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Abstract

Natural Language Processing (NLP) models suf-
fer from small perturbations, that if chosen ad-
versarially, can dramatically change the output of
the model. Verification methods can provide ro-
bustness certificates against such adversarial per-
turbations, by computing a sound lower bound
on the robust accuracy. Nevertheless, existing
verification methods in NLP incur in prohibitive
costs and cannot practically handle Levenshtein
distance constraints. We propose the first method
for computing the Lipschitz constant of convolu-
tional classifiers with respect to the Levenshtein
distance. We use this Lipschitz constant estim-
ation method for training 1-Lipschitz classifiers.
This enables computing the certified radius of a
classifier in a single forward pass. Our method,
LipsLev, is able to obtain 38.80% and 13.93%
verified accuracy at distance 1 and 2 respectively
in the AG-News dataset. We believe our work
can open the door to more efficiently training and
verifying NLP models.

1. Introduction
Despite the impressive performance of NLP models (Sut-
skever et al., 2014; Zhang et al., 2015; Devlin et al., 2019),
simple corruptions like typos or synonym substitutions are
able to dramatically change the prediction of the model
(Belinkov and Bisk, 2018; Alzantot et al., 2018). With
newer attacks in NLP becoming stronger (Hou et al., 2023),
verification methods become relevant for providing future-
proof robustness certificates (Liu et al., 2021).

Constraints on the Levenshtein distance (Levenshtein
et al., 1966) provide a good description of the perturba-
tions a model should be robust to (Morris et al., 2020),
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Table 1. State of the art in Levenstein distance verification and
our contributions: LipsLev is the first to verify deterministic-
ally against Levenshtein distance constraints in a single forward
pass.

Method Insertions/
deletions

Deterministic
Single
forward pass

Huang et al. (2019) ✗ ✓ ✗
Huang et al. (2023) ✓ ✗ ✗
LipsLev (Ours) ✓ ✓ ✓

while strong attacks incorporate such constraints (Gao
et al., 2018; Ebrahimi et al., 2018; Liu et al., 2022;
Abad Rocamora et al., 2024). Despite the success of veri-
fication methods in the text domain, existing methods can
only certify probabilistically via randomized smoothing
(Cohen et al., 2019; Ye et al., 2020; Huang et al., 2023),
or can only handle different specifications such as replace-
ments of characters/words, stop-word removal or word du-
plication (Huang et al., 2019; Jia et al., 2019; Shi et al.,
2020; Bonaert et al., 2021; Zhang et al., 2021).

On the performance side, most successful certification
methods rely on Interval Bound Propagation (IBP) (Moore
et al., 2009), which in the text domain requires multiple for-
ward passes through the first layers of the model (Huang
et al., 2019), unlike in the image domain where a single
forward pass is enough for verification (Wang et al., 2018).
Moreover, IBP has been shown to provide a suboptimal
verified accuracy in the image domain (Wang et al., 2021).

In the image domain, a popular approach to get fast ro-
bustness certificates is computing upper bounds on the
Lipschitz constant of classifiers, and using this information
to directly verify with a single forward pass (Hein and An-
driushchenko, 2017; Tsuzuku et al., 2018; Latorre et al.,
2020; Xu et al., 2022). These methods cannot be trivially
applied in NLP because they assume the input to be in an
ℓp space such Rd, which is not the case of text input, where
the input length can vary and inputs are discrete (charac-
ters). Therefore, we need to rethink Lipschitz verification
for NLP.

In this work, we introduce the first method able to provide
deterministic Levenshtein distance certificates. This is
achieved by computing the Lipschitz constant of convolu-
tional classifiers with respect to the ERP distance (Chen
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and Ng, 2004). This Lipschitz constant estimates allow en-
forcing 1-Lipschitzness during training in order to achieve
a larger verified accuracy. This allows obtaining 38.80%
and 18.69% verified accuracy in AG-News and SST-2 at
Levenshtein distance 1. Moreover, our method is the only
one able to verify for radiuses larger than 1. We set the
foundations for Lipschitz verification in NLP and we be-
lieve our method can be extended to more complex models.

Notation: We use uppercase bold letters for matrices X ∈
Rm×n, lowercase bold letters for vectors x ∈ Rm and
lowercase letters for numbers x ∈ R. Accordingly, the
ith row and the element in the i, j position of a matrix X
are given by xi and xij respectively. We use the shorthand
[n] = {0, 1, · · · , n − 1} for any natural number n. Given
two matrices A ∈ Rm×d and B ∈ Rn×d, the concatena-

tion operator is denoted as A ⊕ B =

[
A
B

]
∈ R(m+n)×d.

Concatenating with the empty sequence ∅ results in the
identity A ⊕ ∅ = A. We denote as A2: ∈ R(m−1)×d the
matrix obtained by removing the first row. We denote the
zero vector as 0 with dimensions appropriate to context.
We use the operator | · | for the size of sets, e.g., |S(Γ)|
and the length of sequences, e.g., for X ∈ Rm×n, we have
|X| = m.

2. Preliminaries
Let S(Γ) = {c1c2 · · · cm : ci ∈ Γ ∀m ∈ N \ 0} be the
space of sequences of characters in the alphabet set Γ. We
represent sentences S ∈ S(Γ) as sequences of one got
vectors, i.e., S ∈ {0, 1}m×|Γ| : ||si||1 = 1, ∀i ∈ [m].
Given a classification model f : S(Γ) → Ro assigning
scores to each of the o classes, the predicted class for some
S ∈ S(Γ) is given by ŷ = argmaxi∈[o] f(S)i. Our goal is
to check whether for a given pair (S, y) ∈ (S(Γ)× [o]):

f(S′)y−max
ŷ ̸=y

f(S′)ŷ > 0, ∀S′ ∈ S(Γ) : dLev(S,S
′) ≤ k ,

(1)
where dLev is the Levenshtein distance (Levenshtein et al.,
1966). The Levenshtein distance is defined as follows:

dLev(S,S
′) :=



|S| if |S′| = 0
|S′| if |S| = 0

dLev(S2:,S
′
2:) if s1 = s′1

1 + min

dLev(S2:,S
′
2:)

dLev(S2:,S
′)

dLev(S,S
′
2:)

 otherwise .

The Levenshtein distance captures the number of charac-
ter replacements, insertions or deletions needed in order to
transform S into S′ and vice-versa. Such constraints are
employed in popular NLP attacks in order to enforce the
imperceptibility of the attack (Gao et al., 2018; Ebrahimi
et al., 2018; Liu et al., 2022; Abad Rocamora et al., 2024)
following the findings of Morris et al. (2020).

3. Method
In Section 3.1 we cover the verification procedure once
the Lipschitz constant of a classifier is known. In Sec-
tion 3.2 we cover the convolutional architectures employed
in Huang et al. (2019) and our Lipschitz constant estima-
tion for them. Lastly, we introduce our training strategy in
order to achieve non-trivial verified accuracy in Section 3.3.
We defer our proofs to Appendix D.

3.1. Lipschitz constant based verification

Motivated by the success and efficiency of Lipschitz con-
stant based certification in vision tasks (Huang et al., 2021;
Xu et al., 2022), we propose a method of this kind that
can handle previously studied models in the character-level
classification task (Huang et al., 2019), and provide Leven-
shtein distance certificates.

Our goal is to compute the local Lipschitz constant. Let
gy,ŷ(S) = f(S)y − f(S)ŷ be the margin function for
classes y and ŷ, we would like to have for some S:

|gy,ŷ(S)− gy,ŷ(S
′)| ≤ Gy,ŷ · dLev(S,S

′) ∀S′ ∈ S(Γ) ,
(2)

for some Gy,ŷ ∈ R+. Given Eq. (2) is satisfied, the max-
imum distance up to which we can verify Eq. (1), is lower
bounded by:

maxk∈{0}∪N k
s.t. gy,ŷ(S

′) > 0 ∀S′ : dLev(S, S
′) ≤ k

}
≥
⌊
gy,ŷ(S)

Gy,ŷ

⌋
.

(3)

Let k⋆y,ŷ(S) :=
⌊
gy,ŷ(S)
Gy,ŷ

⌋
, we denote k⋆y(S) :=

minŷ ̸=y k
⋆
y,ŷ(S) to be the certified radius.

3.2. Lipschitz constant estimation for convolutional
classifiers

Let S ∈ S(Γ) be a sequence of one-hot vectors, our classi-
fier is defined as:

f(S) =
(∑m+l·(q−1)

i=1 f
(l)
i (S)

)
W ,where

f (j)(S) =

{
σ
(
C(j)

(
f (j−1)(S)

))
∀j = 1, · · · , l

SE j = 0

,

(4)
where E ∈ Rv×d is the embeddings matrix, C(i),∀i =
1, · · · , l are convolutional layers with kernel size q and hid-
den dimension k. σ is the ReLU activation function and
W ∈ Rk×o is the last classification layer.

Our approach to estimate the global Lipschitz constant of
such a classifier is to compute the Lipschitz constant of
each layer. Then, since the overall function in Eq. (4) is
the sequential composition of all of the layers, we can just
multiply the Lipschitz constants to obtain the global one.
However, in order to be able to do this, we need some met-
ric with respect to which we can compute the Lipschitz
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constant. The Levenshtein distance cannot be applied, as
it can only measure distances between one-hot vectors and
the outputs of intermediate layers are sequences of real vec-
tors. For this task, we select the ERP distance (Chen and
Ng, 2004):

Definition 3.1 (ERP distance (Chen and Ng, 2004)). Let
A ∈ Rm×d and B ∈ Rn×d be two sequences of m and n
real vectors respectively. The ERP distance is defined as:

dERP(A,B) =



∑m
i=1 ||ai||p if n = 0 (B = ∅)∑n
i=1 ||bi||p if m = 0 (A = ∅)

min


||a1||p + dERP(A2:,B),

||b1||p + dERP(A,B2:),

||a1 − b1||p + dERP(A2:,B2:)

 otherwise

The ERP distance is a natural extension of the Levenshtein
distance for sequences of real valued vectors. In fact, in
the case we compare sequences of one-hot vectors and
we set p = ∞, we recover the Levenshtein distance, see
Lemma S4.

In the following we define a useful representation of con-
volutional layers.

Definition 3.2 (1D Convolutional layer with zero padding).
Let A ∈ Rm×d be a sequence of d-dimensional vectors.
Let k be the number of filters and q the kernel size, a convo-
lutional layer C : Rm×d → R(m+q−1)×k with parameters
K ∈ Rq×k×d can be represented as:

ci(A) =
∑m+2·(q−1)

j=1 K̂i,jâj , where

K̂i,j =

{
Kj−i+1 if 0 ≤ j − i ≤ q − 1
00⊤ otherwise , ∀i ∈ [m+ q − 1] ,

and Â = 0(q−1)×d ⊕A⊕ 0(q−1)×d ∈ R(m+q−1)×d is the
zero-padded input.

We denote the parameter tensor corresponding to every
layer C(i) as K(i). In the following we present our main
result:

In Theorem 3.3 we present our Lipschitz constant upper
bound. In Corollary 3.4 the Lipschitz constant upper bound
is employed to compute the certified radius at a sentence P .
The Lipschitz constant upper bound can be further refined
considering the local Lipschitz constant of the embedding
layer around sentence P , see Remark 3.5.

Theorem 3.3 (Lipschitz constant of margins of convo-
lutional models). Let f be defined as in Eq. (4). Let
gy,ŷ(S) = f(S)y − f(S)ŷ be the margin function for
classes y and ŷ. Let P and Q be sequences of one-hot
vectors, we have that for any y and ŷ:

|gy,ŷ(P )− gy,ŷ(Q)|
≤ ||wŷ −wy||r ·

(∏l
i=1 M

(
K(i)

))
·M(E) · dLev (P ,Q) ,

where M(K) =
∑q

i=1 ||Ki||p, M(E) =

max{max
i∈[|Γ|]

||ei||p , max
i,j∈[|Γ|]

||ei − ej ||p} and 1
p + 1

r = 11.

Proof. See Appendix D

Corollary 3.4 (Certified radius of convolutional models).
Let f be defined as in Eq. (4) and the Lipschitz constant of
gy,ŷ be:

Gy,ŷ = ||wŷ −wy||r ·

(
l∏

i=1

M
(
K(i)

))
·M(E) .

Then, the certified radius of f at the sentence P is given
by: k⋆y,ŷ(S) = minŷ ̸=y

⌊
gy,ŷ(P )
Gy,ŷ

⌋
.

Remark 3.5 (Local Lipschitz constant of the embedding
layer). Let the embeddings of a sentence S be given by
SE, we have that for any two sentences P and Q:

dERP(PE,QE) ≤ M(E,P ) · dLev(P ,Q) ,

where

M(E,P ) = max{max
i∈[|Γ|]

||ei||p , max
i∈|P |,j∈[d]

||piE − ej ||p} ,

satisfying M(E,P ) ≤ M(E).

3.3. Training 1-Lipschitz classifiers

Models trained with the standard Cross Entropy loss and
Stochastic Gradient Descent (SGD) recipe are not amen-
able to verification methods, resulting in small certified
radiuses. This has motivated the use of specialized train-
ing methods in the image domain (Mirman et al., 2018;
Gowal et al., 2018; Mueller et al., 2023; Palma et al.,
2024). Verification methods in the text domain also require
tailored training methods to achieve non-zero certified ra-
diuses (Huang et al., 2019; Jia et al., 2019). Motivated by
methods enforcing classifiers to be 1-Lipschitz in the image
domain (Xu et al., 2022), we enforce this constraint during
training in order to improve certification.

In order to achieve a 1-Lipschitz classifier, we enforce 1-
Lipschitzness of every layer by dividing the output of each
layer by its Lipschitz constant. This results in our modified
classifier being:

f̂(S) =
(∑m+l·(q−1)

i=1 f̂
(l)
i (S)

)
W

M(W ) ,where

f̂ (j)(S) =

{
σ(C(j)(f̂(j−1)(S)))

M(K(j))
∀j = 1, · · · , l

SE
M(E) j = 0

, (5)

where M(W ) = maxy,ŷ∈[o] ||wy −wŷ||r. Note that the
last layer is made 1-Lipschitz with respect to the worst

1In the case p = 1 and p = ∞, we have r = ∞ and r = 1
respectively.
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pair of class labels. Incorporating this information and Re-
mark 3.5, we end up with the final Lipschitz constant for
the classifier:

Corollary 3.6 (Lipschitz constant of modified classifiers).
Let f̂ be defined as in Eq. (5). Let ĝy,ŷ(S) = f̂(S)y −
f̂(S)ŷ be the margin function for classes y and ŷ. Let P
and Q be sequences of one-hot vectors, we have that for
any y and ŷ:

|ĝy,ŷ(P )− ĝy,ŷ(Q)| ≤
||wŷ −wy||r

M(W )
·M(E,P )

M(E)
·dlev (P ,Q) ,

where M(E) is defined as in Theorem 3.3, M(E,P ) is as
in Remark 3.5 and M(W ) = maxy,ŷ∈[o] ||wy −wŷ||r.

Note that the Lipschitz constant estimate in Corollary 3.6
is guaranteed to be at most 1 as ||wŷ −wy||r ≤ M(W )
and M(E,P ) ≤ M(E). Given this estimate, we can pro-
ceed similarly to Corollary 3.4 in order to obtain the certi-
fied radius of the modified model. Note that in the forward
pass of Eq. (5), we need to compute M(E),M(K(j)) and
M(W ), which increases the complexity of a forward pass
with respect to Eq. (4). Nevertheless, we observe this can
be efficiently done during training. Then, the weights of
each layer can be divided by its Lipschitz constant, result-
ing in the same architecture in Eq. (4) with the guarantees
of Corollary 3.6.

4. Experiments
In this section, we cover our experimental validation. In
Section 4.1 we cover the experimental setup and train-
ing mechanisms shared among all experiments. In Sec-
tion 4.2 we compare performance of our approach with ex-
isting IBP approaches and the naive brute force verification
baseline.

4.1. Experimental setup

We train and verify our models in the sentence classific-
ation datasets AG-News (Gulli, 2005; Zhang et al., 2015)
and SST-2 (Wang et al., 2019). We consider all of the char-
acters present in the dataset except for uppercase letters,
which we tokenize as lowercase. Each character is token-
ized individually and assigned one embedding vector via
the matrix E. For all our models and datasets, following
Huang et al. (2019), we select an embedding size of 150, a
hidden size of 100 and a kernel size of 5 and 10 for the SST-
2 and AG-News datasets respectively with a single convo-
lutional layer. Following the setup used in Andriushchenko
and Flammarion (2020) for adversarial training, we use the
SGD optimizer with batch size 128 and a 30-epoch cyc-
lic learning rate scheduler with a maximum value of 50.0,
which we select via a grid search in a validation dataset, see
Appendix C.1. For every experiment, we report the aver-

age results over three random seeds. All of our experiments
are conducted in a single machine with an NVIDIA A100
SXM4 40 GB GPU.

4.2. Comparison with IBP and Brute Force approaches

In this section, we compare our verification method against
a brute-force approach and a modification of the IBP
method in (Huang et al., 2019) to handle insertions and de-
lections of characters.

With the brute-force approach, for every sentence P in the
test dataset, we evaluate our model in every setence in the
set {Q : dlev(P ,Q) ≤ k} and check if there is any mis-
sclassification. Since the size of this set grows exponen-
tially with k, we only evaluate the broute-force accuracy
for k = 1.

In the case of IBP, we evaluate the classifier up to the pool-
ing layer in every sentence of {Q : dlev(P ,Q) ≤ k} and
then build the overapproximation. In (Huang et al., 2019)
doing this was enough to build this overapproximation for
k = 1 and re-scale it to capture larger ks. This is not the
case for insertions and deletions, this constrains IBP with
Levenshtein distance specifications to work only for k = 1.
Overall, this results in IBP having the same complexity as
the brute-force approach. Because of Huang et al. (2019)
only considered perturbations of characters nearby in the
English keyboard, the maximum perturbation size at k = 1
was very small, e.g., 206 and 722 sentences for SST-2 and
AG-News respectively2. In our setup, the maximum per-
turbation sizes are 33, 742 and 85, 686. This makes it im-
practical to performe IBP verified training.

We train 3 models for each dataset and p ∈ {1, 2,∞} and
verify them with the three methods. We report the aver-
age time to verify every sentence and the clean and verified
accuracies at k ∈ {1, 2}.

In Table 2, we can observe that the p value has a big influ-
ence in the clean accuracy of the models and the verifica-
tion capability of each method. With p = 2, we observe
the highest clean accuracy, with an average of 74.80% for
AG-News and 69.95% for SST-2. In terms of robust accur-
acy (Brute-force), p = 2 also provides the best perform-
ance with 62.07% for AG-News and 48.78% for SST-2.
When comparing our approach with IBP, we observe that
IBP obtains the best ratio between clean and verified ac-
curacy when employing p = ∞, with the largest verified
accuracy in SST-2 at 33.94% with k = 1. Our method,
obtains the best performance in AG-News with p = 2 and
in SST-2 with p = 1, with 38.80% and 18.69% verified
accuracy respectively at k = 1.

In terms of runtime, our method is 4 orders of mag-

2See Table 3 in Huang et al. (2019)
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Table 2. Verified accuracy in AG-News and SST-2 under bounded dlev: We report the Clean accuracy (Acc.), Verified accuracy (Ver.)
and the average runtime in seconds (Time) for the brute-force approach (BruteF), IBP (Huang et al., 2019) and LipsLev. OOT means
the experiment was Out Of Time. ✗ means the method does not support dlev > 1. Our method, LipsLev, is the only method able to
provide non-trivial verified accuracies for any k in a single forward pass.

p = ∞
AG-News SST-2

dlev 1 2 1 2
Acc. ↑ Ver. ↑ Time ↓ Ver. ↑ Time ↓ Acc. ↑ Ver. ↑ Time ↓ Ver. ↑ Time ↓

BruteF
65.23

±(0.12)

47.87±(0.09) 17.26 OOT OOT
63.95

±(0.30)

39.68±(0.99) 3.18 OOT OOT

IBP 27.77±(0.12) 17.65 ✗ ✗ 33.94±(1.11) 3.81 ✗ ✗
LipsLev 32.33±(0.31) 0.0081 11.60±(0.45) 0.0081 14.68±(0.25) 0.0035 0.99±(0.05) 0.0035

p = 1

AG-News SST-2

dlev 1 2 1 2
Acc. ↑ Ver. ↑ Time ↓ Ver. ↑ Time ↓ Acc. ↑ Ver. ↑ Time ↓ Ver. ↑ Time ↓

BruteF
69.63

±(0.19)

54.43±(0.53) 17.34 OOT OOT
69.69

±(0.14)

45.22±(0.14) 3.05 OOT OOT

IBP 18.93±(0.50) 20.06 ✗ ✗ 19.00±(1.08) 3.88 ✗ ✗
LipsLev 34.50±(0.36) 0.0014 12.53±(0.29) 0.0014 18.69±(0.80) 0.0026 1.83±(0.00) 0.0026

p = 2

AG-News SST-2

dlev 1 2 1 2
Acc. ↑ Ver. ↑ Time ↓ Ver. ↑ Time ↓ Acc. ↑ Ver. ↑ Time ↓ Ver. ↑ Time ↓

BruteF
74.80

±(0.45)

62.07±(0.82) 27.66 OOT OOT
69.95

±(0.32)

48.78±(0.43) 4.41 OOT OOT

IBP 29.10±(0.45) 31.16 ✗ ✗ 16.06±(1.17) 5.34 ✗ ✗
LipsLev 38.80±(0.29) 0.0076 13.93±(0.21) 0.0076 14.57±(0.34) 0.0073 0.73±(0.27) 0.0073

nitude faster than brute-force and IBP, which attain similar
runtimes. The impossibility of IBP to verify for k = 1 and
its larger runtime than brute-force, poses it as an imprac-
tical tool for Levenstein distance verification. Our method
is the only one able to verify for k > 1, with 13.93% veri-
fied accuracy for AG-News and 1.83% for SST-2 at k = 2.

5. Conclusion
In this work, we propose the first approach able to verify
NLP classifiers using the Levenshtein distance constraints.
Our approach is based on an upper bound of the Lipschitz
constant of convolutional classifiers with respect to the
Levenshtein distance. Our method, LipsLev is able to
obtain a verified accuracy of 38% at distance k = 1 in
the AG-News dataset in a single forward pass per sample.
Moreover, our method is the only existing method that can
practically verify for Levenshtein distances larger than 1.
We expect our work can inspire a new line of works on
verifying larger distances and more broadly verifying ad-
ditional classes of NLP classifiers. We will make the code

publicly available upon the publication of this work, our
implementation is attached with this submission.

Future work and limitations: A problem shared with
verification methods in the image domain is scalability
(Wang et al., 2021). In our experimental validation, we
show the verified accuracy decreases with the number of
layers. Scaling verification methods to production mod-
els is a challenge, that becomes more relevant with the de-
ployment of large language models and their recently dis-
covered vulnerabilities (Zou et al., 2023). Even though our
method is the first to practically provide Levenshtein dis-
tance certificates in NLP, our formulation does not cover
modern architectures as transformers (Vaswani et al., 2017)
and does not support classifiers working over popular
tokenizers such as SentencePiece (Kudo and Richardson,
2018). We believe though, that the generality of the ap-
proach will enable certification once Lipschitz constant es-
timates of such pieces are known. Even though Lipschitz
constant upper bounds exist for transformer models (Qi
et al., 2023), their extension to our metric is not straight-
forward, yet it is an interesting avenue.
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Broader impact
In this work, we tackle the important problem of verifying
the robustness of NLP models against adversarial attacks.
By advancing in this area, we can positively impact society
by ensuring NLP models deployed in safety critical applic-
ations are robust to such perturbations.
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A. Related Work
In this section we cover the related works in Lipschitz constant based verification and more generally, verification in NLP.

Lipschitz verification: Hein and Andriushchenko (2017) firstly study the computation of the Lipschitz constant in order
to provide formal guarantees of the robustness of support vector machines and two-layer nueral networks. Tsuzuku et al.
(2018) compute Lipschitz constant upper bounds for deeper networks and regularize such upper bounds to improve certi-
ficates. Since then, tighter upper bounds for the Lipschitz constant have been proposed (Huang et al., 2021; Fazlyab et al.,
2019; Latorre et al., 2020; Shi et al., 2022). A variety of works propose constraining the Lipschitz constant to be 1 during
training in order to have automatic robustness certificates (Cisse et al., 2017; Qian and Wegman, 2019; Gouk et al., 2021;
Xu et al., 2022). All previous works center in the standard ℓp norms and cannot be applied to the NLP domain. Our work
provides the first 1-Lipschitz training method for the Levenshtein distance.

Verfication in NLP: Jia et al. (2019) propose using Interval Bound Propagation via an over-approximation of the embed-
dings of the set of synonyms of each word. Concurrently, Huang et al. (2019) incorporate this technique for verifying
against replacements of nearby characters in the english keyboard. Bonaert et al. (2021); Shi et al. (2020) propose zono-
tope abstractions and IBP for verifying against synonym substitutions in transformer models. Zhang et al. (2021) propose
a verification procedure that can handle a small number of input perturbations for LSTM classifiers. Deviating from these
approaches, Ye et al. (2020) propose using randomized smoothing techniques Cohen et al. (2019) in order to verify prob-
abilistically against character substitutions. Huang et al. (2023) used similar techniques in order to probabilistically verify
under Levenshtein distance specifications. In this work, we propose the first non-probabilistic method for verifying under
Levenshtein distance specifications. In Table 1 we highlight the differences with existing works in NLP verification.

B. Interval Bound Propagation (IBP)
Existing robustness verification approaches rely on IBP for verifying the robustness of text models (Huang et al., 2019;
Jia et al., 2019). IBP relies on the input being constrained in a box. Let x, l,u ∈ Rd, every element of x is assumed to
be in an interval given by l and u, i.e., li ≤ xi ≤ ui ∀i ∈ [d] or x ∈ [l,u] for short. These constraints arise naturally
when studying robustness in the ℓ∞ norm, as the constraint x ∈ {x(0) + δ : ||δ||∞ ≤ ϵ} can exactly be represented as
x ∈ [x(0) − ϵ,x(0) + ϵ]. IBP consists in a set of rules to obtain interval constraints of the output of a function, given
the interval constraints of the input. In the case of an affine mapping f(x) = Wx + b, we can easily obtain the interval
constraints f(x) ∈ [lf (x),uf (x)], ∀x ∈ [l,u] with:

lf (x) = W+l+W−u+ b, uf (x) = W+u+W−l+ b , (6)

where W+ and W− are the positive and negative parts of W . In the case of the ReLU activation function σ(x) =
max{0,x}, we have that:

lσ(x) = σ(l), uσ(x) = σ(u) . (7)

By applying recursively the simple rules in Eqs. (6) and (7), one can easily verify robustness properties of ReLU fully-
connected and convolutional networks (Wang et al., 2018).

Nevertheless, IBP has two main limitations:

a) IBP assumes the input space to be of fixed length, e.g., Rd.

b) IBP can only handle interval constrained inputs, e.g., x ∈ [l,u].

Limitation a) makes it impossible to verify Levenshtein distance constraints as they include insertion and deletion opera-
tions, which change the length of the input sequence. In the literature, limitation a) forces existing verification methods to
only consider replacements of characters/words (Huang et al., 2019; Jia et al., 2019; Shi et al., 2020; Bonaert et al., 2021;
Zhang et al., 2021).

Limitation b) can be circumvented by building an over approximation of the replacement constraints that can be represented
with intervals. In the case of text, one can directly build an over approximation of the embeddings. Let Z = SE ∈ Rm×d,
where S ∈ S(Γ) is the sequence of one-hot vectors representing each character/word, and E ∈ R|Γ|×d is the embedding
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matrix. Let dedit be the edit distance without insertions and deletions, our constraint in the edit distance (Eq. (1)) translates
in the embedding space to the set:

Zk(S) = {S′E : dedit(S,S
′) ≤ k,S′ ∈ S(Γ)} .

We can overapproximate this set with interval constraints such that Ẑ ∈ [L,U ], with li,j = minZ∈Zk(S) zi,j and ui,j =
maxZ∈Zk(S) zi,j . But, because we can replace any character/word at any position, we end up with L = l⊕ l⊕ · · ·⊕ l and
U = u⊕ u⊕ · · · ⊕ u, where:

li = min
k∈[|Γ|]

ek,i, ui = max
k∈[|Γ|]

ek,i, ∀i ∈ [d] .

Therefore, this overapproximation contains the embeddings of any S′ ∈ {0, 1}m×|Γ| : ||s′i||1 = 1, ∀i ∈ [m], i.e.,
every sentence of length m, making verification impossible. To circumvent this, existing methods focus on the synonym
replacement task, further restricting Zk(S) to only replace words for a word in a small set of synonyms (Jia et al., 2019; Shi
et al., 2020; Bonaert et al., 2021). Alternatively, Huang et al. (2019) compute the over approximation after the pooling layer
of the model, circumventing this problem. Nevertheless, their approach requires |Z1(S)| forward passes. This number of
forward passes can be in the order of tenths of thousands for large m and |Γ|.

Our Lipschitz constant based approach, LipsLev, can handle sequences of any length and requires a single forward pass
through the model.

C. Additional experimental validation
In Appendix C.1 we present our grid search for selecting the best learning rate for each dataset and p value in the ERP
distance Definition 3.1. In Appendix C.2 we analyze the effect of increasing the number of convolutional layers. in
Appendix C.3 we cover the hyperparameter selection of our method.

C.1. Hyperparameter selection

In order to select the best learning rate in each dataset and p norm for the ERP distance, we compute the clean and
verified accuracy at k = 1 in a validation set of 1, 000 samples extracted from each training set. We test the learning rate
values {0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000}. We train convolutional models with 1 convolutional layer and the standard
embedding, hidden and kernel sizes in Section 4.1. We notice these large learning rates are needed due to the 1-Lipschitz
formulation in Eq. (5).

Based on the results from Fig. S1, we select 50 as our learning rate for the rest of experiments in this work.

C.2. Training deeper models

In this section, we study the performance of models with more than one convolutional layer. We train with 1, 2, 3 and 4
convolutional layers with a hidden size of 100 and a kernel size of 5 and 10 for SST-2 and AG-News respectively. We train
the models with the 1-Lipschitz formulation in Eq. (5) with p ∈ {1, 2,∞}.

In Figs. S2 and S3 we can observe that increasing the number of layers degrades the clean and verified accuracy for every
value of p. Nevertheless, for p = 2, the effect is diminished. Jointly with the improved peformance when using p = 2 in
Section 4.2, we advocate for its use in the ERP distance.

C.3. Regularizing the Lipschitz constant

In Section 3.3 we describe how to enforce our convolutional classifier to be 1-Lipschitz. But, is there a better way of
improving the final verified accuracy of our models? Because our Lipschitz constant estimate in Theorem 3.3 its differenti-
able with respect to the parameters of the model, we can regularize this quantity during training in order to achieve a lower
Lipschitz constant and hopefully a better verified accuracy. In practice we regularize G = M(W ) ·M(K(1)) ·M(E) as
defined in Theorem 3.3 and Corollary 3.6.

We train single-layer models with a regularization paremeter of λ ∈ {0, 0.001, 0.01, 0.1}, where λ = 0 is equivalent to
standard training. We initialize the weights of each layer so that their Lipschitz constant is 1. We use a learning rate of 0.01.
We measure the final Lipschitz constant of each model and their clean and verified accuracies in a validation set of 1000
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Figure S1. Learning rate selection for the SST-2 and AG-News datasets: We report the clean and verified accuracy in a validation set
of 1,000 sentences extracted from the training split of each dataset and set aside during training. We set the learning rate equal to 100 in
the rest of our experiments as it provides a good trade-off between clean and verified accuracy for all norms and datasets.
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Figure S2. Training deeper models in SST-2: We report the clean and verified accuracies with LipsLev at k = 1 for p ∈ {1, 2,∞}.
Clean and verified accuracies decrease with the number of layers. With p = 2 the performance is less degraded with the number of
layers.
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Figure S3. Training deeper models in AG-News: We report the clean and verified accuracies with LipsLev at k = 1 for p ∈
{1, 2,∞}. Clean and verified accuracies decrease with the number of layers. With p = 2 the performance is less degraded with the
number of layers.
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Table S3. Regularizing v.s. enforcing Lipschitzness in SST-2: We compare the performance when regularizing the Lipschitz constant
(G) during training with λ ∈ {0, 0.001, 0.01, 0.1}, against enforcing 1-Lipschitzness through Eq. (5). Regularizing G leads to either
models with similar performance to a constant classifier (55.7% for SST-2), or more accurate but non-verifiable models than when using
the formulation in Eq. (5).

p = ∞ p = 1 p = 2
λ Clean ↑ Ver. ↑ G Clean ↑ Ver. ↑ G Clean ↑ Ver.↑ G

0 89.0±(0.5) 0.0±(0.0) 2850.2±(80.1) 86.1±(0.4) 0.0±(0.0) 449.6±(3.0) 87.2±(0.2) 0.0±(0.0) 129.1±(2.9)

0.001 80.8±(0.6) 0.0±(0.0) 65.0±(0.9) 84.5±(0.5) 0.0±(0.0) 44.1±(0.7) 86.2±(0.4) 0.0±(0.0) 37.7±(0.3)

0.01 60.1±(1.1) 1.7±(0.1) 1.4±(0.1) 79.7±(0.5) 0.1±(0.0) 6.9±(0.0) 81.6±(0.4) 0.1±(0.0) 8.8±(0.1)

0.1 56.2±(0.0) 55.7±(0.3) 0.0±(0.0) 57.3±(0.0) 53.2±(0.8) 0.1±(0.0) 57.5±(0.9) 34.1±(3.0) 0.1±(0.0)

Eq. (5) 62.8±(0.6) 7.3±(0.1) 1.00±(0.0) 65.6±(0.1) 10.7±(0.2) 1.00±(0.0) 66.6±(0.6) 7.2±(0.1) 1.00±(0.0)
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Figure S4. Sentence length distribution for verified and not verified sentences: We report the histogram of the lengths for verified
and not verified sentences at k = 1 with LipsLev in the models trained with p = 2. Shorter sentences are harder to verify in both
SST-2 and AG-News with both LipsLev and the brute force approach.

samples left out from the training set. As a baseline, we report these metrics for the models trained with the formulation in
Eq. (5).

In Table S3 we observe that for all the studied norms, when regularizing the Lipschitz constant G, we cannot easily match
the performance when using Eq. (5). Regularized models converge to either close-to-constant classifiers (55.7% clean
accuracy for SST-2) or present a close-to-zero verified accuracy. The formulation in Eq. (5) allows us to obtain verifiable
models without the need to tune hyperparameters.

C.4. The influence of sentence length in verification

In this section we study the qualitative characteristics of a sentence leading to a better verification properties, specifically,
we study the influence of the sentence length in verification. We compute the sentence lengths for the sentences that were
verified and not verified at k = 1 for the models in Section 4.2 with p = 2 and both brute force and LipsLev.

In Fig. S4 we can observe that for both verification methods on both datasets, the verified sentences present a larger average
length. We believe this is reasonable as single characters perturbations are likely to introduce a smaller semantic change
for longer sequences.

D. Proofs
In this section we introduce the mathematical tools needed to derive our Lipschitz constant upper bounds for each layer in
Eq. (4). The section concludes with the proof of our main result in Theorem 3.3.

Definition S1 (Zero-paddings). Let X ∈ Xd a sequence of m non-zero vectors. Let l ≥ m, a zero padding function
Z : Xd → Rl×d is some function defined by the tuple:

(ik)
l
k=1 :

{
m ≥ ik > ij ∀1 < j < k if ik ̸= 0

|{k ∈ [l] : ik = 0}| = l −m if ik = 0

12



Certified Robustness in NLP Under Bounded Levenshtein Distance

so that:

zk(X) =

{
xik if ik ̸= 0
0 if ik = 0

Intuitively, a valid zero-padding function inserts l −m zeros in between any vector of the sequence, the beginning or the
end. We denote as Zm,l the set of zero paddings from sequences of length m to sequences of length l.

Remark S2. Given a matrix A ∈ Rm×m and a zero padding Z ∈ Zm,l, we denote the column and row-wise padding as
Z(A) = Z(Z(A⊤)⊤) ∈ Rl×l.

Proposition S3 (Alternative definition of dERP). Let dERP be as in Definition 3.1. Let A ∈ Rm×d and B ∈ Rn×d be two
sequences. Let Zm,m+n and Zn,m+n be the zero-padding functions from length m and n respectively to length m + n.
The ERP distance can be expressed as:

dERP(A,B) = min
Za∈Zm,m+n,Zb∈Zn,m+n

m+n∑
k=1

∣∣∣∣za
k(A)− zb

k(B)
∣∣∣∣
p

Lemma S4 (Properties of the ERP distance). Some important properties of the ERP distance are summarized here:

(a) Generalization of edit distance:
In the case of having sequences of one-hot vectors A ∈ {0, 1}m×d : ||ai||1 = 1, and using p = ∞, the ERP distance
is equal to the edit distance (Levenshtein et al., 1966).

(b) Invariance to the concatenation of zeros:

dERP(A⊕ 0,B) = dERP(0⊕A,B) = dERP(A,B) ∀A ∈ Rm×d,B ∈ Rn×d

(c) Distance to the empty set:

dERP(A, ∅) =
m∑
i=1

||ai||p ∀A ∈ Rm×d

(d) Symmetry:
dERP(A,B) = dERP(B,A) ∀A ∈ Rm×d,B ∈ Rn×d

(e) Triangular inequality:
For any A ∈ Rm×d,B ∈ Rn×d,B ∈ Rl×d, we have:

dERP(A,B) ≤ dERP(A,C) + dERP(C,B).

(f) Subdistance:
The ERP distance is not a distance because of its invariance to the concatenation of zeros:

dERP(A,A⊕ 0) = dERP(A,A) = 0 ∀A ∈ Rm×d

proof of Lemma S4. Properties (a), (b), (c), (d) and (f) are straightforward from the deffinition, we will prove the triangular
inequality (e). This proof follows similarly to the one of Waterman et al. (1976) for the standard Levenshtein distance. Let
L = m+ n+ l, starting from the definition in Proposition S3:

dERP(A,B) + dERP(B,C) = min
Za∈Zm,L,Zb∈Zn,L

Zc∈Zn,L,Zd∈Zl,L

L∑
k=1

∣∣∣∣za
k(A)− zb

k(B)
∣∣∣∣
p

+

L∑
j=1

∣∣∣∣zc
j (B)− zd

j (C)
∣∣∣∣
p
.
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Let Ze,Zf ∈ ZL,2L be two zero paddings so that Ze(Zb(B)) = Zf (Zc(B)):

dERP(A,B) + dERP(B,C) = min
Za∈Zm,L,Zb∈Zn,L

Zc∈Zn,L,Zd∈Zl,L

2L∑
k=1

∣∣∣∣ze
k(Z

a(A))− ze
k(Z

b(B))
∣∣∣∣
p

+
∣∣∣∣∣∣zf

k (Z
c(B))− zf

k (Z
d(C))

∣∣∣∣∣∣
p

[Triangular ineq. for ||·||p] ≥ min
Za∈Zm,L,Zb∈Zn,L

Zc∈Zn,L,Zd∈Zl,L

2L∑
k=1

∣∣∣∣ze
k(Z

a(A))− ze
k(Z

b(B))

+ zf
k (Z

c(B))− zf
k (Z

d(C))
∣∣∣∣∣∣
p

[Ze(Zb(B)) = Zf (Zc(B))] = min
Za∈Zm,L,Zd∈Zl,L

2L∑
k=1

∣∣∣∣∣∣ze
k(Z

a(A))− zf
k (Z

d(C))
∣∣∣∣∣∣
p

= dERP(A,C) ,

where the last equality follows from ze
k(Z

a) and zf
k (Z

d) being valid zero paddings.

Lemma S5 (Difference of sums). Let A,B ∈ Xd, we have that:∣∣∣∣∣∣
∣∣∣∣∣∣

m∑
i=1

ai −
n∑

j=1

bj

∣∣∣∣∣∣
∣∣∣∣∣∣
p

≤ dERP(A,B)

proof of Lemma S5. ∣∣∣∣∣∣
∣∣∣∣∣∣

m∑
i=1

ai −
n∑

j=1

bj

∣∣∣∣∣∣
∣∣∣∣∣∣
p

=

∣∣∣∣∣
∣∣∣∣∣ min
Za∈Zm,m+n,Zb∈Zn,m+n

m+n∑
k=1

za
k(A)− zb

k(B)

∣∣∣∣∣
∣∣∣∣∣
p

≤ min
Za∈Zm,m+n,Zb∈Zn,m+n

m+n∑
k=1

∣∣∣∣za
k(A)− zb

k(B)
∣∣∣∣
p

= dERP(A,B)

Lemma S6 (Difference of means). Let A,B ∈ Xd, we have that:∣∣∣∣∣∣
∣∣∣∣∣∣ 1m ·

m∑
i=1

ai −
1

n
·

n∑
j=1

bj

∣∣∣∣∣∣
∣∣∣∣∣∣
p

≤ |m− n|
m · n

·

∣∣∣∣∣
∣∣∣∣∣

m∑
i=1

ai

∣∣∣∣∣
∣∣∣∣∣
p

+
1

n
· dERP(A,B)

and ∣∣∣∣∣∣
∣∣∣∣∣∣ 1m ·

m∑
i=1

ai −
1

n
·

n∑
j=1

bj

∣∣∣∣∣∣
∣∣∣∣∣∣
p

≤ |m− n|
m · n

·

∣∣∣∣∣∣
∣∣∣∣∣∣

m∑
j=1

bj

∣∣∣∣∣∣
∣∣∣∣∣∣
p

+
1

m
· dERP(A,B) .

In the case of A and B being sequences of one-hot vectors, we have that:∣∣∣∣∣∣
∣∣∣∣∣∣ 1m ·

m∑
i=1

ai −
1

n
·

n∑
j=1

bj

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤
{

1
m · dlev (A,B) if m = n
2
m · dlev (A,B) if m ̸= n

14
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proof of Lemma S6. Starting with the first result:∣∣∣∣∣∣
∣∣∣∣∣∣ 1m ·

m∑
i=1

ai −
1

n
·

n∑
j=1

bj

∣∣∣∣∣∣
∣∣∣∣∣∣
p

=
1

m · n

∣∣∣∣∣∣
∣∣∣∣∣∣(n+m−m) ·

m∑
i=1

ai −m ·
n∑

j=1

bj

∣∣∣∣∣∣
∣∣∣∣∣∣
p

≤ 1

m · n

|m− n| ·

∣∣∣∣∣
∣∣∣∣∣

m∑
i=1

ai

∣∣∣∣∣
∣∣∣∣∣
p

+m ·

∣∣∣∣∣∣
∣∣∣∣∣∣

m∑
i=1

ai −
n∑

j=1

bj

∣∣∣∣∣∣
∣∣∣∣∣∣
p


[Lemma S5] ≤ |m− n|

m · n
·

∣∣∣∣∣
∣∣∣∣∣

m∑
i=1

ai

∣∣∣∣∣
∣∣∣∣∣
p

+
1

n
· dERP (A,B) .

Note that since A and B are interchangeable, we immediately have:∣∣∣∣∣∣
∣∣∣∣∣∣ 1m ·

m∑
i=1

ai −
1

n
·

n∑
j=1

bj

∣∣∣∣∣∣
∣∣∣∣∣∣
p

≤ |m− n|
m · n

·

∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

bj

∣∣∣∣∣∣
∣∣∣∣∣∣
p

+
1

m
· dERP (A,B) . (8)

In the case A and B are sequences of one-hot vectors, if m = n, we can directly get the 1/m factor out of the norm and
apply Lemma S5 to get the first case. For the case m ̸= n, we can manipulate Eq. (8) to get the desired result:∣∣∣∣∣∣

∣∣∣∣∣∣ 1m ·
m∑
i=1

ai −
1

n
·

n∑
j=1

bj

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤ |m− n|
m · n

·

∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

bj

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

+
1

m
· dlev (A,B)

[|m− n| ≤ dlev (A,B) + Triang. ineq.] ≤

 1

m · n
·

n∑
j=1

||bj ||∞ +
1

m

 · dlev (A,B)

[||bj ||∞ = 1 ∀j ∈ [n]] =
2

m
· dlev (A,B) .

Lemma S7 (Linear transformations). Let A,B ∈ Xd be two sequences and V ∈ Rd×k. We have that:

dERP(AV ,BV ) ≤ dERP(A,B) ||V ||p
In the case of sequences of one-hot vectors, we have that:

dERP(AV ,BV ) ≤ dLev(A,B) ·M(V ) ,

where
M(V ) = max{max

i∈[d]
||vi||p , max

i,j∈[d]
||vi − vj ||p}

Proof. Follows immediately from Definition 3.1 and the fact that ||AB|| ≤ ||A|| ||B|| for any matrices A and B. The
second result for one-hot vectors follows immediately from the fact that the biggest change in the embedding sequence that
can be produced from a single-character change, is either given by inserting the character with the largest norm embedding
(left side of the max), or replacing a character with the character that has the furthest away embedding in the ℓp norm (left
side of the max).

Lemma S8 (Elementwise Lipschitz functions). Let dERP be as in Definition 3.1. Let A ∈ Rm×d and B ∈ Rn×d be two
sequences. Let f : Rd → Rk be a Lipschitz function so that:

||f(a)− f(b)||p ≤ Lf · ||a− b||p ∀a, b ∈ Rd .

Let F (A) ∈ Rm×k and F (B) ∈ Rn×k be the application of f to every vector in both sequences, we immediately have
that:

dERP(F (A),F (B)) ≤ Lf · dERP(A,B)
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Lemma S9 (Convolution). Let dERP be as in Definition 3.1. Let P ∈ {0, 1}m×d and Q ∈ {0, 1}n×d be two sequences of
m and n one hot-vectors respectively. Let the function working with arbitrary sequence length l be F : {0, 1}l×d → Rl×r.
Let the convolutional filter C : Rl×r → R(l+q−1)×k with kernel K ∈ Rq×k×r, where q is the kernel size and k is the
number of filters. We have that:

dERP (C(F (P )),C(F (Q))) ≤ M(K) · dERP (F (P ),F (Q)) .

where:

M(K) =

q∑
i=1

||Ki||p .

Proof of Lemma S9. Let L = m + n + 2q − 2. Starting from the definition of the ERP distance in Lemma S4 and the
definition of the convolutional layer in Definition 3.2:

dERP(C(F (P )),C(F (Q)))

= min
Za∈Zm+q−1,L,

Zb∈Zn+q−1,L

L∑
k=1

∣∣∣∣za
k(C(F (P )))− zb

k(C(F (Q)))
∣∣∣∣
p

= min
Za∈Zm+q−1,L,

Zb∈Zn+q−1,L

L∑
k=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣za

k


 m∑
j=1

K̂i,j f̂j(P )

m+q−1

i=1

− zb
k

[ n∑
l=1

K̂i,lf̂l(Q)

]n+q−1

i=1


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

= min
Za∈Zm+q−1,L,

Zb∈Zn+q−1,L

L∑
k=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣za

k


 q∑
j=1

Kjfi+j−1(P )

m+q−1

i=1

− zb
k


 q∑
j=1

Kjfi+j−1(Q)

n+q−1

i=1


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

= min
Za∈Zm+q−1,L,

Zb∈Zn+q−1,L

L∑
k=1

∣∣∣∣∣∣
∣∣∣∣∣∣

q∑
j=1

Kj

(
za
k

(
[fi+j−1(P )]

m+q−1
i=1

)
− zb

k

(
[fi+j−1(Q)]

n+q−1
i=1

))∣∣∣∣∣∣
∣∣∣∣∣∣
p

≤ min
Za∈Zm+q−1,L,

Zb∈Zn+q−1,L

L∑
k=1

q∑
j=1

||Kj ||p ·
∣∣∣∣∣∣za

k

(
[fi+j−1(P )]

m+q−1
i=1

)
− zb

k

(
[fi+j−1(Q)]

n+q−1
i=1

)∣∣∣∣∣∣
p

= min
Za∈Zm+q−1,L,

Zb∈Zn+q−1,L

q∑
j=1

||Kj ||p ·
L∑

k=1

∣∣∣∣∣∣za
k

(
[fi+j−1(P )]

m+q−1
i=1

)
− zb

k

(
[fi+j−1(Q)]

n+q−1
i=1

)∣∣∣∣∣∣
p

=

q∑
j=1

||Kj ||p · dERP (F (P ),F (Q)) ,

where the last equality follows from the fact that [fi+j−1(P )]
m+q−1
i=1 and [fi+j−1(Q)]

n+q−1
i=1 are just win-

dows of F (P ) and F (Q) respectively including the complete sequences F (P ) and F (Q), resulting in
dERP

(
[fi+j−1(P )]

m+q−1
i=1 , [fi+j−1(Q)]

n+q−1
i=1

)
= dERP (F (P ),F (Q)) ∀j = 1, · · · , q.

Proof of Theorem 3.3. We will bound the absolute value of the difference of outputs for two sentences P ,Q ∈ S(Γ) of
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lengths m and n respectively:

|f(P )− f(Q)| :=

m+l·(q−1)∑
i=1

σ
(
c
(l)
i (PE)

)
−

n+l·(q−1)∑
j=1

σ
(
c
(l)
j (QE)

)w

[Hölder’s inequality] ≤ ||w||r ·

∣∣∣∣∣∣
∣∣∣∣∣∣
m+l·(q−1)∑

i=1

σ
(
c
(l)
i (PE)

)
−

n+l·(q−1)∑
j=1

σ
(
c
(l)
j (QE)

)∣∣∣∣∣∣
∣∣∣∣∣∣
p

[Lemma S5] ≤ ||w||r · dERP

(
σ
(
C(l) (PE)

)
,σ
(
C(l) (QE)

))
[Lemma S8 and Lemma S9 recursively] ≤ ||w||r ·

(
l∏

k=1

M(K(k))

)
· dERP (PE,QE)

[Lemma S7] ≤ ||w||r ·

(
l∏

k=1

M(K(k))

)
·M(E) · dLev (P ,Q)
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