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Abstract: Traditional methods for synthesizing 6-DoF grasp poses from 3D ob-
servations often rely on geometric heuristics, resulting in poor generalizability,
limited grasp options, and higher failure rates. Recently, data-driven methods have
been proposed that use generative models to learn the distribution of grasp poses
and generate diverse candidate poses. The main drawback of these methods is that
they fail to achieve SE(3)-equivariance, meaning that the generated grasp poses
do not transform correctly with object rotations and translations. In this paper,
we propose EquiGraspFlow, a flow-based SE(3)-equivariant 6-DoF grasp pose
generative model that can learn complex conditional distributions on the SE(3)
manifold while guaranteeing SE(3)-equivariance. Our model achieves the equiv-
ariance without relying on data augmentation, by using network architectures that
guarantee it by construction. Extensive experiments show that EquiGraspFlow
accurately learns grasp pose distribution, achieves the SE(3)-equivariance, and
significantly outperforms existing grasp pose generative models. Code is avail-
able at https://github.com/bdlim99/EquiGraspFlow.

Keywords: 6-DoF grasp pose generation, equivariance, generative models, con-
tinuous normalizing flows

1 Introduction
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Figure 1: An example of SE(3)-
equivariant grasp pose generation: the
generated grasp poses identically trans-
form with the object.

Synthesizing six degrees of freedom (DoF) grasp poses
from 3D observations of an object (e.g., surface point
cloud) is a fundamental task in robotics. Approaches
that produce a limited number of grasp poses [1, 2, 3]
carry a high risk of grasping failures, especially in con-
strained environments. For example, obstacles or kine-
matic constraints may prevent the robot from reaching
certain candidate grasp poses; therefore, the more diverse
candidates, the higher the probability of grasp success.

Earlier approaches to generate diverse grasp poses rely on
geometric heuristics to suggest multiple candidates based
on an object’s geometry [4, 5]. These methods typically identify antipodal surface points – pairs
of surface points with opposite surface normals – as the contact points of the gripper’s fingertips.
However, their reliance on antipodal points limits the diversity of the grasp poses and makes the
methods sensitive to observational noise in surface points and normals.

Recently, data-driven approaches have gained significant attention. These methods first generate
sufficiently diverse grasp poses through simulation [6], then use this data to learn the distribution of
grasp poses and train grasp pose generative models [7, 8]. The trained models not only generate di-
verse poses but can also be made robust to observational noise by employing domain randomization.
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Mousavian et al. [7] employed the Variational Autoencoder (VAE) [9] as a grasp pose generative
model, while Urain et al. [8] more recently trained an energy-based model via the denoising score
matching [10], demonstrating improved performance in learning complex grasp pose distribution.

However, the primary flaw with existing grasp pose generative models is that they do not produce
consistent grasp poses for rotated objects, leading to significant failure in some cases. An ideal
model should generate grasp poses that transform identically for rotated and translated objects, as
shown in Figure 1. Such models are considered SE(3)-equivariant. Existing methods fail to ensure
this equivariance, despite efforts to achieve it through data augmentation. Equivariant models, which
have drawn significant attention from robot learning [11, 12], provide a promising solution to this
issue, enabling robust and accurate grasp pose generation.

Our main contribution is EquiGraspFlow, a SE(3)-equivariant 6-DoF grasp pose generative model
where the equivariance is guaranteed by the network architectures, hence no data augmentation is
required. Specifically, we adopt the Continuous Normalizing Flows (CNFs) framework [13, 14, 15],
which, by utilizing time-dependent velocity fields as an infinite number of infinitesimally small
transformations, learns complex distributions more effectively than diffusion models or discrete
normalizing flows. We then formulate the necessary conditions to guarantee the SE(3)-equivariance
of grasp pose generation for CNF on SE(3) conditioned on point cloud input.

Among these conditions, a non-trivial one requiring careful consideration is SE(3)-equivariance of
the time-dependent velocity fields. Our method leverages the Vector Neurons (VNs) [16], which
is a popular choice in constructing SE(3)-equivariant point cloud networks. Although VNs have
shown remarkable success, it allows only vector variables as inputs and cannot accommodate scalar
variables such as time. This limitation makes it challenging to use VNs for constructing SE(3)-
equivariant time-dependent velocity fields. To address this, we introduce a novel equivariant lifting
layer that equips scalar variables with an equivariant vector basis, enabling the effective use of VNs
in constructing SE(3)-equivariant time-dependent velocity fields.

Through experiments conducted in both simulation and real-world environments, we have validated
that our method surpasses existing 6-DoF grasp pose generative models [7, 8]. Notably, our method
achieves superior results and consistent performance, even with changes in the object’s rotation,
without employing any augmentation strategies for equivariance. Real-world experiments validate
that our method seamlessly applies to real-world applications.

2 Related Work

Synthesizing 6-DoF grasp poses is an active research area tackled with numerous methods [17,
18, 19]. Specifically, we focus on generative model-based approaches [7, 8, 20] and methods that
guarantee equivariance [21, 22, 23], which are of particular relevance to our work. Additionally, we
present generative models that incorporate equivariance across various domains.

Generative models for grasping Mousavian et al. [7] develop 6-DOF GraspNet, a grasp pose
generative model based on VAE [9], refining the generated grasp poses using an additional data-
driven grasp evaluator. Urain et al. [8] propose a diffusion model [24] on the SE(3) manifold,
termed SE(3)-DiffusionFields, for grasp pose generation. Weng et al. [20] develop CAPGrasp, an
R3×SO(2)-equivariant grasp pose generative model under the assumption of approach-constrained
grasp. Despite these advancements, existing grasp pose generative models have not fully explored
SE(3)-equivariance; they rely on augmentation strategies or achieve only partial equivariance under
the assumption of the grasp. In contrast, our method fully ensures the SE(3)-equivariance without
relying on any assumptions or augmentation strategies.

Equivariance for grasping Zhu et al. [21, 22] incorporate SE(2)-equivariance for generating pla-
nar grasp poses from top-down image observations, achieving enhanced sample efficiency. Huang
et al. [23] construct Edge Grasp Network, an SE(3)-invariant grasp quality function, resulting in
improved grasp quality prediction performance for 6-DoF grasp poses. However, because these
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methods do not utilize generative models, they either produce only a limited set of grasp poses or
rely on geometric heuristics that lack sufficient diversity. Unlike these methods, our method employs
a generative model to produce a diverse set of grasp poses while ensuring full SE(3)-equivariance.

Equivariant Generative Models Katsman et al. [25] introduce equivariant generative models on
manifolds by applying equivariant manifold flows. Chen et al. [26] propose an SO(2)-equivariant
conditional generative model for generating 2D trajectories in Euclidean space, and Rozenberg and
Freedman [27] propose an E(3)- and permutation-equivariant conditional generative model for gen-
erating 3D graphs in Euclidean space. Additionally, Zwartsenberg et al. [28] develop a permutation-
equivariant conditional generative model for generating traffic scenes and object bounding boxes in
Euclidean space. These methods primarily focus on learning distributions either unconditional or
in Euclidean space, making them difficult to apply to SE(3)-equivariant 6-DoF grasp pose genera-
tion, which requires conditional distributions on the SE(3) manifold. To address this limitation, we
propose an SE(3)-equivariant conditional generative model on the SE(3) manifold.

3 Preliminaries: Continuous Normalizing Flows on SE(3)

As preliminaries, we introduce the Continuous Normalizing Flows (CNFs) [13, 14, 15] tailored for
SE(3) cases. We begin by defining key notations; we denote an element of SE(3) by T = (R, x),
where R ∈ SO(3) and x ∈ R3, and refer to it as a pose or grasp pose. Given a three-dimensional
vector a = (a1, a2, a3), [a] is a 3 × 3 skew symmetric matrix with entries defined as [a]12 =
−a3, [a]13 = a2, [a]23 = −a1. By decomposing flows on SE(3) into SO(3) and R3, we construct
time-dependent angular and linear velocity fields, ω : [0, 1]×SE(3) → R3 and v : [0, 1]×SE(3) →
R3, which map a time and a pose to angular and linear velocity vectors, respectively. We collectively
define these two velocity fields as a time-dependent vector field u : [0, 1]× SE(3) → R3.

Unconditional Continuous Normalizing Flows on SE(3) The CNF on SE(3) models a target
distribution q(T ) by transforming a prior distribution p0(T ) using the time-dependent angular and
linear velocity fields ωθ and vϕ where θ and ϕ are trainable parameters. This transformation is
guided by the following ordinary differential equations (ODEs)

Ṙ = [ωθ(t, T )]R, ẋ = vϕ(t, T ). (1)

It generates a flow and a probability density path pt(T ) for time t ∈ [0, 1]. Sampling from pτ (T )
involves sampling from the prior p0(T ) and transforming these initial samples along the flow by
solving the ODEs over t ∈ [0, τ ]. The parameters θ and ϕ are trained to ensure that the transformed
distribution p1(T ) matches the target distribution q(T ).

Conditional Continuous Normalizing Flows on SE(3) To model a target conditional distri-
bution q(T |c) for some condition variable c, we use a prior conditional distribution p0(T |c) and
velocity fields conditioned on c; the ODEs become

Ṙ = [ωθ(t, c, T )]R, ẋ = vϕ(t, c, T ) (2)

which lead to a conditional probability density path pt(T |c) for t ∈ [0, 1]. In our setting, the
condition variable c represents a point cloud of an object and the target conditional distribution
q(T |c) corresponds to the distribution of successful grasp poses for that object.

4 EquiGraspFlow: SE(3)-Equivariant 6-DoF Grasp Pose Generative Flows

In this section, we introduce EquiGraspFlow, which generates diverse 6-DoF grasp poses from point
cloud inputs using the conditional CNF approach while ensuring SE(3)-equivariance. Denoting a
point cloud by P = {xk ∈ R3}Kk=1, EquiGraspFlow utilizes the time-dependent conditional velocity
fields ωθ(t,P, T ), vϕ(t,P, T ) and a prior conditional distribution p0(T |P) = p0(R)p0(x|P), where
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Figure 2: Grasp pose generation process of EquiGraspFlow.
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Figure 3: Construction of the flow from
t to t +∆t using the velocity fields ωθ,
vϕ and an ODE solver.

p0(R) is uniform over SO(3) and p0(x|P) is Gaussian in
R3 with its mean located at the center of the point cloud.
As illustrated in Figure 2, the model transforms p0(T |P)
into p1(T |P) through a flow constructed from the veloc-
ity fields, as detailed in Figure 3.

We use a dataset D := {(Pi, {Tij}Mi
j=1)}Ni=1, consisting

of pairs of the point cloud Pi of the i-th object and its cor-
responding set of successful grasp poses {Tij}Mi

j=1. We
assume that each set of grasp poses is sampled from the
respective ground-truth conditional distribution q(T |Pi). The neural velocity fields ωθ and vϕ are
trained with D to ensure that the transformed conditional distribution p1(T |Pi) closely approximate
q(T |Pi). We employ a Flow Matching framework [29, 30] to train the velocity fields and Guided
Flows [31] to enhance the sample quality. Details are provided in Appendix B.2.

In the following section, we explain the incorporation of SE(3)-equivariance into EquiGraspFlow.
First, we will establish SE(3)-invariance of conditional distributions, which is essential for SE(3)-
equivariant grasp pose generation. We will then derive the necessary conditions to ensure that the
transformed conditional distribution p1(T |P) is SE(3)-invariant.

4.1 SE(3)-Invariant Conditional Distributions

We first define transformations for point clouds, grasp poses, and three-dimensional vectors. Given
an element T ′ = (R′, x′) ∈ SE(3), a point cloud P = {xk} is transformed to T ′P := {R′xk +x′},
a grasp pose T = (R, x) is transformed to T ′T = (R′R,R′x+ x′), and a three-dimensional vector
a is transformed to R′a. Next, we define SE(3)-invariance of conditional distributions:
Definition 1. A distribution on SE(3) conditioned on a point cloud, denoted by p(T |P), is SE(3)-
invariant if p(T ′T |T ′P) = p(T |P) for any T ′ ∈ SE(3).

This is a formal description, in the language of probability distributions, that leads to SE(3)-
equivariant grasp pose generation. For a transformed point cloud, equivalently transformed grasp
poses have the same conditional likelihood as before the transformation.

It is well-established mathematical fact that distributions transformed from an invariant prior via
equivariant maps remain invariant [25, 26, 27, 28, 32, 33]. However, existing works primarily focus
on distributions either in Euclidean space, unconditional, or both, making them unsuitable for grasp
pose generation, which requires conditional distributions on the SE(3) manifold. To address this,
we extend these works to model invariant conditional distributions on SE(3), thereby satisfying the
required conditions. We thus define SE(3)-equivariance of time-dependent conditional vector fields
on SE(3):
Definition 2. A time-dependent vector field on SE(3) conditioned on a point cloud, denoted by
u(t,P, T ), is SE(3)-equivariant if u(t, T ′P, T ′T ) = R′u(t,P, T ) for any T ′ = (R′, x′) ∈ SE(3).

This geometric condition is essential for modeling invariant conditional distributions via CNFs on
SE(3). Starting from an invariant prior conditional distribution, equivariant velocity fields preserve
the invariance of transformed conditional distributions over time by the following proposition.
Proposition 1. Suppose a prior conditional distribution p0(T |P) is SE(3)-invariant. If the time-
dependent angular and linear velocity fields ω, v are SE(3)-equivariant, then the transformed con-
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Figure 4: Structure of the velocity fields ωθ, vϕ and the lifting layer. The VN-DGCNN encodes
the point cloud P into a representation z consisting of 341 three-dimensional vectors. The lifting
layer uses this representation z along with the grasp pose T to lift the time variable t to a three-
dimensional vector. Finally, the VN-MLP takes as input the concatenated list of the lifted time,
representation, and grasp pose, and outputs the angular and linear velocities.

ditional distribution pt(T |P) at any time t ≥ 0, defined via the flow of ODEs Ṙ = [ω(t,P, T )]R
and ẋ = v(t,P, T ), is SE(3)-invariant.

It is trivial to show that our prior conditional distribution p0(T |P) is SE(3)-invariant. In the subse-
quent section, we propose a neural network architecture that guarantees the remaining conditions in
Proposition 1: the SE(3)-equivariance of the angular and linear velocity fields.

4.2 SE(3)-Equivariant Time-Dependent Conditional Velocity Field Networks

We separate the SE(3)-equivariance into the equivariances on R3 and SO(3). The R3-equivariance
is achieved by subtracting the point mean µ =

∑
k xk/K from P and x in T . The SO(3)-

equivariance is achieved by adopting the Vector Neuron (VN) architectures [16], which are designed
to be SO(3)-equivariant. The structure of the velocity fields is depicted in Figure 4.

However, directly using the VN architectures is not straightforward since they require lists of three-
dimensional vectors as input. Among the inputs of the time-dependent conditional velocity fields,
the point cloud P is a set of three-dimensional vectors, and the pose T can be represented as a list
of three-dimensional vectors (R1, R2, R3, x), where Ri is the i-th column vector of R. However,
the time t is a scalar variable, making its incorporation into the VN architectures challenging. To
use VNs with minimal modification, we propose an equivariant lifting layer that converts any scalar
variables into three-dimensional equivariant vectors, so that they can be concatenated to the list of
vectors while maintaining the equivariance of the VN architectures.

Consider a list of C1 scalar variables represented as a column vector s ∈ RC1×1 and list of C2 three-
dimensional vectors represented as a matrix V ∈ RC2×3 – in our case, the time variable corresponds
to the case when C1 = 1. We propose a lifting layer, a mapping flift : RC1×1×RC2×3 → RC1×3, and
consider it to be SO(3)-equivariant if it satisfies flift(s, V RT ) = flift(s, V )RT for any R ∈ SO(3).

We construct the equivariant lifting layer as flift(s, V ) = sfequi(V ) where fequi : RC2×3 → R1×3

is any equivariant mapping, i.e., fequi(V RT ) = fequi(V )RT . This implies that fequi produces an
equivariant vector from the input vectors V , and this equivariant vector is subsequently scaled by
each of the C1 scalar variables in s, resulting in list of C1 vectors. It is trivial to show that this
construction leads to the SO(3)-equivariance of flift. For fequi, we use the VN architecture [16].
Finally, with the proposed equivariant lifting layer, we can construct an equivariant neural network
for the time-dependent conditional velocity fields ωθ(t,P, T ) and vϕ(t,P, T ).

5 Experiments

5.1 Experiment Settings

Baselines We compare our model with existing grasp pose generative models, 6-DOF GraspNet
[7, 34] and SE(3)-DiffusionFields [8]. To exclusively compare the generation performance of the
generative models, we exclude the grasp evaluator used in 6-DOF GraspNet. SE(3)-DiffusionFields
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Augmentation strategy None SO(3)-aug

Object category Laptop Mug Bowl Pencil Laptop Mug Bowl Pencil

6-DOF GraspNet [7] 0.7990 0.8285 1.0072 0.5216 0.4666 0.6683 0.6550 0.4025
PoiNt-SE(3)-Dif [8] 0.7184 0.7648 0.8775 0.5530 0.6054 0.6164 0.5047 0.5846

EquiGraspFlow (Ours) 0.3579 0.4804 0.3114 0.2988 0.3417 0.4828 0.3126 0.2872

(a) Average EMD (lower values are better)

Augmentation strategy None SO(3)-aug

Object category Laptop Mug Bowl Pencil Laptop Mug Bowl Pencil

6-DOF GraspNet [7] 32.96 32.58 40.93 59.35 59.11 43.64 59.67 88.71
PoiNt-SE(3)-Dif [8] 13.03 19.14 28.87 52.33 95.65 80.98 99.87 97.85

EquiGraspFlow (Ours) 99.72 90.56 100.00 98.98 99.90 92.26 100.00 99.71

(b) Average grasp success rate (%) (higher values are better)

Table 1: EMD and grasp success rate for various objects in simulation experiments.

include two versions: SE(3)-Dif, which uses predefined object’s shape codes, and PoiNt-SE(3)-
Dif, which encodes object’s point cloud into a latent code. To compare with our model which also
encodes object’s point cloud, we choose PoiNt-SE(3)-Dif as a baseline. Since the baselines can
incorporate R3-equivariance by simply subtracting the point mean from the point cloud and adding
the mean back to the generated grasp poses, we evaluate how effectively these models can achieve
SO(3)-equivariance through data augmentation.

Dataset We utilize a dataset obtained from the Laptop, Mug, Bowl, and Pencil categories of the
ACRONYM dataset [6], comprising 175 laptops, 94 mugs, 38 bowls, and 82 pencils, each with
poses configured for grasping by Franka Panda gripper. Our objective is to train a general model
capable of grasping every type of object, so we utilize a unified dataset containing all object types to
train a single model. The objects are provided in mesh form; therefore, we uniformly sample 1024
points on the mesh surface to obtain a full point cloud. Experiments utilizing partial point clouds
are provided in Appendix C.2. For the data augmentation of the training dataset, we construct two
strategies: None denotes no augmentation, and SO(3)-aug denotes augmenting by random arbitrary
rotation in SO(3). The validation and test datasets are augmented with evenly sampled rotations
using Super-Fibonacci Spirals algorithm [35].

Evaluation Metrics The evaluation metrics we utilize are Earth Mover’s Distance (EMD) [36]
and grasp success rate. The EMD measures the distance between the distributions of the generated
and ground-truth grasp poses, defined by the minimum geodesic distance on the SE(3) manifold
required to align the samples. The grasp success rate is assessed by determining whether the Franka
Panda gripper successfully holds the object following the grasping action. Both metrics are first
averaged across the rotations for each object, and then averaged across all objects.

5.2 Simulation Experiments

We conduct two types of experiments in the Nvidia Isaac Gym simulator [37]. The first experi-
ment measures the average EMD and grasp success rate, while the second experiment assesses the
consistency of the EMD and grasp success rate with changes in the object’s rotation. In the first
experiment, the test dataset is augmented with three rotations, while in the second experiment, it is
augmented with ten rotations. To measure the grasp success rate, we generate 100 grasp poses in
the first experiment and 25 grasp poses in the second experiment. To eliminate inconsistency arising
from sampling the prior distribution in the second experiment, we fix initial samples in PoiNt-SE(3)-
Dif [8] and EquiGraspFlow, and then rotate them along with the object.

The average EMD and grasp success rate for various objects under different augmentation strategies
are presented in Table 1. The existing methods do not account for SO(3)-equivariance, leading
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Figure 6: Grasp poses generated by models
trained with the SO(3)-aug setting for rotated ob-
jects. Both the object and grasp poses are in-
versely rotated to align all scenes. Green indi-
cates successful grasps, while red indicates fail-
ures. The EMD and grasp success rate for each
scene are annotated below.

to insufficient performance with high EMD
and low grasp success rate in the None set-
ting. Conversely, EquiGraspFlow incorporates
SO(3)-equivariance, improving performance in
learning the grasp pose distribution and gen-
erating graspable poses in this setting, as evi-
denced by lower EMD and higher grasp success
rate. Even when arbitrary rotations augment the
training dataset in the SO(3)-aug setting, there
exist discrepancies in the EMD and grasp suc-
cess rate values between EquiGraspFlow and
the baselines, underscoring our method’s su-
perior performance. Notably, unlike SE(3)-
DiffusionFields, which requires additional data
to learn the signed distance function, our model
achieves superior performance without addi-
tional data or modules. Additionally, by more
accurately learning the grasp pose distribution,
our model generates more diverse grasp poses
than the baselines, as depicted in Figure 6.

Figure 5 and Figure 6 illustrate the consistency
of performance as the object rotation varies
for models trained with the SO(3)-aug setting.
Figure 5 presents the average EMD and grasp
success rate, with standard deviations indicated
by error bars. The standard deviations are cal-
culated with respect to the object rotation and
are averaged across all objects. Figure 6 illus-
trates the generated grasp poses alongside EMD
and grasp success rate values for various object
rotations, where both the object and the gener-
ated grasp poses are inversely rotated to align
all scenes. As indicated by the error bars in
Figure 5 and the variance of values in Figure
6, our model exhibits more consistent perfor-
mance compared to the baselines, attributed to
its incorporation of SO(3)-equivariance. No-
tably, our model shows zero standard deviations
in Figure 5 and maintains an identical value
regardless of the object’s rotation in Figure 6,
demonstrating the perfect equivariance of our model.

5.3 Real-World Experiments

Figure 7: The mugs and bowls used in
the real-world experiments along with
the Franka Panda robot. The right side
of the image shows the mugs and bowls
in rotated poses.

In the real-world experiments, we evaluate the grasp suc-
cess rate of the baselines and our model trained with the
SO(3)-aug setting. Two mugs and two bowls as shown
in Figure 7 are used. For the mugs, the handles are ran-
domly oriented to test grasping, and both mugs are further
rotated 90 degrees along the horizontal axis for additional
testing, indicated as (R) in Table 2. The bowls are placed
on the desk and also rotated at a certain angle along the
horizontal axis, also indicated as (R) in Table 2.

7



Object Mug 1 Mug 1 Mug 2 Mug 2 Bowl 1 Bowl 1 Bowl 2 Bowl 2 Total(R) (R) (R) (R)

6-DOF GraspNet [7] 10 / 10 4 / 10 10 / 10 5 / 10 10 / 10 2 / 10 10 / 10 3 / 10 54 / 80 (67.5%)
PoiNt-SE(3)-Dif [8] 10 / 10 9 / 10 8 / 10 9 / 10 10 / 10 10 / 10 10 / 10 10 / 10 76 / 80 (95.0%)

EquiGraspFlow (Ours) 10 / 10 9 / 10 10 / 10 9 / 10 10 / 10 10 / 10 10 / 10 10 / 10 78 / 80 (97.5%)

Table 2: Grasp success rates for various objects in real-world experiments. (R) indicates that objects
are in rotated poses.

After capturing RGB-D data of the object from multiple viewpoints, the object’s partial point clouds
are fused to create a full point cloud, which is subsequently downsampled to 1,024 points. This
data is passed through each model to generate 100 grasp poses. Following this, grasp poses that are
infeasible due to the constraints such as the manipulator’s workspace, singularities, and collisions
with the environments are excluded. From the remaining feasible grasp poses, ten grasp poses are
randomly selected to measure the success rate.

Table 2 shows the results of real-world grasping. Our model achieves performance comparable
to that in simulation, demonstrating its seamless application to real-world tasks without sim-to-
real issues. Even when using noisy real-world data, our model successfully generates grasp poses.
Additionally, our model outperforms the baselines, similar to the simulation results.

6 Conclusion

In this paper, we introduce EquiGraspFlow, an SE(3)-equivariant 6-DoF grasp pose generative
model. Our approach revolves around two key ideas: (i) constructing a framework for learning in-
variant conditional distributions on the SE(3) manifold which is essential for equivariant grasp pose
generation, and (ii) designing a novel equivariant lifting layer for our method. Unlike existing grasp
pose generative models, our model ensures SE(3)-equivariance in generating grasp poses, resulting
in improved performance and consistency. From simulation experiments, we conduct quantitative
evaluations against baselines, demonstrating the superior grasp pose generation performance of our
model. Furthermore, the consistent performance demonstrated across varying object rotations ver-
ifies the equivariance of the generated grasp poses and underscores the robustness of our method.
Additionally, real-world experiments confirm the seamless applicability of our method to real-world
scenarios, underscoring its practical relevance and effectiveness in real-world applications.

Limitations and Future Works Our model, trained on full point clouds, may struggle to generate
accurate grasp poses when robots encounter occlusions that prevent full observation of an object.
To address this issue, we conducted additional experiments on generating grasp poses from partial
observations of objects, as detailed in Appendix C.2. The results of this experiment demonstrate that,
even with partial point clouds, our method effectively generates grasp poses and outperforms the
baselines. In future work, this model could be applied in real-world experiments to generate grasp
poses in constrained environments where objects are difficult to observe from multiple viewpoints.

In the real-world experiments, we randomly selected ten grasp poses that provided statistically sim-
ilar results to the generated grasp poses. However, if the objective is to identify the most promising
grasp poses among the generated ones, one could leverage the probabilities of generated samples
calculated from the CNFs or diffusion models. Selecting grasp poses with the highest probabilities
could improve the success rate. This approach, however, has the drawback of primarily selecting
grasp poses from regions with the highest probability, leading to a reduction in diversity.

Additionally, our model, which generates grasp pose without considering obstacles, requires a
collision-checking algorithm for real-world grasping. However, by utilizing a dataset that includes
grasp poses for a target object in cluttered environments, we can develop a collision-free grasp pose
generative model without the need for additional modules. Incorporating equivariance into such a
model is a direction for future work.
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Appendix

A Proof of Proposition 1

In this section, we restate and prove Proposition 1 in Section 4.1.

Proposition 1. Suppose a prior conditional distribution p0(T |P) is SE(3)-invariant. If the time-
dependent angular and linear velocity fields ω, v are SE(3)-equivariant, then the transformed con-
ditional distribution pt(T |P) at any time t ≥ 0, defined via the flow of ODEs Ṙ = [ω(t,P, T )]R
and ẋ = v(t,P, T ), is SE(3)-invariant.

To this end, we first introduce the concept of a conditional flow derived from the time-dependent
conditional velocity fields and define SE(3)-equivariance of the conditional flow. Subsequently,
we demonstrate that SE(3)-equivariant time-dependent conditional velocity fields induce an SE(3)-
equivariant conditional flow. Finally, we prove Proposition 1 by establishing that, starting from an
SE(3)-invariant prior conditional distribution, an SE(3)-equivariant conditional flow preserves the
invariance over time.

A.1 SE(3)-Equivariant Conditional Flows

Consider a trajectory on the SE(3) manifold, starting from an initial pose T ∈ SE(3) and guided by
the time-dependent angular and linear velocity fields, ω and v, conditioned on a point cloud P . This
trajectory is called an integral curve for ω and v conditioned on P and starting at T , and is denoted by
γ : R → SE(3). By decomposing the SO(3) and R3 components such that γ(t) = (γR(t), γx(t)),
the integral curve is defined via the following ordinary differential equations (ODEs):

γ̇R(t) = [ω(t,P, γ(t))]γR(t), γ̇x(t) = v(t,P, γ(t)), γ(0) = T. (3)

A conditional flow of the velocity fields ω and v conditioned on P is defined as a mapping
f(t,P, T ) ∈ SE(3), where t ∈ R and T ∈ SE(3) represent time and the initial pose, respec-
tively. Here, f(t,P, T ) = γ(t) where γ is the integral curve for ω and v conditioned on P and
starting at T .

Now, we define the SE(3)-equivariance of a conditional flow as follows:

Definition 3. A flow on SE(3) conditioned on a point cloud, denoted by f(t,P, T ), is SE(3)-
equivariant if f(t, T ′P, T ′T ) = T ′f(t,P, T ) for any T ′ ∈ SE(3).

Next, We demonstrate that SE(3)-equivariant time-dependent conditional velocity fields induce the
SE(3)-equivariance of their conditional flow through the following Proposition:

Proposition 2. For any time-dependent conditional angular and linear velocity fields ω and v, their
conditional flow f is SE(3)-equivariant if ω and v are SE(3)-equivariant.

Proof. Consider an arbitrary point cloud P and fix initial pose T as an arbitrary element in SE(3).
Then, f(t,P, T ) = γ(t) = (γR(t), γx(t)) represents the integral curve for ω, v conditioned on P
and starting at T . The ODEs governing this integral curve are given by the same equations as (3).

For any T ′ = (R′, x′) ∈ SE(3), f(t, T ′P, T ′T ) = γ̃(t) = (γ̃R(t), γ̃x(t)) where γ̃ is the integral
curve for ω, v conditioned on T ′P and starting at T ′T . The ODEs for this integral curve are given
by:

˙̃γR(t) = [ω(t, T ′P, γ̃(t))]γ̃R(t), ˙̃γx(t) = v(t, T ′P, γ̃(t)), γ̃(0) = T ′T . (4)

Now, consider an integral curve γ̂ defined as γ̂(t) = (γ̂R(t), γ̂x(t)) := (R′γR(t), R
′γx(t) + x′) =

T ′(γR(t), γx(t)) = T ′γ(t) = T ′f(t,P, T ). This integral curve results from transforming the inte-
gral curve γ(t) by T ′.

To prove the SE(3)-equivariance of the conditional flow, we need to show that γ̃ and γ̂ are the same
integral curve. Specifically, we need to show that γ̃(t) = f(t, T ′P, T ′T ) = T ′f(t,P, T ) = γ̂(t).
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Noting that R[a]RT = [Ra] for any R ∈ SO(3) and a ∈ R3, we analyze ˙̂γR(t) as follows:

˙̂γR(t) =
d

dt
(R′γR(t))

= R′γ̇R(t)

= R′[ω(t,P, γ(t))]γR(t)

= [R′ω(t,P, γ(t))]R′γR(t)

= [ω(t, T ′P, T ′γ(t))]R′γR(t)

= [ω(t, T ′P, γ̂(t))]γ̂R(t).

(5)

Similarly, for γ̂x(t), we have:

˙̂γx(t) =
d

dt
(R′γx(t) + x′)

= R′γ̇x(t)

= R′v(t,P, γ(t))

= v(t, T ′P, T ′γ(t))

= v(t, T ′P, γ̂(t)).

(6)

Finally, note that γ̂(0) = T ′γ(0) = T ′T . Thus, γ̃(t) and γ̂(t) satisfy the same ODEs, and the
uniqueness of the solution of the ODE ensures that γ̃ and γ̂ are the same integral curve. Con-
sequently, we have f(t, T ′P, T ′T ) = T ′f(t,P, T ) for any T ′ ∈ SE(3), demonstrating that f is
SE(3)-equivariant.

A.2 SE(3)-Invariant Conditional Distributions

To demonstrate that an SE(3)-equivariant conditional flow preserves the invariance of an SE(3)-
invariant prior conditional distribution, we present the following proposition.

Proposition 3. Suppose a prior conditional distribution p0(T |P) is SE(3)-invariant. If a condi-
tional flow f is SE(3)-equivariant, then the transformed conditional distribution pt(T |P) at any
time t ≥ 0 defined via the flow is SE(3)-invariant.

Proof. To prove this proposition, we first extend Theorem 3 from [25], which involves a general
Riemannian manifold and a general group, to a conditional version.

Consider a Riemannian manifold (M, h) with a group G. Denote the action of an element g ∈ G
on M by the map Lg : M → M. The map Lg is isometric if, for any tangent vectors u and v
at any point x ∈ M, the following condition holds: h(d(Lg)x(u), d(Lg)x(v)) = h(u, v), where
d(Lg)x represents the differential of Lg at x. If Lg is isometric, then

∣∣det JLg
(x)

∣∣ = 1 for any
x ∈ M, where JLg

(x) denotes the Jacobian matrix of the map Lg evaluated at x and expressed in
local coordinates.

Let c denote a condition variable. The conditional flow at time t is represented by the map
ft,c : M → M. This flow transforms a prior conditional distribution p0(x|c) into the condi-
tional distribution pt(x|c). The likelihood of the transformed conditional distribution is given by the
following change of variables formula:

pt(x|c) = p0
(
f−1
t,c (x)

∣∣c) ∣∣∣det Jf−1
t,c

(x)
∣∣∣ . (7)

Assuming the action of g ∈ G on c is well-defined and denoted by g · c, a conditional distribution
p(x|c) is G-invariant if p(Lg(x)|g · c) = p(x|c) for any g ∈ G. The conditional flow ft,c is
G-equivariant if, ft,g·c(Lg(x)) = Lg(ft,c(x)) for any g ∈ G, i.e., ft,g·c ◦ Lg = Lg · ft,c and
L−1
g ◦ f−1

t,g·c = f−1
t,c ◦ L−1

g .

Assuming that the map Lg is isometric for any g ∈ G, we can prove Proposition 3 in a general
Riemannian manifold M and an isometric group G as follows:
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pt(Lg(x)|g · c)

= p0
(
f−1
t,g·c(Lg(x))

∣∣g · c) ∣∣∣det Jf−1
t,g·c

(Lg(x))
∣∣∣

= p0
(
Lg−1

(
f−1
t,g·c(Lg(x))

)∣∣c) ∣∣∣det Jf−1
t,g·c

(Lg(x))
∣∣∣ (invariant prior)

= p0
((
Lg−1 ◦ f−1

t,g·c ◦ Lg

)
(x)

∣∣c)∣∣∣det JLg−1

((
f−1
t,g·c ◦ Lg

)
(x)

)∣∣∣︸ ︷︷ ︸
=1

∣∣∣det Jf−1
t,g·c

(Lg(x))
∣∣∣ ∣∣det JLg (x)

∣∣︸ ︷︷ ︸
=1

= p0
((
Lg−1 ◦ f−1

t,g·c ◦ Lg

)
(x)

∣∣c)∣∣∣det JLg−1

((
f−1
t,g·c ◦ Lg

)
(x)

)
Jf−1

t,g·c
(Lg(x))JLg (x)

∣∣∣ (multiplicativity)

= p0
((
Lg−1 ◦ f−1

t,g·c ◦ Lg

)
(x)

∣∣c) ∣∣∣det JLg−1◦f−1
t,g·c◦Lg

(x)
∣∣∣ (chain rule)

= p0
((
L−1
g ◦ f−1

t,g·c ◦ Lg

)
(x)

∣∣c) ∣∣∣det JL−1
g ◦f−1

t,g·c◦Lg
(x)

∣∣∣ (Lg−1 = L−1
g )

= p0
((
f−1
t,c ◦ L−1

g ◦ Lg

)
(x)

∣∣c) ∣∣∣det Jf−1
t,c ◦L

−1
g ◦Lg

(x)
∣∣∣ (equivariant flow)

= p0
(
f−1
t,c (x)

∣∣c) ∣∣∣det Jf−1
t,c

(x)
∣∣∣

= pt(x|c).

(8)

Proposition 3 is a special case where M = SE(3), G = SE(3), c = P , and the group action of
T ′ ∈ SE(3) on T ∈ SE(3), denote by LT ′(T ) = T ′T , is the left translation map which is isometric.
Hence, Proposition 3 is proved.

We now prove Proposition 1 by utilizing Proposition 2 and Proposition 3.

Proof of Proposition 1. Since the angular and linear velocity fields ω and v are SE(3)-equivariant,
it follows from Proposition 2 that their flow f is SE(3)-equivariant. Thus, by Proposition 3, the
conditional distribution pt(T |P), defined via the flow of the velocity fields, is SE(3)-invariant.

B Implementation Details

B.1 Details for Networks

To model the time-dependent conditional velocity fields ωθ(t,P, T ) and vϕ(t,P, T ) with SO(3)-
equivariance, we employ Vector Neuron (VN) architectures [16], which are specifically designed
for SO(3)-equivariance. The structure of these velocity fields is illustrated in Figure 8.

To encode the point cloud P , we utilize the backbone of the VN-DGCNN designed for classifica-
tion tasks, up to the invariant layer, excluding batch normalization layers, and adding a 170-size
EdgeConv module at the sixth module position. A mean pooling layer is then applied to pool the
point dimension, extracting a representation z of 341 three-dimensional vectors. The grasp pose T is
reconfigured by concatenating the three rotation column vectors and the translation vector, resulting
in four three-dimensional vectors. Time t is converted into a three-dimensional vector through the
lifting layer. The VN-MLP then concatenates these list of three-dimensional vectors as input and
outputs the angular and linear velocities. The VN-MLP consists of five hidden VN-Linear layers,
each followed by VN-LeakyReLU activation with a negative slope 0.2, and one output VN-Linear
layer. The sizes of the hidden layers are (256, 256, 128, 128, 128), and the output layer size is 2,
corresponding to two three-dimensional velocity vectors.

The lifting layer uses the representation z and the grasp pose T to convert the scalar time t into a
three-dimensional vector. This process involves a VN-Linear layer with a size of 1, producing an
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Figure 8: Structure of the velocity fields and the lifting layer. The VN-DGCNN encodes the point
cloud P into a representation z consisting of 341 three-dimensional vectors. The VN-Linear layer
in the lifting layer uses this representation z along with the grasp pose T , to produce a matrix of size
1× 3. This matrix lifts the time variable t (of size 1× 1) to a three-dimensional vector. Finally, the
VN-MLP in the velocity fields takes as input the concatenated list of the lifted time, representation,
and grasp pose, and outputs the angular and linear velocities.

output matrix of size 1× 3. This output matrix is then multiplied to the time variable t (size 1× 1),
resulting in a single three-dimensional vector.

B.2 Details for Training and Sampling

Laptop Mug Bowl Pencil

training 105 54 21 50
validation 35 18 7 16

test 35 22 10 16

Table 3: Number of objects per each ob-
ject category and each dataset split.

Dataset We use a dataset comprising 175 laptops,
94 mugs, 38 bowls, and 82 pencils obtained from the
ACRONYM dataset [6]. The number of objects per
each category and each dataset split are detailed in Ta-
ble 3. For each category – laptop, mug, bowl, and pencil
– an average of 1,643, 1,124, 1,747, and 1,737 6-DoF
grasp poses are provided, respectively.

Flow Matching We employ the Flow Matching (FM) framework [29, 30] to train our CNF model.
The core element of FM involves designing the per-sample target vector field u∗

t (T |T1) and the
corresponding probability path pt(T |T1), where T1 = (R1, x1) represents a particular sample from
the target distribution q(T |P). In our approach, we separate the rotation and translation components
in u∗

t (T |T1) = (ω∗
t (R|R1), v

∗
t (x|x1)). We then define the target angular and linear velocity fields

ω∗
t (R|R1) and v∗t (x|x1) as follows:

[ω∗
t (R|R1)] =

log(RTR1)

1− t
, v∗t (x|x1) =

x1 − x

1− t
. (9)

Consequently, the training objective for EquiGraspFlow is designed as

L = Et,T1∼q(T |P),T∼pt(T |T1)

[
1

2

∥∥∥∥[ωθ(t,P, T )]− log(RTR1)

1− t

∥∥∥∥2
F

+

∥∥∥∥vϕ(t,P, T )− x1 − x

1− t

∥∥∥∥2
]

(10)

where || · ||F denotes the Frobenius norm, and T = (R, x) and T1 = (R1, x1).

One thing to note is that it might seem natural to design the vector field on the SE(3) manifold
instead of separating the rotation and translation components, similarly to how we design the angular
velocity field on the SO(3) manifold as shown in (9). However, this approach results in screw
motion-shaped paths of grasp poses, where the translation may not follow a straight line toward
the target grasp pose. In the context of our grasp pose generation task, separating the rotation and
translation and ensuring that the translation motion directly heads toward the target grasp pose is a
more intuitive and appropriate vector field formulation.

Guided Flows Guided Flows [31] is a technique that enhances the sample quality and efficiency
of conditional generative models by integrating classifier-free guidance [38] into Flow Matching
framework. This method employs a guided velocity fields during sampling, defined as a weighted
sum of unconditional and conditional velocity fields. Using an empty set ∅ as a null condition for
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the point cloud input, we define the guided angular and linear velocity fields ω̃θ and ṽϕ as follows,
utilizing the weight parameter β:

ω̃θ(t,P, T ) = (1− β)ωθ(t,∅, T ) + βωθ(t,P, T ),

ṽϕ(t,P, T ) = (1− β)vϕ(t,∅, T ) + βvϕ(t,P, T ).
(11)

When ∅ is input, the point cloud encoder outputs a list of zero vectors as z. The guided velocity
fields remain SE(3)-equivariant, as they are a linear combination of unconditional and conditional
velocity fields, both of which are SE(3)-equivariant. To train the unconditional velocity fields, we
randomly replace P with the empty set ∅ with a probability of 20% during training. For sampling,
we use β = 2 to evaluate average performance and β = 2.5 to assess the consistency of performance.

Optimizer Adam optimizer [39] with learning rate 1× 10−4 is utilized to train the baselines and
our model. L2 regularization with hyperparameter 1×10−5 is employed for training EquiGraspFlow.

Sampling The fourth-order Runge-Kutta MK method on Lie groups [40] is utilized as the ODE
solver, with 20 steps employed.

B.3 Details for Grasping Experiments

Grasping in Simulation In the simulation experiments, the gripper and object float without any
obstacles. After grasping the object, the gripper is shaken to robustly assess the success of the grasp.

Grasping in Real-World For the real-world experiments, a Franka Panda gripper is equipped with
a 7-DoF Franka Emika Panda robot, and the object is placed on a table. The object’s point cloud is
obtained using an Intel RealSense Depth Camera D435 mounted on the gripper. The depth camera
captures an RGB-D image of the scene, and the object is segmented using Language Segment-
Anything [41], which is built on the Segment Anything Model [42] and Grounding DINO [43],
resulting in a partial point cloud of the object. By combining partial point clouds from multiple
viewpoints, we reconstruct the full point cloud of the object. We then downsample the full point
cloud to a uniformly downsampled point cloud with 1,024 points using voxel downsampling.

The robot motion for grasping an object in real-world experiments is designed as follows. To prevent
collisions with the object during the movement of the gripper toward the generated grasp pose, we
first move the gripper to a pre-grasp pose. This pre-grasp pose is offset from the grasp pose by a
small distance in the −z direction in the gripper’s frame (the z-axis of the gripper’s frame represents
the direction of gripper’s palm). Next, we move the gripper to the grasp pose and execute the
grasp. Once the object is grasped, the gripper is lifted by small distance. The success of the grasp
is manually determined based on whether the object is held securely by the gripper. After each
grasping attempt, we manually reset the position and orientation of the object to its initial state.

C Additional Experiments and Results

C.1 Sampling Time

Model Sampling
time (ms)

6-DOF GraspNet [7] 41.08
PoiNt-SE(3)-Dif [8] 1666.56

EquiGraspFlow (Ours) 256.76

Table 4: Sampling times for generat-
ing 100 grasp poses from a point cloud
consisting of 1024 points.

We conduct an experiment to measure the sampling time
of the baselines and EquiGraspFlow. Each model gener-
ates 100 grasp poses from a point cloud with 1024 points.
Sampling is conducted on a single NVIDIA GeForce RTX
3090 GPU, and results are averaged over 100 experiments.

Table 4 shows the average sampling time of each model.
While 6-DOF GraspNet [7] is about six times faster than
EquiGraspFlow, its grasping performance is less-than-
desirable. On the other hand, EquiGraspFlow is not only
about six times faster but also shows better grasping performance than PoiNt-SE(3)-Dif [8].
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Augmentation strategy None SO(3)-aug

Object category Laptop Mug Bowl Pencil Laptop Mug Bowl Pencil

6-DOF GraspNet [7] 0.8778 0.8726 1.0766 0.7241 0.6012 0.7628 0.8724 0.4233
PoiNt-SE(3)-Dif [8] 0.7875 0.8892 1.0407 0.5957 0.5851 0.7186 0.4733 0.4498

EquiGraspFlow (Ours) 0.3564 0.4801 0.3204 0.2879 0.3032 0.4086 0.2675 0.2648

(a) Average EMD (lower values are better)

Augmentation strategy None SO(3)-aug

Object category Laptop Mug Bowl Pencil Laptop Mug Bowl Pencil

6-DOF GraspNet [7] 7.31 12.16 5.42 17.47 17.18 24.99 18.89 60.97
PoiNt-SE(3)-Dif [8] 14.50 20.69 12.84 34.86 87.75 50.12 95.82 97.44

EquiGraspFlow (Ours) 95.86 84.91 100.00 99.64 96.11 84.10 99.87 99.53

(b) Average grasp success rate (%) (higher values are better)

Table 5: EMD and grasp success rate of the grasp poses generated from partial point cloud.

C.2 Grasp Pose Generation from Partial Point Cloud

To evaluate the performance of grasping in scenarios where objects cannot be fully observed from
all viewpoints, we train and test the baselines and EquiGraspFlow when partial point clouds are
input. Instead of uniformly sampling points from the mesh surface, we obtain a partial point cloud
by sampling 512 points only from the mesh surface visible from a viewpoint defined by a 3D unit
vector originating from the object’s center. All grasp poses in the dataset are utilized regardless of
the viewpoint, requiring the model to generate grasp poses even for unobserved parts of the object.

The data augmentation for object rotation follows the same approach as in the full point cloud exper-
iments, utilizing either the None or SO(3)-aug strategy in the training dataset, while the validation
and test datasets utilize evenly sampled rotations using Super-Fibonacci Spirals algorithm [35]. The
viewpoint vector on S2 is randomly sampled in the training dataset, and is evenly sampled using
Fibonacci lattice algorithm [44] in the validation and test datasets. Each object in the validation and
test datasets is augmented with three rotations, and each rotated object is further augmented with
three viewpoints. The grasp success rate is measured in Nvidia Isaac Gym simulator [37] using 25
generated grasp poses.

The average Earth Mover’s Distance (EMD) and grasp success rate under different augmentation
strategies are presented in Table 5. Despite a slight performance degradation from observing only
portions of objects, our method still demonstrates strong performance, indicating its applicability in
scenarios where objects are partially observed. Additionally, similar to the full point cloud exper-
iments, EquiGraspFlow achieves lower EMD and higher grasp success rate compared to the base-
lines in both the None and SO(3)-aug settings. This demonstrates superior performance in learning
grasp pose distribution and generating graspable poses even when objects are partially observed.
Especially, EquiGraspFlow demonstrates a high grasp success rate even for mugs, which have com-
plex shapes and are challenging for generating graspable poses under partial observation. This is
attributed to the enhanced data efficiency resulting from the incorporation of SO(3)-equivariance,
which enables the model to better learn how to grasp mugs from partial observation compared to the
baselines.

C.3 Grasp Pose Generation from Full Point Cloud

C.3.1 Consistency with Respect to the Number of Rotations

We conduct additional experiments to investigate how performance consistency varies with the num-
ber of rotations. Using the same setup in the consistency experiments described in Section 5.2, we
augment the test dataset with 2, 4, 6, and 8 rotations, respectively.
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Figure 9: Average and standard deviation of EMD (lower values are better) and grasp success rate
(higher values are better) with respect to the number of rotations. The standard deviation is calcu-
lated with respect to the object’s rotation and then averaged across all objects.

Figure 9 presents an error bar plot illustrating the changes in the average and standard deviation
of EMD and grasp success rate across different numbers of rotations for each object category. As
indicated by the increasing size of the error bars, the baselines exhibit less consistency in grasp pose
distribution and grasping performance as the number of rotations increases. This suggests that the
more diverse the rotations, the less consistent the baselines are in generating grasp poses. In contrast,
EquiGraspFlow exhibits zero standard deviations in EMD values across all number of rotations,
indicating that our model generates a consistent grasp pose distribution. This consistency results
from the SO(3)-equivariance, which ensures the generation of equivariant grasp poses relative to the
object’s rotation. Although there are slight variations in the grasp success rate for EquiGraspFlow
in some cases, these are attributed to the simulator’s non-equivariance. As these deviations remain
close to zero across all rotation counts, they further underscore the robustness of our model.

C.3.2 Additional Visualizations

Figures 10 to 13 present additional visualizations of the generated grasp poses. These figures show
the generated grasp poses of a laptop, mug, bowl and pencil across ten object rotations, along with
the EMD and grasp success rate values. The object’s point cloud is rotated and input into each
model; however, in these figures, both the objects and the generated grasp poses are inversely rotated
to align all scenes. Successful and failed grasp poses are indicated in green and red, respectively.

For all object types, the grasp poses generated by EquiGraspFlow are widely distributed across vari-
ous parts of the objects, demonstrating that our model generates more diverse grasp poses compared
to the baselines. For example, while PoiNt-SE(3)-Dif tends to concentrate generated grasp poses on
specific parts of the laptop and bowl for certain object rotations, EquiGraspFlow distributes the grasp
poses evenly across the objects regardless of their rotation. Additionally, PoiNt-SE(3)-Dif struggles
to generate grasp poses that target the handle of the mug, whereas EquiGraspFlow generates grasp
poses that are evenly distributed between the handle and the body of the mug.

Furthermore, the variance in the EMD and grasp success rate values indicates that EquiGraspFlow
exhibits more consistent results across different object rotations. While the baselines show vari-
ability in grasp pose distribution and grasping performance depending on the object’s rotation, our
model maintains identical values across the ten object rotations, demonstrating the perfect equivari-
ance of our approach.
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