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Abstract

The rise of open-source, commercially permissive large language models (LLMs)
is revolutionizing generative AI, presenting organizations with enhanced control,
minimized data risks, and cost benefits compared to proprietary models. However,
in the field of tool use and function-calling LLMs, many open-source models,
such as Gorilla and ToolLLAMA, are dependent on proprietary LLMs like GPT-4
for high-quality training data, which often faces legal restrictions for competitive
commercial applications. In this paper, we introduce NexusRaven-13B, an open-
source LLM designed for function calls. Originating from the CodeLLAMA-13B
lineage, NexusRaven-13B employs a unique data curation via multi-step refine-
ment, ensuring high-quality training data without relying on GPT-4 distillation.
NexusRaven-13B matches GPT-3.5 in zero-shot function-calling accuracy. When
combined with our second core technique, demonstration retrieval augmentation,
its performance significantly surpasses GPT-4. The code, model, and demo will
be available after the review process.

1 Introduction

Recent advances in large language models (LLMs) have enabled significant new capabilities, in-
cluding natural dialogue, mathematical reasoning, program synthesis, and tool use (Brown et al.,
2020; Bubeck et al., 2023; Chowdhery et al., 2022; OpenAI, 2023; Anthropic, 2023). The rapid
evolution of generative AI has been marked by the development of open-source models (Touvron
et al., 2023; Zheng et al., 2023; Patil et al., 2023; Qin et al., 2023b; Tang et al., 2023). These models
offer a plethora of advantages, including enhanced control, reduced risks associated with sensitive
data, and significant cost savings, especially when compared to proprietary models such as OpenAI’s
GPT-3.5/4. Such benefits have proven invaluable for the community looking to adopt in business
applications.

To enable LLMs to accomplish complex tasks, there has been a growing interest in LLMs tailored
for function calling and tool use, given their potential to play a pivotal role in real-world business
applications, particularly in software operation tasks. In the function calling task, the LLM is given
a list of candidate functions with definitions and docstrings, along with a human natural language
instruction requesting to accomplish certain tasks. The LLM is expected to choose the right function
from the list of candidate functions, along with generating the executable function call with the right
arguments to accomplish the task.

Many existing open-source LLMs focusing on tool usage, such as Gorilla (Patil et al., 2023), Tool-
LLAMA (Qin et al., 2023b), and ToolAlpaca (Tang et al., 2023), rely heavily on proprietary LLMs
like OpenAI’s GPT-3.5/4 to generate large amounts of quality training data. However, legal con-
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straints, like those in OpenAI’s terms, prevent the use of such data for building models competitive
with the proprietary LLMs in commercial use cases.

Furthermore, LLMs designed for function calling can be applied in real-world business scenarios
to serve a crucial role in the common task of operating software. This demands a high degree of
reliability and accuracy while keeping costs low. Unfortunately, flagship models with general code
generation capabilities, such as CodeLLaMA-34B and GPT-4, all appear excessively large with
regard to efficiency considerations. This motivates us to ask:

Can we build a commercially permissive open-source compact LLM designed for
function calling, and use it to deliver solutions with quality competitive to or better
than what proprietary LLMs offer, such as GPT-4 function calling API?

Due to the reduced ability to reason and follow complex, multi-step instructions exhibited by the
open LLMs as compared to closed LLMs, generating high-quality data from medium-sized open
LLMs is a difficult task. Empirically, the key seems to be in reducing the reasoning burden of the
task on these models; and we hypothesized that this can be accomplished by carefully engineering
our pipelines to be a multi-stage refinement process, where each individual stage places as little
reasoning demand on the LLM as possible. However, when combined end-to-end, the output should
rival distillation data that closed models can provide via complex instructions.

Figure 1: NexusRaven-13B translates user queries into executable function calling code, accom-
plishing tasks based on plain English input.

In response to this challenge, we present NexusRaven-13B, a new open-source Large Language
Model (LLM) tailored for function calling in operating software tools. As depicted in Figure 1,
NexusRaven-13B seamlessly processes human instructions in tandem with candidate API function
documentation. In scenarios involving zero-shot or few-shot in-context learning, it is adept at gen-
erating executable function calling code, selecting the appropriate API, and determining the corre-
sponding argument values.

Originating from the open-source lineage of the CodeLLAMA-13B model, NexusRaven-13B’s
training dataset was meticulously curated through a multi-step refinement process, leveraging
CodeLLAMA-34B-instruct and LLaMA-70B-chat. This approach ensures its commercial permis-
siveness, setting a new benchmark in open-source function calling LLMs. We also propose a new
demonstration retrieval-based system that further boosts the performance of the function calling
accuracy by retrieving the most relevant demonstration examples from past seen query-response
pairs.

With the two techniques above, NexusRaven-13B achieves the following:

• Strong zero-shot performance: NexusRaven-13B excels in zero-shot function calling for
software not encountered during its training. Notably, NexusRaven-13B achieves 60%
higher function call success rate compared to Gorilla (Patil et al., 2023), ToolLLAMA (Qin
et al., 2023b), and ToolAlpaca (Tang et al., 2023) in the cybersecurity domain, and 4%
higher than GPT-3.5 without training on any of the functions.

• Enhancement with demonstration retrieval: When integrated with our demonstration
retrieval system, NexusRaven-13B shows a 30% higher function calling success rate than
OpenAI GPT-4 in function calling for operating cybersecurity software, as seen in Figure
2. These software tools, such as CVE/CPE search and VirusTotal, were not included in
the model training data and often feature sophisticated argument lists or extensive arrays of
functions.
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• Cost effiective and low latency: NexusRaven-13B achieves robust function calling capa-
bilities without relying on high-latency search or iterative reasoning techniques, which typ-
ically require observing the outcomes of executing incorrect function calls. This guarantees
truly interactive response times for applications built on NexusRaven-13B and eliminates
the risks associated with incorrect function calls.

2 Related Work

LLMs with Tools The endeavor to enhance tool utilization in Large Language Models (LLMs)
has burgeoned recently Mialon et al. (2023); Qin et al. (2023a). Pioneer works of LLMs with tools
often augment models’ tool-specific usage via fine-tuning Parisi et al. (2022); Schick et al. (2023),
which poses challenges for practical plug-and-play usage. Recent advancements attach exemplary
demos in the prompt, engaging LLMs with a spectrum of tools, from specialized ones such as code
interpreters Gao et al. (2023); Chen et al. (2022), to retrieval augmented Li et al. (2022); Mueller
et al. (2023) more versatile toolsets Patil et al. (2023); Xu et al. (2023); Zhuang et al. (2023); Qin
et al. (2023a); Tang et al. (2023). Notably, ToolAlpaca Tang et al. (2023) covers various tool-use
scenarios by building a multi-agent simulation environment to automatically generate tool-use cor-
pus. ToolLLM Qin et al. (2023b) addresses the requisite of real-world API interactions by leverag-
ing RapidAPI Hub, where ChatGPT is used to generate diverse human instructions involving these
APIs, covering both single-tool and multi-tool scenarios. In addition to using LLMs with demon-
strations, Hsieh et al. (2023) further simplifies prompt design by only leveraging documentation for
tools without offering demos, which maintains competitive performance.

Furthermore, model reasoning also plays an important role in LLMs with tools, where existing
works with simple prompting cannot fully elicit the capabilities in LLMs and therefore fail to handle
complex instructions. CoT Wei et al. (2022), ART Paranjape et al. (2023), ReAct Yao et al. (2022),
and Reflexion Shinn et al. (2023) leverage LLMs to automatically generate intermediate reasoning
steps as well as actions, thereby improving interpretability and problem-solving abilities of LLMs in
diverse decision-making tasks. In ToolLLM Qin et al. (2023b), the authors use ChatGPT to search
for a valid solution path (chain of function calls) for each instruction. Although useful, a long
solution path would significantly increase the number of function calls and therefore consume more
time and resources.

Self-Refinement The idea of using language model to improve itself has appeared in the literature
of self-refinement (Madaan et al., 2023) and reinforcement learning with AI feedback (RLAIF) (Lee
et al., 2023; Bai et al., 2022). The work of self-refinement focuses on refining the responses during
inference time to improve the quality of the responses, while RLAIF focuses on using refined re-
sponses to collect preference data. In contrast, our multi-round refinement relies on multiple models
and multiple rounds to create different levels of refinement of the instruction-tuning dataset, includ-
ing creating the prompt with given function calls, creating chain-of-thought data, and refining the
responses.

Demonstration Retrieval Demonstration retrieval has been applied for semantic parsing (Pasupat
et al., 2021), question answering (Mueller et al., 2023; Khattab et al., 2022), coding (Zhou et al.,
2022) and identifying the right tool to use (Patil et al., 2023). In our approach, we show that such
demonstration retrieval is helpful for improving the accuracy of function calling.

3 Methodology

3.1 Data Curation with Multi-step Refinement

In the context of creating powerful compact models, it is a standard approach to distill the generation
of larger and more powerful models into smaller ones. The power of such distillation is especially
well pronounced on models such as Gorilla, ToolLLAMA, and ToolAlpaca, which distill GPT-3.5/4
generations to refine base open-source models, resulting in models not commercially permissive due
to OpenAI’s terms of use.

While generation distillation in the literature may appear straightforward with GPT-4, we have found
that these methods do not result in high-quality data when we attempt to distill generations for
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function calling from commercially permissive models. Particularly, these commercially permissive
models tend to not be able to follow instructions as well as GPT-4, so distilling diverse and high-
quality examples that differ materially from the seed examples is difficult.

In addition to this, we observe that CodeLLaMA-34B-instruct only achieves a 48.3% success rate
in generating API function calls for VirusTotal, while GPT-4 attains 80.8%. These observations are
likely due to the gap in reasoning capability between CodeLLaMA and GPT-4.

To navigate through these challenges, we pivoted to a new data generation methodology. The prin-
ciple of this new approach is to decompose the data generation into multiple steps, with each re-
quiring simpler and more primitive reasoning, as shown in Figure 4. This reduces the reasoning and
instruction-following burden of open-sourced models, allowing for viable data distillation pipelines
to be built on them.

Figure 2: Illustration of our multi-step refinement pipeline.

One of the primary hurdles is relying on open-sourced models to generate both the diverse ground
truths and the queries. We noticed that these models tended to generate new examples that are very
similar to the seed examples. Rather, we pivoted, and instead of relying on the LLMs to infuse
diversity, we relied on the examples themselves to be diverse.

We achieved this by starting our data curation by mining tuples of function definitions, docstrings,
code context, and the actual function calls from open-sourced corpora, such as The Stack. We then
prompt several LLMs to add information about these pairs, allowing them to be used as training
examples. This information includes asking the model to generate natural language queries that
plausibly might be addressed by executing this function, as well as the chain of thought that could
plausibly lead to that function call. We expect this curation pipeline to deliver a large volume of
diverse and meaningful generated pairs of plain English queries and function calling code, as well
as the Chain-of-Thought (CoT) reasonings for mapping between the query/instruction and the code.

• Mining. We first mine raw function calls from The Stack. These calls include the func-
tion execution itself, but also a context window of about 100 lines around the call. It
also includes the associated function prototype, the function body, and the accompanying
docstrings. Functions that do not contain docstrings or are not statically resolvable are
discarded.

• Function Explanation. We then feed the raw mined tuples into CodeLLaMA-34B-instruct
and generate the capability description of functions. These function explanations are in-
tended to help LLMs better understand the function of data generation.

• Query Generation. With the mined function calling code and the function explanation,
we elicit LLaMA-70B-chat to generate a natural language query description for the code,
which we find results in a higher quality natural language query than using CodeLLaMA-
34B-instruct.

• Chain-of-Thought Enhancement. To explicitly improve the reasoning capability for
function calling, we further leverage CodeLLaMA-34B-instruct to generate CoT traces
elaborating on how the values for arguments are derived. We additionally use these CoT
traces and the query to regenerate the function call code to further improve the compatibil-
ity between queries and the code.

• Hard-Negative Candidate Function List Generation. Given that selecting the right func-
tion from a list of candidates is also required for function calling capability, we use embed-
ding models to augment each curated training data sample with a list of functions similar to
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the intended one, increasing the difficulty of the task during training for better generalizable
models.

This four-step pipeline empirically yields high-quality data samples consisting of queries/instruc-
tions, candidate function documentation, CoT reasoning, and the executable code for function call-
ing. We further instruction-tune the CodeLLaMA-13B model with this generated data to supercharge
the function calling capabilities.

3.2 Demonstration Retrieval Augmentation

The data curation procedure above, combined with instruction tuning, bumps the CodeLLaMA-
13B function call accuracy on the VirusTotal dataset from 38% to 72%. Although a commendable
increase, this accuracy is not sufficient for the robustness required in real-world scenarios. Our
approach to achieving the highest level of accuracy is demonstration retrieval augmentation.

When integrated with LLMs, conventional retrieval systems primarily function as a component of
caching systems. They assist in answering questions from extensive knowledge repositories and
facilitate the extraction of the most relevant functions from vast API document collections. Our
approach, which is different from these conventional approaches, is to use retrievers to directly
source demonstration examples from a corpus of existing query-response pairs. The corpus has 16
examples on average per API function, and we use four-shot prompting to generate function calls.
We find that this significantly boosts the function calling success rate from 72% to 94%.

Figure 3: Illustration of our demonstration retrieval augmentation system. When presented with a
new query, our system scans an existing corpus to identify demonstration examples that can enhance
the quality of responses to that query.

We acknowledge that fine-tuning models on the corpus could boost model performance. Yet, our
retrieval system offers two distinct advantages:

Generalization. While fine-tuning models directly can be expensive and risk weakening some capa-
bilities, updating the retrieval corpus offers the best of both worlds: it keeps the model generalization
capability on diverse and unseen tools, while still being able to significantly boost the accuracy for
specific software.

Personalization. As we add more prompt-response pairs to the retrieval corpus through live inter-
actions and feedback with the users, the system becomes better equipped to find closely matched
responses to incoming queries, thereby significantly enhancing performance. It also adapts to a
personalized use style when maintaining a corpus for past use cases.
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4 Evaluating NexusRaven-13B for Function Calling Capability

We provide a comprehensive benchmark comparing NexusRaven-13B and existing function-calling
models. We show that NexusRaven-13B is comparable to GPT-3.5 in the zero-shot setting, and
surpasses the accuracy of GPT-4 when equipped with demonstration retrieval, in both cybersecurity
and generic domains.

4.1 Evaluation Dataset and Pipeline

We evaluate the function calling capability of different models by sending natural language instruc-
tions to all models, along with the function definition and docstring for all available function calls.
In each test sample, we provide multiple candidate functions. The candidate functions contain the
ground truth function that shall be used for the instructions, along with noisy functions that are simi-
lar but not for the instructions. We evaluate the output of the model by comparing it with the ground
truth by executing the function call and ensuring the arguments match the ground truth exactly.

We compare NexusRaven-13B with GPT-4, GPT-3.5-turbo-instruct, GPT-3.5-turbo, CodeLLaMA-
13B-instruct, Gorilla, ToolLLaMA and ToolAlpaca. We do not directly compare with GPT-4 func-
tion calling API since our function description is longer than the maximum length allowed for func-
tion definitions. For the cybersecurity domain, our full benchmark consists of human queries to
operate CVE and CPE Search, VirusTotal V3, and EmailRep. We collect functions from their API
documentation and curate the ground truth answers by working together with cybersecurity domain
experts. We make sure the ground truth answer is consistent with expert evaluation in real-world use
cases.

For the generic domain, we consider two popular benchmarks in the literature, the ToolAlpaca-
Simulated dataset, and the ToolLLM dataset, for our evaluation. The ToolLLM and ToolAlpaca
datasets were generated using GPT-3.5. This inherently resulted in data samples with noisy ground
truth annotations. These noisy ground truth annotations are challenging to be fully captured for
perfectly reliable evaluation. Nonetheless, we conducted extensive filtering to remove data samples
that certainly contained incorrect function calling codes. We will open-source the evaluation pipeline
after the review process.

4.2 Performance of the Zero-shot Model

Figure 4: Zero-shot comparison between NexusRaven-13B and representative function calling mod-
els on both generic domain and cybersecurity domain.

As is shown in Figure 4, when prompting the models in a zero-shot setting, NexusRaven-13B
demonstrates competitive performance in the cybersecurity domain and achieves a 4% higher suc-
cess rate in the generic domain compared to GPT-3.5. It also beats all representative open source
function-calling models in both the generic domain and the cybersecurity domain, showing 16%
improvement over CodeLLaMA-13B-instruct, and 60% over other open source models in the cyber-
security domain.
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In our zero-shot evaluation, we assumed the LLMs cannot search by observing the outcome of
potentially incorrect function calls. This is because incorrect or unintentional function calls could
produce unexpected detrimental effects on software systems. Nonetheless, we turned on the search
feature of ToolLLM and ToolAlpaca without executing the potentially incorrect function calls. In
this setting, we consider function calling to be successful if any trials in the search are correct. We
enable this design to be extra fair to ToolLLM and ToolAlpaca. We also note here that Gorilla
attains a low success rate because of the lack of generalization on software unseen during training.
In contrast, NexusRaven-13B excels in the zero-shot function calling for generic domain software
APIs not encountered during its training.

4.3 Performance of the Retrieval-augmented Model

Figure 5: Comparison between the prototype system powered by NexusRaven-13B and the GPT-
4 function calling API for CVE and CPE Search, VirusTotal V3, two challenging cybersecurity
software in our benchmark.

We benchmarked the performance of the retrieval-augmented model. As is shown in Figure 2, our
prototype system demonstrates a 30% higher function calling success rate on average than the GPT-4
on CVE/CPE, providing enterprise-grade function calling capabilities at the last mile of quality.

To ensure a fair comparison, we have done explicit decontamination to make sure there is no overlap
between the retrieval corpus and the evaluation data.

4.4 Open Sourcing the Evaluation Framework

As LLMs for tools is a new area, we find that the evaluation datasets, methods, and code bases are
fragmented and not necessarily compatible with each other. In addition, formatting for the descrip-
tions of the tools is also massively varied, from OpenAPI descriptions to simple JSON descriptions.
To facilitate a unified evaluation pipeline, we first standardize the description of tools as Python
functions, despite them either being APIs or simple functions, as we found this description to be
the most intuitive, most compatible with existing code and models, and easy to standardize into. In
addition, we will open-source the evaluation framework integrating the current evaluation bench-
marks. Users can directly plug in their function definitions, doc-strings, instruction lists, and ground
truth data for one-click evaluation without any extra effort.

5 Conclusion and Future Steps

In this paper, we introduce two core techniques, multi-step refinement, and demonstration retrieval
augmentation, enabling high-quality function-calling models, This version of NexusRaven-13B pri-
marily emphasizes single-round interactions with humans through natural language instructions. We
are eager to collaborate with the community to enhance NexusRaven’s capability for multi-round in-
teractions. We plan to further refine our evaluation benchmark as a comprehensive function calling
benchmark. We are excited to standardize the evaluation of tool-using LLMs.
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