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Abstract

Recent high-resolution image and video diffusion models (e.g., SD3, FLUX, Sora) have
advanced generative intelligence but remain computationally expensive due to quadratic
attention and multi-step inference. In this paper, we address the challenge of computational
inefficiency in image & video generation by systematically exploiting inherent redundancy in
intermediate representations. We identify four primary types of redundancy: intra-frame,
inter-frame, motion, and step redundancy. To mitigate these, we propose OmniCache, a
unified hierarchical caching framework that employs multidimensional feature reuse: Frame
Cache, Block Cache, and Token Cache across transformer layers. These strategies enable
us to compress spatial features in the temporal layers and temporal features in the spatial
layers, significantly enhancing generation efficiency without the need for additional train-
ing. We further incorporate an orthogonal layered caching strategy to capture cross-step
redundancy. We evaluate OmniCache on state-of-the-art diffusion models for both image
and video generation, including SD3, SVD-XT, and Latte. It achieves up to 35% reduction
in inference latency on Stable Diffusion 3 (SD3), 25% on SVD-XT, and 28% on Latte, while
maintaining high visual fidelity. E]

1 Introduction

With the rising popularity of Sora, VEO (Brooks et al., [2024; [DeepMind, [2024)), generating minute-long
high-resolution videos has enabled users to bring their imagination to life. Producing long and coherent
videos is a crucial step toward Artificial General Intelligence (AGI). Sora can generate 1800 frames of 1080p
video in one run. However, as the resolution and frame rate increase, the required memory and computation
rise exponentially, greatly elevating deployment costs.

Unlike image generation, video generation must ensure spatial continuity and vivid motion. To achieve
this, methods such as Stable Video Diffusion (SVD) (Blattmann et al., [2023), VideoCrafter (Chen et al.,
2024a)), MicroCinema (Wang et al [2023) and AnimateDiff (Guo et al., 2024)) extend image diffusion models
with temporal layers to ensure temporal consistency while generating each frame. Models like Latte (Ma
et al., [2024a)) and Open-Sora (Tech, 2023)) utilize transformer-based Diffusion alternating between temporal
attention and spatial attention at each layer. Consequently, the computational burden of generating N
frames is linearly proportional to N, and doubling the video resolution quadruples the computational costs.
However, this increase in frames and resolution leads to significant informational redundancy. For instance,
as shown in Table [I} increasing frame rate from 1 FPS to 30 FPS raises bitrate threefold, while the frame
rate increases thirtyfold; similarly, raising resolution from 360p to 1080p enlarges pixel area ninefold but
bitrate only 3.55x. Thus, there exists substantial redundancy in the video generation process, and exploiting
this redundancy to accelerate video production can significantly enhance efficiency.

We categorize the inefficiencies in diffusion-based video generation into four complementary types of redun-
dancy:

1The code implementation will soon be made publicly available.
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Resolution & Frame Rate | Bit Rate (Kbps)
640% 360, 1 FPS 192
640x360, 30 FPS 976

1920x1080, 30 FPS 2048

Table 1: Approximate H.265 recommended bit rates (Kbps) for various resolutions and frame rates (Hikvi-
sion, [2024)).

e Intra-frame redundancy: Analogous to a codec’s Intra Frame Compression, each frame inherently
contains numerous repetitive patterns. By consolidating computations of similar regions within
a frame, we can reduce the number of tokens required for spatial attention, thereby increasing
computational efficiency.

o Inter-frame redundancy: Similar to a codec’s Inter Frame Compression, the areas that change be-
tween frames are actually quite limited, with a substantial amount of redundant information. Conse-
quently, codecs encode primarily the key frames, while other frames are derived using motion vectors
to transmit information. Taking advantage of inter-frame redundancy, we can significantly enhance
the generation efficiency via merging similar content across frames.

e Motion redundancy: In codecs, motion vectors are calculated on a block basis, primarily because
the motion itself is inherently sparse. By merging temporal attention computations across different
spatial positions, we can make the generation of motion more efficient.

e Step redundancy: In diffusion models, sampling cost increases with the number of denoising steps.
We propose to exploit feature similarity across adjacent steps to cache computations, thereby im-
proving denoising efficiency.

Prior studies have partially leveraged such observations. DeepCache, and Block cache Ma et al. (2023);
Wimbauer et al.| (2024]) reuse feature maps across denoising steps in U-Net architectures, while A-Dit, ToCa,
and Learning-to-Cache|Chen et al.| (2024b));|Zou et al.| (2025); Ma et al.| (2024b) extend caching to transformer-
based diffusion models. Other works explored low-resolution optical-flow-like representations (He et al.
2024) or image-to-video generation from single images (Yu et all 2024} [Ni et al., |2023|), demonstrating the
benefit of exploiting spatial and motion consistency. While effective, these approaches address only one
redundancy dimension and lack a unified mechanism to coordinate and balance computation across spatial,
temporal, and diffusion-step domains. In addition, ToMeSD (Bolya & Hoffmanl [2023) accelerates Stable
Diffusion by merging similar tokens via feature averaging, a design approach that is effective for image
models but introduces challenges when extending to video diffusion, where preserving positional consistency
across frames is critical

To address these limitations, we propose OmniCache, a unified hierarchical caching framework that removes
redundancy across multiple levels of diffusion models. As shown in Figure[I} it integrates three feature-reuse
modules—Token Cache, Frame Cache, and Block Cache, targeting intra-frame, inter-frame, and motion
redundancy, respectively. It performs merging and unmerging through caching rather than averaging, pre-
serving token order and positional consistency. E| In addition, a complementary Layered Cache captures
cross-step redundancy at the model-layer level. Together, these modules form a hierarchical coordinated
system that enables compression and efficient computation reuse without modifying the model architecture
or requiring retraining.

We formulate caching as an adaptive resource-allocation problem: Given the redundancy pattern across
spatial, temporal, and diffusion-step dimensions, determine where caching yields the largest efficiency gain
under a fixed-budget while maintaining perceptual quality. By combining lightweight similarity computa-
tion, patch-level hierarchical caching, and GPU-optimized Triton kernels, OmniCache achieves substantial
inference acceleration with minimal perceptual quality loss.

The core contributions of OmniCache are:

2Throughout this paper, “merging” and “unmerging” denote caching-based feature reuse.
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Figure 1: OmniCache reduces redundancy in a hierarchical cascade across time and space. First, it reduces
step redundancy by caching features across consecutive denoising steps. For the remaining non-cached
features, it exploits motion redundancy (repeated spatio-temporal patterns) and inter-frame redundancy
(similarity across adjacent frames). Finally, within each frame, it identifies intra-frame redundancy by
detecting repetitive tokens.

1. Redundancy-first formulation for diffusion inference: We introduce a unified perspective that characterizes
inefficiencies in diffusion-based image and video generation along four complementary redundancy axes:
intra-frame, inter-frame, motion, and denoising-step redundancy. By framing caching as an adaptive resource
allocation problem across these dimensions and model layers, we provide a principled foundation for reducing
redundant computations. Unlike prior work that targets a single redundancy type in isolation, this analysis
directly guides where and how caching is applied across the model, forming the conceptual foundation of
OmniCache

2. Unified multi-granularity hierarchical caching framework: We propose a unified caching framework that
integrates: Frame Cache, Block Cache, Token Cache, and Layered Cache, each aligned with a specific
redundancy type and architectural role. Through inference-time controls (ry, r, r¢, T', M), our approach
flexibly allocates compression across space, time, tokens, model layers to cache (caching scope), and caching
interval across denoising steps, enabling fine-grained efficiency-quality tradeoffs.

3. Structure-aware caching aligned with spatial-temporal layer roles: A central design insight of OmniCache
is that effective reuse depends on matching redundancy types to the architectural roles of layers. Specifically,
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we cache spatial information within temporal layers to exploit appearance structure while preserving motion
sparsity, and cache temporal information within spatial layers because these model appearance and are
more tolerant to moderate temporal sub-sampling. Our S2T/T2S vs. S2S/T2T experiments demonstrate
that mismatched compression leads to significant quality degradation, highlighting a structure-aware design
principle absent from prior token-merging or step-caching methods.

4. System-level design for real GPU inference acceleration. We introduce patch-wise hierarchical caching to
reduce similarity-computation overhead, layer and timestep-aware scheduling to better align reuse decisions
with GPU execution, and custom Triton kernels that efficiently fuse merge and unmerge operations. These
system-level optimizations ensure that caching translates into consistent wall-clock speedups on modern
GPU backends. We validate this design on video diffusion models like SVD-XT (UNet-based) and Latte
(Transformer-based), and image diffusion models like SD3, demonstrating consistent 25% — 35% inference
speedups with minimal impact on visual quality and motion fidelity.

2 Related Works

2.1 Diffusion Models

Diffusion models (Ho et al.,|2020;|Dhariwal & Nicholl, 2021]) have demonstrated strong generative performance
across both image and video synthesis, surpassing earlier GAN-based approaches. Early diffusion architec-
tures predominantly relied on U-Net backbones for denoising; however, convolutional networks tightly couple
positional information with feature maps, limiting scalability. Diffusion Transformers (DiT) (Peebles & Xie,
2023)), which replace U-Nets with transformer architectures, underpin recent state-of-the-art text-to-image
models such as Stable Diffusion 3 (Esser et al.), [2024) and Flux (Black Forest Labs, |2025). These models typ-
ically employ low-resolution pretraining followed by resolution-specific finetuning, but inherit the quadratic
cost of self-attention, making high-resolution generation increasingly expensive.

Stable Video Diffusion (SVD) (Blattmann et al.l [2023) extends Stable Diffusion with temporal layers for
image-to-video generation, while SV3D (Voleti et al., 2024) further adapts it for multi-view synthesis.
Latte (Ma et al.l 2024a) introduces a latent diffusion transformer for joint spatio-temporal modeling, while
Sora (Brooks et al., [2024) and Open-Sora (Techl, [2023) further demonstrate the potential of transformer-
based video diffusion. Collectively, these developments highlight the growing computational cost of modern
diffusion models.

2.2 Efficient Diffusion Inference

Prior work reduces diffusion inference cost by exploiting redundancy in intermediate representations across
denoising steps, layers, and tokens. DeepCache (Ma et al., |2023) observes that high-level semantic features
in U-Net-based diffusion models change slowly across denoising steps and can be reused to reduce compu-
tation. Subsequent methods extend this idea to transformer-based diffusion models: A-DiT (Chen et al.
2024b)) accelerates DiT models by caching feature offsets and revealing block-specific roles, while ToCa (Zou
et al., 2025) adaptively selects tokens to reuse based on temporal redundancy, error sensitivity, and layer
depth. ToMe (Bolya et al., 2023 introduces bipartite token matching to merge similar tokens in ViT, while
ToMeSD (Bolya & Hoffmanl [2023)) adapts the idea to diffusion models. While effective, these methods typ-
ically optimize reuse along a single axis (e.g., tokens, layers, or timesteps) and do not jointly coordinate
feature reuse across interacting dimensions.

In contrast, OmniCache introduces a unified, hierarchical caching framework designed for both modern image
and video diffusion models. We model redundancy across tokens, blocks, and timesteps and jointly adapt
caching decisions across layers and denoising steps. This unified design naturally scales from image to video
diffusion models.

2.3 Efficient Video Generation

CMD (Yu et al.l|2024])) proposes a content-motion latent diffusion model that encodes a video as a combination
of a content frame (like an image) and a low-dimensional motion latent representation. This approach
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enables efficient video generation, as it only requires generating a single content frame and a motion latent
to reconstruct a vivid video. LFDM (Ni et al., |2023) use a diffusion network to predict optical flow to warp
a user-provided image for video generation.

ToCa (Zou et all 2025) and Learning-to-Cache (Ma et al. [2024b) focus on local reuse decisions within
diffusion transformers: ToCa selects tokens to cache based on similarity and noise sensitivity, while Learning-
to-Cache learns a timestep-dependent routing policy to cache entire transformer layers. Several video-
specific inference accelerators further exploit spatio-temporal redundancy, including VidToMe (Li et al.
2024)), which applies token merging for video editing scenarios, and BlockDance (Zhang et al., 2025, which
reuses structurally similar spatio-temporal blocks in diffusion transformers. While effective, these approaches
typically operate along a single redundancy axis and are tailored to specific architectural settings.

In contrast, OmniCache formulates caching as a global, hierarchical resource-allocation problem that coor-
dinates reuse across multiple axes, including frame, block, token, and denoising-step-level redundancy. By
integrating these mechanisms into a unified, budget-constrained inference-time framework, OmniCache en-
ables flexible efficiency—quality tradeoffs across video diffusion models without requiring training or learned
routing policies.

3 Methods

3.1 Background

Diffusion Models. Diffusion models generate data by iteratively denoising Gaussian noise through learned
transformations. Given a timestep ¢ € [1,T] and original data (or VAE latent) 2o € RE*H#*W for images or
xo € RVXCXHXW f51 videos, the forward process produces a noisy sample x; = /azxo + /I — aze, where
e ~N(0,1) and &, follows a predefined noise schedule.

A noise prediction network ep(x¢, ¢, t) takes the noisy latent x;, conditioning signal ¢ (e.g., text or reference
image), and timestep ¢, and is trained to predict e by minimizing the standard denoising objective (Ho et al.,
2020), E[[le — eg(zs, ¢, t)13]-

During inference, sampling starts from Gaussian noise xp and iteratively applies a solver to obtain xy. For

DDPM-style sampling (Ho et al.;2020), the update can be written as x;_1 = \/% (xt - \/15%76”69(33,5, ¢, t)) +

oz, with z ~ N(0, 7). While modern solvers (Song et all, 2020} [Lu et all, [2022} 2025} [Karras et al.| [2022)
vary in formulation, they all depend on repeated evaluations of ey across timesteps.

Unlike image diffusion, video diffusion must additionally preserve frame-to-frame coherence. To balance spa-
tial detail and temporal consistency, modern video diffusion models alternate spatial and temporal attention
within U-Net or transformer blocks, capturing motion without incurring prohibitively large attention costs.

Token Merge and Unmerge. Token Merging (ToMe) (Bolya et al., [2023)) improves Vision Transformer
efficiency by merging redundant tokens via bipartite similarity matching. For diffusion models, where every
spatial position must estimate noise, ToMeSD (Bolya & Hoffmanl |2023)) adapts this idea by inserting merge
and unmerge operations around attention and feed-forward layers to reduce intermediate computation while
preserving feature-map resolution.

ToMeSD partitions tokens into source and destination sets, matches similar pairs based on cosine similarity,
and merges selected tokens via feature averaging. During unmerging, the averaged features are broadcast
back to the original token positions. While effective for image diffusion, this averaging-based merge reorders
sequence elements and disrupts order-sensitive positional encodings (e.g., RoPE), and the unmerge operation
lacks explicit positional consistency, limiting its applicability to modern video diffusion models.

To address these limitations, we introduce Token Cache, which also uses bipartite matching to identify
redundant tokens but avoids averaging. Instead, Token Cache deterministically retains one token and discards
its matched counterpart, preserving sequence order. During unmerging, positionally consistent features
are reused from previous denoising steps, leveraging step redundancy to maintain spatial coherence while
reducing redundant computation.
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Frame: Block: Token:
1. Each section 1. Divide into sections 1. Divide into sections
contains 2 frames. of 2x2. of 2x2 per frame.

2. Splitframes / blocks / tokens into two groups:
: Randomly select 1 from each section.
:Therest.

g O

3. Compute similarities 4. Choose the r most 5. Finish merging.
between two groups. similar pairs.

5. Merge to

Figure 3: Illustration of OmniCache’s Frame Cache, Block Cache, and Token Cache operations. We designed
three dimensions of merge operations for modern video diffusion models to more flexibly reduce feature
redundancy and enhance efficiency.

3.2 OmniCache

We present OmniCache, a unified hierarchical caching framework that removes redundancy across multiple
levels of diffusion models. As shown in Figure [1} it integrates Token Cache, Frame Cache, and Block Cache
to address intra-frame, inter-frame, and motion redundancy, respectively, together with a complementary
Layered Cache for cross-step reuse. All cache modules follow a shared design principle: reuse intermediate
features where redundancy is high and approximation tolerance is large under an explicit inference-time
budget. Rather than applying caching decisions independently, OmniCache formulates feature reuse as
a hierarchical resource-allocation problem across multiple axes, including space, time, tokens, layers, and
denoising steps, enabling coordinated computation reuse that improves efficiency while preserving perceptual
quality, without modifying the model architecture or requiring retraining.
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3.2.1 Motion Redundancy and Block Cache

In video diffusion models, motion features are typically extracted by dedicated temporal transformer layers.
For an input feature map of dimensions (B, T, C, H, W), we reshape it to (B*H*W, T, C) to compute
temporal features. This reshaping allows us to calculate temporal relationships across T frames at each
H and W coordinate of the video. We refer to this sequence of 1*1*T attention input as a block. We
believe that a significant portion of motion in a video is repetitive, such as background shifts due to camera
movement or rigid body motion. This redundancy is why codecs like H.265 use block-wise motion vectors
to encode movement across entire regions. Therefore, within the temporal transformer’s input blocks, there
is substantial potential for computation aggregation.

We cannot directly use ToMeSD’s method here, as it only calculates similarity and merges tokens within a
single image. However, inspired by its efficient bipartite graph matching to find the closest edges, we can
apply a similar approach to compute similarity between blocks for Block Cache.

To calculate the similarity between blocks, the simplest method is to concatenate the features of all T
elements in a block. As shown in Figure 3] we transform the input features to (B, H*W, TxC), isolating
these HxW blocks, each containing T*C features. Following ToMeSD, we randomly select one element from a
2x2 block as the source block, with the remaining elements serving as destination blocks. We then compute
the similarity between the source and destination blocks by multiplying the source vector by the transpose of
the destination vector. Instead of averaging similar blocks, we skip the r, most similar src blocks during the
merging process and reuse the cached features from the previous denoising step to reconstruct the features
in the current step during unmerging. This strategy effectively reduces motion redundancy while preserving
positional consistency.

3.2.2 Inter-frame redundancy and Frame Cache

As we know, adjacent frames in a video often contain very close content, such as a static background or
minor motion differences. In works like Ni et al.| (2023), the warp method is used to efficiently generate
videos based on overlapping images. This inspires us to consider whether merging some similar feature maps
in the spatial layer during the generation process, allowing them to share computation, could take advantage
of this characteristic of videos.

Again, we utilize the bipartite graph matching algorithm to find edges between closest spatial content between
frames for Frame Cache. For an input feature map of dimensions (B, T, H, W, C), we reshape it to (B, T,
H*+WxC) to concatenate all features of each frame as the feature of that frame. In this case, we divide these
T frames into src and destination dst sets. To balance randomness and uniformity, we select one frame
between every two adjacent frames to enter the dst frame set, and then select the 7y most similar frames
from the src frames. Similar to Block Cache, the most similar r¢ frames from src set are skipped, and the
cached features from the previous denoising step are reused.

A direct concern is whether this approach reduces the frame rate of video generation. In fact, our computation
in the motion layers still uses the original frame rate input, only merging some similar feature map calculations
in the spatial layers. The independent motion relationships generated in the motion layers at the original
frame rate can still ensure the richness of frame-to-frame transitions in the generated video. Therefore, the
similar frames averaged in the spatial layer will regain diversity after being processed in the motion layer.

3.2.3 Intra-frame redundancy and Token Cache

Despite performing Frame Cache, there remains considerable redundancy among tokens within each frame.
For instance, in two similar frames depicting the sky and the beach, there will still be substantial spatial
redundancy after Frame Cache. Therefore, we apply Token Cache to each frame before entering the spatial
layers.

The input to Token Cache is the feature map generated from Frame Cache, but this leads to a reduced frame
rate for video generation where the generated video has fewer motions. To address this, we first calculate the
similarity between all frames without merging the similar ones, then split them into merged and unmerged
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Figure 4: Illustration of Hierarchical Caching

feature maps. For merged feature maps, we identify r¢ pairs of frames and merge similar input tokens in
each pair to reduce intra-frame redundancy. The processed feature map will have the shape (B, ry*2,
H, W, C) which we reshape to (Bxry, 2+HxW, C). Within 2*H*W tokens, we select two mutually exclusive
elements from each 2x2%2 cube and merge them into H¥W-7; tokens. For unmerged feature maps, within
the H#W region of each frame, we randomly select one element from each 2%2 block as src tokens, while the
remaining elements serve as dst tokens. We then merge the r; most similar tokens. Finally, the results
from merged and unmerged feature maps are concatenated. This approach maintains the original frame rate
while merging similar tokens, minimizing temporal information loss compared to the sequential operation of
Frame Cache.

3.3 Hierarchical Caching

Hierarchical caching provides a practical mechanism to implement feature reuse at multiple spatial scales by
controlling the scope at which similarity computation and caching are applied. For Frame Cache, the input
feature map has the shape (B, T, H*WxC), which results in an excessively large dimension when computing
similarity due to the large size of the spatial content. To reduce overhead, we divide the spatial content
into multiple patches, resulting in a shape of (B, T, k, H/k, k, W/k, C) where kxk is the number of
patches, shown in Figure[d] We then permute and reshape the feature map to (Bxk*k, T, (H/k)*(W/k)*C)
for similarity computation. Using patches for Frame Cache reduces overhead by over 20x for Stable Video
Diffusion (SVD) without degrading quality or motion. Similarly, patches can be applied to Block Cache and
Token Cache, as adjacent pixels are more likely to be merged. This process reduces the overhead of Block
Cache and Token Cache by about 18x and 15X, respectively, in SVD. The usage of patches also enhances
caching performance by enabling patch-to-patch caching, which allows for more flexible and diverse caching
options across different patches between frames.

After performing caching with patches, we can increase the patch size to allow for further caching or revert
the patches back to frames for global caching. This enables a hierarchical caching strategy, where we adjust
the caching ratio and hierarchical level to optimize performance.

Implementation Efficiency To ensure that hierarchical caching translates into real wall-clock speedups,
we implement key merge and un-merge operations using custom Triton kernels. These kernels optimize
gather—scatter patterns and significantly reduce runtime overhead; detailed kernel design and profiling results
are provided in Appendix [A]

3.4 Step Redundancy and Layered Cache

Prior work such as DeepCache and A-DiT (Ma et all 2023; |(Chen et al.| 2024b) has shown that feature
distributions within individual layers evolve slowly across adjacent denoising steps, making cross-step feature
reuse effective for accelerating diffusion inference. These methods identify cacheable layers or blocks based
on observed feature similarity, and apply reuse uniformly across selected steps.

In contrast, we formulate step-level caching as a data-centric, budget-constrained scheduling problem that
explicitly balances efficiency gains against quality degradation across both layers and denoising timesteps.
This formulation allows Layered Cache to complement our Frame, Block, and Token Cache within a unified
hierarchical framework.
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Specifically, for a given diffusion model, we profile each transformer or U-Net layer over a range of denoising
steps using prompts of varying length from the MS-COCO 2017 dataset. For each layer—timestep pair (I,t),
we measure (i) the average execution latency and (ii) the resulting quality degradation when caching is
applied at that location, quantified using perceptual metrics such as FID, Inception Score, or FVD. We then

. . . _Aquality(l,t)
assign each ([,t) pair a weight w4+ = Tiencoi

Tatency (L) which represents the quality loss incurred per unit of
saved computation.

Given a user-defined target speedup s, and cache interval T, we construct an initial cache schedule by
greedily selecting layer-timestep pairs with the lowest w(; 4), i.e., those that offer the most favorable tradeoff
between efficiency and quality. This procedure can be interpreted as a knapsack-style approximation that
prioritizes cache placements with high benefit-to-cost ratios. The resulting cache proposal is summarized in
Algorithm

To ensure correctness and avoid redundant computation, we further refine the initial cache schedule using the
model’s computation graph. By explicitly tracking dependencies between cached outputs across layers and
timesteps, we remove unnecessary cache operations while preserving execution order and data availability.
This dependency-aware refinement is described in Algorithm 2] with full details provided in Appendix

Algorithm 1 Cache Schedule Proposal Algorithm 2 Cache Strategy Refinement
Require: weights w , latencies, target speedup s, Require: Model graph G, CacheStrategy C
(L,t)
caching interval N 1 Preprocess: Initialize metadata for nodes
1 function GET_CACHE_ STRATEGY 2 Build Dependencies: Set child/parent relations
2 sort(w) by W) 3 Count Dependencies: Compute child_ num, par-
3 TimeSave < 1 — Si; sum < 0; 240 ent__num
4 while sum < TimeTSave do 4 Prune Redundancies: Remove unnecessary cache
5 sum <— sum + w(i][] steps . ) )
6 CacheStrategy[w[i][layer], w[i][timestep]] « 1 5 Prune Consecutive Steps: Drop identical outputs
7 Peit+1 6 Recalculate Counters: Update dependency counts
] end while 7 Align Steps: Match with parent cache intervals
9 return CacheStrategy 8 return Optimized strategy C
10 end function

Figure 5: (Left) Algorithm for generating cache schedule proposals. (Right) Refinement process for opti-
mizing cache strategies.

4 Experiments

4.1 Experimental Settings

Model Configurations. We evaluate OmniCache on representative image and video diffusion models,
including Stable-Video-Diffusion (SVD-XT) for image-to-video generation and Stable-Diffusion-3-medium
(SD3-medium) [Esser et al.| (2024) for text-to-image generation using NVIDIA A100 with 40 GB VRAM.
Similar to ToMe, we utilize these models directly with our method without training. SD3-medium employs
a Flow Matching Euler Discrete scheduler with 28 sampling steps, while SVD-XT uses an Euler Discrete
sampler with 25 steps. Unless otherwise stated, SVD generates 25 frames at 576 x 1024 resolution, and
Latte-1 T2V generates 16 frames at 512 x 512 resolution.

Evaluation and Metrics. For image-to-video evaluation, we generate 10,000 videos with SVD on UCF101
dataset and report FVD scores. For text-to-image evaluation, we generate images from 8,000 randomly
sampled MS-COCQ’14 captions and compute FID score using 20,000 real images, while CLIP score is used
to measure image-to-text alignment.

4.2 Design Choices

We investigate different caching ratios and layer selections to identify where hierarchical caching improves
efficiency without degrading quality. Across all models, early and late layers are consistently more sensitive
to feature reuse, aligning with prior observations that they encode coarse structural and fine-grained details,
respectively.
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For Stable Video Diffusion (SVD), we find that the final spatial transformer layers are particularly sensitive
to frame caching. Accordingly, we exclude the last decoder layer from Frame Cache and avoid applying
Frame or Token Cache to FFN layers, which consistently degrades visual quality. Under these constraints,
we observe a stable operating regime with caching ratios up to approximately r; < 50%, r, < 40%, and
r¢ < 50%, beyond which over-smoothing and motion artifacts begin to appear. For Latte, we exclude caching
in the first and last transformer layers and apply uniform caching ratios of 7y = 30%, ry = 40%, and r, = 20%
across the remaining layers. We further observe that applying Frame or Token Cache to FFN layers leads
to noticeable degradation, and therefore restrict caching to attention blocks only.For SD3-medium, we apply
hierarchical token caching to both attention and FFN layers, but exclude the top and bottom four transformer
blocks, which are highly sensitive to caching. This behavior aligns with observations in A-DiT (Chen et al.
2024b)), where early and late blocks play critical roles in coarse and fine feature synthesis. Across models, our
ablations suggest that conservative caching ratios (approximately 7y < 40%, r, < 30%, ry < 40%) provide a
robust quality—efficiency tradeoff, while more aggressive settings increase the risk of artifacts.

Detailed quantitative results for different ratio settings are reported in Tables [2] and related ablation tables.
Based on these findings, we recommend the above conservative regimes as default settings for practical
deployment.

4.3 Main results

Training-free improvements on state-of-the-art image and video Diffusion models. We evaluate
OmniCache on UNet-based image-to-video models (e.g., SVD) and DiT-based models for text-to-video
(Latte) and text-to-image (SD3-medium) . As shown in Figures @ and |8 OmniCache achieves nearly
lossless generation quality, while reducing inference latency by 25% on SVD, 28% on Latte and 35% on SD3.
At matched compression rates, our method consistently produces higher-quality outputs than TomeSD-based
baselines.

Method Latency and Speedup Evaluation Metrics
SDiT T LDiT (ms) Retrain FID \L CLIP T

SD3-medium 1.00 138.36 X 31.57 18.60
Omnimerge (cache) 40% 1.20 114.96 X 31.42 20.26
Omnimerge (cache) 50% 1.27 109.00 X 31.94 20.32
Omnimerge (cache) 60% 1.35 102.88 X 32.45 20.38
Layer-cache 1.75 79.00 X 31.36 20.11
Omnimerge 2.28 60.55 X 31.14 20.28
(cache)+Layer-cache

40%

Omnimerge 2.32 59.71 X 31.95 20.30
(cache)+Layer-cache

50%

Table 2: Quantitative comparison of text-to-image generation on MS-COCO02014 with SD3-medium.
DiT latency is reported in milliseconds.

Quantitative Metrics for SVD. For SVD, we adopt the best-performing configuration with r; = 50%,
ry, = 40%, and r; = 50%. As shown in Table |3 OmniCache achieves FVD scores nearly identical to the
non-caching baseline while reducing inference latency by 25 %, all in a training-free manner.

For comparison, we evaluate TomeSD using its best-performing setting with 40% token merging. While
TomeSD improves efficiency, OmniCache better preseves FVD and delivers an additional 11% speedup,
demonstrating a stronger quality-efficiency tradeoff than single-dimension token merging approaches.,,

Spatially Compressing Temporal and Temporally Compressing Spatial Layers Minimizing In-
formation Loss. As shown in Figure [1, we hypothesize that compressing the spatial dimension in the
temporal layer and the temporal dimension in the spatial layer results in less information loss. We con-
ducted experiments to test this hypothesis by swapping the positions of frame caching (caching 30% of
frames) and block caching (caching 30% of blocks). As depicted in Figure @ the results of Spatially com-
pressing Temporal layer (S2T) and Temporally compressing Spatial layer (T2S) closely resemble the original
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Method Ratio (%) | FVD | s/im |
Ground Truth 0 502.68 110
Token Merge (ToMeSD) 40 503.8 92.6
OmniCache / 503.12 82.4
Frame Cache 20 489.14 105
40 495.89 99.3
60 535.07 94.8
Token Cache 20 497.49 102
40 502.5 94.3
60 517.64 84
Block Cache 10 499.84 107
30 502.71 103
50 528.24 98.8

Table 3: Quantitative evaluation for different caching ratios for SVD.

SVD results. However, Spatially compressing the Spatial layer (S2S) and Temporally compressing the Tem-
poral layer (T2T) resulted in a noticeable decrease in frame rate, as well as the appearance of blurriness and
artifacts.

OmniCache Enables More Efficient Feature Compression. We further demonstrate the effective-
ness of OmniCache in feature compression under the S2T and T2S strategies, where Frame Cache, Block
Cache, and Token Cache jointly minimize information loss. As shown in Figure [I0] we compare our caching
operations against direct interpolation baselines at a 40% compression ratio. Frame Interpolation (FI) leads
to a significant drop in frame rate, almost to the point of stalling. Even when the temporal dimension
is compressed in the Spatial layer, direct interpolation still results in considerable information loss. Block
Interpolation (BI) yields very blurry results, with direct Spatial interpolation in the temporal layer leading
to a degraded motion fidelity due to incorrect temporal information between frames Similarly, Token Inter-
polation (TI) causes noticeable spatial blurring when compressing intra-frame content. In contrast, all three
caching methods in OmniCache yield results closely matching the original SVD. These results highlight the
advantage of caching-based reuse over direct interpolation for exploiting video redundancy efficiently.

4.4 Ablations

Analysis of Different Caching Compression Ratios. As we analyze in Table [3] the effects of frame
caching, block caching, and token caching are quite interesting. We observe that within 40% for frame
caching, 40% for token caching, and 30% for block caching, there is no decrease in the FVD scores; in fact,
there is even a slight improvement. This demonstrates the effectiveness of our method in removing video
redundancy.

Analysis of Speedup Ratios & Output Quality with Layered Caching. To analyze the effectiveness
of our Layered Caching algorithm, we set up a caching interval N = 5 and computed cache schedules for
various speedups for Stable-Diffusion-3. For baseline, we used DeepCache’s approach with caching intervals
(N = 2,3). We measured the model’s end-to-end speedup for computational efficiency while perceptual
(FID,CLIP) and Pixel-wise (LPIPS, SSIM, PSNR) for output quality by generating 2000 images using
random image-text pairs from MS-COCO 2017 dataset.

From our analysis, we can observe that for same speedups, our approach outperforms baseline’s performance.
Moreover, with increasing speedup values, the model’s output quality remains quite close to the original
model’s performance.
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Method Speedup Perceptual Pixel-wise
FID| CLIPt LPIPS| SSIM{ PSNR 1
SD3 (w/o caching) 1.000x 39.187  32.169 0.000 1.000 inf
DeepCache (int=2) 1.8928x  39.0282 - - - -
DeepCache (int=3) 2.5552x  39.6342 - - - -
Our Method 1.645x 37.546 32.096 0.329 0.634 14.801
1.811x 37.222 32.250 0.279 0.681 16.333
1.889x 36.598 32.027 0.367 0.597 13.955
1.969x 36.852 31.993 0.367 0.598 13.968
2.184x 35.353  31.676 0.363 0.596 14.680
2.348x 35.560  31.579 0.362 0.596 14.617
2.506x 35.619  31.676 0.346 0.615 15.053
2.551x 35.979  31.511 0.364 0.596 14.672
2.655x 35.991  31.207 0.374 0.584 14.626
2.778x 36.202  31.178 0.376 0.583 14.597

Table 4: Performance metrics of Stable-Diffusion-3 for different speedups. Image metrics are computed using
2000 random image-text pairs from the MS-COCO 2017 dataset.

5 Limitations

While our work focuses on training-free inference-time acceleration, the redundancy analysis underlying
OmniCache may also be beneficial for training and fine-tuning diffusion models. For example, step-reduction
techniques such as Progressive Distillation [Salimans & Ho| (2022]) could be synergistically combined with our
approach to jointly reduce the number of denoising steps and the per-step computation cost, potentially
yielding multiplicative efficiency gains.

OmniCache introduces four granular caching mechanisms: Frame Cache, Block Cache, Token Cache, and
Layered Cache, whose effectiveness depends on the choice of caching ratios and the amount of redundancy
present in the input content. In scenarios with limited redundancy, such as videos with extremely rapid,
non-repetitive motion or prompts requiring globally varying fine details at every frame, aggressive caching
may lead to over-smoothing or degraded motion fidelity. Our ablation studies identify conservative operating
regimes in which speedups increase while perceptual quality and motion coherence remain largely unchanged;
however, the cache scheduling strategy remains heuristic and does not claim global optimality. While we
formulate caching as a budget-constrained resource allocation problem guided by a principled benefit—cost
metric; reinforcement learning or black-box optimization strategies could lead to more adaptive or content-
aware scheduling strategies (e.g., learned or prompt-dependent policies) thereby further improving robustness
and performance, which we leave for future work.

6 Conclusion

In summary, OmniCache presents a unified and effective approach to addressing the computational ineffi-
ciencies of video diffusion by explicitly modeling and exploiting four complementary sources of redundancy:
intra-frame, inter-frame, motion, and denoising-step redundancy. By coordinating Frame Cache, Block
Cache, Token Cache, and Layered Cache within a hierarchical caching framework, OmniCache integrates
multiple reuse mechanisms into a single inference-time system, enabling substantial efficiency gains without
modifying model architectures or requiring retraining.

Our experimental results demonstrate the robustness and generality of OmniCache across state-of-the-art
open-source diffusion models, including SVD-XT, Latte, and SD3. In practice, OmniCache achieves training-
free inference speedups of 25% on SVD-XT, 28% on Latte, and 35% on SD3, while preserving visual quality
and motion fidelity, highlighting its practical value for scalable image and video generation.
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Appendix
A Triton Kernel Acceleration

To improve the efficiency of the merging and unmerging operations, we replace the original implementation
with custom Triton kernels. These kernels leverage fine-grained GPU parallelism and memory coalescing to
optimize the gather—scatter pattern inherent to our token permutation process. Specifically, we design block-
level parallel kernels that operate on batched token indices, performing atomic accumulation and permutation
across the spatial and temporal dimensions. By controlling tile sizes, warp scheduling, and staged memory
access, the Triton kernels achieve high throughput while avoiding redundant global memory synchronization.
This design enables direct in-GPU reduction (e.g., mean aggregation) without host round-trips, significantly
reducing latency. In our profiling, the Triton-based implementation yields substantial speedups over the
original version, demonstrating the benefit of custom kernel fusion and memory-efficient accumulation in
our caching pipeline. Additional experiments evaluating the performance of our Triton kernels compared
to PyTorch implementations on SD3-medium, across varying token group sizes in the hierarchical caching
setup, are discussed below.

A.1 Performance Evaluation of Triton Kernels

To further analyze the performance of our custom Triton kernels, we compare them against the baseline
PyTorch implementation on the SD3-medium model under varying number of token groups (1,2,4,8) con-
figurations in the hierarchical caching pipeline. Moreover, as described in Section we omitted the inital
and final 4 transformer blocks as they are sensitive to hierarchical caching which in turns impacts the gen-
erated image quality. As shown in Figure[TI] the Triton-based kernels consistently outperform the PyTorch
counterparts achieving > 2.0x speedup for merge and unmerge routines, demonstrating superior scalability
and reduced latency as the number of token groups increases.
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Figure 11: Comparison of our custom Triton kernel implementation against the PyTorch baseline on SD3-
medium under different token group sizes in hierarchical caching. The Triton kernels achieve higher through-
put and lower latency due to optimized memory access and fused operations. Average speedups for different
token groups is provided alongside the Token Group legend
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B Cache Strategy Refinement Algorithm

For completeness, we include the full pseudocode of the cache strategy refinement procedure introduced
in Section This algorithm refines the preliminary cache schedule proposed in Algorithm [1| by pruning
redundant cache steps, realigning dependencies, and optimizing the caching intervals for computational
efficiency.

Algorithm 3 Cache Strategy Refinement Algorithm

Require: Model Compute Graph G, CacheStrategy C
Preprocess:
for each node in cachelist do
Initialize metadata (children, parents, flags, counters) for the node
end for
Build Dependency Graph:
for each node do
Add child and parent relationships based on model structure
end for
Calculate Dependency Counters:
for each node do
Set child__num and parent_ num based on relationships
end for
Remove Redundant Cache Steps:
for each node in topological order do
Use flags to identify and remove unnecessary cache steps
Update flags for child nodes
end for
Remove Consecutive Cache Steps with Identical Outputs:
for each eligible node in reverse topological order do
for each pair of consecutive cache steps do
if outputs are identical then
Remove the redundant cache step
end if
end for
end for
Recalculate Dependency Counters
Align Cache Steps with Parent Dependencies:
for each node in topological order do
for each cache step not in interval do
Update to minimum parent cache step > current step
end for
end for
Return Optimized CacheStrategy ¢

This refinement process enforces structural consistency within the model’s compute graph, eliminating re-
dundant computations while maintaining temporal and dependency integrity across cached layers.

C Broader Societal Impact

Below we discuss the societal impact of OmniCache which lies in improving accessibility, sustainability, and
deployment efficiency of existing generative systems.

Energy Efficiency and Environmental Impact. By reducing inference latency by approximately 25—
35% across multiple diffusion models, OmniCache proportionally reduces energy consumption for a fixed
hardware configuration. For example, in our SVD-XT experiments, generating a 25-frame 576 x 1024 video
requires approximately 110 seconds on a single 300 W GPU in the baseline setting, corresponding to about
9.2 Wh per generation. With OmniCache, latency is reduced to 82.4 seconds, lowering energy usage to
approximately 6.9 Wh per generation, a savings of about 25%. At a scale of 1M video generations per
day, this corresponds to roughly 2.3 MWh of energy saved per day, or approximately 840 MWh annually.
Assuming a conservative grid emission factor of 0.4 tCOy/MWh, this translates to an estimated reduction
of about 336tCO5 per year. While exact values depend on hardware and energy sources, this example
illustrates the potential environmental benefit of inference-time efficiency improvements at scale.
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Accessibility and Cost Reduction. Because OmniCache is training-free and operates entirely at in-
ference time, it can be applied to pre-trained diffusion models on commodity GPUs without additional
fine-tuning. This lowers the hardware and computational barriers for individual creators, small studios,
and researchers, enabling broader access to high-quality image and video generation tools. For cloud-based
services, inference speedups translate into reduced GPU-hour consumption, which may lower operational
costs and, in turn, reduce costs passed on to end users.
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Figure 6: Performance of OmniCache on SVD. With r¢, 13, ry set to (50%, 30%, 50%), compared against
TomeSD with r;, = 656% at the same compression rate. We achieve similar performance to the original SVD
while improving inference time by 25%.

e~ Omnimerge Omnimerge Omnimerge Layer-wise Omnimerge (r=40%) Omnimerge (r=50%)
round T (r=40%) (r=50%) (r=60%) cache + Layer wise cache + Layer-wise cache

Figure 7: Visualization examples for OmniCache, i.e., hierarchical token caching (with use of token cache for
unmerging) for merge ratios (40%, 50%, 60%), layer-wise caching, and the integration of both approaches.
Prompts used to generate these images are provided in appendix
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“An epic tornado attacking above a glowing city at night.”

“A dog in astronaut suit and sunglasses floating in space.”

Figure 8: Performance of OmniCache on Latte. With 7, 1y, 7, set to (30%, 40%, 20%), compared against
ToMeSD with r; = 25% at the same compression rate. We achieve similar performance to the original Latte
while improving inference time by 28%.

Figure 9: OmniCache proposes Spatially compress temporal (S2T) and temporally compress spatial (T2S)
vs. Spatially compress temporal (S2S) and temporally compress spatial (T2T). r¢, ry, 74 are set to (30%,
30%, 0%). To ensure a fair comparison, Token Merge is not included since it can only be applied in the
spatial layer and is irrelevant to this issue. Experiments demonstrate that our proposed S2T and T2S retain
more information.
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Figure 10: Comparing Frame Cache, Block Cache (BM), and Token Cache (TM) with frame interpolation
(FT), block interpolation (BI), and token interpolation (TI). To ensure fairness, all compression ratios are
set to 40%. We conduct experiments on the image-to-video model of SVD.
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