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Abstract

Neural network verifiers based on linear bound
propagation scale impressively to massive mod-
els but can be surprisingly loose when neuron
coupling is crucial. Conversely, semidefinite pro-
gramming (SDP) verifiers capture inter-neuron
coupling naturally, but their cubic complexity
restricts them to only small models. In this
paper, we propose SDP-CROWN, a novel hy-
brid verification framework that combines the
tightness of SDP relaxations with the scalabil-
ity of bound-propagation verifiers. At the core
of SDP-CROWN is a new linear bound—derived
via SDP principles—that explicitly captures ℓ2-
norm-based inter-neuron coupling while adding
only one extra parameter per layer. This bound
can be integrated seamlessly into any linear
bound-propagation pipeline, preserving the in-
herent scalability of such methods yet signifi-
cantly improving tightness. In theory, we prove
that our inter-neuron bound can be up to a factor
of

√
n tighter than traditional per-neuron bounds.

In practice, when incorporated into the state-of-
the-art α-CROWN verifier, we observe markedly
improved verification performance on large mod-
els with up to 65 thousand neurons and 2.47
million parameters, achieving tightness that ap-
proaches that of costly SDP-based methods.

1. Introduction
Neural network verification is critical for ensuring that
models deployed in safety-critical applications adhere to
robustness and safety requirements. Among various ver-
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Figure 1: Verification of the ConvLarge network on the
CIFAR-10 dataset (six convolutional layers + three fully
connected layers, ≈2.47M parameters and 65k neu-
rons) under ℓ2 adversaries. State-of-the-art bound prop-
agation algorithms α-CROWN, β-CROWN and BICCOS
yield surprisingly loose relaxations under ℓ2 adversaries
(verified accuracy 2.5%, 5.0% and 6.0%, respectively) at
high cost (up to 289s per example). A naive Lipschitz base-
line, which multiples per-layer ℓ2 Lipschitz constants di-
rectly (“LipNaive”), outperforms them (47.5% verified ac-
curacy) with negligible runtime. In contrast, our proposed
method achieves a striking 63.5% verified accuracy while
keeping runtime moderate (73s). See Section 6.1 for ex-
perimental details; note that the model is too large to be
verified with traditional SDP methods.

ification methods, linear bound propagation based ap-
proaches (Zhang et al., 2018; Wang et al., 2018; Wong &
Kolter, 2018; Dvijotham et al., 2018; Singh et al., 2018;
2019; Xu et al., 2020) have emerged as the dominant ap-
proach due to their effectiveness and scalability. The core
idea is to construct linear functions that provide pointwise
upper and lower bounds for each nonlinear activation func-
tion and recursively propagate these bounds through the
network. This method has proven particularly effective
in certifying robustness against ℓ∞-norm perturbations,
where individual input features are perturbed within fixed
limits. Notably, many highly ranked verifiers in VNN-
COMP verification competition rely on bound propagation
due to its success in scaling to large networks (Brix et al.,
2023; 2024).
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Despite this success, bound propagation performs surpris-
ingly poorly under ℓ2-norm perturbations, as shown in Fig-
ure 1. Unlike ℓ∞-norm perturbations, which treat each
neuron independently, ℓ2-norm perturbations impose inter-
neuron coupling. This coupling introduces dependencies
between neurons that bound propagation, designed to han-
dle features individually, cannot effectively capture. As a
result, it often produces loose and overly conservative out-
put bounds. The ℓ2-norm setting is critical not only as a
benchmark for evaluating neuron coupling (Szegedy et al.,
2014) but also for verifying real-world adversarial exam-
ples, such as semantic perturbations, which are commonly
modeled using ℓ2-norm perturbations applied through gen-
erative layers (Wong & Kolter, 2021; Barrett et al., 2022).

To overcome this limitation, semidefinite programming
(SDP) methods (Raghunathan et al., 2018; Dathathri et al.,
2020; Fazlyab et al., 2020; Anderson et al., 2021; New-
ton & Papachristodoulou, 2021; Chiu & Zhang, 2023) have
been developed to explicitly model inter-neuron dependen-
cies. These methods optimize over a dense n× n coupling
matrix, yielding significantly tighter bounds compared to
bound propagation. However, their cubic O(n3) time com-
plexity restricts their application to relatively small models,
and renders them impractical for realistic neural networks.

To bridge the gap between scalability and tightness, we
introduce SDP-CROWN, a hybrid verification framework
that combines the tightness of SDP with the efficiency of
bound propagation. At the core of our framework is a lin-
ear bound derived through SDP principles that efficiently
incorporates ℓ2-norm-based inter-neuron dependencies. A
key feature of our bound is that it introduces only a sin-
gle new parameter per layer, in contrast to traditional SDP
methods, which require n2 parameters per layer of n neu-
rons. As a result, our bound preserves the scalability of
existing bound propagation methods. It can be seamlessly
integrated into existing linear bound propagation verifiers
such as CROWN and α-CROWN, hence significantly tight-
ening it for ℓ2 perturbations.

In theory, we prove that our proposed inter-neuron bound
can be up to

√
n times tighter than the per-neuron bounds

commonly used in scalable verifiers. In practice, when in-
corporated into the α-CROWN verifier, we find that SDP-
CROWN significantly improves verification performance,
achieving bounds close to those of expensive SDP-based
methods while scaling to models containing over 65 thou-
sand neurons and 2.47 million parameters. Our extensive
experiments demonstrate that SDP-CROWN consistently
enhances ℓ2 robustness certification rates across various
architectures without compromising computational effi-
ciency, making it well-suited for large-scale models where
traditional SDP methods fail to scale.

1.1. Related work

To the best of our knowledge, this work is the first to ap-
ply SDP relaxations to efficiently tighten the linear bound
propagation under ℓ2-norm perturbations.

SDP relaxation is the preferred approach for neural net-
work verification against ℓ2-norm perturbations. Due to
its ability to capture second-order information, SDP-based
methods provide tight verification under ℓ2 adversaries
(Chiu & Zhang, 2023). Several extensions have been pro-
posed to further tighten the SDP relaxation by introduc-
ing linear cuts (Batten et al., 2021) and nonconvex cuts
(Ma & Sojoudi, 2020), and to accommodate general ac-
tivation functions (Fazlyab et al., 2020). However, SDP
relaxation does not scale to medium-to-large scale models.
Even with state-of-the-art SDP solvers and hardware accel-
eration (Dathathri et al., 2020; Chiu & Zhang, 2023), they
remain computationally prohibitive for models containing
more than 10 thousand neurons.

In addition to SDP relaxation, bound propagation methods
(Zhang et al., 2018; Singh et al., 2018; 2019; Wang et al.,
2018; Dvijotham et al., 2018; Hashemi et al., 2021; Xu
et al., 2020; 2021) for certifying ℓ2 adversaries can be tight-
ened using a branch-and-bound procedure (Wang et al.,
2021; De Palma et al., 2021; Ferrari et al., 2022; Shi et al.,
2025) by splitting unstable ReLU neurons into two subdo-
mains, or by introducing nonlinear cutting planes (Zhang
et al., 2022; Zhou et al., 2024) to capture the shape of ℓ2
adversaries. These methods have proven effective when
the ℓ2-norm perturbation is small, as there are relatively
fewer unstable neurons. However, they can become inef-
fective for larger perturbations, and can completely fail, as
demonstrated in Figure 1.

Alternatively, ℓ2 adversaries can be certified by lower
bounding the robustness margin (2) using the network’s
global Lipschitz constant. To estimate this constant, (Fa-
zlyab et al., 2019) solve the Lipschitz constant estimation
problem using SDP relaxations; (Huang et al., 2021; Leino
et al., 2021; Hu et al., 2023) incorporate a Lipschitz upper
bound during training; and (Li et al., 2019; Trockman &
Kolter, 2021; Singla & Feizi, 2022; Meunier et al., 2022;
Xu et al., 2022; Araujo et al., 2023) design neural network
architectures that are provably 1-Lipschitz. While these
methods perform well on networks with a small global Lip-
schitz constant, verifying robustness based solely on the
Lipschitz constant can still be overly conservative, as illus-
trated in Figure 1.

1.2. Notations

We use the subscript xi to denote indexing. We use 1 to
denote a column of ones. We use ⊙ to denote elementwise
multiplication. We use ei to denote i-th standard basis vec-
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tor. We use X ⪰ 0 to denote X being positive semidefinite.
We use | · | to denote the elementwise absolute value, and
∥ · ∥p to denote the vector ℓp norm.

2. Preliminaries
2.1. Problem description

Consider the task of classifying a data point x ∈ Rn as be-
longing to the i-th of q classes using a N -layer feedforward
neural network f : Rn → Rq . The network aims to gen-
erate a prediction vector that takes on its maximum value
at the i-th element, i.e., eTi f(x) > eTj f(x) for all incorrect
labels j ̸= i. We define the neural network f(x) = z(N)

recursively as

x(k) = ReLU(z(k)), z(k) = W (k)x(k−1), x(0) = x (1)

for k ∈ {1, 2, . . . , N} where ReLU(x) = max{x, 0} and
W (k) denote weight matrices. Without loss of generality,
we ignore biases.

Given an input x̂ of truth class i, the problem of verifying
the neural network f to have no adversarial example x ≈ x̂
mislabeled as the incorrect class j ̸= i can be posed as:

dj = min
x∈X

cT f(x) s.t. (1), (2)

where c = ei − ej and X is a convex input set that models
the adversarial perturbations. Popular choices include the
elementwise bound

B∞(x̂, ρ̂) = {x | |xi − x̂i| ≤ ρ̂i for all i}

and the ℓ2 norm ball

B2(x̂, ρ) = {x | ∥x− x̂∥2 ≤ ρ},

where x̂ ∈ Rn is a center point, and ρ̂ ∈ Rn and ρ ∈ R
are the radii. The resulting vector d ∈ Rq is a robustness
margin against misclassification. If d ≥ 0 over all of its
elements, then there exists no adversarial example x within
a distance of ρ that can be misclassified.

2.2. Semidefinite programming (SDP) relaxation

Semidefinite relaxation is a convex relaxation method to
compute lower bounds on (2). In this work, we focus our
attention on the SDP relaxation used in Brown et al. (2022)
that utilizes the positive/negative splitting of the preactiva-
tions ui = xi, vi = xi − zi to rewrite the equality con-
straints xi = ReLU(zi) as

xi = ui, uivi = 0, ui ≥ 0, vi ≥ 0.

Adding [1 ui vi]
T [1 ui vi] ⪰ 0 and relaxing Ui = u2

i and
Vi = v2i yields the SDP relaxation of the ReLU activation

xi = ui, ui ≥ 0, vi ≥ 0,

 1 ui vi
ui Ui 0
vi 0 Vi

 ⪰ 0. (3)

Similarly, the SDP relaxation of B2(x̂, ρ) is given by

n∑
i=1

Ui − 2(ui − vi)x̂i + Vi + x̂2
i ≤ ρ2,

ui ≥ 0, vi ≥ 0,

 1 ui vi
ui Ui 0
vi 0 Vi

 ⪰ 0.

(4)

The SDP relaxation of (2) can be derived via (3) and (4).
While SDP relaxations are typically tighter than most other
convex relaxation methods, existing approaches solve the
SDP relaxation via interior point method (Brown et al.,
2022) or low-rank factorization method (Chiu & Zhang,
2023). Those methods incur approximately cubic time
complexity and are not scalable to medium-scale models.

3. Looseness of bound propagation for
ℓ2-norm perturbations

Linear bound propagation is one of the state-of-the-art ap-
proaches for finding upper and lower bounds on (2). In
this section, we explain why the approach can be unusu-
ally loose when faced with an ℓ2 perturbation set like
X = B2(x̂, ρ), which is the classic example when inter-
neuron coupling strongly manifests. For simplicity, we fo-
cus on finding a lower bound for (2).

At a high level, all bound propagation methods solve (2)
by defining a set of linear relaxations x 7→ gTx + h that
pointwise lower bound the original function cT f(x) across
the input set X , as in

L (X ) = {(g, h) | cT f(x) ≥ gTx+ h for all x ∈ X}.

The linear relaxation corresponding to each (g, h) ∈
L (X ) can be minimized to yield a valid lower bound on
the original problem (2). This bound can be further tight-
ened by optimizing over the linear relaxations themselves:

min
x∈X

cT f(x) ≥ max
(g,h)∈L (X )

min
x∈X

gTx+ h.

In fact, one can show by a duality argument that the bound
above is in fact exactly tight, i.e. the inequality holds with
equality. Unfortunately, the set of linear relaxations L (X )
is also intractable to work with.

Instead, all bound propagation methods work by con-
structing parameterized families of linear relaxations x 7→
g(α)Tx + h(α) for 0 ≤ α ≤ 1 that provably satisfy
(g(α), h(α)) ∈ L (X ). The tightest bound on (2) that
could be obtained from the family of relaxations then reads

min
x∈X

cT f(x) ≥ max
0≤α≤1

min
x∈X

g(α)Tx+ h(α). (5)

Note that the inner minimization is a convex program that
can be efficiently evaluated for many common choices of
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X , such as the elementwise bound or any ℓp norm ball. In
practice, the parameter α can be maximized via projected
gradient ascent or selected heuristically as in Zhang et al.
(2018).

The tightness of the heuristic bound in (5) is critically
driven by the quality of the parameterized relaxations x 7→
g(α)Tx + h(α). The core insight of bound propagation
methods is that a high-quality choice of g(α), h(α) satisfy-
ing the following

cT f(x) ≥ g(α)Tx+ h(α) for all x ∈ B∞(x̂, ρ̂)

can be constructed using the triangle relaxation of the
ReLU activation, alongside a forward-backward pass
through the neural network; we refer the reader to the Ap-
pendix B for precise details. When the input set is indeed
an ℓ∞-norm box X = B∞(x̂, ρ̂), Salman et al. (2019)
showed that this choice of (g(α), h(α)) ∈ L (B∞(x̂, ρ̂))
is essentially optimal per-neuron. This optimality provides
a long-sought explanation for the tightness of bound prop-
agation under an ℓ∞ adversary.

However, when the input set X is not an ℓ∞-norm box,
bound propagation requires relaxing the input set X ⊆
B∞(x̂, ρ̂) for the purposes of constructing g(α), h(α). The
resulting bound on (2) is valid by the following sequence
of inequalities

min
x∈X

cT f(x) ≥ max
(g,h)∈L (X )

min
x∈X

gTx+ h

≥ max
(g,h)∈L (B∞(x̂,ρ̂))

min
x∈X

gTx+ h (6)

≥ max
0≤α≤1

min
x∈X

g(α)Tx+ h(α).

The problem is that a loose relaxation B∞(x̂, ρ̂) ⊇ X
causes a comparably loose relaxation L (B∞(x̂, ρ̂)) ⊆
L (X ) in (6), hence introducing substantial conservatism
to the overall bound.

The above explains the core mechanism for why bound
propagation tends to be loose for an ℓ2 adversary. The
problem is that the tightest ℓ∞-norm box to fully contain
a given ℓ2-norm ball satisfies the following

X = B2(x̂, ρ) ⊆ B∞(x̂,1ρ).

However, there are attacks in the box x ∈ {±ρ}n ⊆
B∞(x̂,1ρ) with radii ∥x − x̂∥2 =

√
nρ that are a factor

of
√
n larger than the radius ρ of the original ball. Ac-

cordingly, relaxing the ℓ2-norm ball into ℓ∞-norm box can
effectively increase the attack radius by a factor of

√
n.

Hence, the resulting bounds on (2) can also be a factor of√
n more conservative.

4. Proposed method
Our core contribution in this paper is a high-quality family
of linear relaxations x 7→ gTx + h(g, λ) for g ∈ Rn and
λ ≥ 0 that provably satisfy the following

cT f(x) ≥ gTx+ h(g, λ) for all x ∈ B2(x̂, ρ).

Notice that our relaxation is constructed directly from the
ℓ2-norm ball, i.e. (g, h(g, λ)) ∈ L (X ), which addresses
the looseness of (6) as we did not relax the ℓ2-norm ball into
ℓ∞-norm box. Due to space constraints, we explain our
construction only for the special case of f(x) ≡ ReLU(x),
while deferring the general case to the Appendix B.

One particle aspect of our construction is to take a linear re-
laxation from bound propagation cT f(x) ≥ g(α)Tx+h(α)
for the box B∞(x̂, ρ1) ⊇ B2(x̂, ρ), and then tightening
the offset h(g(α), λ) ≥ h(α) while ensuring that it re-
mains valid for the ball B2(x̂, ρ). In analogy with Salman
et al. (2019), we prove in Section 5 that this choice of
h(g(α), λ) is essentially optimal when x̂ = 0, and can
therefore yield at most a factor of

√
n reduction in con-

servatism for X = B2(x̂, ρ). At the same time, our new
method adds just one parameter λ ≥ 0 per layer, so it can
be seamlessly integrated into any bound propagation ver-
ifier with negligible overhead. Integrating this technique
into the α-CROWN verifier, we provide extensive compu-
tational verification in Section 6 showing that our method
significantly improves verification performance. The main
theorem of our work is summarized below.

Theorem 4.1. Given c, x̂ ∈ Rn and ρ ≥ 0. The following
holds

cT ReLU(x) ≥ gTx+ h(g, λ) for all x ∈ B2(x̂, ρ)

for any λ ≥ 0 and g ∈ Rn where

h(g, λ) = −1

2
·
(
λ(ρ2 − ∥x̂∥22) +

1

λ
∥ϕ(g, λ)∥22

)
and

ϕi(g, λ) = min{ci − gi − λx̂i, gi + λx̂i, 0}.

Let us explain how Theorem 4.1 can be used to lower
bound the attack problem (2) in the special case of f(x) ≡
ReLU(x) and X = B2(x̂, ρ). First, we use the standard
bound propagation procedure to compute linear relaxations
x 7→ g(α)Tx + h(α) that provably satisfy (g(α), h(α)) ∈
L (B∞(x̂, ρ1)) for 0 ≤ α ≤ 1. Then, we replace h(α)
with the new choice h(g(α), λ) specified in Theorem 4.1 to
ensure that (g(α), h(g(α), λ)) ∈ L (B2(x̂, ρ)) for λ ≥ 0.
Both α and λ can then be optimized to provide a tighter re-
laxation. We note that the attack problem can also be lower
bounded by directly optimizing over g and λ ≥ 0 (by treat-
ing α as unconstrained variables), and Theorem 4.1 can be
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extended to handle more general input set X such as an el-
lipsoid. We provide more details for these extensions in the
Appendix C.

In the remainder of this section, we provide a proof of The-
orem 4.1.

4.1. Proof of Theorem 4.1

Given any c, g ∈ Rn the process of finding the tightest
possible h such that cT ReLU(x) ≥ gTx+ h holds within
within B2(x̂, ρ) admits the following generic problem

min
x∈Rn

cT ReLU(x)− gTx s.t. ∥x− x̂∥22 ≤ ρ2. (7)

Applying the positive/negative splitting x = u − v where
u, v ≥ 0 and u⊙ v = 0 yields the following

min
u,v∈Rn

cTu− gT (u− v)

s.t. ∥u∥22 − 2(u− v)T x̂+ ∥v∥22 ≤ ρ2 − ∥x̂∥22
u ≥ 0, v ≥ 0, u⊙ v = 0.

Though (7) is nonconvex due to the product of the two
variables u and v, a tight lower bound can be efficiently
approximated via SDP relaxation described in (3) and (4).
The SDP relaxation of (7) reads:

min
u,v,U,V ∈Rn

cTu− gT (u− v)

s.t. (U + V )T1− 2(u− v)T x̂ ≤ ρ2 − ∥x̂∥22,
u ≥ 0, v ≥ 0, 1 ui vi
ui Ui 0
vi 0 Vi

 ⪰ 0 for i = 1, . . . , n.

The SDP relaxation can be further simplified by applying
Theorem 9.2 of (Vandenberghe & Andersen, 2015):

min
ũ,ṽ,u,v,U,V ∈Rn

cTu− gT (u− v)

s.t. (U + V )T1− 2(u− v)T x̂ ≤ ρ2 − ∥x̂∥22,
u ≥ 0, v ≥ 0, ũ+ ṽ = 1,[
ũi ui

ui Ui

]
⪰ 0,

[
ṽi vi
vi Vi

]
⪰ 0

for i = 1, . . . , n. Let λ ∈ R denote the dual variables of
the first inequality constraints and s, t, µ ∈ Rn denote the
dual variable for u ≥ 0, v ≥ 0 and ũ+ ṽ = 1, respectively.
The Lagrangian dual is given by:

max
λ,s,t,µ

− 1

2
·
(
λ(ρ2 − ∥x̂∥22) + µT1

)
s.t.

[
µi ci − gi − λx̂i − si

ci − gi − λx̂i − si λ

]
⪰ 0,[

µi gi + λx̂i − ti
gi + λx̂i − ti λ

]
⪰ 0,

λ ≥ 0, s ≥ 0, t ≥ 0, µ ≥ 0,

for i = 1, . . . , n. For a 2 × 2 matrix X , note that X ⪰ 0
holds if and only if det(X) ≥ 0 and diag(X) ≥ 0. Apply-
ing this insight yields a second-order cone programming
(SOCP) problem

max
λ,s,t,µ

− 1

2
·
(
λ(ρ2 − ∥x̂∥22) + µT1

)
s.t. λµi ≥ (ci − gi − si − λx̂i)

2,

λµi ≥ (gi − ti + λx̂i)
2,

λ ≥ 0, s ≥ 0, t ≥ 0, µ ≥ 0,

(8)

for i = 1, . . . , n. Due to space constraints, we defer the
detailed derivation for the dual problem (8) to the Ap-
pendix D. We are now ready to prove Theorem 4.1.

Proof. Given any c, g ∈ Rn. Let ρ̂ = ρ2 − ∥x̂∥22, ai =
ci − gi − λx̂i and bi = gi + λx̂i. Fixing any λ ≥ 0 and
optimizing µ in (8) yields

max
λ,s,t≥0

−1

2
·

(
λρ̂+

n∑
i=1

max
{
(ai − si)

2, (bi − ti)
2
}

λ

)

=max
λ≥0

−1

2
·

(
λρ̂+

n∑
i=1

min {ai, bi, 0}2

λ

)
=max

λ≥0
h(g, λ)

where the first equality follows from minsi≥0(ai − si)
2 =

min{ai, 0}2 and minti≥0(bi − ti)
2 = min{bi, 0}2, and

max{min{ai, 0}2,min{bi, 0}2} = min{ai, bi, 0}2 for any
ai, bi ∈ R. Since h(g, λ) is a lower bound on (7) for any
λ ≥ 0, we have cT ReLU(x) ≥ gTx + h(g, λ) for all x ∈
B2(x̂, ρ) for any g ∈ Rn, λ ≥ 0.

5. Tightness analysis
In this section, we provide theoretical analysis on the
tightness of our SDP relaxation in the special case where
f(x) ≡ ReLU(x) and x̂ = 0. We show that our SDP relax-
ation (8) is exactly tight in this case and guarantees at most
a factor of

√
n improvement over bound propagation when

computing linear relaxation within B2(0, ρ). We begin by
characterizing the linear relaxation from bound propaga-
tion x → g(α)Tx + h(α) for the box x ∈ B∞(0, ρ1) ⊇
B2(0, ρ) below.
Lemma 5.1. Given c ∈ Rn and ρ > 0, the bound

g(α) =
1

2
min{c, 0}+ α⊙max{c, 0},

h(α) = −ρ∥min{g(α), 0}∥1

satisfies

cT ReLU(x) ≥ g(α)Tx+ h(α) for all x ∈ B∞(0, ρ1)

for any 0 ≤ α ≤ 1.
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Figure 2: Comparing linear relaxations within ℓ2-norm ball from our method and bound propagation. Consider a
task of finding a linear relaxation of f(x) = −ReLU(x1) − ReLU(x2) on B2(0, 1). (Left.) Bound propagation finds
the tightest possible linear relaxation on B∞(0, 1), however, such relaxation is not the tightest on B2(0, 1). (Right.) Our
method finds the tightest possible linear relaxation on B2(0, 1), which is tighter than bound propagation by a factor of

√
2.

Proof. Notice that αixi ≤ ReLU(xi) ≤ 1
2xi +

ρ
2 for any

0 ≤ αi ≤ 1. Therefore, we have g(α) = 1
2 min{c, 0} +

α ⊙ max{c, 0} and h(α) = ρ
∑n

i=1
1
2 min{ci, 0} =

−ρ
∑n

i=1 |min{gi(α), 0}| = −ρ∥min{g(α), 0}∥1.

In the following Theorem, we show that our method yields
h(g(α), λ) = −ρ∥min{g(α), 0}∥2 when λ ≥ 0 is chosen
optimally. On the other hand, the linear relaxation from
bound propagation yields h(α) = −ρ∥min{g(α), 0}∥1 ≤
h(g(α), λ) as in Lemma 5.1, which is looser than our
method by at most a factor of

√
n.

Theorem 5.2. Given c ∈ Rn and ρ > 0. The following
holds

cT ReLU(x) ≥ gTx− ρ∥min{c− g, g, 0}∥2

for all x ∈ B2(0, ρ) for any g ∈ Rn.

Proof. Setting x̂ = 0 in h(g, λ) and optimizing over λ ≥ 0
yields

max
λ≥0

−1

2
·
(
λρ2 +

1

λ
∥min {c− g, g, 0} ∥22

)
=− ρ∥min {c− g, g, 0} ∥2

where the equality follows from 2
√
ab = minx≥0 ax+b/x

for any a, b ≥ 0.

We obtain h(g(α), λ) = −ρ∥min{g(α), 0}∥2 by substitut-
ing g = g(α) in Theorem 5.2. Notice that min{g(α), 0} =
min{c − g(α), g(α), 0} from Lemma 5.1. Theorem 5.2
guarantees at most a factor of

√
n improvement over bound

propagation when x̂ = 0, which we provide a simple illus-
tration in Figure 2.

Finally, we show that our SDP relaxation (8) is exactly tight
in the following Theorem, i.e., both (8) and (7) attain the
same optimal value. Therefore, the choice of h(g(α), λ) is
optimal.

Theorem 5.3. Given c ∈ Rn and ρ > 0. The following
holds

−ρ∥min{c− g, g, 0}∥2 = min
∥x∥2≤ρ

cT ReLU(x)− gTx

for any g ∈ Rn.

Proof. Applying the positive/negative splitting x = u − v
where u, v ≥ 0 and u⊙ v = 0 yields

min
u,v≥0,
u⊙v=0

n∑
i=1

(ci − gi)ui + givi s.t.
n∑

i=1

u2
i + v2i ≤ ρ2.

For each i, we substitute a variable yi according to the fol-
lowing three cases. Case 1: ci − gi ≤ min{gi, 0}, we have
u⋆
i ≥ 0 and v⋆i = 0; therefore we set yi = ui. Case 2:

gi ≤ min{ci − gi, 0}, we have u⋆
i = 0 and v⋆i ≥ 0; there-

fore we set yi = vi. Case 3: 0 ≤ min{ci− gi, gi}, we have
u⋆
i = v⋆i = 0; therefore we simply let yi ≥ 0. Substituting

each yi yields

min
y≥0

n∑
i=1

yi ·min{ci − gi, gi, 0} s.t. ∥y∥2 ≤ ρ,

which attains optimal value −ρ∥min{c− g, g, 0}∥2.
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Table 1: Verified accuracy under ℓ2-norm perturbations. We report the verified accuracy (%) for 200 images. For
each method, we also report the average verification time (in seconds or hours), except for LipNaive and LipSDP, where
we report the total time for computing the Lipschitz constant. The upper bound on verified accuracy is estimated using
projected gradient descent. A dash "-" indicates the model could not be evaluated due to excessive computational time.

Upper SDP-CROWN GCP-CROWN BICCOS β-CROWN α-CROWN LipNaive LipSDP LP-All BM-Full
Bound (Ours) (split=2) (no split)

MNIST Model†

MLP 54% 32.5% (2.5s) 41% (173s) 38% (198s) 36% (302s) 1.5% (1.2s) 29% (0.02s) 29.5% (19s) 30.5% (62s) 9% (75s) 53% (0.3h)
ConvSmall 84.5% 81.5% (12s) 19.5% (248s) 17% (265s) 16% (257s) 0% (17s) 77.5% (0.1s) 78% (875s) 78.5% (0.9h) 10% (0.6h) -
ConvLarge 84% 79.5% (88s) 0% (309s) 0% (304s) 0% (307s) 0% (66s) 77% (1s) - - - -

CIFAR-10 Model‡

CNN-A 55.5% 49% (12s) 20% (210s) 20% (224s) 20% (201s) 7.5% (3.8s) 39% (0.2s) 39% (1.7h) - - -
CNN-B 59.5% 49.5% (16s) 3% (290s) 3% (302s) 3% (193s) 0% (8.7s) 33% (0.3s) - - - -
CNN-C 47% 42.5% (10s) 35.5% (96s) 36% (101s) 35.5% (63s) 24.5% (5.8s) 36.5% (0.2s) 37% (0.5h) 38.5% (1h) 24.5% (0.3h) -
ConvSmall 52.5% 43.5% (9s) 18% (225s) 18% (220s) 17.5% (146s) 6% (4.4s) 33% (0.2s) 33.5% (1.2h) - - -
ConvDeep 50.5% 46% (25s) 31% (133s) 31.5% (133s) 30.5% (133s) 22.5% (9.2s) 39.5% (0.3s) 39.5% (1.9h) - - -
ConvLarge 72.5% 63.5% (73s) 6% (286s) 6% (282s) 5% (289s) 2.5% (47s) 47.5% (1.2s) - - - -

† The ℓ2-norm perturbation is set to be ρ = 1.0 for MLP, and ρ = 0.3 for both ConvSmall and ConvLarge.
‡ The ℓ2-norm perturbation is set to be ρ = 8/255 for ConvLarge, and ρ = 24/255 for all the other models.

For the general case with x̂ ̸= 0 and network f(x) de-
fined in (1), the improvement of our method cannot be ana-
lyzed analytically; instead, we present empirical validation
in Section 6.3 to show that our method can be tighter than
bound propagation in general settings.

6. Experiments
In this section, we compare the practical performance
of our proposed method against several state-of-the-art
neural network verifiers for certifying ℓ2 adversaries.
The source code of our proposed method is available at
https://github.com/Hong-Ming/SDP-CROWN.

Methods. SDP-CROWN denotes our proposed method.
The implementation details for SDP-CROWN can be found
in Appendix B. We compare SDP-CROWN against the fol-
lowing verifiers based on bound propagation: α-CROWN
(Xu et al., 2021), a bound propagation verifier with
gradient-optimized bound propagation; β-CROWN (Wang
et al., 2021), a verifier based on α-CROWN that can
additionally handle split constraints for ReLU neurons;
GCP-CROWN (Zhang et al., 2022) and BICCOS (Zhou
et al., 2024), verifiers based on β-CROWN that can ad-
ditionally handle general cutting plane constraints. Since
GCP-CROWN and BICCOS use mixed-integer program-
ming (MIP) solvers to find cutting planes, we add the ℓ2-
norm constraint into the MIP formulation of (2), so that
all cutting planes generated from the MIP will consider the
ℓ2-norm constraint rather than the enclosing ℓ∞-norm con-
straint. We defer the detailed hyperparameter settings for
bound propagation methods to the Appendix A.

We also compare SDP-CROWN against the following ver-
ifiers based on estimating an upper bound on the global

Lipschitz constant: LipNaive, a verifier estimates the Lip-
schitz upper bound using the Lipschitz constant of each
layer (as in Section 3 of Gouk et al. (2021)); and LipSDP
(Fazlyab et al., 2019), a verifier estimates the Lipschitz up-
per bound based on solving SDP relaxations of the Lips-
chitz constant estimation problem. Specifically, LipNaive
lower bounds cT f(x) within B2(x̂, ρ) through cT f(x) ≥
cT f(x̂)−ρ · ∥cTW (N)∥2 · ∥W (N−1)∥2 · · · ∥W (1)∥2 where
∥W∥2 denotes the spectral ℓ2-norm of a matrix W .

Finally, we compare SDP-CROWN against the following
verifiers based on directly solving convex relaxations of the
verification problem (2): LP-All (Salman et al., 2019), a
verifier solves an LP relaxation of (2) that uses the tightest
possible preactivation bounds found by recursively solving
LP problems for each preactivation; and BM-Full (Chiu &
Zhang, 2023), a verifier solves an SDP relaxation of (2) that
uses the same preactivation bounds in LP-All. For LP-All
and BM-Full, we use the ℓ2-norm as the input constraint, as
in x ∈ B2(x̂, ρ). The complexity of BM-Full and LP-All
is cubic with respect to the number of preactivations, and
therefore they are not scalable to most of the models used
in our experiment.

Setups. All the experiments are run on a machine with a
single Tesla V100-SXM2 GPU (32GB GPU memory) and
dual Intel Xeon Gold 6138 CPUs.

Models. All the model architectures used in our experi-
ment are taken from Wang et al. (2021) and Leino et al.
(2021). To ensure non-vacuous ℓ2-norm robustness and
make meaningful comparisons across different verification
methods, we retrain all models to have a small global Lip-
schitz upper bound while keeping their model architecture
unchanged. We defer the detailed model architecture and
the training procedure to the Appendix A.
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Figure 3: Lower bounds on the robustness margin under ℓ2-norm perturbations. We compare the lower bounds on
(2) computed from SDP-CROWN, α-CROWN, LipNaive and LP-All. The lower bounds are averages over 90 instances
of (2). The upper bound on (2) is estimated projected gradient descent (PGD). The numbers in the figure indicate the
ℓ2-norm perturbation level at which each lower bound crosses zero. Note that robustness verification is only meaningful in
the interval where the PGD upper bound remains positive. (Left.) Small-scale model MLP (MNIST). (Middle.) Medium-
scale model ConvSmall (CIFAR-10). (Right.) Large-scale model ConvLarge (CIFAR-10).

6.1. Robustness verification for neural networks

We compare the verified accuracy of SDP-CROWN against
state-of-the-art verifiers on models trained on the MNIST
and CIFAR-10 datasets. In each case, we fix the ℓ2-norm
perturbation ρ and compute verified accuracy using the first
200 images in the test set. Here, the verified accuracy de-
notes the percentage of inputs that are both correctly clas-
sified and robust. For comparison, we also compute the
upper bound on verified accuracy using projected gradient
descent (PGD) attacks (Madry et al., 2018).

Table 1 shows the verified accuracy and the average compu-
tation time for SDP-CROWN, GCP-CROWN, BICCOS, β-
CROWN, α-CROWN, LipNaive, LipSDP, LP-All and BM-
Full. While BM-Full achieves the best verified accuracy
in the first case, it unfortunately becomes computationally
prohibitive in all remaining cases as its complexity scales
cubically with respect to the number of preactivations. In
all the remaining cases, SDP-CROWN achieves verified
accuracy close to the PGD upper bound while the bound
propagation method α-CROWN exhibits limited certifica-
tion performance. Other bound propagation methods β-
CROWN, GCP-CROWN and BICCOS can greatly improve
over α-CROWN, but the gap is still large compared to SDP-
CROWN, LipNaive and LipSDP.

Notably, SDP-CROWN is consistently tighter than Lip-
Naive and LipSDP, suggesting that verifying robustness
solely through the Lipschitz constant can be overly conser-

vative, even for networks trained to have a small Lipschitz
constant. For LipSDP, networks are divided into subnet-
works when evaluating the Lipschitz constant: split=1 in-
dicates single-layer subnetworks, split=2 denotes two-layer
subnetworks, and no split means the full network is evalu-
ated directly. We ignore reporting split=1 for LipSDP as it
only marginally improves over LipNaive.

Finally, LP-All is not scalable to large models and is also
noticeably weaker than us on certified accuracy.

6.2. Tightness of lower bounds and verified accuracy

As the neural network verification problem (2) is NP-hard,
all methods based on finding a lower bound on (2) via any
sort of convex relaxations must become loose for suffi-
ciently large ℓ2 perturbations. However, robustness veri-
fication is only necessary in the interval where the upper
bound of (2) is positive, which can be efficiently estimated
via PGD. Therefore, it is crucial for the lower bound to be
tight within this region.

In this experiment, we examine the gap between the lower
bound computed from SDP-CROWN and the upper bound
computed from PGD across a wide range of ℓ2 pertur-
bations. To ensure an accurate evaluation, we compute
the average lower bounds over 90 instances of (2), which
are generated via 9 incorrect classes for the first 10 cor-
rectly classified test images. We compare our average
lower bound to α-CROWN, LipNaive and LP-All, which
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Figure 4: Linear relaxation offsets under ℓ2-norm per-
turbations. We compare the offset h(α) from α-CROWN
to the offset h(g(α), λ) from SDP-CROWN. The offsets
are averages over 90 instances of (2). (Red line.) Small-
scale model MLP (MNIST). (Green line.) Medium-scale
model ConvSmall (CIFAR-10). (Blue line.) Large-scale
model ConvLarge (CIFAR-10).

are verifiers also based on solving convex relaxations of
(2). Figure 3 reports the average lower bounds and the
average PGD upper bound with respect to three models
of different scales: a small-scale model MLP (MNIST); a
medium-scale model ConvSmall (CIFAR-10); and a large-
scale model ConvLarge (CIFAR-10).

As shown in Figure 3, our proposed SDP-CROWN con-
sistently outperforms α-CROWN, LipNaive and LP-All,
and significantly narrows the gap between the PGD upper
bound. Notice that α-CROWN produces extremely loose
lower bounds in almost all cases, especially for large net-
works such as ConvLarge (CIFAR-10), where its lower
bound drops rapidly. LP-All marginally improves over
α-CROWN. We note that LP-All is excluded in ConvS-
mall (CIFAR-10) and ConvLarge (CIFAR-10) due to its
high computational cost. LipNaive provides tighter lower
bounds than α-CROWN and LP-All as all three models are
trained to have small global Lipschitz upper bounds, but is
consistently looser than SDP-CROWN.

6.3. Tightening bound propagation

In Section 5, we prove that when f(x) ≡ ReLU(x) and
the center of the ℓ2 norm perturbation is zero, the off-
set h(g(α), λ) computed from SDP-CROWN is guaranteed
to be at least a factor of

√
n tighter than the offset h(α)

from bound propagation methods. However, the amount
of improvement cannot be analyzed analytically under
general settings. To empirically demonstrate how much
improvement SDP-CROWN can achieve, in this experi-
ment, we compute the average offset h(g(α), λ) from SDP-
CROWN, and the average offset h(α) from α-CROWN.

Specifically, the average offset of SDP-CROWN is taken
over h(k)(g(α(k)), λ(k)) in (14) for k = 1, . . . , N , as in
1
N

∑N
k=1 h

(k)(g(α(k)), λ(k)), and the average offset of α-
CROWN is taken over h(k)(α(k)) in (12)for k = 1, . . . , N ,
as in 1

N

∑N
k=1 h

(k)(α(k)). To ensure an accurate evalu-
ation, we compute the average offsets over 90 instances
of (2), which are generated via 9 incorrect classes for
the first 10 correctly classified test images. Figure 4 re-
ports the average offsets with respect to three models of
different scales: a small-scale model MLP (MNIST); a
medium-scale model ConvSmall (CIFAR-10); and a large-
scale model ConvLarge (CIFAR-10).

As shown in Figure 4, SDP-CROWN consistently yields a
tighter offset compared to α-CROWN under general set-
tings, which demonstrates its effectiveness in tightening
bound propagation and improves certification quality. No-
tably, α-CROWN exhibits a significant drop in h(α) for
larger networks such as ConvLarge (CIFAR-10) and Con-
vSmall (CIFAR-10) as the ℓ2 perturbation increases. In
contrast, SDP-CROWN does not experience a rapid reduc-
tion in h(g(α), λ), maintaining significantly larger offsets
across all models and perturbation sizes.

7. Conclusion
In this work, we present SDP-CROWN, a novel frame-
work that significantly tightens bound propagation for neu-
ral network verification under ℓ2-norm perturbations. SDP-
CROWN leverages semidefinite programming relaxations
to improve the tightness of bound propagation while re-
taining the efficiency of bound propagation methods. The-
oretically, we prove that SDP-CROWN can be up to

√
n

tighter than bound propagation for a one-neuron network
under zero-centered ℓ2-norm perturbations. Practically,
our extensive experiments demonstrate that SDP-CROWN
consistently outperforms state-of-the-art verifiers across a
range of models under ℓ2-norm perturbations, including
models with over 2 million parameters and 65,000 neurons,
where traditional LP and SDP methods are computation-
ally infeasible, and bound propagation methods yield no-
tably loose relaxations. Our results establish SDP-CROWN
as both a theoretical and practical advancement in scalable
neural network verification under ℓ2-norm perturbations.
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A. Experimental Setup
Hyperparameter settings. In our method SDP-CROWN, the variables α and λ are solved by the Adam optimizer with
300 iterations. The learning rate is set to 0.5 and 0.05 for α and λ, respectively, and is decayed with a factor of 0.98 per
iteration. For α-CROWN, the variable α is solved by the Adam optimizer for 300 iterations, with the learning rate set to
0.5 and the decay factor set to 0.98. For β-CROWN, GCP-CROWN, and BICCOS, the timeout threshold for branch and
bound is set to 300 seconds.

Model architecture. All the model architectures are taken from Wang et al. (2021) and Leino et al. (2021).

Table 2: Model architectures used in our experiments.

Model name Model structure Parameters Neurons Accuracy

MLP (MNIST) Linear(784, 100) - Linear(100, 100) - Linear(100,
10)

89,610 994 79%

ConvSmall (MNIST) Conv(1, 16, 4, 2, 1) - Conv(16, 32, 4, 2, 1) - Lin-
ear(1568, 100) - Linear(100, 10)

166406 5598 87.5%

ConvLarge (MNIST) Conv(1, 32, 3, 1, 1) - Conv(32, 32, 4, 2, 1) -
Conv(32, 64, 3, 1, 1) - Conv(64, 64, 4, 2, 1) -
Linear(3136, 512) - Linear(512, 512) - Linear(512,
10)

1976162 48858 89.5%

CNN-A (CIFAR-10) Conv(3, 16, 4, 2, 1) - Conv(16, 32, 4, 2, 1) - Lin-
ear(2048, 100) - Linear(100, 10)

214918 9326 62%

CNN-B (CIFAR-10) Conv(3, 32, 5, 2, 0) - Conv(32, 128, 4, 2, 1) - Lin-
ear(8192, 250) - Linear(250, 10)

2118856 15876 66%

CNN-C (CIFAR-10) Conv(3, 8, 4, 2, 0) - Conv(8, 16, 4, 2, 0) - Lin-
ear(576, 128) - Linear(128, 64) - Linear(64, 10)

85218 5650 51%

ConvSmall (CIFAR-10) Conv(3, 16, 4, 2, 0) - Conv(16, 32, 4, 2, 0) - Lin-
ear(1152, 100) - Linear(100, 10)

125318 7934 60.5%

ConvDeep (CIFAR-10) Conv(3, 8, 4, 2, 1) - Conv(8, 8, 3, 1, 1) - Conv(8,
8, 3, 1, 1) - Conv(8, 8, 4, 2, 1) - Linear(512, 100) -
Linear(100, 10)

54902 9838 53%

ConvLarge (CIFAR-10) Conv(3, 32, 3, 1, 1) - Conv(32, 32, 4, 2, 1) -
Conv(32, 64, 3, 1, 1) - Conv(64, 64, 4, 2, 1) -
Linear(4096, 512) - Linear(512, 512) - Linear(512,
10)

2466858 65546 74%

Note: Conv(3, 16, 4, 2, 0) stands for a convolutional layer with 3 input channels, 16 output channels, a 4 × 4 kernel,
stride 2 and padding 0. Linear(1568, 100) represents a fully connected layer with 1568 input features and 100 output
features. There are no max pooling / average pooling used in these models and ReLU activations are applied between
consecutive layers.

Training procedure. We retrained all the models used in our experiment to make them 1-lipschitz. The training strategy
involves two phases: First, we train the model using the standard cross-entropy (CE) loss. Then, we retrain the model from
scratch using a combination of KL-divergence and the spectral norm of the new model as the loss. During this phase, the
outputs of the initially trained model are used as labels.
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B. Details on integrating our method into bound propagation
Bound propagation is an efficient framework for finding valid linear lower bounds for cT f(x) within some input set
x ∈ X . In this section, we first give a brief overview of performing bound propagation using the elementwise bound
on preactivations. We then demonstrate how our results can be integrated into this framework to yield SDP-CROWN, an
extension capable of performing bound propagation using the ℓ2-norm constraint on the preactivations.

We include a concrete example in Section B.3 to illustrate the details of both bound propagation and SDP-CROWN.

B.1. LiRPA: bound propagation using the elementwise bound on preactivations

To better concept of bound propagation, we express each z(k) as a function of the input x, and redefine the neural network
f(x) in (1) as

f(x) = z(N)(x), z(k+1)(x) = W (k+1) ReLU(z(k)(x)), z(1)(x) = W (1)x for k = 1 . . . , N − 1.

The bound propagation we describe in this section is the backward mode of Linear Relaxation based Perturbation Analysis
(LiRPA) in (Xu et al., 2020) that efficiently constructs linear lower bounds for cT f(x) within an elementwise bound
relaxation of the input set X :

g(α)Tx+ h(α) ≤ cT f(x) for all x ∈ B∞(x̃, ρ̃) ⊇ X , (9)

where x̃, ρ̃ ∈ Rn are the radius and center of the elementwise bound.

LiRPA computes (9) by backward constructing linear lower bounds with respect to each preactivation z(k)(x)

[g(k)(α(k))]T z(k)(x) + h(k)(α(k)) ≤ cT f(x) for all x ∈ B∞(x̃, ρ̃), (10)

i.e., starting from k = N all the way down to k = 1. Here, 0 ≤ α(k) ≤ 1 are variables of the same length as z(k)(x),
which are defined in (11).

For k = N . The linear lower bound with respect to z(k) is simply

cT z(k)(x) ≤ cT f(x),

and therefore, g(k)(α(k)) = c and h(k)(α(k)) = 0.

For k = N−1, . . . , 1. LiRPA takes linear lower bounds with respect to z(k+1)(x) ((10) at k+1) to construct linear bounds
with respect to z(k)(x) ((10) at k). The first step is to substitute z(k+1)(x) = W (k+1) ReLU(z(k)(x)) to yield

[c(k)]T ReLU(z(k)(x)) + d(k) ≤ cT f(x)

where c(k) = [W (k+1)]T g(k+1)(α(k+1)) and d(k) = h(k+1)(α(k+1)). Since ReLU(z(k)(x)) is nonlinear, LiRPA performs
linear relaxation on each ReLU(z

(k)
i (x)) to propagate linear bounds from ReLU(z(k)(x)) to z(k)(x). In particular, LiRPA

constructs linear bounds α(k)
i z

(k)
i (x) ≤ ReLU(z

(k)
i (x)) ≤ β

(k)
i z

(k)
i (x) + γ

(k)
i within |z(k)i (x)− z̃

(k)
i | ≤ ρ̃

(k)
i where

α
(k)
i = 1, β

(k)
i = 1, γ

(k)
i = 0 if z̃(k)i − ρ̃

(k)
i ≥ 0

α
(k)
i = 0, β

(k)
i = 0, γ

(k)
i = 0 if z̃(k)i + ρ̃

(k)
i ≤ 0

α
(k)
i = α̃

(k)
i , β

(k)
i =

z̃
(k)
i +ρ̃

(k)
i

2ρ̃
(k)
i

, γ
(k)
i = − (z̃

(k)
i +ρ̃

(k)
i )(z̃

(k)
i −ρ̃

(k)
i )

2ρ̃
(k)
i

otherwise,
(11)

and 0 ≤ α̃
(k)
i ≤ 1 is a free variable that can be optimized (see Figure 5 for illustration). Here, the elementwise bound on

each preactivation |z(k)i (x) − z̃
(k)
i | ≤ ρ̃

(k)
i can be computed by treating z

(k)
i (x) as the output of LiRPA, i.e., c ≡ ei and

f(x) ≡ z(k)(x).

Using (11), the linear lower bounds with respect to z(k) are given by

[c
(k)
+ ⊙ α(k) + c

(k)
− ⊙ β(k)︸ ︷︷ ︸

g(k)(α(k))

]T z(k)(x) + [c
(k)
− ]T γ(k) + d(k)︸ ︷︷ ︸

h(k)(α(k))

≤ [c(k)]T ReLU(z(k)(x)) + d(k) ≤ cT f(x) (12)

where c
(k)
+ = max{c(k), 0} and c

(k)
− = min{c(k), 0}.

Finally, setting g(α) = [W (1)]T g(1)(α(1)) and h(α) = h(1)(α(1)) yields the desired linear lower bound in (9).
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Figure 5: Illustration of the linear relaxation (11). (Left.) z̃
(k)
i − ρ̃

(k)
i ≥ 0. In this case, ReLU(z

(k)
i (x)) is simply

upper and lower bounded by z
(k)
i (x). (Middle.) z̃

(k)
i + ρ̃

(k)
i ≤ 0. In this case, ReLU(z

(k)
i (x)) is simply upper and lower

bounded by 0. (Right.) z̃(k)i − ρ̃
(k)
i ≤ 0 ≤ z̃

(k)
i + ρ̃

(k)
i . In this case, ReLU(z

(k)
i (x)) is lower bounded by α̃

(k)
i z

(k)
i (x) for

any 0 ≤ α̃
(k)
i ≤ 1 and upper bounded by a linear function intersects (z̃(k)i − ρ̃

(k)
i , 0) and (z̃

(k)
i + ρ̃

(k)
i , z̃

(k)
i + ρ̃

(k)
i ).

B.2. SDP-CROWN: bound propagation using the ℓ2-norm constraint on preactivations

SDP-CROWN efficiently constructs linear lower bounds for cT f(x) within an ℓ2-norm ball relaxation of the input set X :

g(α)Tx+ h(g(α), λ) ≤ cT f(x) for all x ∈ B2(x̂, ρ) ⊇ X , (13)

where x̂ ∈ Rn and ρ ∈ R are the center and radius of the ℓ2-norm ball. To extend LiRPA to compute (13), we simply set
x̃ = x̂, ρ̃ = ρ1 in (9) and follow the same process of LiRPA, except with the offsets h(k)(α(k)) in (12) replaced by

h(k)(g(k)(α(k)), λ(k)) = −1

2
·
(
λ(k)

(
(ρ(k))2 − ∥ẑ(k)∥22

)
+

1

λ(k)
∥ϕ(k)(g(k)(α(k)), λ(k))∥22

)
+ d(k)

where λ(k) ≥ 0 is a free variable that can be optimized and

ϕ
(k)
i (g(k)(α(k)), λ(k)) = min{c(k)i − g

(k)
i (α(k))− λ(k)ẑ

(k)
i , g

(k)
i (α(k)) + λ(k)ẑ

(k)
i , 0} for all i.

Here ẑ(k) and ρ(k) are the center and radius of the ℓ2 norm ball for z(k)(x), i.e., ∥z(k)(x) − ẑ(k)∥2 ≤ ρ(k). The ℓ2 norm
ball for z(k)(x) can be computed via the spectral norm of the weight matrices, as in ẑ(k) = W (k)W (k−1) · · ·W (1)x̂ and
ρ(k) = ∥W (k)∥2∥W (k−1)∥2 · · · ∥W (1)∥2ρ, or by more sophisticated methods such as (Fazlyab et al., 2019). Here, we use
∥W (k)∥2 to denote the spectral ℓ2-norm of the matrix W (k). We note that by Theorem 4.1, we always have

[g(k)(α(k))]T z(k)(x) + h(k)(g(k)(α(k)), λ(k)) ≤ cT f(x) for all x ∈ B2(x̂, ρ) (14)

for all k = N, . . . , 1.

Finally, setting g(α) = [W (1)]T g(1)(α(1)) and h(g(α), λ) = h(1)(g(1)(α(1)), λ(1)) yields the desired linear lower bounds
in (13).

B.3. A small example of LiRPA and SDP-CROWN

We give a step-by-step illustration of how to find a linear lower bound on cT f(x) within ∥x− x̂∥2 ≤ ρ. Here, we consider
a 3-layer neural network f(x) with

c = 1, W (3) =
[
−1 −1

]
, W (2) =

[
−1 1
1 −1

]
, W (1) =

[
0 1
1 0

]
, x̂ =

[
1
1

]
, ρ = 1.

LiRPA. For simplicity, we compute each intermediate bound |z(k)(x) − z̃(k)| ≤ ρ̃(k) via interval bound propagation
(Gowal et al., 2019), and always pick α̃(k) = 0 in (11) for k = 1, 2. In this particular example, the choice of α̃(k) does not
affect the final result. The intermediate bounds are given by

z̃(1) =

[
1
1

]
, ρ̃(1) =

[
1
1

]
, z̃(2) =

[
0
0

]
, ρ̃(2) =

[
2
2

]
.

14



SDP-CROWN: Efficient Bound Propagation for Neural Network Verification with Tightness of Semidefinite Programming

• Starting at k = 3, we simply have
g(3)(α(3)) = 1, h(3)(α(3)) = 0.

• At k = 2, substituting z(3)(x) = W (3) ReLU(z(2)(x)) and constructing α
(2)
i z

(2)
i (x) ≤ ReLU(z

(2)
i (x)) ≤

β
(2)
i z

(2)
i (x) + γ

(2)
i via |z(2)(x)− z̃(2)| ≤ ρ̃(2) gives

c(2) = [W (3)]T g(3)(α(3)) =

[
−1
−1

]
, d(2) = h(3)(α(3)) = 0, α(2) =

[
0
0

]
, β(2) =

[
0.5
0.5

]
, γ(2) =

[
1
1

]
.

Therefore, we have

g(2)(α(2)) = c
(2)
+ ⊙ α(2) + c

(2)
− ⊙ β(2) =

[
−0.5
−0.5

]
, h(2)(α(2)) = [c

(2)
− ]T γ(2) + d(2) = −2.

• At k = 1, substituting z(2)(x) = W (2) ReLU(z(1)(x)) and constructing α
(1)
i z

(1)
i (x) ≤ ReLU(z

(1)
i (x)) ≤

β
(1)
i z

(1)
i (x) + γ

(1)
i via |z(1)(x)− z̃(1)| ≤ ρ̃(1) gives

c(1) = [W (2)]T g(2)(α(2)) =

[
0
0

]
, d(1) = h(2)(α(2)) = −2, α(1) =

[
1
1

]
, β(1) =

[
1
1

]
, γ(1) =

[
0
0

]
.

Therefore, we have

g(1)(α(1)) = c
(1)
+ ⊙ α(1) + c

(1)
− ⊙ β(1) =

[
0
0

]
, h(1)(α(1)) = [c

(1)
− ]T γ(1) + d(1) = −2.

As a result, from LiRPA, we conclude

−2 =

[
0
0

]T
x+−2 ≤ 1 · f(x) for all

∥∥∥∥x−
[
1
1

]∥∥∥∥
2

≤ 1.

SDP-CROWN. For simplicity, we compute each intermediate bound ∥z(k)(x) − ẑ(k)∥2 ≤ ρ(k) for k = 1, 2 via the
Lipschitz constant of W (k), which is given by

ẑ(1) =

[
1
1

]
, ρ(1) = 1, ẑ(2) =

[
0
0

]
, ρ(2) = 2.

• Starting at k = 3, we simply have

g(3)(α(3)) = 1, h(3)(g(3)(α(3)), λ(3)) = 0.

• At k = 2, taking c(2), g(2)(α(2)) from LiRPA, setting d(2) = h(3)(g(3)(α(3)), λ(3)) = 0, and substituting them into

h(2)(g(2)(α(2)), λ(2)) = −1

2
·
(
λ(2)

(
(ρ(2))2 − ∥ẑ(2)∥22

)
+

1

λ(2)
∥ϕ(2)(g(2)(α(2)), λ(2))∥22

)
+ d(2)

= −1

2
·
(
4λ(2) +

1

λ(2)
· 0.5

)
.

Notice that maxλ(2)≥0 h
(2)(g(2)(α(2)), λ(2)) is maximized at λ(2) =

√
1/8, and hence we have

g(2)(α(2)) =

[
−0.5
−0.5

]
, h(2)(g(2)(α(2)), λ(2)) = −

√
2, λ(2) =

√
1/8.
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• At k = 1, taking c(1), g(1)(α(1)) from LiRPA, setting d(1) = h(2)(g(2)(α(2)), λ(2)) = −
√
2, and substituting them

into

h(1)(g(1)(α(1)), λ(1)) = −1

2
·
(
λ(1)

(
(ρ(1))2 − ∥ẑ(1)∥22

)
+

1

λ(1)
∥ϕ(1)(g(1)(α(1)), λ(1))∥22

)
+ d(1)

= −1

2
·
(
−λ(1) +

1

λ(1)
· ∥min{−λ(1)ẑ(1), λ(1)ẑ(1), 0}∥22

)
−

√
2

= −1

2
·
(
−λ(1) + λ(1) · ∥min{−ẑ(1), ẑ(1), 0}∥22

)
−

√
2

= −1

2
·
(
λ(1)

)
−
√
2.

Obviously, maxλ(1)≥0 h
(1)(g(1)(α(1)), λ(1)) is maximized at λ(1) = 0, and hence

g(1)(α(1)) =

[
0
0

]
, h(1)(g(1)(α(1)), λ(1)) = −

√
2, λ(1) = 0.

As a result, from our method, we conclude

−
√
2 =

[
0
0

]T
x+−

√
2 ≤ 1 · f(x) for all

∥∥∥∥x−
[
1
1

]∥∥∥∥
2

≤ 1.

In this particular example, our method tightens bound propagation by exactly a factor of
√
2.

C. Some extensions of SDP-CROWN
In this section, we describe several extensions that can further tighten SDP-CROWN.

C.1. Ellipsoid constraints

The tightness of SDP-CROWN hinges crucially on the quality of the ℓ2-norm ball relaxation B2(ẑ
(k), ρ(k)) ⊇ {z(k) | x ∈

B2(x̂, ρ)} for the input set at each z(k) during the computation of linear lower bounds (14). However, in general settings,
ℓ2-norm balls might not be the best choice to relax the input set at z(k). For illustration, consider a simple one-layer
example with

W (1) =

[
0.5 0.5
1.5 −0.5

]
, x̂ =

[
0
0

]
, ρ = 1.

As illustrated in Figure 6, the input set at z(1), {z(1) | x ∈ B2(x̂, ρ)}, is a rotated and elongated ellipsoid; therefore,
relaxing this input set by naively propagating ℓ2-norm ball from x to z(1) can result in extremely loose relaxation. To
address this issue, we generalize SDP-CROWN to handle ellipsoids of the following form

E2(x̂, ρ̂) = {x | ∥diag(ρ̂)−1(x− x̂)∥2 ≤ 1}

where x̂, ρ̂ ∈ Rn are the center and axes of the ellipsoid.

We note that the ellipsoid can also be efficiently propagated via the Lipschitz constant of W (k). Given E2(ẑ(k), ρ̂(k)), one
simple heuristic is to select the center and axis for E2(ẑ(k+1), ρ̂(k+1)) as

ẑ(k+1) = W (k+1)ẑ(k), ρ̂(k+1) = y · ∥ diag(y)−1W (k+1) diag(ρ̂(k))∥2 with y = ∥W (k+1) diag(ρ̂(k))∥r,2

where ∥W∥r,2 =
√
(W ⊙W )1 denotes the rowwise ℓ2 norm of a matrix W .

C.2. Intersection between ellipsoid and elementwise constraints

Another extension of SDP-CROWN is to also take the elementwise bound B∞(z̃(k), ρ̃(k)) at z(k) into account when com-
puting the relaxation of (7). In particular, SDP-CROWN can be further tightened by considering the intersection between
the ellipsoid E2(ẑ(k), ρ̂(k)) and the elementwise bound B∞(z̃(k), ρ̃(k)) at z(k). For illustration, in Figure 7, we plot the
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Figure 6: Constructing the ℓ2-norm ball and the ellipsoid relaxation at z(1) for a one layer neural network with W (1) =
[0.5, 0.5; 1.5,−0.5], x̂ = [0; 0] and ρ = 1. (Left.) The input set at z(1) with respect to the ℓ2-norm ball input set B2(x̂, ρ)
at x. The input set at z(1) is a rotated and elongated ellipsoid. (Middle.) The ℓ2-norm ball relaxation B2(ẑ

(1), ρ(1)) at
z(1), where ẑ(1) = [0; 0] and ρ(1) = ∥W (1)∥2ρ = 1.5302. ℓ2-norm ball does not have enough degree of freedom to
capture the shape of the input set at z(1). (Right.) The ellipsoid relaxation E2(ẑ1, ρ̂(1)) at z(1), where ẑ(1) = [0; 0] and
ρ̂(1) = [0.5464; 1.9360]. The ellipsoid can better capture the shape of the input set at z(1).
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Figure 7: Constructing the intersection between ellipsoid and elementwise bound as a relaxation at z(1) for a one layer
neural network with W (1) = [0.5, 0.5; 1.5,−0.5], x̂ = [0; 0] and ρ = 1. (Left.) The input set at z(1) with respect
to the ℓ2-norm ball input set B2(x̂, ρ) at x. The input set at z(1) is a rotated and elongated ellipsoid. (Middle.) The
elementwise bound relaxation B∞(z̃(1), ρ̃(1)) at z(1), where z̃(1) = [0; 0] and ρ̃(1) = ∥W (1)∥r,2ρ = [0.7071; 1.5811].
(Right.) The intersection between ellipsoid E2(ẑ1, ρ̂(1)) and elementwise bound B∞(z̃(1), ρ̃(1)) at z(1), where ẑ(1) = [0; 0]
and ρ̂(1) = [0.5464; 1.9360]. The intersection removes the corners of B∞(z̃(1), ρ̃(1)).

intersection between the elementwise bound B∞(z̃(k), ρ̃(k)) and the ellipsoid E2(ẑ(k), ρ̂(k)) using the same one-layer ex-
ample in Figure 6. In this case, the intersection removes four corners of B∞(z̃(k), ρ̃(k)). We note that as the dimension
increases, the number of corners removed grows exponentially.

We can simply accommodate B∞(z̃(k), ρ̃(k)) by adding the following inequality constraint into (7)

ReLU(xi) ≤ β
(k)
i x+ γ

(k)
i

where β
(k)
i and γ

(k)
i are defined in (11). We summarized the extension of SDP-CROWN for handling the intersection

between the elementwise bound B∞(z̃(k), ρ̃(k)) and the ellipsoid E2(ẑ(k), ρ̂(k)) in the following Theorem.
Theorem C.1. Given c, x̂, ρ̂, x̃, ρ̃ ∈ Rn where ρ̂, ρ̃ ≥ 0. The following holds

cT ReLU(x) ≥ gTx+ h(g, λ, τ) for all x ∈ E2(x̂, ρ̂) ∩ B∞(x̃, ρ̃)

for any λ, τ ≥ 0 and g ∈ Rn where

h(g, λ, τ) = −1

2

(
λ(1− ∥ diag(ρ̂)−1x̂∥22) + 2τT (ρ̃⊙ ρ̃− x̃⊙ x̃) +

1

λ
∥ϕ(g, λ, τ)∥22

)
and

ϕi(g, λ, τ) = ρ̂i ·min{ci − gi + τi(ρ̃i − x̃i)− λρ̂−2
i x̂i, gi + τi(ρ̃i + x̃i) + λρ̂−2

i x̂i, 0}.
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C.3. Proof of Theorem C.1

Given a linear relaxation cT ReLU(x) ≥ gTx + h that holds within x ∈ E2(x̂, ρ̂) ∩ B∞(x̃, ρ̃), the process of finding the
tightest possible h within E2(x̂, ρ̂) ∩ B∞(x̃, ρ̃) admits the following generic problem

min
x∈Rn

cT ReLU(x)− gTx s.t. ∥ diag(ρ̂)−1(x− x̂)∥2 ≤ 1, ReLU(xi) ≤
ρ̃i + x̃i

2ρ̃i
x+

ρ̃2i − x̃2
i

2ρ̃i
for i = 1, . . . , n.

Without loss of generality, we assume x̃i − ρ̃i ≤ 0 ≤ x̃i + ρ̃i for all i. Applying the positive/negative splitting x = u− v
where u, v ≥ 0 and u⊙ v = 0 yields the following

min
u,v∈Rn

cTu− gT (u− v)

s.t.
n∑

i=1

(ρ̂−1
i ui)

2 − 2ρ̂−2
i (ui − vi)x̂i + (ρ̂−1

i vi)
2 ≤ 1− ∥ diag(ρ̂)−1x̂∥22,

(ρ̃i − x̃i)ui + (ρ̃i + x̃i)vi ≤ ρ̃2i − x̃2
i for i = 1, . . . , n,

u ≥ 0, v ≥ 0, u⊙ v = 0.

(15)

The SDP relaxation of (15) reads:

min
ũ,ṽ,u,v,U,V ∈Rn

cTu− gT (u− v)

s.t.
n∑

i=1

ρ̂−2
i Ui − 2ρ̂−2

i (ui − vi)x̂i + ρ̂−2
i Vi ≤ 1− ∥ diag(ρ̂)−1x̂∥22,

(ρ̃i − x̃i)ui + (ρ̃i + x̃i)vi ≤ ρ̃2i − x̃2
i for i = 1, . . . , n,

u ≥ 0, v ≥ 0, ũ+ ṽ = 1,[
ũi ui

ui Ui

]
⪰ 0,

[
ṽi vi
vi Vi

]
⪰ 0 for i = 1, . . . , n.

Let λ ∈ R denote the dual variable of the first inequality constraints, τi ∈ R denote the dual variable of each (ρ̃i − x̃i)ui +
(ρ̃i + x̃i)vi ≤ ρ̃2i − x̃2

i , and s, t, µ ∈ Rn denote the dual variable for u ≥ 0, v ≥ 0 and ũ + ṽ = 1, respectively. The
Lagrangian dual is given by

max
λ,τ,s,t,µ

− 1

2
·
(
λ(1− ∥ diag(ρ̂)−1x̂∥22) + 2τT (ρ̃⊙ ρ̃− x̃⊙ x̃) + µT1

)
s.t.

[
µi ci − gi + τi(ρ̃i − x̃i)− λρ̂−2

i x̂i − si
ci − gi + τi(ρ̃i − x̃i)− λρ̂−2

i x̂i − si ρ̂−2
i λ

]
⪰ 0 for i = 1, . . . , n,[

µi gi + τi(ρ̃i + x̃i) + λρ̂−2
i x̂i − ti

gi + τi(ρ̃i + x̃i) + λρ̂−2
i x̂i − ti ρ̂−2

i λ

]
⪰ 0 for i = 1, . . . , n,

λ ≥ 0, τ ≥ 0, s ≥ 0, t ≥ 0, µ ≥ 0.

For a 2 × 2 matrix, note that X ⪰ 0 holds if and only if det(X) ≥ 0 and diag(X) ≥ 0. Applying this insight yields a
second-order cone programming (SOCP) problem

max
λ,τ,s,t,µ

− 1

2
·
(
λ(1− ∥ diag(ρ̂)−1x̂∥22) + 2τT (ρ̃⊙ ρ̃− x̃⊙ x̃) + µT1

)
s.t. µiλ ≥ ρ̂2i (ci − gi + τi(ρ̃i − x̃i)− λρ̂−2

i x̂i − si)
2,

µiλ ≥ ρ̂2i (gi + τi(ρ̃i + x̃i) + λρ̂−2
i x̂i − ti)

2,

λ ≥ 0, τ ≥ 0, s ≥ 0, t ≥ 0, µ ≥ 0.

(16)

We are now ready to prove Theorem C.1.
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Proof. Given any c, g ∈ Rn. Let ai = ρ̂i(ci − gi + τi(ρ̃i − x̃i)−λρ̂−2
i x̂i) and bi = ρ̂i(gi + τi(ρ̃i + x̃i)+λρ̂−2

i x̂i). Fixing
any λ, τ ≥ 0 and optimizing µ in (16) yields

max
λ,s,t≥0

−1

2
·

(
λ(1− ∥ diag(ρ̂)−1x̂∥22) + 2τT (ρ̃⊙ ρ̃− x̃⊙ x̃) +

n∑
i=1

max
{
(ai − si)

2, (bi − ti)
2
}

λ

)

=max
λ≥0

−1

2
·

(
λ(1− ∥ diag(ρ̂)−1x̂∥22) + 2τT (ρ̃⊙ ρ̃− x̃⊙ x̃) +

n∑
i=1

min {ai, bi, 0}2

λ

)
=max

λ≥0
h(g, λ, τ)

where the first equality follows from minsi≥0(ai − si)
2 = min{ai, 0}2 and minti≥0(bi − ti)

2 = min{bi, 0}2, and
max{min{ai, 0}2,min{bi, 0}2} = min{ai, bi, 0}2 for any ai, bi ∈ R. Since h(g, λ, τ) is a lower bound on (15) for any
λ, τ ≥ 0, we have cT ReLU(x) ≥ gTx+ h(g, λ, τ) for all x ∈ E2(x̂, ρ̂) ∩ B∞(x̃, ρ̃) for any g ∈ Rn, λ, τ ≥ 0.

D. Derivation of the dual problem (8)
Recall that we have the primal problem

min
ũ,ṽ,u,v,U,V ∈Rn

cTu− gT (u− v)

s.t. (U + V )T1− 2(u− v)T x̂ ≤ ρ2 − ∥x̂∥22,
u ≥ 0, v ≥ 0, ũ+ ṽ = 1,[
ũi ui

ui Ui

]
⪰ 0,

[
ṽi vi
vi Vi

]
⪰ 0 for i = 1, . . . , n.

Let λ ≥ 0 denote the dual variables of the first inequality constraints. s, t ≥ 0, µ ∈ Rn denote the dual variable for u ≥ 0,

v ≥ 0 and ũ+ ṽ = 1, respectively.
[
ỹi yi
yi Yi

]
⪰ 0,

[
z̃i zi
zi Zi

]
⪰ 0 denote the dual variables of the last two PSD constraints

for i = 1, . . . n. The Lagrangian is given by

L(ũ, ṽ, u, v, U, V, λ, s, t, µ, ỹ, z̃, y, z, Y, Z) =

n∑
i=1

ciui − gi(ui − vi)

+

[
n∑

i=1

λ(Ui + Vi)− 2λx̂i(ui − vi)

]
− λ(ρ2 − ∥x̂∥22)

−
n∑

i=1

(siui + tivi) +

n∑
i=1

µi(ũi + ṽi − 1)

−
n∑

i=1

〈[
ỹi yi
yi Yi

]
,

[
ũi ui

ui Ui

]〉
−

n∑
i=1

〈[
z̃i zi
zi Zi

]
,

[
ṽi vi
vi Vi

]〉
.

Rearranging the terms, we have

L(ũ, ṽ, u, v, U, V, λ, s, t, µ, ỹ, z̃, y, z, Y, Z) = −λ(ρ2 − ∥x̂∥22)−
n∑

i=1

µi

+

n∑
i=1

〈[
µi − ỹi

1
2 (ci − gi − 2λx̂i − si)− yi

1
2 (ci − gi − 2λx̂i − si)− yi λ− Yi

]
,

[
ũi ui

ui Ui

]〉
(17)

+

n∑
i=1

〈[
µi − z̃i

1
2 (ci + 2λx̂i − ti)− zi

1
2 (ci + 2λx̂i − ti)− zi λ− Zi

]
,

[
ṽi vi
vi Vi

]〉
. (18)
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Minimizing the Lagrangian over the primal variables yields

min
ũ,ṽ,u,v,U,V ∈Rn

L(ũ, ṽ, u, v, U, V, λ, s, t, µ, ỹ, z̃, y, z, Y, Z)

=

{
−λ(ρ2 − ∥x̂∥22)−

∑n
i=1 µi if (17) = 0 and (18) = 0 for all ũ, ṽ, u, v, U, V ∈ Rn

−∞ otherwise

where

(17) = 0 ⇐⇒
[
ỹi yi
yi Yi

]
=

[
µi

1
2 (ci − gi − 2λx̂i − si)

1
2 (ci − gi − 2λx̂i − si) λ

]
for all i ∈ {1, . . . , n}

(18) = 0 ⇐⇒
[
z̃i zi
zi Zi

]
=

[
µi

1
2 (ci + 2λx̂i − ti)

1
2 (ci + 2λx̂i − ti) λ

]
for all i ∈ {1, . . . , n}.

Hence, the Lagrangian dual is given by

max
λ,s,t,µ

− λ(ρ2 − ∥x̂∥22)− µT1

s.t.
[

µi
1
2 (ci − gi − 2λx̂i − si)

1
2 (ci − gi − 2λx̂i − si) λ

]
⪰ 0 for i = 1, . . . , n,[

µi
1
2 (ci + 2λx̂i − ti)

1
2 (ci + 2λx̂i − ti) λ

]
⪰ 0 for i = 1, . . . , n,

λ ≥ 0, s ≥ 0, t ≥ 0, µ ≥ 0.

Rescaling λ ≡ 1
2λ and µ ≡ 1

2µ to yield

max
λ,s,t,µ

− 1

2
λ(ρ2 − ∥x̂∥22)−

1

2
µT1

s.t.
[

µi ci − gi − λx̂i − si
ci − gi − λx̂i − si λ

]
⪰ 0 for i = 1, . . . , n,[

µi gi + λx̂i − ti
gi + λx̂i − ti λ

]
⪰ 0 for i = 1, . . . , n,

λ ≥ 0, s ≥ 0, t ≥ 0, µ ≥ 0.

For a 2×2 matrix, note that X ⪰ 0 holds if and only if det(X) ≥ 0 and diag(X) ≥ 0. Finally, applying this insight yields
the desired dual problem:

1

2
· max
λ,s,t,µ

− λ(ρ2 − ∥x̂∥22)− µT1

s.t. λµi ≥ (ci − gi − si − λx̂i)
2 for i = 1, . . . , n,

λµi ≥ (−gi + ti − λx̂i)
2 for i = 1, . . . , n,

λ ≥ 0, s ≥ 0, t ≥ 0, µ ≥ 0.
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