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ABSTRACT

Time series observations can be seen as realizations of an underlying dynamical
system governed by rules that we typically do not know. For time series learning
tasks we create our model using available data. Training on available realizations,
where data is limited, often induces severe over-fitting thereby preventing gen-
eralization. To address this issue, we introduce a general recursive framework
for time series augmentation, which we call the Recursive Interpolation Method
(RIM). New augmented time series are generated using a recursive interpolation
function from the original time series for use in training. We perform theoreti-
cal analysis to characterize the proposed RIM and to guarantee its performance
under certain conditions. We apply RIM to diverse synthetic and real-world time
series cases to achieve strong performance over non-augmented data on a variety
of learning tasks. Our method is also computationally more efficient and leads to
better performance when compared to state of the art time series data augmenta-
tion.

1 INTRODUCTION

The recent success of machine learning (ML) algorithms depends on the availability of a large
amount of data and prodigious computing power, which in practice are not always available. In real
world applications, it is often impossible to indefinitely sample and ideally, we would like the ML
model to make good decisions with a limited number of samples. To overcome these issues, we
can exploit additional information such as the structure or invariance in the data that help the ML
algorithms efficiently learn and focus on the most important features for solving the task. In ML,
the exploitation of structure in the data has been handled using four different yet complementary
approaches: 1) Architecture design, 2) Transfer learning, 3) Data representation, and 4) Data aug-
mentation. Our focus in this work is on data augmentation approaches in the context of time series
learning.

Time series representations do not expose the full information of the underlying dynamical system
Prado (1998) in a way that ML can easily recognize. For instance, in financial time series data, there
are patterns at various scales that can be learned to improve performance. At a more fundamental
level, time series are one-dimensional projections of a hypersurface of data called the phase space
of a dynamical system. This projection results in a loss of information regarding the dynamics of
the system. However, we can still make inferences about the dynamical system that projects a time
series realization. Our approach is to use these inferences to generate additional time series data
from the original realization to build richer representations and improve time series pattern identifi-
cation resulting in more optimal parameters and reduced variance. We show that our methodology
is applicable to a variety of ML algorithms.

Time series learning problems depend on the observed historical data used for training. We often use
a set of time series data to train the ML model. Each element in the set can be viewed as a sample
derived from the underlying stochastic dynamical system. However, each historical time series data
sample is only one particular realization of the underlying stochastic dynamical system in the real
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world that we are trying to learn. Our work focuses on problems where available realizations are
limited but is not limited to these problems. In fact, our method can be applied to any time series
learning task such as stock price prediction where we often have a single realization or problems
with numerous realizations such as speech recognition where many audio clips are available for
training. Let us consider the stock price prediction problem. The task is to predict or classify the
trend of future price. Ideally we want our model to perform well by capturing the stochastic dy-
namics of stock markets. However, we only train the model using a single time series realization or
limited historical realizations. As a result, we do not truly capture the characteristic behaviour of the
underlying dynamical system. Using the original training data and hence one or a few realizations
of the underlying dynamical system usually induces over-fitting. This is not ideal as we want our
model to perform well in the stochastic system instead of just a specific realization of that system.

Contributions. The contributions of our work are as follows:

• We present a time series augmentation technique based on recursive interpolation.
• We provide a theoretical analysis of learning improvement for the proposed time series

augmentation method:
– We show that our recursive augmentation allows us to control by how much the aug-

mented time series trajectory deviates from the original time series trajectory (Theo-
rem 3.1) and that there is a natural trade-off that is induced when our augmentation
deviates considerably from the original time series (Theorem 3.2).

– We demonstrate that our learning bound depends on the dimension and properties of
the time series, as well as the neural network structure (Theorems 3.3 and 3.4).

– We believe that this work is the first to offer a theoretical ML framework for time
series data augmentation with guarantees for variance reduction in the learned model
(Theorem 3.5).

• We empirically demonstrate learning improvements using synthetic data as well as real
world time series datasets.

Outline of the paper. Section 2 presents the literature review. Section 3 defines the notations, the
problem setting, and provides the main theoretical results. Section 4 describes the experimental
results, and Section 5 concludes with a summary and a discussion of future work.

2 RELATED WORK

Augmentation for Computer Vision. In the computer vision context, there are multiple ways to
augment image data like cropping, rotation, translation, flipping, noise injection and so on. Among
them, the mixup technique proposed in Zhang et al. (2018) is similar to our approach. They train a
neural network on convex combinations of pairs of images and their labels. However, just applying
a static technique to dynamic time series data is not appropriate. Chen et al. (2020) showed that
data augmentation has a similar effect to an averaging operation over the orbits of a certain group of
transformation that keep the data distribution invariant.

Augmentation for Time Series. There is an exhaustive list of transformations applied to time series
that are usually used as data augmentation Wen et al. (2020a). Fawaz et al. (2018) described trans-
formations in the time domain such as time warping and time permutation. There are methods that
belong to the magnitude domain such as magnitude warping, Gaussian noise injection, quantization,
scaling, and rotation Wen & Keyes (2019). There exists other transformations on time series in the
frequency and time-frequency domains that are based on Discrete Fourier Transform (DFT). In this
context, they apply transformations in the amplitude and phase spectra of the time series and apply
the reverse DFT to generate a new time series signal Gao et al. (2020). Besides the transforma-
tions in different domains, there are also more advanced methods, including decomposition-based
methods such as the Seasonal and Trend decomposition using Loess (STL) method and its variants
Cleveland et al. (1990); Wen et al. (2020b), statistical generative models Kang et al. (2020), and
learning-based methods. The learning-based methods can be further divided into embedding space
DeVries & Taylor (2017), and deep generative models (DGMs) Esteban et al. (2017); Yoon et al.
(2019). These approaches are problem dependent and do not offer theoretical guaranteed learning
improvement. In addition, the learning-based methods require large amounts of training data.
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Augmentation for Reinforcement Learning (RL). Laskin et al. (2020) presented the RL with
Augmented Data (RAD) module which can augment most RL algorithms that use image data. They
have demonstrated that augmentations such as random translate, random convolutions, crop, patch
cutout, amplitude scale, and color jitter can enable RL algorithms to outperform complex advanced
methods on standard benchmarks. Kostrikov et al. (2021) presented a data augmentation method
that can be applied to conventional model-free reinforcement learning (RL) algorithms, enabling
learning directly from pixels without the need for pre-training or auxiliary losses. The inclusion of
this augmentation method improves performance substantially, enabling a Soft Actor-Critic agent to
reach advanced functioning capability on the DeepMind control suite, outperforming model-based
methods and contrastive learning. Laskin et al. (2020) and Kostrikov et al. (2021) show the benefit
of RL augmentation using convolutional neural networks (CNNs) for static data but do not handle
dynamic data such as time series.

Ideally, we would like to have access to more data that is representative of the underlying dynamics
of the system or the regime under which we operate. However, we can not randomly add more data
as there is a probability that the added data might not be representative of our stochastic dynamical
system. To ensure that we are able to add meaningful data without disturbing the properties of
the original data, we introduce a new approach called Recursive Interpolation Method. Our paper
proposes a recursive interpolation method for time series as a tool for generating data augmentations.

3 THEORETICAL FRAMEWORK FOR RECURSIVE INTERPOLATION METHOD

3.1 RECURSIVE INTERPOLATION METHOD (RIM)

In our setting, we consider each time series sample as one realization from the underlying dynamical
system. The realization consists of features along the time axis. Let d + 1 be the dimension of the
time series sample and {0, 1, . . . , k} be the label set for each sample. Then, each sample belongs to
Rd+1 × {0, 1, . . . , k}. Let S = {s0, s1, . . . , sN} be the collection of the time series samples. Let
D be a distribution with support [0, 1) and λi be drawn from D independently denoted by λi ∼ D
for time i ∈ [1 : d]. Let us denote λ⃗ = (λ1, . . . , λd) to be the vector of interpolations. For the
sake of notational simplicity, in the rest of the paper, we denote λ⃗ ≜ λ and λ ∼ D means that each
component λi of λ is sampled independently from D.

For a given vector λ ∈ [0, 1)d and a time series sample s ∈ S, we generate an augmented time
series sample sλ as follows. Let us consider an original time series sample s = (x0, x1, . . . , xd, y)
where the time series features (x0, x1, . . . , xd) ∈ Rd+1 and y ∈ {0, 1, . . . , k} being the label of the
corresponding time series sample. For each λ = (λ1, . . . , λd) ∈ [0, 1)d (λ0 is considered to be a
dummy value), we define an augmented sample sλ = (x0,λ0

, x1,λ1
, . . . , xd,λd

, y) such that

xi,λi
= (1− λi)xi + λixi−1,λi−1

and x0,λ0
= x0 (1)

X0 = 0

X1 = 2

X2 = 1

X3 = 4

X4 = 2

X0 = 0

X1 = 2

X2 = 1

X3 = 4

X4 = 2

X0,𝛌 = 0

X1,𝛌 = 1.6

X2,𝛌 = 1.12

X3,𝛌 = 3.42

X4,𝛌 = 2.28

RIM (𝛌i = 𝛌 = 0.8)

Eq. 1

Figure 1: Illustration of RIM.

The newly generated augmented sample sλ has the same label y as the original sample s. Our re-
cursive methodology allows us to generate a new time series realization that preserves the trajectory
of the original data within some bound (Theorem 3.1).
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Notations. Let l(s, θ) be a loss function defined on a sample s and a model parameter θ and similarly
l(sλ, θ) is the loss defined on the augmented sample using a model parameter θ. We denote that the
distribution P is parametrized by θ∗ on the sample space S. Given few realizations {si}i∈[0:N ] from
the distribution P , we set:

θ∗ = argmin
θ

Es∼P [l(s, θ)]

θ̂ = argmin
θ

1

N + 1

N∑
i=0

l(si, θ)

θaug = argmin
θ

Es∼P [Eλ∼D[l(sλ, θ)]] (2)

θ̂aug = argmin
θ

1

N + 1

N∑
i=0

Eλ∼D[l(si,λ, θ)]

Rn(l ◦Θ) = Eϵi∼E

[
sup
θ∈Θ

∣∣∣∣ 1

N + 1

N∑
i=0

ϵil(si, θ)

∣∣∣∣
]

Using the notations above, our recursive time series data augmentation minimizes the augmented
loss under which we take the expectation over the augmented sample space. We call it average
augmented loss and denote it by laug(s, θ) = Eλ∼D[l(sλ, θ)].

The three most important aspects of our theoretical framework are the characterization of our recur-
sive time series augmentation: the trade-off that is induced in the learning parameter space (Section
3.2), the learning bound showing the impact of the structural properties of time series and the neu-
ral network on the learning parameters (Section 3.3), and better parameter learning with reduced
variance when using augmented samples compared to the non augmented ones (Section 3.4).

3.2 LEARNING BOUND CONNECTING ORIGINAL TIME SERIES AND AUGMENTED TIME
SERIES

We define the recursively interpolated time series and show that the augmented time series samples
can deviate from the original ones. We measured this deviation from the original time series using a
norm distance between the augmented time series and the original one. We show that this distance is
bounded, where the bound depends on the characteristics of the time series features (Theorem 3.1).

Let sign(t) =


0 if t = 0

1 if t > 0

−1 if t < 0

, δab =

{
1 if a = b

0 if a ̸= b
, and D be a distribution with support [0, 1).

Theorem 3.1. (Characterization of recursive augmentation) If λn ∼ D and g(λn) = (1− λn)(1−
δ0n) + (1− sign(n)), then the following holds. Let n ∈ [0 : N ].

(1) xn,λn
=
∑n

k=0(
∏n

i=k+1 λi)g(λn)xn where λj ∼ D for j ≥ 1 and λ0 is a dummy value.

(2) Let ∥·∥ be a norm, e = E[D], m′ = maxi∈[1:N ]{∥xi−xi−1∥} and m = maxi∈[0:N ]{∥xi∥}.
Then

∥Eλ1,...,λn
[(xn,λn

− xn)]∥ ≤ min{(3e)m,
e

1− e
m′, Nem′}, (3)

Eλ1,...,λn
[∥(xn,λn

− xn)∥] ≤ 2λnm (4)

Recall that s = (x0, x1, . . . , xd, y) and sλ = (x0,λ0
, x1,λ1

, . . . , xd,λd
, y), we have

∥s− sλ∥2 =

√√√√ d∑
i=0

(xi − xi,λi
)2 ≤

d∑
i=0

|xi − xi,λi
| = ∥s− sλ∥1

Note that we used the l2 norm for simplicity but in general, any norm satisfies the inequality. Hence,
measuring the distance of each feature between the augmented time series sample and the original
one gives us some information about how far they deviate from each other.
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Theorem 3.2. (Learning bound using characterization of recursive augmentation) Without any
loss of generality, let l(·, ·) ∈ [0, 1]1 be a loss function with Lipschitz condition and S =
{s0, s1, . . . , sN} be the collection of the time series samples. Then with probability at least 1 − δ
over the samples {si}i∈[0:N ], we have

Es∼P [l(s, θ̂aug)]− Es∼P [l(s, θ∗)] < 2RN (laug ◦Θ) +
√

2 log(2/δ)
N+1 + 2LLipEs∼PEλ∼D[∥sλ − s∥]. (5)

Moreover, we have

RN (laug ◦Θ) ≤ RN (l ◦Θ) + max
i∈{0,...,N}

LLipEλ∼D[∥si,λ − si∥]. (6)

with Eλ∼D[∥si,λ − s∥] ≤ 2mde, where e = E[D], d+ 1 is the dimension of the time series sample,
and m = maxi∈[0:N ]{∥xi∥}.

Theorem 3.2 represents the standard argument for regret bounds using Rademacher complexity.
The term in the left in (Eq.5) is what we call the generalization error or sometimes simply the
risk, and the term in the right is called the regret excess risk. Theorem 3.2 tells us how good is our
parameter estimation compared to the optimal parameters. Our bound is governed by three terms: 1)
Rademacher complexity using the augmented data, 2) the sample size, 3) and the distance between
our original time series sample and the augmented one. Now if the distance in (Eq.5) between time
series samples before and after augmentation goes to zero then the learning bound is more tight.
Another implication of the distance being small is that our recursive augmentation method decreases
the Rademacher complexity as demonstrated by (Eq.6). Decreasing Rademacher complexity simply
ends up producing a tighter bound on the parameter space.

On the other hand, if the distance in (Eq.5 and Eq.6) becomes large (i.e. the augmented time series
samples deviate considerably from the original ones), then we can not guarantee with high probabil-
ity that our method will always outperform the non augmented case. This is a trade-off frequently
observed in learning theory.

3.3 LEARNING BOUND CONNECTING THE STRUCTURAL PROPERTIES OF TIME SERIES AND
NEURAL NETWORKS

Theorem 3.3. Let fθ be a neural network with a model parameter θ, ReLU activations, and sigmoid
function as the activation function for the last layer denoted by fθ(x) = σ(gθ(x)) where gθ(x) =
∇gTθ x + b is the pre-activation signal for the last layer. Then the cross entropy loss function l(·, ·)
has error bound as follows

∥l(sλ, θ)− l(s, θ)∥ ≤
√
d

(
∥A∥F +

d∑
i=1

∥Bi∥F
)
∥∇gθ∥ (7)

where

A =



0 0⃗T

0⃗

∂x1,λ1

∂λ1
|λ=0⃗

∂x2,λ2

∂λ1
|λ=0⃗ · · · ∂xd,λd

∂λ1
|λ=0⃗

0
∂x2,λ2

∂λ2
|λ=0⃗ · · · ∂xd,λd

∂λ2
|λ=0⃗

...
...

...
...

0 0 · · · ∂xd,λd

∂λd
|λ=0⃗


Bi =



0 0⃗T

0⃗

∂2x1,λ1

∂λi∂λ1
|λ=0⃗

∂2x2,λ2

∂λi∂λ1
|λ=0⃗ · · · ∂2xd,λd

∂λi∂λ1
|λ=0⃗

0
∂2x2,λ2

∂λi∂λ2
|λ=0⃗ · · · ∂2xd,λd

∂λi∂λ2
|λ=0⃗

...
...

...
...

0 0 · · · ∂2xd,λd

∂λi∂λd
|λ=0⃗,


0⃗ ∈ Rd denoted by column vector, and ∥·∥F is a Frobenius norm.

Theorem 3.3 shows how the structural properties of the time series (A and B) and the neural network
architecture (∇gθ) can affect the learning process. The interpolation vector λ will determine velocity
A and accelerations {Bi}i∈[1:d] of the features for the augmented sample sλ.

1We can choose the range of the loss function to be in any compact and connected subset of R under the
usual topology.

5



Published as a conference paper at ICLR 2023

Theorem 3.4. (Learning bound with structural properties on time series and neural network) Let l
be the cross entropy loss function such that l(·, ·) ∈ [0, 1]. Then with probability at least 1− δ over
the samples {si}i∈[0:N ], we have

Es∼P [l(s, θ̂aug)]− Es∼P [l(s, θ∗)] < 2RN (laug ◦Θ) +
√

2 log(2/δ)
N+1 + 2

√
d

(
A+

∑d
i=1 Bi

)
∥∇gθ∥ (8)

Moreover, we have

RN (laug ◦Θ) ≤ RN (l ◦Θ) +
√
d

(
A+

d∑
i=1

Bi

)
∥∇gθ∥. (9)

Theorem 3.4 reveals that there is a trade off between the dimension of features of a time series
sample, the λ, and the neural network architecture. A and {Bi}i∈[1:d] are the bounds for the velocity
and accelerations, respectively, which are computed using the interpolation vector. The last term of
(Eq.8) is constructed by the gradient of the pre-activation gθ with respect to an input, the dimension
of features of a time series sample, and the bound for the velocity and accelerations induced by the
interpolation vector. Theorem 3.4 tells us how good is our parameter estimation compared to the
optimal parameters. Our bound is governed by three terms: 1) Rademacher complexity using the
augmented data, 2) the sample size, 3) and a term that depends on the dimension of the features of the
time series sample d, the structural properties of the time series (A and Bi), and the neural network
architecture (∇gθ). Because our RIM method uses a recursive interpolation between two consecutive
features, the order of magnitude of A and B do not change drastically, and hence do not blow up
the bound. Another implication of the A and B being small is that our recursive augmentation
method decreases the Rademacher complexity as demonstrated by (Eq.9). Decreasing Rademacher
complexity simply ends up producing a tighter bound on the parameter space.

3.4 VARIANCE REDUCTION

Suppose that we observe a set {s0, s1, . . . , sN} of N +1 samples from the underlying sample space
S. Using our RIM method, we can augment the observed sample si with a distribution D, which
results in the set of augmented samples {si,λ | λ ∼ D} for si. Based on mild assumptions (please
refer to Appendix A.5) on the regularity of the loss function and on the underlying sample space, we
have the following results.

Theorem 3.5. (Asymptotic normality) Assume Θ is open. Then θ̂ and θ̂aug admit the following
Bahadur representation;

√
N + 1(θ̂ − θ∗) =

1√
N + 1

V −1
θ∗

N∑
i=0

∇l(si, θ∗) + oP(1)

√
N + 1(θ̂aug − θ∗) =

1√
N + 1

V −1
θ∗

N∑
i=0

∇laug(si, θ∗) + oP(1)

(10)

Therefore, both θ̂ and θ̂aug are asymptotically normal
√
N + 1(θ̂ − θ∗) → N (0,Σ0) and

√
N + 1(θ̂aug − θ∗) → N (0,Σaug) (11)

where the covariance is given by

Σ0 = V −1
θ∗

Es∼P [∇l(s, θ∗)∇l(s, θ∗)
T ]V −1

θ∗

Σaug = Σ0 − Es∼P [XXT ]
(12)

where X = ∇l(s, θ∗)−∇laug(s, θ∗). As a consequence, the asymptotic relative efficiency of θ̂aug
compared to θ̂ is RE = tr(Σ0)

tr(Σaug)
≥ 1.

(Eq.11) describes the asymptotic behaviour of the learning parameters. (Eq.12) shows that our
recursive time series augmentation reduces the variance of the learning parameters.
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4 EXPERIMENTS

4.1 DESIGN

We show our results on time series classification tasks with different time series augmentation meth-
ods. We compare the improvements of downstream task performance due to different data augmen-
tation methods by enlarging the training set when we train the classifiers. To benchmark our RIM
approach, we compare our results with that achieved by TimeGAN approach Yoon et al. (2019).
We specifically select TimeGAN as they are known to preserve the temporal dynamics thereby
maintaining the correlation between variables across time. Furthermore, with the flexibility of the
unsupervised GAN framework and the control offered by the supervised training in autoregressive
models, comparing our results against those by TimeGANs can provide us a rigorous benchmark
against a tested state-of-the-art approach.

We use a relatively small training set with a large testing set so that it is more challenging for
classifiers to generalize and data augmentations are favorable. Note that we use data augmentation
methods on two classes separately as data augmentations should only preserve properties of that
particular class. We use different data augmentation methods on these two classes of time series in
our training set as follows: RIM methods can be directly applied to time series within each class
to generate new time series for that class to enlarge the original training set such that the generated
series are close to original series in that class according to Theorem 3.1. For the TimeGAN baseline,
we train two TimeGANs separately using time series from each class. Once these two TimeGANs
are trained, they are used to generate time series for each class to enlarge the original training set.
We consider four tasks: the first two use synthetic datasets generated by solving 1-dimensional
ODEs, and the last two use real-world datasets. We compare testing accuracy using the original
data, augmented data with RIM, and augmented data with TimeGANs.

4.2 RESULTS

For task 1, we consider solutions to ODEs containing exponential functions, and two classes in
our binary classification correspond to the two ODEs with different parameters. For task 2, we
consider solutions to ODEs with trigonometric functions. In this setting, ODEs can be thought of
as generators that generate time series on which we are performing classification, and ODEs with
different parameters invoke different dynamical behaviors on their solutions (time series). For each
class, we generate multiple solutions using corresponding ODE with different initial values. To
make the learning tasks harder, we add random noise to the solution generated by these ODEs.
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Figure 2: Time series from two classes on the left plot, Test Accuracy for the exponential synthetic ODE
system using a Convolutional Neural Network with kernel size=3, filter=32, batch size=16, using BatchNorm
and Adam optimizer. The test accuracy plot indicates the resulting mean ± standard deviation from 10 runs.

Task 1: Synthetic data - Exponential ODEs solutions
Two ODEs (time series generators) containing exponential functions we use:

class 1 dy
dt = −0.5y2 + e−y; class 2 dy

dt = −0.3y2 + 1.5e−y
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Task 2: Synthetic data - Trigonometric ODEs solutions
Two ODEs (time series generators) we use:

class 1 dy
dt = 0.6 + 0.5 sin(y); class 2 dy

dt = 1 + cos(y)
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Figure 3: Time series from two classes and Test Accuracy for the trigonometric synthetic ODE system using a
Convolutional Neural Network with kernel size=3, filter=32, batch size=16, using BatchNorm and Adam

optimizer. The test accuracy plot indicates the resulting mean ± standard deviation from 10 runs.

Task 3: Real dataset - Indoor User Movement from the Radio Signal Strength (RSS) Data
This binary classification task from Bacciu et al. (2014) is associated with predicting the pattern of
user movements in real world office environments from time series generated by a Wireless Sensor
Network (WSN). The input data contains RSS measured between the nodes of a WSN, comprising
of 5 sensors: 4 in the environment and 1 for the user. Data has been collected during movement
of the users and labelled to indicate whether the user’s trajectory will lead to a change in the room
or not. In experiments, we use a subset of the data to form a small training set to challenge our
algorithm. We achieve better and more robust test accuracy than the TimeGAN and the non aug-
mented case when using augmented data as reflected in Figure 4. Since λ is the only parameter used
in our RIM augmentation technique, our ablation study paid very precise attention to the choice of
the λ parameter. Under this, we tested different λ distributions. Given that we were interested in
convex combinations between xi and xi−1,λi−1

, we had to restrict λ between 0 and 1. Two ways
to perform this would be: (1) uniformly distribute the weights while sampling λ; (2) concentrating
on a specific part of λ distribution. To address (1), we use U(0, 1) which is the main test-bed for
all the experiments in the current main text. Whereas to address the (2), we perform studies using
beta distribution by varying its shape parameters to focus on specific parts of densities. We tested
Beta(2, 2), Beta(0.5, 0.5) and Beta(2, 5), for which the resulting plots can be found in Appendix
C. For all these cases, we observed improvements from using RIM compared to non-augmented
training, both in terms of a higher final testing accuracy and with fewer training iterations thereby
solidifying the effectiveness of RIM.
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Figure 4: Time series from two classes and Test Accuracy for the Indoor User Movement Classification using
a Convolutional Neural Network with kernel size=3, filter=32, batch size=16, using BatchNorm and Adam

optimizer. The test accuracy plot indicates the resulting mean ± standard deviation from 10 runs.
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Task 4: Real dataset - Ford Engine Condition
We use a subset of the FordA dataset from 2008 WCCI Ford classification challenge Abou-Nasr &
Feldkamp (2007). This dataset contains time series corresponding to measurements of engine noise
captured by a motor sensor. The goal is to detect the presence of a specific issue with the engine
by classifying each time series into issue/no issue classes. We sample 100 time series from FordA
to form a small training set to challenge our algorithm and 100 time series for testing. As shown in
Figure 5, RIM outperforms the TimeGAN and the non augmented case on the test accuracy.
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Figure 5: Time series from two classes and Test Accuracy for the Ford Engine Classification with a
Convolutional Neural Network with kernel size=3, filter=32, batch size=16, using BatchNorm and Adam

optimizer. The test accuracy plot indicates the resulting mean ± standard deviation from 10 runs.

From Figure 2 to Figure 5, we can see that RIM achieves superior performance over the non aug-
mented case. Furthermore, RIM is also able to achieve better or comparable performance than
TimeGAN on these tasks without going through the extensive training process associated with
GANs. For our experiments, we train the TimeGAN for 2500 epochs (3 hours on Xeon Processors
CPU) for synthetic datasets and 5000 epochs (6 hours on Xeon Processors CPU) for real datasets.
Visual comparisons of the time series generated by RIM and TimeGAN with the original time series
are shown in Appendix B. As expected from Theorem 3.5, RIM has smaller variance and better
convergence compared to the non augmented case across all experiments.

4.3 EXTENSION TO OTHER LEARNING TASKS

Section 4.2 demonstrates results for time series classification. In this section, we show that RIM
can also be used in other learning tasks including continuous time series forecasting and RL. In
continuous time series forecasting, we generally have one historical realization and we leverage that
to form our training set composed of (x,y) pairs where x is the previous n time steps’ data and y
is the future step target by decomposing the time series into smaller components. RIM can then be
used to generate more time series from the unique realization so that we can enlarge our training
set by adding more (x,y) pairs from the original realizations. We also used RIM to augment state
trajectories in RL tasks (please refer to pseudo code in Appendix E.2). Preliminary experiments for
continuous time series forecasting can be found in the Appendix D and RL tasks can be found in the
Appendix E.

5 CONCLUSION

We developed a Recursive Interpolation Method (RIM) for time series as a data augmentation tech-
nique to learn models accurately with limited data. The RIM is simple, yet effective, supported by
theoretical analysis guaranteeing faster convergence. Theoretically, we proved that the RIM guar-
antees better parameter convergence with reduced variance. Empirically, our methodology outper-
forms the current state-of-the-art approaches for different real world problem domains and synthetic
datasets by obtaining higher accuracy with reduced variance. Because our approach operates on the
input time series data, it is invariant to the choice of the ML algorithm. The methodology described
in this paper can be used to enhance ML solutions to a wide variety of time series learning problems.
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Appendix
The code for all the experiments can be found at the following link.

A PROOFS

A.1 PROOF OF THEOREM 3.1

Let sign(t) =


0 if t = 0

1 if t > 0

−1 if t < 0

, δab =

{
1 if a = b

0 if a ̸= b
, and D is a distribution with support [0, 1).

Proof of Theorem 3.1 (1) Note that λ0 is a dummy value for mathematical convenience and∏n
i=k+1 λi = 1 if n < k + 1. We prove this by induction on n. The case n = 1 shows that

x1,λ1
= g(λ1)x1 + λ1g(λ0)x0 = (1 − λ1)x1 + λ1x0 since g(λ0) = 1 and g(λ1) = 1 − λ1. We

now assume that the inequality holds for n− 1 and prove it for n. By construction of xn,λn
,

xn,λn
= (1− λn)xn + λnxn−1,λn−1

= (1− λn)xn + λn

n−1∑
k=0

(
n−1∏

i=k+1

λi

)
g(λk)xk

=

(
n∏

i=n+1

λi

)
g(λn)xn +

n−1∑
k=0

(
n∏

i=k+1

λi

)
g(λk)xk

=

n∑
k=0

(
n∏

i=k+1

λi

)
g(λk)xk

Thus (1) holds by mathematical induction.
(2) Consider the equation ∥xn,λn − xn∥. Then by (1), the first bound can be found by

∥E[(xn,λn
− xn)]∥ = ∥E[

n∑
k=0

(

n∏
i=k+1

λi)g(λk)xk − xn]∥

= ∥E[
n−1∑
k=0

(

n∏
i=k+1

λi)g(λk)xk − λnxn]∥

= ∥
n−1∑
k=1

en−k(1− e)xk + en−1x0 − exn∥

≤
n−1∑
k=1

en−k(1− e)∥xk∥+ en−1∥x0∥+ e∥xn∥

≤ (

n−1∑
k=1

en−k −
n−2∑
k=0

en−k + en−1 + e)m

= (

n−1∑
k=0

en−k −
n−2∑
k=2

en−k + e)m ≤ (en−1 − en + 2e)m ≤ 3em

where e = E[D] and m = maxi∈[0:n]{∥xi∥}.

Now we prove the second bound. Since

∥xn,λn
− xn∥ = ∥xn − ((1− λn)xn + λnxn−1,λn−1

)∥
= λn∥xn − xn−1 + xn−1 − xn−1,λn−1

∥
≤ λn(∥xn − xn−1∥+ ∥xn−1 − xn−1,λn−1∥),

(13)
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By recursively applying (Eq. 13), we obtain

∥xn,λn − xn∥ ≤
n∑

k=1

(

n∏
i=k

λi)∥xk − xk−1∥. (14)

By Jensen’s inequality and (Eq. 14), we obtain the second bound
∥E[(xn,λn

− xn)]∥ ≤ E[∥xn,λn
− xn∥]

≤ E[
n∑

k=1

(

n∏
i=k

λi)∥xk − xk−1∥]

≤
n∑

k=1

en−k+1m′ ≤ min{ e

1− e
m′, nem′}

(15)

where e = E[D] and m′ = maxi∈[1:n]{∥xi − xi−1∥}. Now we show that
Eλ1,...,λn

[∥(xn,λn
− xn)∥] ≤ 2λnm.

Eλ1,...,λn
[∥(xn,λn

− xn)∥] = E[∥
n−1∑
k=0

(

n∏
i=k+1

λi)g(λk)xk − λnxn∥]

≤ E[
n−1∑
k=0

|(
n∏

i=k+1

λi)g(λk)|∥xk∥+ |λn|∥xn∥]

≤ E[
n−1∑
k=0

(

n∏
i=k+1

λi)g(λk) + λn]m

=
(
λ1λ2 · · ·λn + λ2λ3 · · ·λn(1− λ1) + λ3λ4 · · ·λn(1− λ2) + · · ·λn(1− λn−1) + λn

)
m

= 2λnm
(16)

where m = maxi∈[0:N ]{∥xi∥}. The first inequality holds by Minkowski inequality.

A.2 PROOF OF THEOREM 3.2

Neural Networks with ReLU Activations. Using ReLU activation functions, neural networks are
constructed by piecewise linear functions of an input. Such a neural network gθ can be formulated
by ∇gTθ x+ b where x is an input, ∇gTθ is the gradient of gθ(x) along x.
Lemma A.1. (Structure of partial derivative) Let s = (x0, . . . , xd) be one sample drawn from time
series and λ ∈ [0, 1]d. Then

∂xi,λi

∂λj
=


0 if i < j

(xi−1,λi−1
− xi) if i = j

(
∏i

k=j+1 λk)(xj−1,λj−1
− xj) if i > j

(17)

Proof. If i < j, then xi,λi
does not depend on λj . Hence ∂xi,λi

∂λj
= 0.

If i = j, then
xi,λi = (1− λi)xi + λixi−1,λi−1 = xi + λi(xi−1,λi−1 − xi).

Hence ∂xi,λi

∂λj
= (xi−1,λi−1 − xi).

If i > j, we prove this by induction on i. The case i = j + 1 shows that
xj+1,λj+1

= (1− λj+1)xj+1 + λj+1xj,λj
= xj+1 + λj+1(xj,λj

− xj+1).

Since xj+1 is not depedent on λj and
∂xj,λj

∂λj
= (xj−1,λj−1 − xj), we have

∂xj+1,λj+1

∂λj
=

λj+1(xj−1,λj−1
− xj). We now assume that the inequality holds for i and prove it for i+ 1. Since

xi+1,λi+1 = (1− λi+1)xi+1 + λi+1xi,λi = xi+1 + λi+1(xi,λi − xi+1) and

∂xi,λi

∂λj
= (

i∏
k=j+1

λk)(xj−1,λj−1
− xj),

13
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∂xi+1,λi+1

∂λj
= λi+1(

i∏
k=j+1

λk)(xj−1,λj−1
− xj) = (

i+1∏
k=j+1

λk)(xj−1,λj−1
− xj).

As a consequence of mathematical induction, the conclusion holds.

We use neural networks with ReLU activations and sigmoid function as the activation function for
the last layer. So, a neural network fθ(x) = σ(gθ(x)) where gθ(x) = ∇gTθ x+b is the pre-activation
signal for the last layer. Recall that we denote by λ⃗ ≜ λ and λ ∼ D means that each component λi

of λ is sampled independently from D.

Proof of Theorem 3.2. Let sλ = (x0, x1,λ1 , . . . , xd,λd
, y) and s be one sample. We denote the

features by xλ = (x0, x1,λ1 , . . . , xd,λd
) and the label by y. Define the matrices

A =



0 0⃗T

0⃗

∂x1,λ1

∂λ1
|λ=0⃗

∂x2,λ2

∂λ1
|λ=0⃗ · · · ∂xd,λd

∂λ1
|λ=0⃗

0
∂x2,λ2

∂λ2
|λ=0⃗ · · · ∂xd,λd

∂λ2
|λ=0⃗

...
...

...
...

0 0 · · · ∂xd,λd

∂λd
|λ=0⃗


(18)

Bi =



0 0⃗T

0⃗

∂2x1,λ1

∂λi∂λ1
|λ=0⃗

∂2x2,λ2

∂λi∂λ1
|λ=0⃗ · · · ∂2xd,λd

∂λi∂λ1
|λ=0⃗

0
∂2x2,λ2

∂λi∂λ2
|λ=0⃗ · · · ∂2xd,λd

∂λi∂λ2
|λ=0⃗

...
...

...
...

0 0 · · · ∂2xd,λd

∂λi∂λd
|λ=0⃗


(19)

where 0⃗ ∈ Rd denoted by column vector and ei is a vector whose i-th component is 1 and 0
otherwise. Let l(sλ, θ) = y log(fθ(xλ))+ (1− y) log(1− fθ(xλ)). Denote lθ(λ) = l(sλ, θ). Using
Taylor expansion of the loss l around λ, we have

lθ(λ) = lθ (⃗0) +

d∑
i=1

∂lθ(λ)

∂λi

∣∣∣∣
λ=0⃗

λi +
1

2

∑
i,j

∂2lθ(λ)

∂λi∂λj

∣∣∣∣
λ=0⃗

λiλj +O(∥λ∥2) (20)

Note that
∂lθ(λ)

∂xi,λi

= y
∂ log(fθ(xλ))

∂xi,λi

+ (1− y)
∂ log(1− fθ(xλ))

∂xi,λi

= y

∂fθ(xλ)
∂xi,λi

fθ(xλ)
− (1− y)

∂fθ(xλ)
∂xi,λi

1− fθ(xλ)

=
∂fθ(xλ)

∂xi,λi

y(1− fθ(xλ)) + (y − 1)fθ(xλ)

(1− fθ(xλ))fθ(xλ)

=
∂fθ(xλ)

∂xi,λi

y − fθ(xλ)

(1− fθ(xλ))fθ(xλ)

(21)

and
∂fθ(xλ)

∂xi,λi

=
∂σ(gθ(xλ))

∂xi,λi

=
∂gθ(xλ)

∂xi,λi

σ(gθ(xλ))(1− σ(gθ(xλ)))

=
∂(∇gTθ xλ)

∂xi,λi

σ(gθ(xλ))(1− σ(gθ(xλ)))

= (
∂∇gTθ
∂xi,λi

xλ +∇gTθ
∂xλ

∂xi,λi

)σ(gθ(xλ))(1− σ(gθ(xλ)))

= ∇gTθ eiσ(gθ(xλ))(1− σ(gθ(xλ))).

(22)
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Since the i-th feature xi,λi
of xλ depends on {λ1, . . . , λi}, we have

∂lθ(λ)

∂λj
=

d∑
i=1

∂xi,λi

∂λj

∂lθ(λ)

∂xi,λi

=

d∑
i=j

∂xi,λi

∂λj

∂fθ(xλ)

∂xi,λi

y − fθ(xλ)

(1− fθ(xλ))fθ(xλ)

=

d∑
i=j

∂xi,λi

∂λj
∇gTθ eiσ(gθ(xλ))(1− σ(gθ(xλ)))

y − fθ(xλ)

(1− fθ(xλ))fθ(xλ)

=

d∑
i=j

∂xi,λi

∂λj
∇gTθ ei(y − fθ(xλ))

(23)

Thus we have
d∑

j=1

∂lθ(λ)

∂λj

∣∣∣∣
λ=0⃗

λj = (y − fθ(x))(0, λ)
TA∇gθ (24)

Hence we have ∣∣∣∣ d∑
j=1

∂lθ(λ)

∂λj

∣∣∣∣
λ=0⃗

λj

∣∣∣∣ ≤ √
d∥A∥F ∥∇gθ∥. (25)

Note that ∥y − fθ(x))∥ ≤ 1.
Now we consider the second partial derivative of the loss function lθ(λ).

∂2lθ(λ)

∂λu∂λj
=

∂

∂λu
(

d∑
i=j

∂xi,λi

∂λj
∇gTθ ei(y − fθ(xλ)))

=

d∑
i=j

∇gTθ ei

(
∂2xi,λi

∂λu∂λj
(y − fθ(xλ))−

∂xi,λi

∂λj

d∑
k=u

∂xk,λk

∂λu
∇gTθ ekfθ(xλ)(1− fθ(xλ))

)
(26)

We will put (Eq. 26) into (Eq. 20) to calculate the Taylor loss explicitly. For the first term, we have

d∑
i=1

λi

d∑
j=1

λj

d∑
l=j

∇gTθ el(
∂2xl,λl

∂λi∂λj
(y − fθ(xλ)))

∣∣∣∣
λ=0⃗

=

d∑
i=1

λi(y − fθ(x))(0, λ)
TBi∇gθ

(27)

and for the second term, we have

d∑
j=1

λj

d∑
i=j

∇gTθ ei
∂xi,λi

∂λj

d∑
l=1

λl

d∑
k=l

∂xk,λk

∂λl
∇gTθ ekfθ(xλ)(1− fθ(xλ))

∣∣∣∣
λ=0⃗

=

d∑
j=1

λj

d∑
i=j

∇gTθ ei
∂xi,λi

∂λj
fθ(x)(1− fθ(x))(0, λ)

TA∇gθ

= fθ(x)(1− fθ(x))(0, λ)
TA∇gθ∇gTθ A

T (0, λ).

(28)
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By combining (Eq. 27 and 28), we have

d∑
i=1

d∑
j=1

λiλj
∂2lθ(λ)

∂λi∂λj

∣∣∣∣
λ=0⃗

=

( d∑
i=1

λi(y−fθ(x))(0, λ)
TBi∇gθ

)
−fθ(x)(1−fθ(x))(0, λ)

TA∇gθ∇gTθ A
T (0, λ)

≤
d∑

i=1

√
d∥Bi∥F ∥∇gθ∥.

(29)

The last inequality holds due to

fθ(x)(1− fθ(x))(0, λ)
TA∇gθ(x)∇gθ(x)

TAT (0, λ) ≥ 0 (30)

By (Eq. 20, 25 and 29), the conclusion holds.

A.3 PROOF OF THEOREM 3.2

We start with a basic inequality frequently used in the proofs.

Lemma A.2. (Supremum inequality) Let f and g be functions which have the same domain and
range. Then

sup
θ
|f(θ)| − sup

θ
|g(θ)| ≤ sup

θ
|f(θ)− g(θ)| (31)

Proof.
sup
θ
|f(θ)| = sup

θ
|f(θ)− g(θ) + g(θ)|

≤ sup
θ
(|f(θ)− g(θ)|+ |g(θ)|)

≤ sup
θ
|f(θ)− g(θ)|+ sup

θ
|g(θ)|

Thus the conclusion holds.

Notation. We assume that the distribution P is parametrized by θ∗ on the sample space S. Let
{si}i∈[0:N ] be the collection of samples from the distribution P . We set:

θ∗ = argmin
θ

Es∼P [l(s, θ)]

θ̂ = argmin
θ

1

N + 1

N∑
i=0

l(si, θ)

θaug = argmin
θ

Es∼P [Eλ∼D[l(sλ, θ)]]

θ̂aug = argmin
θ

1

N + 1

N∑
i=0

Eλ∼D[l(si,λ, θ)]

Rn(l ◦Θ) = Eϵi∼E

[
sup
θ∈Θ

∣∣∣∣ 1

N + 1

N∑
i=0

ϵil(si, θ)

∣∣∣∣
]

laug(s, θ) = Eλ∼D[l(sλ, θ)]

(32)

Assumption 1. Assume that the loss function l satifies Lipschitz condition with respect to the norm.

Proof of Theorem 3.2.

Es∼P [l(s, θ̂aug)]− Es∼P [l(s, θ∗)] = u1 + u2 + u3 + u4 + u5
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where
u1 = Es∼P [l(s, θ̂aug)]− Es∼P [Eλ∼D[l(sλ, θ̂aug)]]

u2 = Es∼P [Eλ∼D[l(sλ, θ̂aug)]]−

1

N + 1

N∑
i=0

Eλ∼D[l(si,λ, θ̂aug)]

u3 =
1

N + 1

N∑
i=0

Eλ∼D[l(si,λ, θ̂aug)]−

1

N + 1

N∑
i=0

Eλ∼D[l(si,λ, θ∗)]

u4 =
1

N + 1

N∑
i=0

Eλ∼D[l(si,λ, θ∗)]− Es∼P [Eλ∼D[l(sλ, θ∗)]]

u5 = Es∼P [Eλ∼D[l(sλ, θ∗)]]− Es∼P [l(s, θ∗)]

(33)

We get

u1 + u5 ≤ 2 sup
θ∈Θ

∣∣∣∣Es∼P [l(s, θ)]− Es∼P [Eλ∼D[l(sλ, θ)]]

∣∣∣∣ (34)

where we have

Es∼P [l(s, θ)]− Es∼P [Eλ∼D[l(sλ, θ)]] = Es∼P [l(s, θ)− Eλ∼D[l(sλ, θ)]]

= Es∼P [Eλ∼D[l(s, θ)− l(sλ, θ)]]

≤ LLipEs∼PEλ∼D[∥sλ − s∥].
(35)

Hence, from (Eq. 34 and 35)

u1 + u5 ≤ 2LLipEs∼PEλ∼D[∥sλ − s∥]. (36)

By McDiarmid’s inequality, in terms of the probability

P(
1

N + 1

N∑
i=0

Eλ∼D[l(si,λ, θ∗)]− Es∼P [Eλ∼D[l(sλ, θ∗)]] ≥ t) ≤ exp

(
− 2t2∑N

i=0(
1

N+1 )
2

)
(37)

u4 has the following bound with probability at least 1− δ

u4 <

√
log(1/δ)

2(N + 1)
. (38)

Moreover, Rademacher complexity holds for u2, so we have

u2 ≤ 2RN (laug ◦Θ) + 4

√
2 log(4/δ)

N + 1
(39)

with probability at least 1− δ. By (Eq. 38 and 39), we get the following inequality

u2 + u4 ≤ 2RN (laug ◦Θ) + 5

√
2 log(4/δ)

N + 1
(40)

with probability at least 1− δ where

RN (l ◦Θ) = Eϵi∼E [sup
θ∈Θ

∣∣∣∣ 1

N + 1

N∑
i=0

ϵiEλ∼D[l(si,λ, θ)]

∣∣∣∣].
where ϵi is a Radamacher variable for all i ∈ [N ].
Since θ̂aug is an optimal parameter for 1

N+1

∑N
i=0 Eλ∼D[l(si,λ, θ)], then

u3 ≤ 0. (41)
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From (Eq. 47, 40 and 41), we conclude that

Es∼P [l(s, θ̂aug)]−Es∼P [l(s, θ∗)] < 2RN (laug◦Θ)+5

√
2 log(4/δ)

N + 1
+2LLipEs∼PEλ∼D[∥sλ−s∥].

(42)

Now we will prove that

RN (laug ◦Θ) ≤ RN (l ◦Θ) + max
i∈{0,...,N}

LLipEλ∼D[∥si,λ − si∥]. (43)

Since

RN (laug ◦Θ)−RN (l ◦Θ) = Eϵi∼E [sup
θ∈Θ

∣∣∣∣ 1

N + 1

N∑
i=0

ϵilaug(si, θ)

∣∣∣∣− sup
θ∈Θ

∣∣∣∣ 1

N + 1

N∑
i=0

ϵil(si, θ)

∣∣∣∣]
≤ Eϵi∼E [sup

θ∈Θ

∣∣∣∣ 1

N + 1

N∑
i=0

ϵilaug(si, θ)−
1

N + 1

N∑
i=0

ϵil(si, θ)

∣∣∣∣]
= Eϵi∼E [sup

θ∈Θ

∣∣∣∣ 1

N + 1

N∑
i=0

ϵi(laug(si, θ)− l(si, θ))

∣∣∣∣]
≤ Eϵi∼E [sup

θ∈Θ

1

N + 1

N∑
i=0

∣∣∣∣ϵi(laug(si, θ)− l(si, θ))]

∣∣∣∣
≤ sup

θ∈Θ

1

N + 1

N∑
i=0

∣∣∣∣(laug(si, θ)− l(si, θ))

∣∣∣∣
= sup

θ∈Θ

1

N + 1

N∑
i=0

∣∣∣∣Eλ∼D[l(si,λ, θ)− l(si, θ)]

∣∣∣∣
≤ max

i∈{0,...,N}
LLipEλ∼D[∥si,λ − si∥].

(44)

We will show Eλ∼D[∥si,λ − s∥] ≤ 2dem. Let each sample s (or si) ∈ Rd+1 × {0, 1, . . . , k}. Then
s = (x0, x1, . . . , xd, y). By the augmentation method, recursively applying convex combinations,
we have sλ = (x0, x1,λ1

, x2,λ2
, . . . , xd,λd

, y). By Theorem 3.1 (Eq. 4), each Eλ1,...,λj
[∥(xj,λj

−
xj)∥] ≤ 2λjm. Hence

Eλ∼D[∥si,λ − s∥] ≤
d∑

j=1

Eλ∼D[∥xλj ,j − xj∥]

≤ 2Eλ∼D[(λ1 + λ2 + · · ·+ λd)]m

≤ 2mde

(45)

where e = E[D], d+ 1 is the dimension of the time series sample, and m = maxi∈[0:N ]{∥xi∥}.

A.4 PROOF OF THEOREM 3.4

Let A = sups∈S∥A∥F and Bi = sups∈S∥Bi∥F . Then for each s ∼ P , we have:

∥A∥F ≤ A and ∥Bi∥F ≤ Bi,

where A and Bi depend on s for i ∈ [d]. Please refer to (Eq. 18) and (Eq. 19).

Proof of Theorem 3.4. The proof is the almost same with the proof of Theorem 3.2. We only de-
scribe the part should be replaced in order to prove Theorem 3.4. Similarly, We start with the

18



Published as a conference paper at ICLR 2023

decomposition of the equation as follows

Es∼P [l(s, θ̂aug)]− Es∼P [l(s, θ∗)] = u1 + u2 + u3 + u4 + u5

where u1, u2, u3, u4 and u5 are defined in (Eq. 33).
(Eq. 35) in the proof of Theorem 3.2 will be replaced with the following

Es∼P [l(s, θ)]− Es∼P [Eλ∼D[l(sλ, θ)]] = Es∼P [l(s, θ)− Eλ∼D[l(sλ, θ)]]

= Es∼P [Eλ∼D[l(s, θ)− l(sλ, θ)]]

≤
√
d

(
A+

d∑
i=1

Bi

)
∥∇gθ∥.

(46)

Hence, from (Eq. 34) and (Eq. 46), we have

u1 + u5 ≤ 2
√
d

(
A+

d∑
i=1

Bi

)
∥∇gθ∥. (47)

The last two lines of (Eq. 44) will be replaced with the following

sup
θ∈Θ

1

N + 1

N∑
i=0

∣∣∣∣Eλ∼D[l(si,λ, θ)− l(si, θ)]

∣∣∣∣ ≤ √
d

(
A+

d∑
i=1

Bi

)
∥∇gθ∥ (48)

Theorem 3.3 guarantees the inequality. Thus the conclusion holds.

A.5 PROOF OF THEOREM 3.5

Asymptotic Results. Note that the sample space is contained in Rd+1 × {0, . . . , k} and the param-
eter space Θ ⊆ Rp where {0, . . . , k} is the label set. Under regularity conditions, it is well known
that θ̂ is asymptotically normal with covariance given by the inverse Fisher information matrix. We
will see that θ̂aug is also asymptotically normal with the covariance. Suppose that we observe a set
{s0, s1, . . . , sN} of N + 1 samples from the underlying sample space S . Using our RIM method,
we can augment the observed sample si with a distribution D, which results in the set of augmented
samples {si,λ | λ ∼ D} for si. We then decompose ∪N

i=0{si,λ | λ ∼ D} into disjoint union of some
sets Si such that si ∈ Si.
Assumption 2. (Disjointness) the sample space S is the disjoint countable union of all possible
augmented sample spaces.

Consider the probability space is (S,F ,P) where F is a sigma algebra and P the corresponding
probability measure. Let µ be a measurable function from S to Rp for some p ∈ N. For each sample
s = (x, y) ∈ S, define µ(s) = E[µ |Si] where s ∈ Si. Let’s assume that we observe N +1 samples
{s0, s1, . . . , sN} from the underlying sample space. Then by Assumption 2, the underlying sample
space is decomposed into ∪∞

i=1Si. i,e S = ∪∞
i=1Si. This is well-defined by Assumption 2, and µ is

a measurable function. Let µi be the expectation value of µ over Si.
Lemma A.3. (Effects of the average function) With notation as above, the following holds.

1. The law of total expectation: Es∼P [µ] = Es∼P [µ].

2. The law of total covariance: Covs∼Pµ = Es∼P [Cov(µ|µ)] + Covs∼Pµ.

Proof. From the disjointedness of the underlying sample space, for each s ∈ S , we have s ∈ Si for
some i ∈ N

Es∼P [µ] = Es∼P [Es∼P [µ |Si]] = Es∼P [Es∼P [µ |µ = µi]] = Es∼P [µ]. (49)

Thus the law of total expectation and the law of total covariance naturally follow.

Under mild assumptions for a given loss function, we show that the average loss function laug inher-
its the same properties from the non augmented loss function, where laug(s, θ) = Eλ∼D[l(sλ, θ)].
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Assumption 3. (Regularity of the loss function) For the loss function l(·, θ), we assume that

1. For the minimizer θ∗ of the population risk and any ϵ > 0, we have

sup
{∥θ−θ∗∥≥ϵ | θ∈Θ}

Es∼P [l(s, θ)] > Es∼P [l(s, θ∗)]

2. For every ϵ > 0, there exists a function l′ ∈ L2(P) such that for almost every s and for
every θ1, θ2 ∈ N(θ0, ϵ), we have

|l(s, θ1)− l(s, θ2)| ≤ l′(s)∥θ1 − θ2∥

3. Uniform weak law of large number holds

sup
θ∈Θ

∣∣∣∣ 1

N + 1

N∑
i=0

l(si, θ)− Es∼P [l(s, θ)]

∣∣∣∣→ 0

4. For each θ in Θ, the map s → l(s, θ) is measurable

5. The map θ → l(s, θ) is differentiable at θ∗ for almost every s

6. The map θ → Es∼P [l(s, θ)] admits a second-order Taylor expansion at θ∗ with non-
singular second derivatives matrix Vθ∗

Proposition A.4. For the pair (θaug, laug), the following property holds. For every ϵ > 0, there
exists a function l′aug ∈ L2(P) such that for almost every s and for every θ1, θ2 ∈ N(θ0, ϵ), we have

|laug(s, θ1)− laug(s, θ2)| ≤ l′aug(s)∥θ1 − θ2∥

Proof. Since we have

|laug(s, θ1)− laug(s, θ2)| = |Eλ∼D[l(sλ, θ1)− l(sλ, θ2)]|
≤ Eλ∼D[|l(sλ, θ1)− l(sλ, θ2)|]
≤ Eλ∼D[l

′(sλ)∥θ1 − θ2∥]
= Eλ∼D[l

′(sλ)]∥θ1 − θ2∥,

the conclusion holds and l′aug = Eλ∼D[l
′(sλ)].

Proposition A.5. For the pair (θaug, laug), the following property holds.

sup
θ∈Θ

∣∣∣∣ 1

N + 1

N∑
i=0

laug(si, θ)− Es∼P [laug(s, θ)]

∣∣∣∣→ 0

Proof. We have

sup
θ∈Θ

∣∣∣∣ 1

N + 1

N∑
i=0

laug(si, θ)− Es∼P [laug(s, θ)]]

∣∣∣∣
= sup

θ∈Θ

∣∣∣∣ 1

N + 1

N∑
i=0

Eλ∼D[l(si,λ, θ)]− Es∼P [Eλ∼D[l(sλ, θ)]]

∣∣∣∣
= oP(1)

where the last equality holds because the underlying sample space S is the disjoint countable union
of all possible augmented sample spaces.

Proposition A.6. For the pair (θaug, laug), the following property holds. For each θ in Θ, the map
s → laug(s, θ) is measurable

Proof. laug is measurable since l is measurable and laug(s, θ) = Eλ∼D[l(sλ, θ)].
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Proposition A.7. For the pair (θaug, laug), the following property holds. For each θ in Θ, the map
s → laug(s, θ) is differentiable

Proof. we have

lim
δ→0

∣∣∣∣laug(s, θ∗ + δ)− laug(s, θ∗)− δT∇laug(s, θ∗)

∣∣∣∣
∥δ∥

= lim
δ→0

∣∣∣∣Eλ∼D[l(sλ, θ∗+δ)−l(sλ, θ∗)]−δTEλ∼D[∇l(sλ, θ∗)]

∣∣∣∣
∥δ∥

= lim
δ→0

∣∣∣∣Eλ∼D
[
l(sλ, θ∗+δ)−l(sλ, θ∗)−δT (∇l(sλ, θ∗))

]∣∣∣∣
∥δ∥

≤ lim
δ→0

Eλ∼D
[∣∣∣∣l(sλ, θ∗+δ)−l(sλ, θ∗)−δT (∇l(sλ, θ∗))

∣∣∣∣]
∥δ∥

Let us define

Fδ(s) =

Eλ∼D
[∣∣∣∣l(sλ, θ∗+δ)−l(sλ, θ∗)−δT (∇l(sλ, θ∗))

∣∣∣∣]
∥δ∥

G(s) = Eλ∼D[|l′(sλ) + (∇l(sλ, θ∗))|] for all s ∈ S

Since |Fδ(s)| ≤ G(s) for all s ∈ S by Lebesgue’s dominated convergence theorem,

lim
δ→0

∣∣∣∣laug(s, θ∗ + δ)− laug(s, θ∗)− δT∇laug(s, θ∗)

∣∣∣∣
∥δ∥

≤ lim
δ→0

Eλ∼D
[∣∣∣∣l(sλ, θ∗+δ)−l(sλ, θ∗)−δT (∇l(sλ, θ∗))

∣∣∣∣]
∥δ∥

= Eλ∼D
[
lim
δ→0

∣∣∣∣l(sλ, θ∗+δ)−l(sλ, θ∗)−δT (∇l(sλ, θ∗))

∣∣∣∣
∥δ∥

]
= 0

where the last inequality holds because l is differentiable.

Proposition A.8. The map θ → Es∼P [laug(s, θ)] admits a second-order Taylor expansion at θ∗
with non-singular second derivatives matrix Vθ∗

Proof. By the total law of expectation of Lemma A.3, we get

Es∼P [laug(s, θ)] = Es∼P [l(s, θ)].

Hence the conclusion holds by the bullet 6 from Assumption 3.

Combining all the Propositions [A.4 - A.8] with some results shown in Van der Vaart (1998), we
prove Theorem 3.5.

Proof of Theorem 3.5. The results for θ̂ have already been proven in (Van der Vaart, 1998, Theorem
5.23). The Propositions [A.4 - A.8] guarantee that (Van der Vaart, 1998, Theorem 5.23) can be
applied to the pairs (θ∗, l) and (θaug, laug). Therefore θ̂aug is asymptotically normal and satisfies
(Eq. 10).
Let X = ∇l(s, θ∗) − ∇laug(s, θ∗). Recall that Covs∼Pµ = Es∼P [Cov(µ|µ)] + Covs∼Pµ by
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Lemma A.3. Let’s consider µ and µ to be ∇l(s, θ∗) and ∇laug(s, θ∗), respectively. Then

Σ0 = Cov(∇l(s, θ∗))

and
Σaug = Cov(∇laug(s, θ∗)).

Hence we have

Σ0 − Σaug = Covs∼Pµ− Covs∼Pµ = Es∼P [Cov(µ|µ)]
= Es∼P [Es∼P [(µ− E[µ|µ])(µ− E[µ|µ])T | µ]]
= Es∼P [Es∼P [(µ− µ)](µ− µ)T | µ]]
= Es∼P [Es∼P [(∇l(s, θ∗)−∇laug(s, θ∗))(∇l(s, θ∗)−∇laug(s, θ∗))

T | µ]]
= Es∼PEs∼P [XXT | µ]
= Es∼P [XXT ].

(50)

Thus we get
Σaug = Σ0 − Es∼P [XXT ]. (51)

Since tr(Es∼P [XXT ]) ≥ 0, we have RE = tr(Σ0)
tr(Σaug)

≥ 1

B VISUALIZATIONS OF RIM TIMEGAN GENERATED TIME SERIES

This sections shows visualization of time series generated by RIM and TimeGAN. We plot samples
from original time series, RIM generated time series and TimeGAN generated time series from both
classes for Synthetic exponential ODE classification in Figure 6.
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Figure 6: Visualization of exponential ODE classification series generated by RIM and TimeGAN against
original series (5 each)
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Figure 7: Test accuracy over epochs for synthetic data with Exponential ODE with λ sampled from beta
distributions with different scales (Left) Beta(0.5, 0.5), (Middle) Beta(2, 2), and (Right) Beta(2, 5).
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Figure 8: Test accuracy over epochs for Indoor dataset with λ sampled from beta distributions with different
scales (Left) Beta(0.5, 0.5), (Middle) Beta(2, 2), and (Right) Beta(2, 5).

D TIME SERIES FORECASTING

In this section, we consider time series forecasting task where we use previous n time steps data to
predict next times step data. We compare performances of regression model trained with original
dataset and regression models trained with augmented dataset using RIM.

Predicting Stock Price Movement.
This regression task consists of predicting the next day SPY500 index Open price from historical
SPY500 index using data from July 2008 to December 2012 as training data and data from January
2013 to March 2014 as testing data. The input data contains the last 7 days’ historical Open, Close,
High, Low, and Volume of the SPY500 index. After predicting the next day’s Open price, we take
a long position if the predicted next day Open is larger than today’s Open, short otherwise. On
comparing the results on the test data for the augmented case and the original case, we observe that
the proportion of profitable trading signals is higher in the augmentation-trained model as observed
in Figure 9. Using these trading signals, we also calculate the trading system’s CAGR (Compound
Annual Growth Rate) which we observe to be higher in the augmentation trained model. The test
loss plot shows that the MSE for the augmentation trained model is consistently lower than the
non-augmentation trained model.
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Figure 9: Profitable trading signals (left), test set CAGR (middle), test set MSE (right) for the SPY500 Dataset
using an LSTM model with 2 LSTM layers (200 neurons), 2 dense layers (100 neurons), lr=1e-4, batch

size=16. The plots indicate resulting mean ± standard deviation from 10 runs.

Predicting Air Quality.
The restricted air quality dataset contains 1200 instances of hourly averaged responses from an array
of 5 metal oxide chemical sensors. This is a time series regression task where the target is the next
time step’s CO concentration. The input data contains the last six time steps’ 10 features as used in
De Vito et al. (2008) and for Machine Learning & Repository. Figure 10 shows that the test MSE
of the augmentation trained model remains lower than the non-augmentation trained model during
the training epochs validating our claims about the robustness of the approach. Accordingly, the
proportion of correct predictions of CO up/down also remains higher for the augmented case.
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Figure 10: Test accuracy (left) and Test MSE (right) for the Air Quality Dataset using an LSTM model with 2
LSTM layers (200 neurons), 2 dense layers (100 neurons), lr=1e-4, and batch size=16. The plots indicate the

resulting mean ± standard deviation from 10 runs.

E TIME SERIES RL

In this section, we consider portfolio management task using reinforcement learning. More specifi-
cally, we compare performances of agents (DPG) trained with original state trajectories (price evo-
lution) and augmented state trajectories using RIM.

E.1 DATASET

Figure 11: Evolution of stock prices.

For RL, the data comes from the Quandl finance database that has daily data. Our RL models are
trained over 600 trading days from 2010-08-09 to 2012-12-25 and tested over 200 trading days from
2012-12-26 to 2013-10-11 on a portfolio consisting of ten selected stocks: American Tower Corp.
(AMT), American Express Company (AXP), Boeing Company (BA), Chevron Corporation (CVX),
Johnson & Johnson (JNJ), Coca-Cola Co (KO), McDonald’s Corp. (MCD), Microsoft Corporation
(MSFT), AT&T Inc. (T) and Walmart Inc (WMT). To promote the diversification of the portfolio,
these stocks were selected from different sectors of the S&P 500, so that they are uncorrelated as
much as possible as shown in Fig. 11.
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E.2 RL PSEUDOCODE

Algorithm 1: RIM: RL Training
input : Observed time series data S = {s0, s1, . . . , sT } where si = (xi, yi) for xi ∈ Rd and yi ∈ R for

i ∈ [0 : T ].
1 Initialize θ parameter for the policy network, Y epochs, and a distribution D with support [0, 1).

for e = 1 to Y do
2 Initialize λ⃗ = (λ1, . . . , λT ) with λi ∼ D // Initialize interpolation coefficients vector

Augmented Path Simulator Generate an augmented trajectory S
λ⃗
= {s0, s1,λ1

, . . . , sT,λT
} where

si,λi
= (xi,λi

, yi,λi
)

for t = 1 to T do
3 at ∼ π(.|st,λt )
4 s′t ∼ p(.|st,λt , at)
5 St ← S ∪ S

λ⃗
// Add a transition to the replay buffer

6 UpdateCritic(St)
7 UpdateActor(St) // Data augmentation is applied to the samples for actor training as well
8 end
9 end

E.3 POLICY DEPLOYMENT

In our RL experiments, the investment decisions to rebalance the portfolio are made daily and each
input signal represents a multidimensional tensor that aggregates historical open, low, high, close
prices and volume. It should be noted that our training and testing include the transaction costs (TC).
We used the typical cost due to bid-ask spread and market impact that is 0.25%. We believe these
are reasonable transaction costs for the portfolio trades.
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Figure 12: Training and testing results for DPG (above) and DDPG (below). The plots indicate the resulting
mean ± standard deviation from 20 runs with different seeds.
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F HYPERPARAMETERS

We note that the primary objective of the conducted experiments is to show that RIM can improve
model performance. Therefore, in all experiments, instead of finding optimal set of parameters for
augmented and non-augmented trained model, we compare the performance of augmented trained
model and non-augmented trained model with the same hyperparameter configuration. We demon-
strated in Section 4 that RIM indeed improves model performance with same hyperparameter con-
figuration. However, are these improvements robust to other hyperparameters? To answer this ques-
tion, we conducted sensitivity analysis for two supervised learning tasks (Indoor user movement
classification and Air Quality regression) and RL task (Portfolio Management).

F.1 HYPERPARAMETER SENSITIVITY FOR SUPERVISED TASKS

For Indoor movement classification task, we conducted the same experiment in Section 4 with 9 dif-
ferent hyperparameter configurations as shown in table 1 and observed that for all the cases RIM out-
performs Non-Augmented case (with smaller mean test loss and higher mean test accuracy) which
solidifies our claim of enhancement observed in model performance when we use RIM.

Table 1: In the table, the Test Loss and Test Accuracy are the mean(standard deviation) over 10 runs for 50
epochs for varying Filters and Kernel size for Indoor User Movement Classification Task

Filters Kernel Size Test Loss – RIM Test Loss – NoAug Test Acc – RIM Test Acc – NoAug

16 3 1.09 (0.43) 2.72 (0.95) 0.71 (0.04) 0.63 (0.02)
16 4 0.90 (0.45) 1.70 (0.69) 0.76 (0.04) 0.68 (0.04)
16 5 0.86 (0.19) 1.00 (0.19) 0.72 (0.01) 0.60 (0.05)
32 3 1.37 (0.31) 3.07 (0.67) 0.72 (0.02) 0.62 (0.05)
32 4 1.75 (0.71) 2.70 (1.20) 0.74 (0.03) 0.68 (0.03)
32 5 1.70 (0.70) 2.57 (0.85) 0.66 (0.08) 0.64 (0.06)
64 3 2.99 (2.17) 3.31 (1.36) 0.68 (0.07) 0.68 (0.06)
64 4 2.60 (0.70) 4.80 (4.30) 0.73 (0.03) 0.68 (0.02)
64 5 3.30 (0.74) 4.90 (4.08) 0.66 (0.03) 0.60 (0.06)

For Air quality regression task, we again conducted the same experiment as in Section 4 with 8
different hyperparameter configurations as shown in table 2. Here too, we find that RIM outperforms
Non-Augmented case (with smaller mean test MSE and higher mean test accuracy) which confirms
our claim of enhancement observed in model performance when we use RIM.

Table 2: In the table, the MSE and Accuracy are the mean(standard deviation) over 10 runs for 50 epochs for
varying Epoch Initial, Batch Size, LSTM Layer and Dense Layer for Air Quality Regression Task on Test Data

Epoch Init Batch Size LSTM Layer Dense Layer MSE – RIM MSE – NoAug Acc – RIM Acc – NoAug

5 16 100 50 5.34 (0.11) 5.43 (0.25) 0.63 (0.03) 0.47 (0.08)
1 32 80 40 5.40 (0.08) 5.44 (0.04) 0.63 (0.05) 0.51 ( 0.02)
5 16 150 50 5.59 (0.01) 5.74 (0.35) 0.66 (0.03) 0.53 (0.10)
6 32 200 100 5.23 (0.10) 5.55 (0.19) 0.64 (0.02) 0.51 (0.06)

10 16 150 100 5.32 (0.05) 5.48 (0.11) 0.57 (0.02) 0.51 (0.35)
1 64 200 100 5.59 (0.07) 5.67 (0.23) 0.65 (0.02) 0.52 (0.03)

10 16 100 50 5.44 (0.24) 5.49 (0.38) 0.59 (0.05) 0.56 (0.07)
15 16 100 50 5.56 (0.08) 5.60 (0.16) 0.65 (0.01) 0.56 (0.02)
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F.2 HYPERPARAMETER SENSITIVITY FOR RL TASK

The hyperparameter space is represented by a hypercube: the more values it contains the harder it
is to explore all the possible combinations. To efficiently find the optimal set of hperparameters, we
explored the hyperparameter space using Bayesian optimization (BO) Hutter et al. (2011). Table 3
shows the range of values for the hyperparameters used during the training and validation phase.
The learning rate controls the speed at which neural network parameters are updated. The window
is used to allow the deep RL agents to utilize a range of historical data values to relax the Markov
assumption. We allow the use of 2 days up to 30 days of historical data. The number of filters
and kernel strides are the hyperparameters for the convolution neural networks. It is important to
carefully optimize these parameters in order to capture the best feature representations used by the
policy networks. Finally, the training and testing sizes may also impact the RL performance. So, we
also consider them as hyperparameters.

Table 3: Hyperparameters used by our RL algorithms.

Parameters Bounds Type

Learning rate (lr) 10−5–5.10−1 Discrete

Trading cost (tc) 2–30 Discrete

Number of filters (nf) 2–52 Discrete

Kernel Strides (ks) 2–10 Discrete

Window 2–30 Discrete

Training size (train) 20–500 Discrete

Testing size (test) 5–100 Discrete

Figure 13: Hyperparameter sensitivity for DPG: the vertical axes list all the models we evaluated by its index.
The detailed hyperparameter configurations each index refers to are listed in Tables 4 and 5. The horizontal
axis shows the cumulative total validation return. The blue line shows the validation performance for DPG
without augmentation. The orange line shows the validation performance for DPG using RIM. The worst to

best models are ordered from bottom to top.
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Table 4: Sensitivity analysis for DPG configurations without augmentation

lr tc nf ks window train test validation cumulative return

0.001 0.0225 [48, 20, 1710] 9 19 50 10 1.1563
1.0 0.0125 [50, 38, 1340] 3 6 500 100 1.1509
0.0005 0.0125 [14, 6, 1300] 4 16 50 50 1.1600
0.01 0.0125 [28, 28, 210] 4 13 100 10 1.1380
0.01 0.0175 [16, 2, 1080] 3 9 50 5 1.1597
0.001 0.0125 [18, 12, 1290] 8 16 50 50 1.1542
1.0 0.0175 [20, 20, 1090] 6 16 50 10 1.1507
0.0005 0.0075 [18, 2, 1270] 3 16 50 50 1.1614
1,00E-05 0.0225 [10, 10, 1310] 8 9 50 50 1.1591
0.1 0.0225 [10, 10, 770] 2 17 200 20 1.15470
5,00E-05 0.0075 [12, 16, 1300] 7 17 50 50 1.1558
0.05 0.0125 [16, 10, 1090] 3 7 50 5 1.1551
0.0001 0.0075 [24, 12, 1080] 5 15 50 5 1.1544
0.1 0.0175 [44, 2, 1500] 2 11 20 10 1.16082
0.005 0.0025 [2, 42, 270] 8 16 500 50 1.1374
5,00E-05 0.0175 [24, 10, 1090] 2 11 50 5 1.1537
1.0 0.0175 [32, 12, 1490] 2 8 20 20 1.1574
0.5 0.0075 [46, 6, 950] 4 18 20 20 1.1589
0.0001 0.0025 [30, 26, 1190] 7 9 500 100 1.1510
0.01 0.0025 [50, 16, 940] 7 15 20 5 1.1501
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Table 5: Sensitivity analysis for DPG configurations with augmentation

lr tc nf ks window train test validation cumulative return

0.005 0.0175 [36, 36, 1960] 4 9 20 10 1.1513
0.0001 0.0025 [22, 14, 1270] 9 10 50 50 1.1582
0.1 0.0125 [40, 22, 880] 3 6 20 10 1.1503
1,00E-05 0.0075 [8, 16, 760] 2 6 200 20 1.1521
0.005 0.0175 [44, 6, 1500] 5 6 20 20 1.1593
1,00E-05 0.0025 [2, 2, 1310] 2 19 50 50 1.1619
0.001 0.0125 [36, 6, 960] 3 17 20 20 1.1560
0.0001 0.0075 [22, 6, 770] 9 13 200 20 1.1573
1,00E-05 0.0025 [22, 2, 1320] 2 19 50 50 1.1619
0.5 0.0225 [28, 2, 970] 7 12 20 5 1.1581
0.5 0.0125 [40, 14, 960] 9 18 20 10 1.1547
0.01 0.0175 [32, 16, 760] 5 7 200 20 1.1478
0.01 0.0025 [24, 10, 780] 7 16 200 5 1.1517
0.005 0.0025 [46, 12, 770] 9 19 200 20 1.1502
0.01 0.0225 [48, 44, 1190] 4 10 100 50 1.1450
1.0 0.0175 [28, 8, 960] 6 13 20 5 1.1541
0.005 0.0125 [36, 2, 1500] 3 15 20 5 1.1607
0.005 0.0225 [18, 8, 1270] 5 9 50 50 1.1585
1.0 0.0125 [8, 6, 1260] 7 8 50 50 1.1604
1.0 0.0025 [28, 2, 1250] 2 7 50 50 1.1607
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