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ABSTRACT

Graphs are ubiquitous in social networks, chemical molecules, and financial data,
where Graph Neural Networks (GNNs) achieve superior predictive accuracy.
Graphs can be evolving, while understanding how GNN predictions respond to
the evolution provides significant insight and trust. We explore the problem of ex-
plaining evolving GNN predictions due to continuously changing edge weights.
We first propose a layer edge-based explanation to balance explanation fidelity and
interpretability, as opposed to message flow and input edge. Then we propose a
novel framework to address the challenges of axiomatic attribution and the entan-
glement of multiple computational graph paths due to continuous change of edge
weights. We first design an axiomatic attribution of the evolution of the model
prediction to message flows, then develop Shapley value to fairly map message
flow contributions to layer edges. We formulate a novel optimization problem
to find the critical layer edges based on KL-divergence minimization. Extensive
experiments on eight datasets for node classification, link prediction, and graph
classification tasks with evolving graphs demonstrate the better fidelity and inter-
pretability of the proposed method over the baseline methods.

1 INTRODUCTION

Graph neural networks (GNNs) achieve superior performance in many graph learning tasks, such
as social network modeling Kipf & Welling (2017), molecule property prediction Wu et al. (2018),
knowledge graph embedding Wang et al. (2019a), fraud detection Wang et al. (2019b), and recom-
mendation systems Ying et al. (2018). Due to the complex message calculation, aggregation, and
nonlinear update mechanisms of GNN, they are usually deep, highly nonlinear, and complex. It is
desirable to make GNN predictions transparent to humans Ying et al. (2019); Schnake et al. (2020).
For example, a user may want to know why a recommendation is made by GNNs to ensure no breach
of sensitive information (e.g., age and gender) Li et al. (2021); a GNN-based rumor or spam detector
should explain why an user account is suspicious Lai & Tan (2019).
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Figure 1: Top: The weights of the input edges
in the evolution graph change continuously. Bot-
tom: The altered weights leads to the changes
in GNNs predictions for node classification, link
prediction, and graph classification tasks.

In the real world, graphs are usually evolving, with
input edge weight continuously changing (includ-
ing addition and deletion of edges/nodes), leading
to changes in GNNs model predictions, see Figure
1. For example, in rumor detection task, as new
tweets or product reviews are posted over time, the
edge weights are also continuous changing due to
some factors such as rumor dissemination speed and
user interaction frequency. Consequently, the sus-
piciousness of an account changes accordingly. Let
G0 → G1 be any two snapshots where the source
graph G0 evolves to the destination graph G1 with
the edges weights changed continuously. Accord-
ingly, Pr(Y |G0;θ) will evolve to Pr(Y |G1;θ), and
we aim to attribute the change in Pr(Y |G;θ) to ele-
ments changed (such as input edges) in G0 → G1.
With this tool, decision-makers can understand this evolution. For example, what specific rumor
spread pattern changes lead to prediction shift and how to enhance GNN detection robustness.
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Figure 2: (a) Explanations
should have high Fidelity and
Interpretability, accurately repre-
senting the model while remaining
user-friendly. However, there is
often a trade off. (b) The Fidelity
and Interpretability of different
explanation forms.

Explanations of GNN models on evolving graphs must account
for both Interpretability Ras et al. (2018) and Fidelity Yuan et al.
(2020b). Interpretability ensures the selected key elements are
easy for users to understand, while Fidelity ensures these ele-
ments faithfully reflect shifts in model predictions. As GNNs cap-
ture complex relationships through multiple steps message pass-
ing and aggregation, the explanation elements also should reflect
such complex interaction between nodes and edges, especially
when the edge weights are changing. However, such complex
evolving interactions involve comparing many node features and
edges on the initial and destination graphs, making the explana-
tions complicated for users to understand. Thus, there is often a
trade-off between these two factors (see Figure 2 (a)). Various
GNN explanation methods have been proposed, including GN-
NExplainer Ying et al. (2019), PGExplainer Luo et al. (2020),
and FlowX Gui et al. (2023) to select important input edges, layer
edges, or message flows, respectively. We consider three types of
explanations: message flow, input edges and layer edges. For the
message flow explanations, if the GNN model with T layers, the
message flows with T+1 nodes contain the precise computational
process of GNN predictions, leading to the highest fidelity Gui
et al. (2023). However, understanding message flows requires
users to be familiar with the multi-layers information aggregation and transformation, which can
lead to cognitive overload Anderson et al. (2020) for those users unfamiliar with GNNs, even for
the GNNs model designer, especially when node degree is high, resulting in the worst Interpretabil-
ity. For the input edges explanations, the input edges are directly related to the specific graph
elements, often corresponding to real-word concepts, which users find easier to understand, offering
the highest Interpretability. However, as input edges contain fewer computational process of GNNs
predictions, they offer the worst Fidelity. For the layer edge explanations, the layer edges capture
aggregated message information and exact information used in the GNN’s calculations compared to
the input edges, leading to the higher Fidelity than input edges. Although the layer edges involve
information that has been processed through multiple layers, making it harder for users to track how
information is transformed, it is easy to understand compared with the message flow explanation,
resulting in the higher Interpretability than the message flows. Figure 2(b) illustrates the Fidelity
and Interpretability of different explanation forms using the example.

To explain the change from Pr(Y |G0;θ) to Pr(Y |G1;θ) in the dynamic graphs and achieve the
Pareto optimal Interpretability and Fidelity, we first calculate the contributions of message flows to
ensure high Fidelity. Then, we employ a mapping function to allocate these contributions to layer
edges. Finally, we select the important layer edges as explanations to ensure high Interpretability.

However, for dynamic graphs, explaining the change from Pr(Y |G0;θ) to Pr(Y |G1;θ) has several
challenges: 1) To explain the changes in predicted probability, it is necessary to understand shifts in
logits(the final GNN layer output before activation) between the G0 and G1. These logits changes
can be derived mathematically and mapped to probability shifts. However, existing methods focus
on static graphs. Although the static graphs can be considered as an evolution from an empty graph
(e.g. G1 evolving from the Gempty), these methods only explain the changes in logits between Gempty
and G1. They ignore the differences between Gempty and G0, leading to inaccurate contributions
that fail to explain the evolution of prediction probability, as shown in Figure 3(a). 2) To balance
Interpretability and Fidelity, we provide the layer edges as explanation, requiring a mapping function
to convert the message flows contributions into layer edges. Existing methods overlook the fact
that layer edges in message flows may contribute differently. The contribution of a layer edge is
influenced not only by its associated weight but also by the hidden vector of the node connected to
it. See the example in the Figure 3 (b). Fairly attributing the contributions of message flows to
the layer edges is also the key challenge. 3) To ensure the explanations should be understandable
to humans, it is important to select a small number of layer edges. The layer edges selected by the
top-K in the existing methods may not faithfully represent the model’s behavior, as demonstrated in
the case shown in the Figure 3 (c). Selecting the layer edges that provide a faithful explanation of
the model is also the challenge.
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Figure 3: Top: The steps of the existing methods select the important layer edges as the explanation on the
static graph. Middle: The challenges of using the existing methods to explain the evolution of prediction
probability. (a) The existing methods can only explain the changes in logits between Gempty and G1, but cannot
explain the changes in logits between G1 and G0. (b) Layer edges may contribute differently not equally.
(c) The top-K selection cannot faithfully explain the prediction. Bottom: The proposed method to explain
the evolution of prediction probability. (d) We calculate the contribution of message flows and ensure the
summation-to-delta property. (e) We employ Shapley value to attribute the contribution of message flows to
layer edges with the summation-to-delta property. (f) With the summation-to-delta property, we derive the KL
divergence and design the optimization problem to faithfully select the important layer edges as explanations.

To address these challenges: 1) We formula the changes in hidden vectors on G0 and G1 and ap-
ply the multipliers and chain rule of DeepLIFT to assign the changes in logits to message flows.
The contribution of message flows follow the summation-to-delta property. 2) Due to the marginal
contribution calculation, symmetry, and efficiency, the Shapley value fairly allocate the game gain.
Considering the mapping contribution of message flows to layer edges as the allocation problem, we
employ Shapley value to fairly attribute contributions to layer edges. The efficiency of the Shapley
value ensures that the contributions of layer edges also satisfy the summation-to-delta property. 3)
Based on this property, we derive the Kullback-Leibler divergence and define the objective func-
tion to map the changes in logits to the shifts in predicted probability. By solving this optimization
problem, we can select a small number of layer edges that faithfully explain the evolution of pre-
dicted probability. Extensive experiments on eight datasets for node classification, link prediction
and graph classification tasks with evolving graphs show the effectiveness of our method in explain-
ing the evolution of the predicted probability. Our methods empirically outperforms five popular,
state-of-the-art baselines across the three graph tasks.

2 PRELIMINARIES

2.1 GRAPH NEURAL NETWORKS

For node classification, consider a trained GNN with T layers that predicts the class distribution of
each node J ∈ V in a graph G = (V, E). Let eIJ denote a directed edge from node I to node J . Let
A denote the adjacency matrix of graph G. The element aIJ of A represents the weight of the edge
eIJ , and aIJ = 0 indicates that eIJ does not exist. Let N (J) denote the neighbors of node J . At
layer t (t = 1, . . . , T ), for node J , the GNN computes hidden vector ht

J using messages received
from its neighbors:

ztJ = f t
UPDATE(f

t
AGG({ht−1

J ,ht−1
I : I ∈ N (J)}),θt), (1)

ht
J = NonLinear(ztJ), (2)

where f t
AGG aggregates the messages from all neighbors, using element-wise operations, such as

sum, average, or maximum of the incoming messages. The function f t
UPDATE maps f t

AGG to ztJ with
parameters θt. For layer t ∈ {1, . . . , T − 1}, ReLU is used as the nonlinear activation function. At
the input layer, h0

J is the node feature vector xJ . At layer T , the logits are given by zTJ ≜ zJ(G),
where the k-th element zk(G) represents the logit for the class k = 1, . . . , c. The logits zJ(G) is

3
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mapped to the class distribution Pr(YJ |G;θ) using the softmax (c > 2) or sigmoid (c = 2) function.
The predicted class for node J is argmaxk zk = argmaxk Pr(Y = k|G;θ).

For link prediction, we concatenate zTI and zTJ as the input to a linear layer to obtain the logits:

zIJ =
〈[
zTI ; z

T
J

]
,θLP

〉
. (3)

Since link prediction is a binary classification problem, zIJ is mapped to the probability that the
edge (I, J) exists using the sigmoid function.

For graph classification, the average pooling of zJ(G) across all nodes in graph G can be used to
produce a single vector representation z(G) for classification.

2.2 THE MESSAGE FLOW VIEW OF GNN

Layer Edges: Given the adjacency matrix At at layer t, the layer edge atIJ in this matrix rep-
resents the message carrier with which the message passes from node I to J . Then the set
of layer edges, is defined as A = {· · · , a1UV , · · · , atUV , · · · , aTUV , · · · } and |A| = |E| × T .
For example, assuming the nodes in G0 in Figure 1 have no self-connections, with T = 2,
A = {a1IJ , a2IJ , a1JI , a2JI , a1JL, a2JL, a1LJ , a

2
LJ , a

1
KL, a

2
KL, a

1
LK , a2LK}.

Message Flow: In a T -layer GNN model, let F = (I,M, . . . , U, V, . . . , L, J) denote the mes-
sage flow starting from node I in the input layer, and sequentially passing messages through node
M, . . . , U, V, . . . , L, until reaching node J in the final layer T . The corresponding layer edges can
be represented as (a1IM , . . . , atUV , . . . , a

T
LJ). Let F [t] denote the node at the layer t in this message

flow F , where t = 0, . . . , T , t = 0 denotes the input layer. For example, for the message flow
F = (I, L, J), the corresponding layer edges are (a1IL, a

2
LJ), F [0] = I,F [1] = L,F [2] = J .

Table 1: Symbols and their meanings

Symbols Definitions and Descriptions
τ τ ∈ {0, 1} indicate the time steps

aτ
UV The input edge in graph Gτ

aτ,t
UV The layer edge in graph Gτ

∆F The set of altered message flows
∆A The set of altered layer edges
hτ,t

J The hidden vector of node J at layer t in Gτ

zτ,t
J The relevant vector of node J at layer t in Gτ

∆at
UV The changes in weight of layer edge aUV

∆zt
J The changes in relevant vector zt

J

∆ht
J The changes in hidden vector ht

J

C Contribution of the message flows to ∆z

Φ Contribution of the layer edges to ∆z

2.3 EVOLVING GRAPHS

Let τ ∈ {0, 1} indicate the time steps of two graph
snapshots. Let Gτ = (Vτ , Eτ ) denote the graph. The
adjacency matrix of Gτ is denoted as Aτ . The ele-
ment of Aτ is the input edge, denoted as aτUV . Ad-
ditionally, Aτ,t refers to the t layer adjacency ma-
trix. The element of Aτ,t is the layer edge, denoted
as aτ,tUV . Let hτ,t

J and zτ,tJ denote the hidden vector
and relevant vector of node J in layer t of graphs
Gτ . For example, let τ = 0, G0 is the source graph,
a0UV is the input edge in graph G0. As the adjacency
matrix evolves from A0 to A1, we denote this evolu-
tion by G0 → G1. We define the change in the weight of layer edge as ∆atUV = a1,tUV − a0,tUV .
Additionally, Let ∆ht

J = h1,t
J − h0,t

J , ∆ztJ = z1,tJ − z0,tJ denote the difference in the hidden
vectors and relevant vectors at layer t. We assume that the edge weights change continuously, in-
cluding the addition and removal of edges. Let ∆E be the set of altered edges: ∆E = {eUV :

a0UV ̸= a1UV , U, V ∈ V}. Let ∆A be the set of altered layer edges: ∆A = {atUV : a0,tUV ̸=
a1,tUV , t ∈ {1, . . . , T}, U, V ∈ V}. If the weight of a layer edge within a message flow changes
between G0 and G1, the message flow is altered. Let ∆F be the set of altered message flows:
∆F = {F : F = (F [0], . . . ,F [t] . . .F [T ]), a0,tF [t−1]F [t] ̸= a1,tF [t−1]F [t], t = 1, . . . , T}. As
G0 → G1, there is an evolution from Pr(Y |G0) to Pr(Y |G1). ∆F causes the evolution Pr(Y |G0)
to Pr(Y |G1), as the information propagated by these massage flows differs between the source and
destination graphs. As a result, ∆F is an explanation of the evolution with 100 % Fidelity without
loss of any information. However, due to lack of Interpretability, it is hard for human to understand.
The complexity of ∆F can increase significantly due to the changes in the weights of the edges con-
necting the high degree nodes. Small perturbations in graph can make ∆A large, further impacting
the complexity of ∆F . As a result, ∆F can be not serve as a good explanation.
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3 METHOD

We propose the method to study the explainability of the evolution from Pr(Y |G0;θ) to
Pr(Y |G1;θ). To address the challenge that the existing methods cannot attribute the ∆z to mes-
sage flows, we derive the ∆ht

V , t = 1, . . . , T . We then apply the multipliers and chain rule
from DeepLIFT to calculate the conrtibutions of altered message flows, resulting in the contri-
bution matrix C. We ensure that the contribution values satisfy the summation-to-delta property,
i.e. ∆z =

∑|∆F |
s=1 Cs. However, due to the non-linear property of the softmax function and KL

divergence, ∆z can not directly represent the evolution from Pr(Y |G0;θ) to Pr(Y |G1;θ) in a lin-
ear manner. To address this, We should map the ∆z to the the evolution from Pr(Y |G0;θ) to
Pr(Y |G1;θ) through the mathematical derivation. In this process, the summation-to-delta property
will be used, see Figure 3 (d) for example. Then, in order to fairly attribute the contribution of
message flows to layer edges, we employ the Shapley value and compute the contribution of layer
edges, denoted as Φ. Due to the efficiency of Shapley value, the Φ also holds the summation-to-delta
property, i.e. ∆z =

∑|∆A|
l=1 Φl, see Figure 3 (e) for example. Finally, to faithfully select the impor-

tant layer edges, we derive the KL divergence and design the optimization problem, leveraging the
summation-to-delta property. See Figure 3 (f) for details.

3.1 CALCULATE THE CONTRIBUTION OF MESSAGE FLOWS

To illustrate the calculation of contribution values, we focus on the node classification task. Details
on calculating contribution values in link prediction and graph classification tasks can be found in
the Appendix A.2.2 and A.2.3. We employ DeepLIFT Shrikumar et al. (2017) to calculate the
contribution values of message flows and ensure the ∆zJ =

∑|∆F |
s=1 Cs that existing work did not

do this with edge weights continuously changed.

3.1.1 DEEPLIFT

We introduce the multipliers and chain rules from DeepLIFT Shrikumar et al. (2017) that will be
used when calculating the contributions of message flows. DeepLIFT Shrikumar et al. (2017) can
obtain the contribution of neurons multi-layer perceptron (MLP) models. While DeepLIFT operates
at the nueron level, considering the computational efficiency, we extend it to a vectorized represen-
tation. Let τ ∈ {0, 1} denote the time step. Let hτ,t ∈ R1×n and hτ,t+1 ∈ R1×m denote the
hidden layer vector at layer t and t + 1, at time step τ , respectively. The vector hτ,t+1 is com-
puted as hτ,t+1 = f(hτ,t), where f(hτ,t) = hτ,tθt for a linear function, and θt ∈ Rn×m is the
weight matrix, otherwise, f is the nonlinear activation function. The difference-from-reference is
∆ht+1 = h1,t+1 − h0,t+1. DeepLIFT defines multiplier as follows:

m∆ht∆ht+1 =

{
θt ∈ Rn×m linear layer
∆ht+1

/
∆ht ∈ R1×n nonlinear activation (4)/

denotes the element-wise division. The following relationship holds: ∆ht × m∆ht∆ht+1 =

∆ht+1, where × is matrix multiplication if f is linear, and element-wise multiplication if f is
nonlinear. DeepLIFT defines the chain rules as

∆hT = ∆hT−1m∆hT−1∆hT = ∆hT−2m∆hT−2∆hT−1m∆hT−1∆hT

= ∆h0m∆h0∆h1 . . .m∆hT−1∆hT .
(5)

According to chain rule and multipliers, we can calculate the contribution of message flows.

3.1.2 DEEPLIFT FOR GNN

The DeepLIFT has been used in the GNNs with the addition and removal of edges Liu et al. (2024).
However, the existing method assumed that the evolution of graph is discrete. On continuously
evolving GNNs, the contribution of the message flows calculated using existing method is incorrect.
Because, difference-from-reference, used in the calculation process of DeepLIFT, becomes different
and complicated. To address this challenge, given the F ∈ ∆F , we derive ∆ht

F [t], t = 0, · · · , T
based on the propagation rules of GNNs. Then, we use multipliers and the chain rule defined by
DeepLIFT to calculate the contribution value of message flow.

5
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In the GNNs, ztV =
∑

U∈N (V ) a
t
UV h

t−1
U θt, where ztV depends to two factors, the information

from the neighboring node U ht−1
U and the edge weight atUV . Consequently, ∆ztV is influenced

by changes in both ∆ht−1
U and ∆atUV . Specifically, ∆ht−1

U propagates to node V , altering V ’s
information. Additionally, ∆atUV affect how much information node V aggregates from node U .
The formula for ∆ztV is given by:

∑
U∈N (V )

(
a1,tUV h

1,t−1
U θt − a0,tUV h

0,t−1
U θt

)
=

∑
U∈N (V )

(
a0,tUV +∆atUV

)
h1,t−1
U θt − a0,tUV h

0,t−1
U θt

)
=

∑
U∈N (V )

a0,tUV

(
h1,t−1
U − h0,t−1

U

)
θt +∆atUV h

1,t−1
U θt =

∑
U∈N (V )

a0,tUV ∆ht−1
U θt +∆atUV h

1,t−1
U θt.

(6)

Eq. (6) explains the cause of ∆ztV . It decomposes the change into two parts. The first term
a0,tUV ∆ht−1

U θt represents that while the layer edge weight atUV remains unchanged, ∆ht−1
U from

node U will be propagated to node V . Because h1,t−1
U = h0,t−1

U +∆ht−1
U , the second term can be

rewritten as ∆atUV

(
h0,t−1
U +∆ht−1

U

)
θt. It shows that the changed edge weight transfers h0,t−1

U and
∆ht−1

U to node V , contributing to ∆ztV .

According to Eq. (6), and applying the chain rule along with the multipliers defined by Eq. (4), the
contribution of a message flow can be computed by decomposing it layer by layer. Given the flow
F in ∆F , F [t] denotes the node at t layer in F . The formula for calculating the contribution of this
message flow is as follows (detailed derivation and examples are provided in Appendix A.2.1):

Cs =

T−1∑
t=0

(
a1,1F [0]F [1]a

1,2
F [1]F [2] · · ·∆at+1

F [t]F [t+1]a
0,t+2
F [t+1],F [t+2] · · · a

0,T
F [T−1],F [T ]

h1,0
F [0]

h1,1
F [1]

z1,1F [1]

· · ·
h1,t
F [t]

z1,tF [t]

θt
∆ht+1

F [t+1]

∆zt+1
F [t+1]

θt+1 · · ·
∆hT−1

F [T−1]

∆zT−1
F [T−1]

θT

)
,

(7)

where ratios denote the element-wise division, C ∈ R|∆F |×c denotes the the contribution matrix of
message flows. Let s denote s-th flow F in ∆F to ∆zJ . Due to the multipliers and chain rules,
the contribution matrix C also follows the summation-to-delta property, i.e.

∑|∆F |
s=1 Cs = ∆zJ .

According to this property, we can map the ∆zJ to the evolution from Pr(Y |G0;θ) to Pr(Y |G1;θ).

3.2 APPLY THE SHAPLEY VALUE TO MAP MESSAGE FLOW CONTRIBUTIONS TO LAYER EDGES

Message flows are not only hard for humans to understand, but also difficult to evaluate the per-
formance. Because, in GNN computational graphs, layer edges in message flows carry weights.
During the evaluation process, the single layer edge appears in multiple message flows with differ-
ent weights. However, the GNN propagation rules require that layer edges share a single weight.
Thus, it becomes impossible to merge these flows while adhering to GNN propagation rules (see the
Figure 6 for an example). A mapping function is required to convert the contributions of message
flows to layer edges. Existing methods use average or sum functions as mapping functions, over-
looked the fact that layer edges may contribute differently. To fairly attribute the contributions of
message flows, we employ the Shapley value.

For the message flow F = (F [0], . . . ,F [T ]) ∈ ∆F , the corresponding layer edges in the Gτ can be
represented as {aτ,1F [τ ]F [1], . . . , a

τ,T
F [T−1]F [T ]}, τ ∈ {0, 1}. The changed layer edges in given message

flow is ∆AF = {atF [t−1]F [t] : a
0,t
F [t−1]F [t] ̸= a1,tF [t−1]F [t], t ∈ {1, . . . , T}}. We consider mapping

the contribution values Cs, computed using Eq. (7), to the changed layer edges in ∆AF as an
allocation problem. We use the Shapley value ϕi =

∑
S⊆N\{i}

(|S|!(|N |−|S|−1)!)
(|N |−1)! (ν(S∪{i})−ν(S))

to fairly distribute Cs among these layer edges. We define the following:

• The player i: One changed layer edge atF [t−1]F [t] in ∆AF .

• The player sets N : N = ∆AF denotes all changed layer edges in the message flow. |N | is the
total number of players.

6
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• The coalition S: S ⊂ N . Only the weights of the layer edges in S will be altered. This change will
yield different layer edges for the given message flow. Consequently, the contribution of the same
message with different layer edges will differ. For given S, the corresponding layer edges are
{â1F [0]F [1], · · · â

t
F [t−1]F [t] · · · â

T
F [T−1]F [T ]}, where âtF [t−1]F [t] = a1,tF [t−1]F [t], if atF [t−1]F [t] ∈ S,

else âtF [t−1]F [t] = a0,tF [t−1]F [t]. |S| represents the size of S.

• ν(S): Given S and the corresponding layer edges, ν(S) can be computed according to Eq. (7)
(node classification) or Eq. (13) (link prediction) or Eq. (14) (graph classification).

S The layer edges

K L J
0.42 0.1

K L J
0.42 0.3

K L J
0.4 0.1

K L J
0.4 0.3

v(S)

{∅}{∅}

{a2
LJ}{a2
LJ}

{a1
KL}{a1
KL}

{a2
LJ, a1

KL}{a2
LJ, a1

KL}

Shapley value

[0.1 −0.5 −1][0.1 −0.5 −1]

[0.05 −0.2 −0.5][0.05 −0.2 −0.5]

[0.2 −0.1 −0.2][0.2 −0.1 −0.2]

[0 0 0][0 0 0]

ϕa1
KL

+ ϕa2
LJ

= v(N )ϕa1
KL

+ ϕa2
LJ

= v(N )
 

K L J
0.42 0.1

Message Flow

Obtain Calculate

Obtain Calculate

CalculateObtain

CalculateObtain

ϕa1
KL

= [−0.025, − 0.3, − 0.65]ϕa1
KL

= [−0.025, − 0.3, − 0.65]ϕa2
LJ

= [0.125, − 0.2, − 0.35]ϕa2
LJ

= [0.125, − 0.2, − 0.35]

Figure 4: The example of using Shap-
ley value to map contribution from mes-
sage flows to layer edges.

Given message flow F in ∆F , we can the Shapley value as
the contribution ϕat

F[t−1]F[t]
(F) of layer edge atF [t−1]F [t] to

the message flow Cs. Due to efficiency of Shapley value, it
follows that

∑
at
F[t−1]F[t]

∈N ϕat
F[t−1]F[t]

(F) = ν(N) = Cs.
See Figure 4 for an example of the calculation.

For node classification, let the Φ ∈ R|∆A|×c denote
the contribution matrix of layer edges, the row vector
Φl denote the contribution of l-th layer edge atF [t−1]F [t]

in ∆A. Φl =
∑

F∈∆F ϕat
F[t−1]F[t]

(F). Because∑
at
F[t−1]F[t]

∈N ϕat
F[t−1]F[t]

(F) = Cs and
∑|∆F |

s=1 Cs =

∆zJ ,
∑|∆A|

l=1 Φl = ∆zJ . For link prediction and graph clas-
sification tasks, see Appendix A.3.

3.3 SELECT THE IMPORTANT LAYER EDGES

To illustrate the selection of important layer edges, we focus on the node classification task. The link
prediction and graph classification tasks are detailed in the Appendix A.4. In Ying et al. (2019), KL-
divergence is used to measure the approximation quality of a static predicted distribution PrJ(G) as
follows Liu et al. (2024):

KL(PrJ(G1)∥PrJ(G0)) =

c∑
k=1

Prk(G1) log[Prk(G1)/Prk(G0)]

=

c∑
k=1

Prk(G1)[zk(G1)− zk(G0)]− log[
Z(G1)

Z(G0)
] =

c∑
k=1

Prk(G1)∆zk − log[
Z(G1)

Z(G0)
], (8)

where Z(Gτ ) =
∑c

k=1 exp(zk(Gτ )) for τ = 0, 1. Let x ∈ {0, 1}|∆A| denote the select vec-
tor, where the element xl in vector denotes the l-th layer edge is selected or not. Supposing
that we select n important changed layer edges subset ∆Asub ∈ ∆A to explain evolution of
Pr(Y |G0;θ) to Pr(Y |G1;θ). Let Gn denotes the graph that the weights of the layer edges in
∆Asub are changed to those in G1, while the weights of the layer edges in ∆A \ ∆Asub re-
main unchanged. If the KL(Pr(G1)∥Pr(Gn)) is small, it means that the ∆Asub can faithfully
explain the evolution in the prediction probability. Let Φ denotes the contribution matrix of
layer edges, Φl represents the contribution of l-th layer edge to ∆zJ . Φl,k indicates the con-
tribution of l-th layer edge to ∆zk, zJ(Gn) =

∑|∆A|
l=1 xlΦl + zJ(G0), according to Eq. (8),

KL(Pr(G1)∥Pr(Gn)) =
∑c

k=1 Prk(G1)
(
zk(G1) − zk(Gn)

)
− logZ(G1) + logZ(Gn), where

Z(Gn) =
∑c

k=1 exp(zk(Gn)), thus we can define the following objective function:

x∗ = argmin
x∈{0,1}|∆A|

∥x∥1=n

c∑
k=1

−Prk(G1)

|∆A|∑
l=1

xlΦl,k

+ log

c∑
k′=1

exp

zk′(G0) +

|∆A|∑
l=1

xlΦl,k′


(9)

By solving Eq. (9), we can obtain the most important changed layer edges. The Algorithm 1 shows
the overall process of selecting important layer edges for node classification task. The Algorithm 2
for the link prediction task and Algorithm 3 for the graph classification task are in the Appendix.
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Algorithm 1 Selecting important layer edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on the
node classification task

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the layer edges flow set ∆A
3: Initialize layer edges contribution matrix Φ ∈ R|∆A|×c as an all-zero matrix
4: Obtain the altered massage flows set ∆F
5: Given the target node J , ∆F = {F : F ∈ ∆F and F [T ] = J}
6: for s for 1 to |∆F | do
7: Select the s-th message flow in |∆F | and calculate contribution Cs according to the Eq. (7)
8: Obtain the changed layer edges set ∆AF on this flow
9: for atF [t−1]F [t] in ∆AF do

10: Calculate ϕat
F[t−1]F[t]

(F) using Shapley value.
11: Let the index of atF [t−1]F [t] in ∆A is l, Φl = Φl + ϕat

F[t−1]F[t]
(F)

12: end for
13: end for
14: Solve Eq. (9) to obtain the important changed layer edges
15: Output: The important changed layer edges set

3.4 COMPLEXITY ANALYSIS

Obtain the changed message flows ∆F : Given the changed edges ∆E , we use the depth-first
search method to obtain ∆F and the complexity is O

(
|∆E|T

)
.

Calculate contributions: According to the Eq. (7), we calculate the contribution of each message
flow through the vectorized method. The complexity is O

(
|∆F |d1 · · · dtdt+1 · · · dT+1

)
, where dt

and dt+1 denote the dimension of the θt ∈ Rdt×dt+1

, t = {1, · · · , T}.

Apply the Shapley value: For each message flow F ∈ ∆F with more than one changed layer
edge, the Shapley value is used to fairly attribute contributions. Some calculations in the calculating
contributions can be used repeatedly. The worst-case complexity is O

(
|∆F |(2T − 1)d1 · · · dT+1

)
,

where (2T − 1) represents the number of non-empty subsets of layers.

Select the inportant layer edges: The time complexity is O
(
|∆A|3

)
.

4 EXPERIMENT

Datasets and tasks. We evaluate our method on node classification, link prediction and graph
classification tasks using real and simulated dynamic graph datasets. Details of these datasets are
provided in Appendix A.7.1. We assess the running time of our method on large datasets (See
Appendix A.7.7 and Figure 9). On BA-Shapes dataset, we validate the accuracy of the explanation
methods. The visualization results and accuracy are shown in Appendix A.7.8, Figures 10 and 11.

Experimental setup. For each dataset, we optimize the GNN parameter θ on the training
set of static graphs, using labeled nodes, edges, or graphs based on the specific tasks. For
each graph snapshot, excluding the first one, target nodes/edges/graphs with a significantly large
DKL(Pr(Y |G0)||Pr(Y |G1)) are collected and the change in Pr(Y |G) is explained. We run Al-
gorithm 1 or Algorithm 3 to identify the important layer edges for node classification, link
prediction and graph classification tasks. The optimization problems in Eq. (9), Eq. (15)
and Eq. (16) are solved using the cvxpy library Diamond & Boyd. Our proposed method
is called “AxiomLayeredge”. Additionally, we employ the GNNExplainer Ying et al. (2019),
PGExplainer Luo et al. (2020), GNNLRP Schnake et al. (2020) , DeeoLIFT Shrikumar et al.
(2017), and the FlowX Gui et al. (2023) as our baselines. We also design some variant meth-
ods: AxiomLayeredge-Topk, AxiomLayeredge\Shapley, AxiomEdge, AxiomEdge-Top and Ax-
iomEdge\Shapley, Appendix A.7.2 gives details of the baseline methods. Appendix A.7.3 gives
details of the experimental setup.
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Quantitative evaluation metrics. Supposing the selected important layer edges set and edges set
are denoted as ∆A∗ and ∆E∗, respectively. For evaluating the layer edges, we start from the
computational graph of G0, only adjusting the weights of the layer edges in ∆A∗ to those G1, while
the weights of the layer edges in A \ ∆A∗ remain unchanged, then we obtain the computational
graph Gn. Similarly, for edges evaluation, we alter the weights of the edges in ∆E∗ to those in G1,
with other edges weights in E \∆E∗ unchanged, then we also obtain the Gn. After obtaining Gn,
we can compute the Pr(Y |G(n)). The case of obtaining Gn can be seen in Figure 7.

The evaluation metric for the node classification is Kullback-Leibler (KL) divergence
KL(PrJ(G1)∥PrJ(Gn)). See Figure 7 for an example. The idea of this metric is similar to the
Fidelity- Yuan et al. (2020b). Intuitively, if adjusting only the weights of selected layer edges (rather
than all changed edges) brings PrJ(Gn) closer to PrJ(G1), it indicates that these edges effectively
explain the evolution from Pr(Y |G0) to Pr(Y |G1), resulting in a smaller evaluation metric. A sim-
ilar metric can be defined for the link prediction task and the graph classification task, where the
KL-divergence is calculated using predicted distributions over the target edge or graph. To ensure
comparability between layer edges based and edges based explanations, we apply the same level of
sparsity. We define five levels of explanation sparsity Yuan et al. (2020b), with all methods com-
pared under the same sparsity level. For the edges, the sparsity is 1 − ∆E∗

∆E . For the layer edges, it
is 1− ∆A∗

∆A . The higher sparsity indicates the explanations are more sparse and tend to only capture
the most important input information. The Table 4 and Table 5 in Appendix A.7.4 provide details
on the sparsity for real and simulated dynamic graph datasets across the three graph tasks.

Performance evaluation and comparison. We evaluate the performance of the methods across
three tasks: node classification, link prediction and graph classification in real and simulated dy-
namic graph datasets. For each dataset, we report the average KL over target nodes/edges/graphs.
Results for dynamic graph datasets are illustrated in Figure 5, while those for simulated dynamic
graphs are presented in Figure 8 in Appendix A.7.6. Table 4 and Table 5 display explanation sparsity
levels across different datasets. In Table 4, the sparsity for all real dynamic graph datasets is no less
than 0.9. Figure 5 demonstrates that our method AxiomLayeredge has the smallest KL across all
levels of explanation sparsity levels, datasets, and tasks, with exception of certain sparsity levels of
Pheme dataset. This illustrates that our method maintains high fidelity in explanations even under
high sparsity. On eight settings (Weibo, YelpChi, YelpNYC, BC-Alpha, BC-OTC, UCI, MUTAG,
ClinTox), our method AxiomLayeredge along with its variants AxiomEdge, AxiomEdge\Shapley,
AxiomLayeredge\Shapley outperform the GNNLRP, DeepLIFT, GNNExplainer, PGExplainer and
FlowX methods. This demonstrates that our proposed methods more effectively explain the evolu-
tion of Pr(Y |G0;θ) to Pr(Y |G1;θ), while methods designed for static graph struggle to identify
salient edges that explain changes in the predicted probability distribution. Moreover, our method
AxiomLayeredge has superior performance compared to the AxiomLayeredge\Shapley method
across all levels of explanation sparsity, datasets, and tasks, with a significant gap observed on
the Pheme and Weibo datasets. Therefore, the Shapley value provides a fair attribution.

5 RELATED WORK AND FURTHER DISCUSSION

GNNs Explainability. The limitation of GNNs is the lack of explainability. Recently, various meth-
ods have been proposed to explain GNN predictions, primarily focusing on static graphs. In the
survey Yuan et al. (2020b), existing GNN explanation approaches are categorized as instance-level
and model-level methods. The instance-level category includes Gradient/features-based methods,
such as CAM and GradCAM Baldassarre & Azizpour (2019); Pope et al. (2019), which identify
important nodes by the gradient,but are not applicable for the node classification. Perturbation-
based methods, such as GNNexplainer Ying et al. (2019), PGExplainer Luo et al. (2020), Graph-
Mask Schlichtkrull et al. (2020), learn masks to identify important edges by maximizing the mutual
information to explain the predicted class distribution of model. However, these methods cannot
axiomatically isolate contributions of message flows that causally impact the prediction changes on
the computation graphs. Decomposition-based methods, such as GNN-LRP Schnake et al. (2020),
extend the original LRP Bach et al. (2015) algorithm to GNNs and study the importance of the graph
walks. While GNN-LRP explains the single class probability, it cannot explain multi-class distribu-
tions change over evolving graphs. Surrogate-based methods, like GraphLime Huang et al. (2020),
use a surrogate model with kernel-based feature selection to provide node feature explanations. In
model-level category, XGNN Yuan et al. (2020a) generates graph patterns that maximize a certain
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Figure 5: Performance of KL in real dynamic graphs. Each figure corresponds to a different dataset. The first,
second and third rows represent node classification, link prediction and graph classification tasks, respectively.

model prediction via reinforcement learning. In conclusion, most prior work evaluate the fidelity of
the explanations on static graphs. They cannot explain the evolution of Pr(Y |G0;θ) to Pr(Y |G1;θ).

Limitations and Concerns. While we acknowledge the effectiveness of our methods, we also
recognize their limitations. We focus on the explanations on static GNNs in evolving graphs. Our
method cannot be extended to dynamic graph models, such as TGN Rossi et al. (2020), which
incorporate time-series components like RNNs or LSTMs. We do not design rules for decomposing
contributions in RNNs or LSTMs. For static GNNs, our method can be applied to the GIN Xu et al.
(2018) model. For GAT model, our explanations are limited to identifying a small subset of changed
attention weights on edges. We are unable to measure the contribution of added or removed edges
to the changed attention weights and select the changed edges as the explanations. Because we do
not define the rules to attribute the difference of softmax function to the changed input. In future
work, we aim to formulate corresponding rules and explore explanations of evolving graphs in GAT
model and dynamic graph models.

6 CONCLUSIONS

We studied the problem of explaining change in GNN predictions with the weights of input edges
continuously changed. We addressed the issues of prior works, such as lack of axiomatic attribution
of message flows, unfair distribution and lack of optimality. The proposed algorithm can axiomat-
ically decompose the changes to message flow in the computation graphs of GNN and employ the
Shapley value for fair attribution to layer edges. It further optimally select a small subset of layer
edges to explain the evolution of prediction probabilities. Experimental results demonstrate that
our method achieves superior performance even when sparsity exceeds 0.9. This indicates that our
approach successfully balances Interpretability and Fidelity.
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A APPENDIX

A.1 EVALUATION OF MESSAGE FLOWS ON DYNAMIC GRAPHS

In Figure 6, we illustrate the computation of Fidelity for both dynamic and static graphs from the
perspective of computational graphs. The static graph G0 is considered an evolution of Gempty.
In the case of dynamic graphs, G1 evolves from the G0. After identifying the important message
flows, we adjust their weights to align with those in the destination graph, keeping the weights of
the remaining flows unchanged. This process generates a new computational graph Gn. In dynamic
graphs, adjusting the weights of selected important message flows may lead to differing weights
for the same-layer edges across various flows. However, GNN propagation rules require that edges
within each layer share a single weight. Thus, merging these flows while complying with GNN
propagation constraints is infeasible.
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Figure 6: Calculation of Fidelity for dynamic and static graphs. Challenges may arise during the computation
for dynamic graphs.

A.2 CALCULATE THE CONTRIBUTION OF MESSAGE FLOWS

A.2.1 THE EXAMPLES ON THE NODE PREDICTION TASKS

Supposing the GNN models have two layers, considering the massage flow F = (V, I, J) ∈
the altered message flows set ∆F , We have derived in detail the calculation process of the con-
tribution value of message flow:

Cs = a0,TIJ ∆ht−1
I θT +∆atIJh

1,t−1
I θT the contribution of ∆hI , hI to ∆zJ

= a0,TIJ

(
∆zT−1

I m∆zT−1
I ∆hT−1

I

)
θT the contribution of ∆zI to ∆hI

+∆aTIJ
(
z1,T−1
I mz1,T−1

I h1,T−1
I

)
θT the contribution of zI to hI

= a0,TIJ ∆hT−2
V m∆hT−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of ∆hV to ∆zJ

+ a0,TIJ h1,T−2
V mh1,T−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of hV to ∆zJ

+∆aTIJ
(
h1,T−2
V mh1,T−2

V z1,T−1
I

)
mz1,T−1

I h1,T−1
I

θT the contribution of hV to ∆zJ

(10)

According to the multiplier designed by the DeepLIFT, m∆hT−2
V ∆zT−1

I
=

∆aT−1
V I θT−1,m∆zT−1

I ∆hT−1
I

=
∆hT−1

I

∆zT−1
I

,mzT−1
I hT−1

I
=

hT−1
I

zT−1
I

,mh1,T−2
V z1,T−1

I
= a1,T−1

V I θT−1,
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therefore,

Cs = ∆aT−1
V I a0,TIJ h1,T−2

V θT−1∆hT−1
I

∆zT−1
I

θT + a1,T−1
V I ∆aTIJh

1,T−2
V θT−1h

T−1
I

zT−1
I

θT (11)

Where the divide means the element-wise division, T = 2.

Similarly, Supposing the GNN models have three layers, considering the massage flow F =
(U, V, I, J) ∈ the altered message flows set ∆F , We have derived in detail the calculation pro-
cess of the contribution value of message flow:

Cs = a0,TIJ ∆ht−1
I θT +∆atIJh

1,t−1
I θT the contribution of ∆hI , hI to ∆zJ

= a0,TIJ

(
∆zT−1

I m∆zT−1
I ∆hT−1

I

)
θT the contribution of ∆zI to ∆hI

+∆aTIJ
(
z1,T−1
I mz1,T−1

I h1,T−1
I

)
θT the contribution of zI to hI

= a0,TIJ ∆hT−2
V m∆hT−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of ∆hV to ∆zJ

+ a0,TIJ h1,T−2
V mh1,T−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of hV to ∆zJ

+∆aTIJ
(
h1,T−2
V mh1,T−2

V z1,T−1
I

)
mz1,T−1

I h1,T−1
I

θT the contribution of hV to ∆zJ

= a0,TIJ

(
a0,T−2
UV ∆hT−3

U θT−2 +∆aT−2
UV h1,T−3

U θT−2
)
m∆hT−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT

the contribution of ∆hU to ∆zJ

+ a0,TIJ

(
hT−3
U mh1,T−3

U z1,T−2
V

mz1,T−2
V h1,T−2

V

)
mh1,T−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT

the contribution of hU to ∆zJ

+∆aTIJ
(
hT−3
U mh1,T−3

U z1,T−2
V

mz1,T−2
V h1,T−2

V

)
mh1,T−2

V z1,T−1
I

mz1,T−1
I h1,T−1

I
θT

the contribution of hU to ∆zJ

= ∆a0,T−2
UV a0,T−1

V I a0,TIJ h1,T−3
U θT−2∆hT−2

V

∆zT−2
V

θT−1∆hT−1
I

∆zT−1
I

θT

+ a1,T−2
UV ∆aT−1

V I a0,TIJ h1,T−3
U θT−2h

T−2
V

zT−2
V

θT−1∆hT−1
I

∆zT−1
I

θT

+ a1,T−2
UV a1,T−1

V I ∆aTIJh
1,T−3
U θT−2h

T−2
V

zT−2
V

θT−1h
T−1
I

zT−1
I

θT

(12)

A.2.2 ON THE LINK PREDICTION TASK

According to the equation 3, for the target edge eIJ , the zTI ∈ R1×d and zTJ ∈ R1×d are concate-
nated, and fed into a linear layer with the parameters θLP . According to the equation 7, we can
obtain the contribution of message flow FV1,V2,··· ,VT ,VT+1

to ∆zTI or ∆zTJ , then the contribution of
message flow to the ∆zIJ = zIJ(G1)− zIJ(G0) is:

Cs =

T−1∑
t=0

(
a1,1F [0]F [1]a

1,2
F [1]F [2] · · ·∆at+1

F [t]F [t+1]a
0,t+2
F [t+1],F [t+2] · · · a

0,T
F [T−1],F [T ]

h1,0
F [0]

h1,1
F [1]

z1,1F [1]

· · ·
h1,t
F [t]

z1,tF [t]

θt
∆ht+1

F [t+1]

∆zt+1
F [t+1]

θt+1 · · ·
∆hT−1

F [T−1]

∆zT−1
F [T−1]

θTθ′
LP

) (13)

Where θ′
LP = θLP [0 : d], d if VT+1 = I , θ′

LP = θLP [d :], if VT+1 = J
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A.2.3 ON THE GRAPH CLASSIFICATION TASK

Because the average pooling is used for the graph classification tasks, ∆z = z(G1) − z(G0) =∑
J∈

(
V0∪V1

)∆zTJ
/
|V0 ∪ V1|, thus the contribution is:

Cs =

T−1∑
t=0

(
a1,1F [0]F [1]a

1,2
F [1]F [2] · · ·∆at+1

F [t]F [t+1]a
0,t+2
F [t+1],F [t+2] · · · a

0,T
F [T−1],F [T ]

h1,0
F [0]

h1,1
F [1]

z1,1F [1]

· · ·
h1,t
F [t]

z1,tF [t]

θt
∆ht+1

F [t+1]

∆zt+1
F [t+1]

θt+1 · · ·
∆hT−1

F [T−1]

∆zT−1
F [T−1]

θT

)
/|V0 ∪ V1|

(14)

Where, V0 and V1 denote the the nodes set of graph G0 and G1, respectively.

A.3 MAPPING CONTRIBUTIONS FOR THE GRAPH CLASSIFICATION TASK

In the section 3.2, we show how to calculate the Shapley value, i.e. contribution ϕat
F[t−1]F[t]

(F)

of layer edge atF [t−1]F [t] to ∆zTFT
. Note that the changed layer edge can affect many nodes, not

the single node. Thus, in the graph classification task, the contribution matrix of l-th layer edge
atF [t−1]F [t] ∈ ∆A is Φl ∈ R|V0∪V1|×c, the row vector Φl

i = ϕat
F[t−1]F[t]

(F) denotes the contribu-

tion of the l-th layer edge to ∆zTFT
, where the i-th node in the V0 ∪ V1 is FT . Let Φ =

∑|∆A|
l=1 Φl,

the Φ also follows the summation-to-delta property
∑|V0∪V1|

i=1 Φi = ∆z = z(G1)− z(G0)

A.4 SELECTING THE IMPORTANT LAYER EDGES

A.4.1 ON THE LINK PREDICTION TASK

For the link prediction, the zIJ(G) = [z1, · · · , zℓ · · · , zc],PrIJ(G) =
[Pr1(G), · · · ,Prℓ · · · ,Prc(G)], Let Φ denotes the contribution matrix of layer edges, where
Φl represents the contribution of l-th layer edge to ∆zIJ , and Φl,ℓ indicates the contribution of l-th
layer edge to ∆zℓ, we can define the following objective function for the link prediction:

x∗ = argmin
x∈{0,1}|∆A|

∥x∥1=n

c∑
ℓ=1

−Prℓ(G1)

|∆A|∑
l=1

xlΦl,ℓ



+ log

c∑
ℓ′=1

exp

zℓ′(G0) +

|∆A|∑
l=1

xlΦl,ℓ′

 (15)

A.4.2 ON THE GRAPH CLASSIFICATION TASK

For the graph classification, the Φl denotes contribution matrix of the l-th layer edge in
the ∆A. The logits of the graph classification zG = [z1, · · · , zg · · · , zc], the Pr(G) =

[Pr1(G), · · · ,Prg · · · ,Prc(G)], because the
∑|V0∪V1|

i=1

∑|∆A|
l=1 Φl

i = ∆z = ∆z(G1) − ∆z(G0),
the objective function for the graph classification task is:

x∗ = argmin
x∈{0,1}|∆A|

∥x∥1=n

c∑
g=1

−Prg(G1)

|V0∪V1|∑
i=1

|∆A|∑
l=1

xlΦ
l
i,g



+ log

c∑
g′=1

exp

zg′(G0) +

|V0∪V1|∑
i=1

|∆A|∑
l=1

xlΦ
l
i,g′

 (16)

A.5 SELECTING THE IMPORTANT LAYER EDGES FOR LINK PREDICTION

Selecting the important layer edges for link prediction task can be seen in Algorithm 2.
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Algorithm 2 Selecting important layer edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on the
link prediction task

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the layer edges flow set ∆A
3: Initialize layer edges contribution matrix Φ ∈ R|∆A|×c as an all-zero matrix
4: Obtain the altered massage flows set ∆F
5: Given the target edge IJ , ∆F = {F : F ∈ ∆F and (F [T ] = I or F [T ] = J)}
6: for s for 1 to |∆F | do
7: Select the s-th message flow in |∆F | and calculate Cs according to the Eq. (13)
8: Obtain the changed layer edges set ∆AF on this flow
9: for atF [t−1]F [t] in ∆AF do

10: According to the section 3.2, calculate ϕat
F[t−1]F[t]

(F)

11: Let the index of atF [t−1]F [t] in ∆A is l, Φl = Φl + ϕat
F[t−1]F[t]

(F)

12: end for
13: end for
14: Solve Eq. (15) to obtain the important changed layer edges
15: Output: The important changed layer edges set

A.5.1 SELECTING THE IMPORTANT LAYER EDGES FOR GRAPH CLASSIFICATION

Selecting the important layer edges for graph classification task can be seen in Algorithm 3.

Algorithm 3 Selecting important layer edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on the
graph classification tasks

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the layer edges flow set ∆A
3: Initialize layer edges contribution matrix Φl ∈ R|V0∪V1|×c as an all-zero matrix
4: for s for 1 to |∆F | do
5: Select the s-th message flow in |∆F | and calculate Cs according to the Eq. (14)
6: obtain the changed layer edges set ∆AF on this flow
7: for atF [t−1]F [t] in ∆AF do
8: According to the section 3.2, calculate ϕat

F[t−1]F[t]
(F)

9: Let the index of atF [t−1]F [t] in ∆A is l. Let the index of F [T ] in the V0 ∪ V1 is i
10: Φl

i = Φl
i + ϕat

F[t−1]F[t]
(F)

11: end for
12: end for
13: Solving the Eq. (16) to obtain the important changed layer edges
14: Output: The important changed layer edges set

A.6 OBTAIN THE IMPORTANT INPUT EDGES

A.6.1 ON THE NODE CLASSIFICATION TASK

Let Φ denotes the contribution matrix of edges, where Φl represents the contribution of l-th edge to
∆zJ , and Φl,k indicates the contribution of l-th edge to ∆zk, we can define the following objective
function for the node classification:

x∗ = argmin
x∈{0,1}|∆E|

∥x∥1=n

c∑
k=1

−Prk(G1)

|∆E|∑
l=1

xlΦl,k



+ log

c∑
k′=1

exp

zk′(G0) +

|∆E|∑
l=1

xlΦl,k′

 (17)
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A.6.2 ON THE LINK PREDICTION TASK

For the link prediction, the zIJ(G) = [z1, · · · , zℓ · · · , zc],PrIJ(G) =
[Pr1(G), · · · ,Prℓ · · · ,Prc(G)], Let Φ denotes the contribution matrix of edges, where Φl

represents the contribution of l-th edge to ∆zIJ , and Φl,ℓ indicates the contribution of l-th edge to
∆zℓ, we can define the following objective function for the link prediction:

x∗ = argmin
x∈{0,1}|∆E|

∥x∥1=n

c∑
ℓ=1

−Prℓ(G1)

|∆E|∑
l=1

xlΦl,ℓ



+ log

c∑
ℓ′=1

exp

zℓ′(G0) +

|∆E|∑
l=1

xlΦl,ℓ′

 (18)

A.6.3 ON THE GRAPH CLASSIFICATION TASK

For the graph classification, the Φl denotes contribution matrix of the l-th layer edge in
the ∆A. The logits of the graph classification zG = [z1, · · · , zg · · · , zc], the Pr(G) =

[Pr1(G), · · · ,Prg · · · ,Prc(G)], because the
∑|V0∪V1|

i=1

∑|∆A|
l=1 Φl

i = ∆z = ∆z(G1) − ∆z(G0),
the objective function for the graph classification task is:

x∗ = argmin
x∈{0,1}|∆A|

∥x∥1=n

c∑
g=1

−Prg(G1)

|V0∪V1|∑
i=1

|∆E|∑
l=1

xlΦ
l
i,g



+ log

c∑
g′=1

exp

zg′(G0) +

|V0∪V1|∑
i=1

|∆E|∑
l=1

xlΦ
l
i,g′

 (19)

A.6.4 SELECTING THE IMPORTANT INPUT EDGES

Selecting the important input edges for node classification and link prediction can be seen in the
Algorithm 4. The selection of important input edges for graph classification can be seen in the
Algorithm 5.

A.7 EXPERIMENTS

A.7.1 DATASETS

We study node classification task on the YelpChi, YelpNYC Rayana & Akoglu (2015), Pheme Zu-
biaga et al. (2017) and Weibo Ma et al. (2018) datasets. We explore the link prediction tasks on the
BC-OTC, BC-Alpha, and UCI datasets. We study the graph classification tasks on MUTAG Deb-
nath et al. (1991), ClinTox, IMDB-BINARY and REDDIT-BINARY datasets. The details of data
are in Table 2.

In the simulated dynamic graphs, we modify edge weights without adding or removing edges.
Specifically, given a changed ratio r, we randomly adjust the the weights of |E0| × r edges to
create evolving graphs. For the real dynamic graph datasets used in the node classification and link
prediction tasks, timestamps allow us to track graph evolution, which includes modifications to edge
weights, as well as the addition and deletion of edges. In graph classification, we apply slight per-
turbations to the graphs You et al. (2018), by randomly adding or removing edges or altering edge
weights.

• YelpChi, YelpNYC Rayana & Akoglu (2015): each node represents a review, product, or user. If
a user posts a review to a product, there are edges between the user and the review, and between
the review and the product. The data sets are used for node classification.

• Pheme Zubiaga et al. (2017) and Weibo Ma et al. (2018): they are collected from Twitter and
Weibo. A social event is represented as a trace of information propagation. Each event has a label,
rumor or non-rumor. Consider the propagation tree of each event as a graph. The data sets are
used for node classification.
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Algorithm 4 Selecting important input edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on the
node classification and link prediction tasks

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the changed edges set ∆E = {aUV : a0UV ̸= a1UV , t ∈ {1, . . . , T}, U, V ∈ V0 ∪ V1}
3: Initialize layer edges contribution matrix Φ ∈ R|∆E|×c as an all-zero matrix
4: Obtain the altered massage flows set ∆F = {F : F = (F [0], . . . ,F [t] . . .F [T ]), a0,tF [t−1]F [t] ̸=

a1,tF [t−1]F [t], t = 1, . . . , T}
5: if The node classification task then
6: Given the target node J , ∆F = {F : F ∈ ∆F and F [T ] = J}
7: else if The link prediction task then
8: Given the target edge IJ , ∆F = {F : F ∈ ∆F and (F [T ] = I or F [T ] = J)}
9: end if

10: for F in |∆F | do
11: According to the Eq. (7) (node classification) or Eq. (13) (link prediction), calculate the

message flow contribution c
12: obtain the changed edges set ∆EF = {aF [t−1]F [t] : a

0
F [t−1]F [t] ̸= a1F [t−1]F [t]} on this flow

13: for aF [t−1]F [t] in ∆EF do
14: According to the Section 3.2, calculate ϕaF[t−1]F[t]

(F).
15: Let the aF [t−1]F [t] is the l-th edge in ∆E , Φl = Φl + ϕaF[t−1]F[t]

(F)
16: end for
17: end for
18: Solving the Eq. (17) (node classification) or Eq. (18) (link prediction) to obtain the important

changed input edges
19: Output: The important changed input edges set

Algorithm 5 Selecting the important input edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on
the graph classification tasks

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the layer edges flow set ∆A = {atUV : a0,tUV ̸= a1,tUV , t ∈ {1, . . . , T}, U, V ∈ V0 ∪ V1}
3: Obtain the altered massage flows set ∆F = {F : F = (F [0], . . . ,F [t] . . .F [T ]), a0,tF [t−1]F [t] ̸=

a1,tF [t−1]F [t], t = 1, . . . , T}
4: for l for 1 to |∆A| do
5: Initialize layer edges contribution matrix Φl ∈ R|V0∪V1|×c as an all-zero matrix
6: end for
7: for F in |∆F | do
8: According to the Eq. (14), calculate the message flow contribution c
9: obtain the changed edges set ∆EF = {aF [t−1]F [t] : a

0
F [t−1]F [t] ̸= a1F [t−1]F [t]} on this flow

10: for atF [t−1]F [t] in ∆EF do
11: According to the section 3.2, calculate ϕat

F[t−1]F[t]
(F)

12: Let the atF [t−1]F [t] is the l-th layer edge in ∆E , F [T ] is the i-th node in the V0 ∪ V1,
Φl

i = Φl
i + ϕat

F[t−1]F[t]
(F)

13: end for
14: end for
15: Solving the Eq. (19) to obtain the important changed input edges
16: Output: The important changed input edges set
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• BC-OTC1 and BC-Alpha2: is a who trusts-whom network of bitcoin users trading on the platform.
The data sets are used for link prediction.

• UCI3: is an online community of students from the University of California, Irvine, where in the
links of this social network indicate sent messages between users. The data sets are used for link
prediction.

• MUTAG Debnath et al. (1991): A molecule is represented as a graph of atoms where an edge
represents two bounding atoms.

• ClinTox Gayvert et al. (2016):compares drugs approved through FDA and drugs eliminated due
to the toxicity during clinical trials.

• IMDB-BINARY is movie collaboration datasets. Each graph corresponds to an ego-network for
each actor/actress, where nodes correspond to actors/actresses and an edge is drawn betwen two
actors/actresses if they appear in the same movie.Each graph is derived from a pre-specified genre
of movies, and the task is to classify the genre graph it is derived from.

• REDDIT-BINARY is balanced datasets whereeach graph corresponds to an online discussion
thread and nodes correspond to users. An edge was drawn between two nodes if at least one
of them responded to another’s comment. The task is to classify each graph to a community or a
subreddit it belongs to.

Table 2: The details of datasets

Datasets Nodes(Avg. Nodes) Edges(Avg. Edges) task Accuracy(AUC)

YelpChi 105,659 375,239 node classification 0.8477
YelpNYC 520,200 1,956,408 node classification 0.8743

weibo 4,657 node classification 0.9549
pheme 5,748 node classification 0.7621

BC-OTC 5,881 35,588 link prediction 0.9388
BC-Alpha 3,777 24,173 link prediction 0.9125

UCI 1,899 59,835 link prediction 0.9061

MUTAG 17.93 19.79 graph classification 0.75
ClinTox 26.1 55.5 graph classification 0.9874

IMDB-BINARY 19.8 193.1 graph classification 0.8
REDDIT-BINARY 429.6 995.5 graph classification 0.716

Table 3: The changed ration r on different datasets

YelpChi YelpNYC Weibo Pheme BC-OTC BC-Alpha UCI MUTAG ClinTox IMDB-
BINARY

REDDIT-
BINARY

1 1 1 1 0.5 0.6 0.4 1 1 1 1

A.7.2 BASSLINES

• GNNExplainer is designed to explain GNN predictions for node and graph classification on static
graphs. We train the explainer on graphs G0 and G1 to obtain the edges contribution Φ0 and Φ1.
The final edges contribution is given by Φ = Φ1 − Φ0 if the predicted class on G0 and G1 are
different. Otherwise, Φ = Φ1. The top-K edges are selected based on Φ as the explanations.

• PGExplainer learns approximated discrete masks for edges to explain the predictions, with im-
portant edges selected in the same manner as GNNExplainer.

• GNN-LRP utilizes the back-propagation attribution method LRP to GNN Schnake et al. (2020),
attributing the class probability Pr(Y = k|G1) to input neurons regardless of Pr(Y |G0), thereby
obtaining contribution scores for message flows. It uses a summation function to map these con-
tributions to edges, with edge selection consistent with GNNExplainer.

1http://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
2http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
3http://konect.cc/networks/opsahl-ucsocial
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• DeepLIFT Shrikumar et al. (2017) attributes the log-odd between two probabilities Pr(Y =
k|G0) and Pr(Y = k′|G1), where k ̸= k′, to the message flows. Then it uses a summation
function to obtain contributions of edges. The edge selection process is consistent with GNNEx-
plainer.

• FlowX applies the Shapley value to derive initial contributions of message flows, subsequently
training these scores by defining loss functions. A summation function is employed to map con-
tributions to edges, with edge selection aligned with GNNExplainer.

• AxiomLayeredge-Topk is a variant of AxiomLayeredge that selects the top layer edges based on
the highest contributions Φ1, where 1 is an all-1 c× 1 vector.

• AxiomEdge maps the contribution of message flows to the input edges also using the Shapley
value. See Algorithm 4 and Algorithm 5 in the Appendix A.6 for details.

• AxiomEdge-Topk is a variant of AxiomEdge that selects the top edges with the highest contribu-
tions ΦE1, where ΦE is the contribution matrix of the altered edges, 1 is an all-1 c× 1 vector.

• AxiomEdge\Shapley is a variant of AxiomEdge that utilizes the average function instead of the
Shapley value when mapping contributions of message flows to edges.

• AxiomLayeredge\Shapley is a variant of AxiomLayeredge that utilizes the average function
instead of the Shapley value when mapping the contribution of message flow to layer edges.

A.7.3 EXPERIMENTAL SETUP

We trained the two layers GNN. utilizing element-wise sum as the aggregation function fAGG.
The logit for node J is denoted by zJ(G). For node classification, zJ(G) is mapped to the class
distribution through the softmax function. For the link prediction, we concatenate zI(G) and zJ(G)
as the input to a linear layer to obtain the logits, which are then mapped to the probability of the
existence of the edge (I , J). For the graph classification task, the average pooling of zJ(G) across
all nodes in G can produce a single vector representation z(G) for classification. It can be mapped to
the class probability distribution through the softmax function. During training, we set the learning
rate to 0.01, the dropout rate to 0.2 and the hidden size to 16. The model is trained and then fixed
during the prediction and explanation stages.

A.7.4 THE PREDEFINED SPARSITY

On the real dynamic graphs, the sparsity of explanations across various datasets and tasks is illus-
trated in Table 4. The sparsity of simulated dynamic graphs is illustrated in Table 5. The sparsity
is small, but our method can also achieve the better performance than the baselines.

Table 4: The sparsity of explanations on real dynamic graph datasets

Datasets Sparsity level 1 Sparsity level 2 Sparsity level 3 Sparsity level 4 Sparsity level 5

YelpChi 0.996 0.992 0.988 0.994 0.98
YelpNYC 0.998 0.997 0.996 0.995 0.994

weibo 0.996 0.993 0.99 0.986 0.982
pheme 0.98 0.96 0.94 0.92 0.9

BC-OTC 0.996 0.995 0.994 0.993 0.992
BC-Alpha 0.995 0.994 0.993 0.992 0.991

UCI 0.998 0.997 0.996 0.994 0.992

MUTAG 0.988 0.976 0.964 0.952 0.94
ClinTox 0.991 0.982 0.973 0.964 0.954

IMDB-BINARY 0.996 0.991 0.988 0.984 0.98
REDDIT-BINARY 0.998 0.997 0.996 0.995 0.994

A.7.5 EVALUATION METRIC

In Figure 7, we illustrate the calculation process of evaluation metric.
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Table 5: The sparsity of explanations on different simulated graph datasets

Datasets Sparsity level 1 Sparsity level 2 Sparsity level 3 Sparsity level 4 Sparsity level 5

YelpChi 0.999 0.998 0.997 0.996 0.995
YelpNYC 0.9994 0.9988 0.9981 0.9975 0.9965

weibo 0.9972 0.9945 0.992 0.989 0.986
pheme 0.982 0.963 0.945 0.927 0.908

BC-OTC 0.967 0.95 0.935 0.918 0.9
BC-Alpha 0.95 0.91 0.87 0.83 0.79

UCI 0.999 0.998 0.997 0.996 0.995

MUTAG 0.988 0.976 0.964 0.952 0.94
ClinTox 0.99 0.98 0.97 0.96 0.95

IMDB-BINARY 0.996 0.992 0.988 0.984 0.98
REDDIT-BINARY 0.998 0.996 0.994 0.992 0.99
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Figure 7: The calculation process of evaluation metric.

A.7.6 PERFORMANCE EVALUATION AND COMPARISON

We compare the performance of the methods across three tasks: node classification, link predic-
tion and graph classification in simulate dynamic graph scene, as illustrated in Figure 8. For
each dataset, we report the average KL over target nodes/edges/graphs. From Figure 8, we can see
that our method AxiomLayeredge has the smallest KL across all levels of explanation sparsity and
datasets and tasks, with exception of Weibo, Pheme and certain sparsity levels of YelpNYC dataset.
In datasets with dense graph structures (YelpChi, YelpNYC, BC-Alpha, BC-OTC, UCI, IMDB-
BINARYdand REDDIT-BINAYR), the AxiomLayeredge-TopK method ranks third. This indicates
that our designed message flow contribution value Algorithm can effectively explain the dynamic
graphs. In seven experimental settings (Weibo, YelpChi, YelpNYC, BC-Alpha, UCI, MUTAG,
ClinTox), our method AxiomLayeredge along with its variants AxiomEdge, AxiomEdge\Shapley,
AxiomLayeredge\Shapley outperform the GNNLRP, DeepLIFT, GNNExplainer, PGExplainer and
FlowX methods. This demonstrates that our proposed methods more effectively explain the evolu-
tion of Pr(Y |G0;θ) to Pr(Y |G1;θ), while methods designed for static graph struggle to identify
salient edges that explain changes in the predicted probability distribution.

A.7.7 RUNNING TIME

We plot the running time for searching ∆F , calculating message flow contributions, using the
Shapley value to attribute contributions to layer edges, and selecting important layer edges on
the Pubmed, Coauthor-Computer, and Coauthor-Physics datasets. The details of these datasets are
shown in the Table 6. As shown in Figure 9, the larger ∆A lead to higher cost in the selecting step
compared to the other steps. The time for calculating contributions and applying the Shapley value
remains relatively small, even for larger graphs. On large graphs, the searching and selecting steps
dominate the running time, but the overall time remains manageable. In practice, incremental mes-
sage flow searches tailored to specific graph topologies and more efficient optimization algorithms
can further speed up the process.

• In citation network, PubMed Kipf & Welling (2017), each paper has bag-of-words features, and
the goal is to predict the research area of each paper.

• Coauthor-Computer and Coauthor-Physics are co-authorship graphs based on the Microsoft Aca-
demic Graph from the KDD Cup 2016. We represent authors as nodes, that are connected by an
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Figure 8: Performance in KL as G0 → G1. Each column corresponds to a different dataset. The first, second
and third rows represent node classification, link prediction and graph classification tasks, respectively.

edge if they co-authored a paper Shchur et al. (2018). Node features represent paper keywords for
each author’s papers.

Table 6: Three large graph datasets

Datasets Classes Nodes Edges Edge/Node Features

PubMed 3 19,717 44,324 2.24 500
Coauthor-Computer 13 18,333 327,576 17.87 6,805

Coauthor-Physics 2 34,493 991,848 28.76 8,415

A.7.8 VISUALIZATION AND ACCURACY ON THE BA-SHAPES DATESET

On the BA-Shapes dataset, we randomly generated 1,000 graphs with a House motif and 1,000
with a Circle motif. For each motif dataset, we randomly deleted one edge to disrupt the motif and
perturbed edges outside the motif area, generating another 1,000 graph datasets. We trained a GNN
model to classify the presence of the motif. We applied explanation methods to select one edge.
If the selected edge disrupts the motif, the explanation is correct, while if the edge lies outside the
motif area, the explanation is wrong. The accuracy results for GNN and the explanation methods
are presented in Table 8 and Table 7, respectively. Visualization of the explanations for the House
and Circle motifs are shown in Figure 10 and Figure 11.
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Figure 9: Running time decomposition: Each row represents a dataset. The first column shows the total
running time for all four steps, while the second column displays the running time for calculating contributions
and applying the Shapley value.

Table 7: The accuracy of explanation methods

Datasets our GNNExplainer PGExplainer DeepLIFT GNN-LRP FlowX

Circle-motif 0.9657 0.9067 0.4765 0.8848 0.1152 0.4156
House-motif 0.9936 0.3618 0.6025 0.9897 0.1755 0.0238

A.7.9 PERFORMANCE EVALUATION ON DISCONTINUOUS CHANGES OF EDGES

We evaluate the effectiveness of our method on node classification, link prediction, and graph clas-
sification tasks under discontinuous edge changes. As shown in Figure 12, our method outperforms
others across all five datasets, further validating its effectiveness.
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Table 8: The accuracy of GNN model

Datasets GCN

Circle-motif 0.755
House-motif 0.847
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Figure 10: The visualization of House-motif dataset. The blue edges represent changes in edge weights. In
the new graph, the edge (12, 13) is removed to destroy the motif, and the weights of edges (0, 1), (2,3), (0, 4),
(13, 3), and (0, 5) are perturbed. The edge (12, 13) serves as the ground truth for the explanation, clarifying
why the old graph contains a house while the new graph does not. The red edge represents the selected edge by
different methods. Our method correctly identifies (12, 13) as the explanation, while other methods select the
wrong edge.
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Figure 11: The visualization of Circle-motif dataset. The blue edges represent changes in edge weights. In
the new graph, the edge (10, 11) is removed to destroy the motif, and the weights of edges (0, 1), (0, 4), (0, 2),
and (0, 5) are perturbed. The edge (10, 11) serves as the ground truth for the explanation, clarifying why the
old graph contains a circle while the new graph does not. The red edge represents the selected edge by different
methods. Our method correctly identifies (10, 11) as the explanation, while other methods select the wrong
edge.
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Figure 12: Performance in KL as G0 → G1 when only adding or deleting edges. Each column corresponds
to a different dataset.
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