and examine the difference in their expected values. Here we note that the
value difference depends primarily on the difference in their transition functions pi, pj and initial
state distributions ρi, ρj (Proposition 1).

Proposition 1. Let Ti = {S,A, pi, r, γ, ρi} and Tj = {S,A, pj , r, γ, ρj} be two MDPs in the task
space T . Applying a policy π on Ti and Tj , we have a function f to describe the value difference:

V π(ρi, Ti)− V π(ρj , Tj) = f(pi − pj , ρi − ρj)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof.

V π(ρi, Ti)− V π(ρj , Tj) = Es∼ρi(·)Ea∼π(·|s)Q
π(s, a, Ti)− Es∼ρj(·)Ea∼π(·|s)Q

π(s, a, Tj)

= Es∼ρi(·)Ea∼π(·|s)[Q
π(s, a, Ti)−Qπ(s, a, Tj)]

+Es∼ρi(·)Ea∼π(·|s)Q
π(s, a, Tj)− Es∼ρj(·)Ea∼π(·|s)Q

π(s, a, Tj)

= Es∼ρi(·)Ea∼π(·|s)[Q
π(s, a, Ti)−Qπ(s, a, Tj)]

+Es∼ρi(·)V
π(s, Tj)− Es∼ρj(·)V

π(s, Tj)

= Es∼ρi(·)Ea∼π(·|s)[Q
π(s, a, Ti)−Qπ(s, a, Tj)] +

∑
s

(ρi − ρj)V
π(s, Tj)

For the Q-value difference Qπ(s, a, Ti)−Qπ(s, a, Tj), we refer to the simulation lemma in (Agarwal
et al., 2019):

Qπ(Ti)−Qπ(Tj) = γ(I − γPπ(Tj))
−1(pi − pj)V

π(Ti)

where Pπ(Tj) denotes the transition matrix on state-action pairs induced by the policy π on the task
Tj , i.e., Pπ

(s,a),(s′,a′)(Tj) = pj(s
′|s, a)π(a′|s′).

Consequently, Qπ(s, a, Ti) − Qπ(s, a, Tj) is the (s, a) item in the matrix Qπ(Ti) − Qπ(Tj), and
Qπ(s, a, Ti)−Qπ(s, a, Tj) can be expressed as a function of (pi − pj).

Overall, the value difference V π(ρi, Ti) − V π(ρj , Tj) depends primarily on (pi − pj) and (ρi −
ρj).

Assume the reward function r is a sparse, binary term indicating task success at the end of
an episode. The success rate of applying a policy π to a task T can be represented as
V π(ρ) = Es0∼ρEτ∼pπ(τ |s=s0)[

∑∞
t=0 γ

trt]. Here, our success rate V π(ρj , Tj) will naturally be
high, because the source policy π is already an expert policy for the source task Tj . When the
success rate of applying the source policy to target task Ti is also high, i.e., V π(ρi, Ti) is close to
V π(ρj , Tj), then Proposition 1 implies that the transition functions pi and pj might be similar, as are
the initial state distributions ρi and ρj . Consequently, if a source policy can achieve high zero-shot
transfer success on a target task, the target task might have a similar transition function and initial
state distribution as the source task. Hence, we hypothesize that fine-tuning the source policy on the
target task will be efficient.

However, it is important to note that achieving a similarly high success rate on two tasks with a single
policy does not necessarily indicate similar dynamics between the tasks. Proposition 1 establishes
that similar dynamics and initial state distributions lead to similar expected values for a given policy,
but the reverse is not guaranteed. We use the high transfer success rate as a heuristic indicator of
similar dynamics, serving as intuitive motivation rather than strict theoretical justification.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 METHOD

Algorithm 1 Policy finetuning with Self-imitation Learning

Initialize parameter θ for policy πθ and value function Vθ with retrieved skill
Initialize replay buffer D ← ∅
Initialize episode buffer E ← ∅
for each iteration do

Collect training samples
for each step do

Execute an action st, at, rt, st+1 ∼ πθ(at|st)
Store transition E ← E ∪ {(st, at, rt)}

end for
if st+1 is terminal then

Update replay buffer
Compute returns Rt =

∑∞
k γk−trk for all t in E

D ← D ∪ {(st, at, Rt)} for all t in E
Clear episode buffer E ← ∅

end if
Update parameter θ using PPO objective
θ ← θ − η∇θLppo (Schulman et al., 2017)
Perform self-imitation learning
for m = 1 to M do

Sample a mini-batch {(s, a,R)} from D
θ ← θ − η∇θLsil

end for
end for

Algorithm 2 Continual Learning with Skill Library Expansion

Require: Prior tasks Tprior = {T1, T2, · · · , Tn}; Skill library Πprior = {π1, π2, · · · , πn}
1: while given newly coming batch of tasks T j = {T1, T2, · · · , Tk} do
2: for each task Ti do
3: Retrieve a policy πsrc from the skill library Πprior

4: Finetune πsrc to get a policy πi solving the task Ti

5: Expand the skill library, Tprior = Tprior ∪ {Ti}; Πprior = Πprior ∪ {πi}
6: end for
7: end while

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4 IMPLEMENTATION DETAIL

A.4.1 TASK FEATURE LEARNING IN SRSA

Geometry Features As shown in Fig. 3(a), we employ a PointNet-based (Qi et al., 2017) autoen-
coder EG and DG to minimize the difference between input point cloud P and reconstructed point
cloud DG(EG(P)). The autoencoder is trained using point clouds of parts from all tasks.

We follow the implementation details outlined in (Tang et al., 2024). In a large set of meshes M for
various assembly parts, each mesh mi ∈ M consists of (Vi, Ei), where V denotes the vertices and
E represents the (undirected) edges. During each training iteration, we sample a batch of meshes
B ⊂ M . For each mi ∈ B, we generate a point cloud Pi from the mesh, with each point located
on the surface of mi. The point cloud Pi ghdn is passed through a PointNet encoder (Qi et al.,
2017) based on the implementation from (Mu et al., 2021) to produce a latent vector. The latent
vector zG,i is subsequently fed into a fully-convolutional decoder, following the implementation
from (Wan et al., 2023) to produce the reconstructed point cloud P ′

i .

The network is trained to minimize reconstruction loss, defined here as the Chamfer distance be-
tween Pi and P ′

i :

LCD =
1

∥Pi∥
∑
p∈Pi

min
q∈Qi

∥p− q∥22 +
1

∥Qi∥
∑
q∈Qi

min
p∈Pi

∥p− q∥22

Across 100 two-parts assembly tasks, we utilize a total of 200 meshes for the plug and socket
components with |M | = 200. Each sampled point cloud Pi contains 2000 points and the dimension
of learned embedding is |zG,i| = 32. The autoencoder is trained for a total of 23,000 epochs, using
a batch size of 64 and a learning rate of 0.001.

To represent the feature of one task, we gather the geometry features for the meshes of plug, socket,
and the assembled state of the plug inserted in the socket. Therefore, the geometry feature of one
task is concatenation of these three features, resulting in a dismensionality of, |zG,i| = 96.

Dynamics Features We build upon prior work in context-based meta-RL (Rakelly et al., 2019;
Lee et al., 2020) to utilize a context encoder ED that produces a latent vector from transition seg-
ments τt−1 = {st−h, at−h, st−h+1, at−h+1, · · · , st−1, at−1}, as shown in Fig. 3(b). We sample the
transition segments from disassembly trajectories, compute the latent vector ED(τt−1), and feed the
latent vector from transition segments to a forward dynamics model DD across all tasks. For any
transition samples from any task, the forward dynamics model is trained to predict the next state
s′t+1 = DD(ED(τt−1), st, at) to be close to the ground-truth next state st+1.

As described in (Tang et al., 2024), for each task, we generate disassembly paths by initializing the
robot hand to grasp the plug in the assembled state, where the plug is fully inserted in the socket.
Using a low-level controller, we lift the plug from the socket and move it to a randomized pose.
We repeat this process until collecting 100 successful disassembly trajectories. We store the state
of end-effector position and the action of moving end-effector at each timestep in the disassembly
trajectories. Each task has a total of 100 disassembly trajectories, with each trajectory spanning 128
timesteps.

We sample the transition segment τt−1 = {st−h, at−h, st−h+1, at−h+1, · · · , st−1, at−1} for h = 10
timesteps. The context encoder is modeled as multi-layer perceptrons (MLPs) with 3 hidden lay-
ers of sizes (256, 128, 64), producing a 32-dimensional vector zD,t. Then, the forward dynamics
model DD receives the context vector as an additional input, where the input consists of a concate-
nation of state st, action at, and context vector zD,t. The forward dynamics model comprises four
fully-connected layers of sizes (200, 200, 200, 200) with ReLU activation functions, outputing the
prediction of the next state s′t+1. The objective is to minimize L2-distance between the ground-truth
next state st+1 and the predicted next state s′t+1. For the entire set of disassembly trajectories across
100 tasks, we train the encoder and forward dynamics model for 200 epochs, using a batch size of
128 and a learning rate of 0.001.

Expert Action Features We utilize the disassembly trajectories as reverse expert demonstrations
for assembly tasks and aim to capture expert action information in an embedding space. As illus-
trated in Fig. 3(c), we sample a transition segment τt−1 from the disassembly trajectories, map it

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

to the action embedding EA(τt−1), and reconstruct the action sequence {at−h, at−h+1, · · · , at−1}
using decoder DA. We train both the encoder and decoder with transition segments from all tasks.
This embedding effectively extracts the strategy for solving the task by reconstructing the expert
actions from the disassembly trajectories.

We sample the transition segment τt−1 = {st−h, at−h, st−h+1, at−h+1, · · · , st−1, at−1} for 10
timesteps (i.e., h = 10). The action encoder EA is modeled as multi-layer perceptrons (MLPs)
with three hidden layers of sizes (256, 128, 64), producing a 32-dimensional vector zA,t. The
action decoder DA is an MLP with four hidden layers of sizes (200, 200, 200, 200) that pre-
dicts the sequence of expert actions {a′t−h, a

′
t−h+1, · · · , a′t−1}. We minimize the L2-distance

between input action sequence {at−h, at−h+1, · · · , at−1} and the reconstructed action sequence
{a′t−h, a

′
t−h+1, · · · , a′t−1}. The encoder and decoder are trained for 200 epochs, using a batch size

of 128 and a learning rate of 0.001.

A.4.2 TRANSFER SUCCESS PREDICTION IN SRSA

We learn the function F (πsrc, Ttrg) to predict the transfer success. For any pair of source policy
and target task in the skill library, we execute the source policy in the target task for 1000 episodes
and average the success rate to obtain the ground-truth label for F . For any task T in the prior task
set, we sample the point cloud Pi of plug, socket and assembly state to extract the geometry feature
zG,i with a dimension of 96. Then we sample transition segment τi to obtain the dynamics feature
zD,i with a dimension of 32 and action feature zA,i with a dimension of 32. By concatenating
these features, we create a task feature zi with a dimension of 160 for the sampled point clouds and
transition segment. With both the task features zsrc,i and ztrg,i for source and target tasks, we feed
them into an MLP with one hidden layer of size 128 to predict the transfer success. We optimize
the MLP while jointly finetuning the feature encoders EG, ED, and EA to learn the transfer success
prediction. The training is conducted for 50 epochs across all source-target pairs in the prior task
set.

A.4.3 BASELINES OF SKILL RETRIEVAL APPROACHES

Signature : path signature can represent trajectories as a collection of path integrals and also
quantify distances between trajectories. Inspired by (Tang et al., 2024), we find the closest path
signature for skill retrieval. For each disassembly trajectory τk on the target task T , we calculate the
path signature zk and search all disassembly trajectories over all source tasks to identify a source
disassembly trajectory τj with the path signature zj closest to zk. The source disassembly trajectory
τj belongs to a source task in Tprior, and thus we match the target trajectory τk to this source task,
denoted as Tk. We count the times that one source task Tsrc ∈ Tprior is assigned as the source
task for a target disassembly trajectory, C(Tsrc) =

∑n
k=1[Tk = Tsrc]. Then we retrieve the source

policy for one source task with the highest count, i.e. argmaxTsrc
C(Tsrc)

Behavior : Inspired by (Du et al., 2023), we employ state-action pairs on disassembly trajectories
across all tasks and learn a state-action embedding with a VAE for skill retrieval. For any state-
action pair (sk, ak) on the target task, we infer the embedding zsa,k and look for one state-action
pair (sj , aj) from the disassembly trajectories in source tasks with the embedding zsa,j closest
to zsa,k. The target state-action pair (sk, ak) is matched to one source task, which (sj , aj) be-
longs to. We denote this source task as Tk. Similar to the method above, we count the times
that one source task Tsrc ∈ Tprior is assigned as the source task for a target state-action pair,
C(Tsrc) =

∑n
k=1[Tk = Tsrc]. Then we retrieve the source policy for one source task with the high-

est count, i.e. argmaxTsrc
C(Tsrc)

Forward : As explained above, we learn the latent vector for transition sequence τ on disassembly
trajectories. In order to retrieve one source task according to the distances between task embeddings,
we average embedding for all transition sequences from the same task to obtain the task embedding,
similar to (Guo et al., 2022). We retrieve the policy for the source task that has the closest task
embedding.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Hyperparameters Value
Policy Network Architecture [256, 128, 64]
Value Function Architecture [256, 128, 64]

LSTM network size 256
Horizon length (T) 32
Adam learning rate 1e-4
Discount factor (γ) 0.99
GAE parameter (λ) 0.95
Entropy coefficient 0.0
Critic coefficient 2
Minibatch size 8192

Minibatch epochs 8
Clipping parameter (ϵ) 0.2

LSTM network size 256
SIL update per iteration 1

SIL batch size 8192
SIL loss weight 1

SIL value loss weight (β) 0.01
Replay buffer size 105

Exponent for prioritization 0.6

Table 1: Hyperparameters in PPO and Self-imitation learning

Geometry : As explained above, we learn an autoencoder for the point clouds of the assembly
assets to minimize the reconstruction loss, as conducted in (Tang et al., 2024). We retrieve the
policy for the source task with the closest point-cloud embedding.

A.4.4 SKILL ADAPTATION IN SRSA

Following (Tang et al., 2024), we use PPO to train the stochastic policy πθ (i.e., actor) and an ap-
proximation of the value function Vθ (i.e., critic), parameterized by a neural networks with weights
θ. While the policy is stochastic following a multivariant normal distribution with the learned mean
and standard deviation, at evaluation and deployment time, the action output from well-trained pol-
icy is deterministic.

The input state for the policy network consists of the robot arm’s joint angles, the end-effector pose,
the goal end-effector pose, and the relative pose of the end effector to the goal. The state has a
dimensionality of 28.

Due to the asymmetric actor-critic strategy, the states provided to the value function include privi-
leged information not available to the policy. The states for the critic include joint velocities, end-
effector velocities, and the plug pose, resulting in an input dimensionality of 44 for the value func-
tion.

The action space consists of incremental pose targets, representing the position and orientation dif-
ferences between the current pose and the target pose. We use incremental targets instead of absolute
targets to restrict selection to a small, bounded spatial range. The action dimensionality is 6.

SRSA combines PPO with a self-imitation learning mechanism for policy fine-tuning. We maintain
a replay buffer D for transitions encountered during training, defined as D = {si, ai, Ri}. The data
samples in the buffer are prioritized based on the discounted accumulated reward.

As shown in Algorithm 1, each iteration includes one PPO update for the policy and value function,
along with a batch sampling from D to perform one self-imitation learning update. This update
aims to minimize the loss function Lsil defined in Sec. 4.2. For details on network architectures and
hyperparameters, refer to Tab. 1.

We follow prior work to use object poses rather than visual observations as input to the policy.
Incorporating vision-based observations would introduce additional challenges for zero-shot sim-
to-real transfer, as it requires a camera. In contrast, the current policy only relies on the fixed
socket pose and the robot’s proprioceptive features (including the end-effector pose), making it more
straightforward to execute the policy in real-world settings. Using visual observations or object pose

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

is orthogonal to our proposed method (i.e., SRSA is independent of the observation modality). The
idea of retrieving a relevant skill and fine-tuning the retrieved policy may also be useful if the policy
has visual observation input.

A.5 EXPERIMENTS

A.5.1 SKILL RETRIEVAL

We first replicate the specialist policy learning for 100 assembly tasks as described in (Tang et al.,
2024). Then, these 100 tasks are split into 90 prior tasks and 10 test tasks. For the 90 prior tasks, we
use the well-trained specialist policies to build the skill library.

We train the skill-retrieval method on the prior tasks and evaluate its performance on the test tasks.
In Fig. 4 in main text, 11, and 12 in Appendix, we present the test results for three different ways
of splitting the 100 tasks. Overall, SRSA demonstrates superior performance in identifying relevant
policies from the skill library, achieving a high success rate in zero-shot transfer.

Overall0.0

0.1

0.2

0.3

0.4

Tr
an

sf
er

 S
uc

ce
ss

Signature
Behavior
Forward
Geometry
SRSA

00346 00360 00388 00410 00417 00422 00426 00437 00444 004460.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

 S
uc

ce
ss

Optimal Signature Behavior Forward Geometry SRSA

Figure 11: Transfer success of retrieved skills applied to test tasks. For each of the test tasks, we
retrieve a policy from the prior skill library using 5 different approaches. For each approach, if it
involves training neural networks, we train it for 3 random seeds. Left: we illustrate the mean result
over 10 test tasks. Right: For each test task, we show the mean and standard deviation of transfer
success over 3 seeds. Overall, SRSA clearly outperforms baselines.

Overall0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
an

sf
er

 S
uc

ce
ss

Signature
Behavior
Forward
Geometry
SRSA

00004 00007 00014 00015 00016 00021 00028 00030 00032 000420.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

 S
uc

ce
ss

Optimal Signature Behavior Forward Geometry SRSA

Figure 12: Transfer success of retrieved skills applied to test tasks. For each of the test tasks, we
retrieve a policy from the prior skill library using 5 different approaches. For each approach, if it
involves training neural networks, we train it for 3 random seeds. Left: we illustrate the mean result
over 10 test tasks. Right: For each test task, we show the mean and standard deviation of transfer
success over 3 seeds. Overall, SRSA clearly outperforms baselines.

A.5.2 SKILL ADAPTATION

We show the learning curves in Fig. 5 in main text. At the end of 1000 training epochs, we record
the success rate of the learned policies on 10 test tasks. For AutoMate, the policies are learned from
scratch using PPO on the 10 test tasks. In contrast, SRSA initializes the policies with retrieved skills
and fine-tunes them using PPO combined with self-imitation learning. The retrieval mechanism is
trained on a skill library of 90 prior tasks, where the skills were pre-trained by AutoMate.

Compared to the baseline success rate of 69.4%, SRSA achieves a significantly higher success rate
of 84.7%, corresponding to an absolute improvement of 15.3 percentage points and a relative im-
provement of approximately 22.0%. By leveraging the knowledge from the skill library, SRSA also

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

obtains 3.7x lower standard deviation compared to AutoMate (Tab. 2). This advantage becomes
even more pronounced in sparse-reward scenarios, where SRSA shows an absolute improvement of
41.9 percentage points and a relative improvement of 139% in comparison with baseline. (Tab. 3).

Task ID 01029 01036 01041 01053 01079 01092 01102 01125 01129 01136 Average

AutoMate 53.4 89.0 79.1 49.1 74.3 59.4 76.4 49.6 76.0 87.3 69.4
(27.4) (7.7) (8.4) (15.3) (32.9) (13.1) (11.4) (3.2) (3.0) (4.2) (12.7)

SRSA 98.5 91.3 83.3 75.4 93.60 78.3 92.5 50.6 85.8 98.4 84.7
(0.4) (6.0) (4.4) (6.4) (3.6) (6.3) (0.5) (1.6) (4.0) (0.4) (3.4)

Table 2: Mean (standard deviation) of success rate (%) on each test task, in dense-reward
setting. We calculate the mean and standard deviation over 5 runs of different random seeds, at the
last training epoch (i.e. 1000 epochs).

Task ID 01029 01036 01041 01053 01079 01092 01102 01125 01129 01136 Average

AutoMate 61.3 37.2 14.4 0 81.7 0 1.4 9.8 55.6 39.7 30.1
(26.5) (31.4) (1.6) (0.5) (15.1) (0.5) (1.0) (2.0) (6.0) (5.4) (9.0)

SRSA 95.1 78.7 33.7 92.5 96.1 51.4 70.7 51.2 90.3 60.5 72.0
(1.1) (8.9) (6.4) (2.2) (1.7) (5.5) (2.9) (9.3) (7.2) (2.6) (4.8)

Table 3: Mean (standard deviation) of success rate (%) on each test task, in sparse-reward
setting. We calculate the mean and standard deviation over 5 runs of different random seeds, at the
last training epoch (i.e., 1000 epochs).

A.5.3 CONTINUAL LEARNING

We begin with an initial skill library containing 10 policies and expand its size by 10 policies per
round over 9 rounds, eventually reaching 100 policies. When the skill library contains fewer than 40
policies, the number of source-target task pairs from the prior task set is limited. During this phase,
we retrieve skills solely based on geometry embeddings. Once the skill library reaches 40 or more
policies, we train the transfer success prediction function F to guide skill retrieval for new tasks.

In the continual learning setting, Fig. 8 in main text and Fig. 13 in Appendix show the efficiency of
SRSA and AutoMate under two different task batch orderings. In both cases, SRSA demonstrates
significantly better sample efficiency compared to AutoMate.

Additionally, we compare SRSA and AutoMate based on the best checkpoint, measured by the
highest rewards achieved over 5 runs for each task. In our replication of AutoMate, we achieved
an average success rate of 70% across 100 assembly tasks, which is lower than the 80% reported in
the original paper. This discrepancy may be due to differences in simulator versions, asset meshes,
implementation details, and other factors.

On average, SRSA achieves a success rate of 79% in Fig. 14 and 73% in Fig. 15, for two cases of
task ordering, respectively. SRSA demonstrates a higher success rate and better sample efficiency
than the baseline AutoMate.

A.5.4 ABLATION STUDY

Fig. 16 illustrates the learning curves of different SRSA variations across 10 test tasks.

Skills retrieved based solely on geometry embeddings may face challenges during adaptation due
to dynamic differences between the source and target tasks. As a result, the learning curves of
SRSA-Geom tend to be less efficient and more unstable than SRSA.

When self-imitation learning is removed (SRSA-noSIL) from SRSA, the learning curves show in-
creased fluctuation and higher variance across runs.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.5 0.6 0.7 0.8

Success Rate

20
0

30
0

40
0

50
0

60
0

70
0

80
0

N
um

be
r o

f T
ra

in
in

g
E

po
ch

s
R

eq
ui

re
d

SRSA
AutoMate

(a)

1 2 3 4 5 6 7 8 9
Batch

0

20
0

40
0

60
0

80
0

10
00

N
um

be
r o

f E
po

ch
s

AutoMate
SRSA

(b)

Figure 13: (a) Sample efficiency of policy learning in a continual-learning setting. We report how
many training epochs are required to reach desired success rates (0.5, 0.6, 0.7, 0.8). We calculate the
mean and standard deviation of training epochs over 5 runs, and report the average over 90 tasks.(b)
Number of training epochs required for different batches. In the continual-learning scenario,
we proceed through 9 batches of new tasks for policy learning, with each batch containing 10 new
tasks. For each batch, we show the mean and standard deviation of training epochs required to reach
a success rate of 0.8. SRSA requires less number of training epochs to reach a good success rate.

00
00

4
00

00
7

00
01

4
00

01
5

00
01

6
00

02
1

00
02

8
00

03
0

00
03

2
00

04
2

00
06

2
00

07
4

00
07

7
00

07
8

00
08

1
00

08
3

00
10

3
00

11
0

00
11

7
00

13
3

00
13

8
00

14
1

00
14

3
00

16
3

00
17

5
00

18
6

00
18

7
00

19
0

00
19

2
00

21
0

00
21

1
00

21
3

00
25

5
00

25
6

00
27

1
00

29
3

00
29

6
00

30
1

00
30

8
00

31
8

00
31

9
00

32
0

00
32

9
00

34
0

00
34

5
00

34
6

00
36

0
00

38
8

00
41

0
00

41
7

00
42

2
00

42
6

00
43

7
00

44
4

00
44

6
00

47
0

00
47

1
00

48
0

00
48

6
00

49
9

00
50

6
00

51
4

00
53

7
00

55
3

00
55

9
00

58
1

00
59

7
00

61
4

00
61

5
00

63
8

00
64

8
00

64
9

00
65

2
00

65
9

00
68

1
00

68
6

00
70

0
00

70
3

00
72

6
00

73
1

00
74

1
00

75
5

00
76

8
00

78
3

00
83

1
00

85
5

00
86

0
00

86
3

01
02

6
01

02
9

01
03

6
01

04
1

01
05

3
01

07
9

01
09

2
01

10
2

01
12

5
01

12
9

01
13

2
01

13
60.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

Avg SRSA Avg AutoMate AutoMate SRSA

Figure 14: Comparison of SRSA and AutoMate success rate over 100 tasks. We replicate the
specialist policy learning in the AutoMate paper over all tasks, and run SRSA with the continual-
learning approach to train 90 specialist policies with initial skill library of 10 policies. For both
approaches, for each task, we select the best checkpoint among 5 runs with different random seeds.
We compare the success rate on all the tasks. On average, SRSA achieves a higher success rate.

01
03

6
01

04
1

01
05

3
01

07
9

01
09

2
01

10
2

01
12

5
01

12
9

01
13

2
01

13
6

00
74

1
00

75
5

00
76

8
00

78
3

00
83

1
00

85
5

00
86

0
00

86
3

01
02

6
01

02
9

00
64

8
00

64
9

00
65

2
00

65
9

00
68

1
00

68
6

00
70

0
00

70
3

00
72

6
00

73
1

00
50

6
00

51
4

00
53

7
00

55
3

00
55

9
00

58
1

00
59

7
00

61
4

00
61

5
00

63
8

00
42

2
00

42
6

00
43

7
00

44
4

00
44

6
00

47
0

00
47

1
00

48
0

00
48

6
00

49
9

00
31

9
00

32
0

00
32

9
00

34
0

00
34

5
00

34
6

00
36

0
00

38
8

00
41

0
00

41
7

00
21

1
00

21
3

00
25

5
00

25
6

00
27

1
00

29
3

00
29

6
00

30
1

00
30

8
00

31
8

00
13

8
00

14
1

00
14

3
00

16
3

00
17

5
00

18
6

00
18

7
00

19
0

00
19

2
00

21
0

00
06

2
00

07
4

00
07

7
00

07
8

00
08

1
00

08
3

00
10

3
00

11
0

00
11

7
00

13
3

00
00

4
00

00
7

00
01

4
00

01
5

00
01

6
00

02
1

00
02

8
00

03
0

00
03

2
00

04
20.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

Avg SRSA Avg AutoMate AutoMate SRSA

Figure 15: Comparison of SRSA and AutoMate success rate over 100 tasks. We replicate the
specialist policy learning in the AutoMate paper over all tasks, and run SRSA with the continual-
learning approach to train 90 specialist policies with the initial skill library of 10 policies. For both
approaches, for each task, we select the best checkpoint among 5 runs with different random seeds.
We compare the success rate on all the tasks. On average, SRSA achieves a higher success rate.

For the generalist policy, which was trained on 20 tasks from AutoMate (including tasks 01036,
01041, 01129, 01136), fine-tuning on these tasks yields strong performance since the policy was

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

already optimized for them. However, on other test tasks, the generalist policy is not as effective for
efficient policy learning compared to the skills retrieved by SRSA.

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01029

SRSA-Geom
SRSA-noSIL
SRSA-Gen
SRSA

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01036

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01041

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01053

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0
S

uc
ce

ss
01079

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01092

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01102

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01125

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01129

0
30

0
60

0
90

0

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

01136

Figure 16: Comparison for variants of SRSA with different ablated components. For each
method, we have 5 runs with different random seeds. The learning curves show mean and standard
deviation of success rate over these runs.

Fine-tuning a state-based generalist policy does not perform well because the generalist policy has
limited capacity and it cannot cover more than 20 training tasks.

Fine-tuning a vision-based generalist policy presents additional challenges, such as effectively learn-
ing a generalist policy across multiple prior tasks with high-dimensional vision observations, fine-
tuning on new tasks without forgetting prior ones, and addressing continual learning scenarios, in-

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

cluding whether to fine-tune the original generalist policy or one already fine-tuned on other tasks.
To further investigate the reviewer’s inquiry, we made an initial attempt to train a vision-based gen-
eralist policy with PPO and fine-tune it. Given 90 prior tasks, it can only reach around 10% average
success rate after training for two days. We expect such a generalist policy would perform no better
than random initialization when fine-tuned for new tasks. Vision-based RL for generalist policy on
assembly tasks is a relevantly new topic, and the development of such policies lies beyond the scope
of SRSA. We leave this direction for future research.

A.6 COMPARISON WITH GEOMETRY-BASED RETRIEVAL

During adaptation, the final performance of SRSA-geom looks close to SRSA in some cases (see
Fig. 16). However, it is statistically worse than SRSA, especially when there is a smaller number of
training epochs. To provide a more comprehensive evaluation, we run SRSA-geom and SRSA across
additional target tasks with three random seeds. The table below summarizes statistics of success
rate at different numbers of training epochs, showing that SRSA consistently achieves higher success
rates with lower variance. In industrial settings, a 3–9% difference in success rate can be significant.

Test task set 1 Test task set 2
Success rate (%) Epoch 500 Epoch 1000 Epoch 500 Epoch 1000

SRSA-geom 73.6 (± 6.9) 81.0 (±7.7) 67.7(±7.1) 71.4(±8.1)
SRSA 82.8(±4.2) 84.3(±3.4) 76.2(±3.0) 77.6(±3.5)

Geometry-based retrieval alone is not always sufficient. When tasks share similar geometry but have
different dynamics, SRSA-geom struggles to transfer as effectively as SRSA.

For example, for the target task 01092, SRSA-geom retrieves source task 00686, achieving a transfer
success rate of only 61.1%, whereas SRSA retrieves task 00213 with a higher success rate of 76.7%.
While the overall shapes of 01092 and 00686 are similar (see below), the lower part of plug in task
01092 is thinner than the upper part, and there is only a short distance to insert this lower part into
the socket. These features closely resemble task 00213, i.e., a narrow plug to be inserted a short
distance to accomplish assembly. These shared physical characteristics and similar task-solving
strategies make 00213 better suited for transfer. In assembly tasks, the dynamics of the contact
region are often more critical than overall geometry for task success. Therefore, source task 00213
works better than 00686 when transferring to the target task 01092.

(a) Assembly tasks in the first example (b) Assembly tasks in the second example

Additionally, we examine assembly tasks with identical geometry but differing physical parameters.
For instance, consider the target task 01136 with a friction value of 10.0. One source task has the
same geometry as 01136 but a significantly lower friction value of 0.5. SRSA-geom selects this
source task due to its geometric similarity; however, the corresponding source policy achieves only
88.9% transfer success on the target task, due to the friction mismatch (despite achieving a 99.3%
success rate on its original source task). In contrast, SRSA selects the source task 00213, whose
policy better aligns with the target task’s dynamics, resulting in a higher transfer success rate of
93.2%

A.7 ANALYSIS OF SOURCE POLICY SUCCESS AS INPUT FOR RETRIEVAL

The success rate of the source policy on the source task is meaningful information to represent the
source policy. To see whether it is practically beneficial for retrieval, we modify our approach. We
simply concatenate this source success rate information with the task features of source and target
tasks. We train the transfer success predictor F with these features as inputs.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

We consider three random splits between the prior task set (90 tasks) and test task set (10 tasks).
For each split, we train F on the prior task set over three random seeds. For each seed, we test the
trained function F on the test task set for retrieval. We report the mean transfer success rate of the
retrieved skills on 10 test tasks, with the standard deviation reported over three seeds. Empirically,
the source success rate as input to F only slightly improves the retrieval results.

Average transfer success (%) Test task set 1 Test task set 2 Test task set 3
SRSA 62.7 (+-5.7) 53.7 (+-5.5) 44.9 (+-2.4)

SRSA+source success rate 66.7 (+-0.3) 53.7(+-2.6) 43.7 (+-3.7)

A.8 ANALYSIS OF OUT-OF-DISTRIBUTION TEST TASKS

For out-of-distribution (OOD) tasks where no skill transfers zero-shot, SRSA may indeed struggle,
and the initialization from a retrieved skill might not help much. To tackle this, it’s essential to build
a skill library that’s as diverse as possible. When the target task falls outside the current library’s
distribution, we can use SRSA’s continual learning approach (section 4.3 & 5.4) to expand the library
with new tasks. By building a larger, more varied skill library, we increase the likelihood that this
target task will align better with tasks in the skill library.

We run experiments for target tasks with IDs 00004, 00015, 00016, 00028, 00030. These tasks
suffer from low transfer success rate given a small skill library with only 10 prior tasks. However,
when we have a larger and larger skill library, the retrieved skill has a higher transfer success rate on
the target task.

Transfer success rate (%) 00004 00015 00016 00028 00030
10-task library 15.9 6.9 0.2 12.2 39.1
50-task library 12.7 8.4 0.3 27.5 49.4
90-task library 24.2 28.4 19.3 18.1 82.6

As demonstrated, continual learning to expand the skill library is a promising step; however, gener-
alizing to OOD tasks is a longstanding challenge in robotics, and it is still an open question how to
optimally construct the curriculum that governs the expansion of the skill library.

A.9 ANALYSIS OF OTHER METRICS FOR RETRIEVAL

We acknowledge that zero-shot transfer success rate may not be a perfect proxy for retrieval. We can
consider several other possible metrics for retrieval: (1) Ground-truth success rate after adaptation
(2) Predicted success rate after adaptation (3) Predicted success rate in zero-shot manner (i.e. SRSA)
(4) Predicted dense rewards in zero-shot manner.

Option 1 is the ideal metric to identify the best skill for retrieval, as our final goal is to obtain the
highest success rate on the target task after adaptation. However, it introduces a chicken-and-egg
problem, as we cannot get this metric without fine-tuning all candidate policies on the target task.

Option 2 requires training a predictor for the success rate after adapting any source policy on any
target task. We need the training labels of the ground-truth success rate after adaptation. Unfor-
tunately, collecting this training data would require extensive computational resources. For each
source-target pair, we need at least 20 GPU hours to finish adaptation; given a skill library of 100
tasks, 200,000 GPU hours would be required to collect training data. Furthermore, it will remain
intractable as the skill library becomes larger.

Option 3 (SRSA) requires much less resources to collect training data for the predictor. We only
need 20 minutes on a GPU to evaluate one source policy on a target task. It thus requires 3,000 GPU
hours to collect training labels. We conduct an experiment to compare the performance of Option 1
and Option 3 on two test tasks. To collect experimental results for Option 1, for each test task, we
sweep all 90 source policies in our skill library. We finetune each source policy with one random
seed to adapt to the target task and identify the best success rate after adaptation. We only afford the
computational resources for two test tasks to sweep fine-tuning for Option 1. Below we report the
success rate of Option 1 and Option 3 after fine-tuning for 1500 epochs

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Success rate after adaptation (%) Test task 1036 Test task 1041
Option 3 (SRSA) 95.9 89.1

Option 1 98.3 94.0

Option 1 is the perfect but intractable metric for retrieval. The difference of success rate between the
SRSA-retrieved skill (Option 3) and the best source skill (Option 1) is less than 5% after adaptation.
Therefore, although zero-shot transfer success rate is not a perfect metric for retrieval, it is a high-
quality metric for retrieval in terms of both performance and computational efficiency.

Furthermore, we consider using dense reward information to guide retrieval (Option 4). We learn to
predict the accumulated reward rather than success rate on the target task when executing the source
policies in a zero-shot manner; then we retrieve the source policy with the highest predicted transfer
reward. In the table below, we show the performance of retrieved skills when they are applied on
the target tasks.

Test task set 1 Test task set 2
Transfer reward Transfer success (%) Transfer reward Transfer success (%)

Option 3 (SRSA) 8134 62.7 7722 53.7
Option 4 7976 54.8 7935 32.6

In the AutoMate task set, Option 3 (SRSA) yields slightly better skill retrievals, especially with
higher transfer success on the target task. However, success rate may not accurately reflect the
expected value for tasks with dense rewards. The higher transfer success rate does not mean higher
transfer reward in test task set 2. Therefore, if it is critical to prioritize the reward achieved on the
target task, using the transfer-reward predictor for retrieval is a reasonable choice. Conversely, if the
success rate on the target task is more critical (as in our assembly tasks), the transfer success would
be the preferred choice as a retrieval metric.

A.10 ANALYSIS OF DISTANCE METRICS FOR TASK FEATURES

We concatenate the features of geometry, dynamics and expert actions as the task features, and apply
some distance metrics between the vectors as the metrics for retrieval. We consider three different
ways to split the prior task set (90 tasks) and test task set (10 tasks). We consider L2 distance, L1
distance, and negative cosine similarity as distance metrics. For each test task, we retrieve the source
task with the closest task feature to the target task. However, the retrieval result is worse than SRSA
on three different test task sets.

Transfer success rate (%) L2 distance L1 distance Cosine similarity SRSA
Test task set 1 51.6 50.8 52.6 62.7
Test task set 2 47.1 49.0 46.5 53.7
Test task set 3 35.3 35.0 36.1 44.9

We jointly learn features from geometry, dynamics and expert actions to represent tasks, and pre-
dict transfer success to implicitly capture other transfer-related factors from tasks. SRSA learning
function F aims to capture additional information for transfer success prediction. Therefore, the pre-
diction function F provides a better metric to identify the source task with higher zero-shot transfer
success.

A.11 ABLATION STUDY ON POLICY INITIALIZATION AND SELF-IMITATION LEARNING

As for policy learning, AutoMate is PPO from random policy initialization, and SRSA is PPO with
self-imitation learning (SIL) after initialization with the retrieved skill. Thus, the main difference
between SRSA and AutoMate lies in (1) strong initialization from retrieval and (2) SIL. In section
6, we compared SRSA and SRSA-noSIL to show the effect of SIL. Below, we additionally com-
pare with SRSA with random initialization (SRSA-noRetr) to show the effect of initialization from
retrieval.

Comparing AutoMate with SRSA-noRetr, we see the difference between PPO and PPO+SIL when
learning a policy from scratch. Both approaches started from poor performance, but SIL has greater
learning efficiency and stability. Comparing SRSA-noRetr and SRSA, we see the difference between

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 17: Comparison for variants of SRSA with different ablated components. For each
method, we have 5 runs with different random seeds. The learning curves show mean and standard
deviation of success rate over these runs.

random initialization and initialization from retrieval. Policy retrieval provides a good start with a
reasonable success rate. As a result, SRSA more efficiently reaches higher performance on the target
task.

28

	Introduction
	Related Work
	Problem Setup
	Method
	Skill Retrieval
	Learning Task Features
	Predicting Transfer Success

	Skill Adaptation
	Continual Learning with Skill-Library Expansion

	Experiments
	Skill Retrieval
	Skill Adaptation
	Real-World Deployment
	Continual Learning

	Ablation Study
	Conclusion
	Appendix
	Robot Setup
	Motivation with Theoretical Perspective
	Method
	Implementation Detail
	Task Feature Learning in SRSA
	Transfer Success Prediction in SRSA
	Baselines of Skill Retrieval Approaches
	Skill Adaptation in SRSA

	Experiments
	Skill Retrieval
	Skill Adaptation
	Continual Learning
	Ablation Study

	blue Comparison with Geometry-based Retrieval
	blueAnalysis of Source Policy Success as Input for Retrieval
	blueAnalysis of Out-of-Distribution Test Tasks
	blueAnalysis of Other Metrics for Retrieval
	blueAnalysis of Distance Metrics for Task Features
	blueAblation Study on Policy Initialization and Self-Imitation Learning

