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Abstract

Recent studies have demonstrated the effective-001
ness of LLM test-time scaling. However, ex-002
isting approaches to incentivize LLMs’ deep003
thinking abilities generally require large-scale004
data or significant training efforts. Meanwhile,005
it remains unclear how to improve the thinking006
abilities of less powerful base models. In this007
work, we introduce S2R, an efficient framework008
that enhances LLM reasoning by teaching mod-009
els to self-verify and self-correct during infer-010
ence. Specifically, we first initialize LLMs with011
iterative self-verification and self-correction be-012
haviors through supervised fine-tuning on care-013
fully curated data. The self-verification and014
self-correction skills are then further strength-015
ened by outcome-level and process-level rein-016
forcement learning with minimized resource017
requirements. Our results demonstrate that,018
with only 3.1k behavior initialization samples,019
Qwen2.5-math-7B achieves an accuracy im-020
provement from 51.0% to 81.6%, outperform-021
ing models trained on an equivalent amount of022
long-CoT distilled data. We also discuss the023
effect of different RL strategies on enhancing024
LLMs’ deep reasoning. Extensive experiments025
and analysis based on three base models across026
both in-domain and out-of-domain benchmarks027
validate the effectiveness of S2R1.028

1 Introduction029

Recent advancements in Large Language Models030

(LLMs) have demonstrated a paradigm shift from031

scaling up training-time efforts to test-time com-032

pute (Snell et al., 2024a; Kumar et al., 2024; Qi033

et al., 2024; Yang et al., 2024). The effectiveness034

of scaling test-time compute is illustrated by Ope-035

nAI o1 (OpenAI, 2024), which shows strong rea-036

soning abilities by performing deep and thorough037

thinking, incorporating essential skills like self-038

checking, self-verifying, self-correcting and self-039

exploring during the model’s reasoning process.040

1Our code will be publicly available at Github.
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Figure 1: The data efficiency of S2R compared to com-
petitive baseline methods.

This paradigm not only enhances reasoning in do- 041

mains like mathematics and science but also offers 042

new insights into improving the generalizability, 043

helpfulness and safety of LLMs across various gen- 044

eral tasks (OpenAI, 2024; Guo et al., 2025). 045

Recent studies have made various attempts to 046

replicate the success of o1. These efforts in- 047

clude using large-scale Monte Carlo Tree Search 048

(MCTS) to construct long-chain-of-thought (long- 049

CoT) training data, or to scale test-time reason- 050

ing to improve the performance of current models 051

(Guan et al., 2025; Zhao et al., 2024; Snell et al., 052

2024b); constructing high-quality long-CoT data 053

for effective behavior cloning with substantial hu- 054

man effort (Qin et al., 2024); and exploring rein- 055

forcement learning to enhance LLM thinking abili- 056

ties on large-scale training data and models (Guo 057

et al., 2025; Team et al., 2025; Cui et al., 2025; 058

Yuan et al., 2024). Recently, DeepSeek R1 (Guo 059

et al., 2025) demonstrated that large-scale reinforce- 060

ment learning can incentivize LLM’s deep thinking 061

abilities, with the R1 series showcasing promis- 062

ing potential of long-thought reasoning. However, 063

these approaches generally require significant re- 064

sources to enhance LLMs’ thinking abilities, in- 065

cluding large datasets, substantial training-time 066

compute, and considerable human effort and time 067

costs. Meanwhile, it remains unclear how to in- 068

centivize valid thinking in smaller or less power- 069
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ful LLMs beyond distilling knowledge from more070

powerful models.071

In this work, we propose S2R, an efficient alter-072

native to enhance the thinking abilities of LLMs.073

Instead of having LLMs imitate the thinking pro-074

cess of larger, more powerful models, S2R focuses075

on teaching LLMs to think deeply by iteratively076

adopting two critical thinking skills: self-verifying077

and self-correcting. By acquiring these two capa-078

bilities, LLMs can continuously reassess their solu-079

tions, identify mistakes during solution exploration,080

and refine previous solutions after self-checking.081

Such a paradigm also enables flexible allocation of082

test-time compute to different levels of problems.083

Our results show that, with only 3.1k training sam-084

ples, Qwen2.5-math-7B significantly benefits from085

learning self-verifying and self-correcting behav-086

iors, achieving a 51.0% to 81.6% accuracy improve-087

ment on the Math500 test set. This performance088

outperforms the same base model distilled from089

an equivalent amount of long-CoT data (accuracy090

80.2%) from QwQ-32B-Preview (Team, 2024).091

More importantly, S2R employs both outcome-092

level and process-level reinforcement learning (RL)093

to further enhance the LLMs’ self-verifying and094

self-correcting capabilities. Using only rule-based095

reward models, RL improves the validity of both096

the self-verification and self-correction process, al-097

lowing the models to perform more flexible and098

effective test-time scaling through a self-directed099

trial-and-error process. By comparing outcome-100

level and process-level RL for our task, we found101

that process-level supervision is effective in im-102

proving accuracy of the thinking skills at interme-103

diate steps, benefiting less capable base models. In104

contrast, outcome-level supervision allows mod-105

els to explore more flexible trial-and-error paths106

towards the final answer, leading to consistent en-107

hancement in the reasoning abilities of more ca-108

pable base models. Additionally, we show the po-109

tential of offline reinforcement learning as a more110

efficient alternative to the online RL training.111

We conducted extensive experiments across 3112

LLMs on 7 math reasoning benchmarks. Experi-113

mental results demonstrate that S2R outperforms114

competitive baselines in math reasoning, including115

recently-released advanced o1-like models Eurus-2-116

7B-PRIME (Cui et al., 2025), rStar-Math-7B (Guan117

et al., 2025) and Qwen2.5-7B-SimpleRL (Zeng118

et al., 2025). We also found that S2R is generaliz-119

able to out-of-domain general tasks like MMLU-120

PRO, highlighting the validity of the learned self-121

verifying and self-correcting abilities. Additionally, 122

we conducted a series of analytical experiments 123

to demonstrate the reasoning mechanisms of S2R 124

models, and provide insights into performing on- 125

line and offline RL for enhancing LLM reasoning. 126

2 Methodology 127

In this section, we introduce the proposed S2R 128

framework. We first formally define the problem. 129

Next, we present the two-stage training framework 130

of S2R, as described in Figure 2. 131

2.1 Problem Setup 132

We formulate the desired LLM reasoning paradigm 133

as a sequential decision-making process under a 134

reinforcement learning framework. Given a prob- 135

lem x, the language model policy π is expected 136

to generate a sequence of interleaved reasoning 137

actions y = (a1, a2, · · · , aT ) until reaching the 138

termination action <end>. We represent the series 139

of actions before an action at ∈ y as y:at , i.e., 140

y:at = (a1, a2, · · · , at−i), where at is excluded. 141

The number of tokens in y is denoted as |y|, and 142

the total number of actions in y is denoted as |y|a. 143

We restrict the action space to three types: 144

“solve”, “verify”, and “<end>”, where “solve” 145

actions represent direct attempts to solve the 146

problem, “verify” actions correspond to self- 147

assessments of the preceding solution, and “<end>” 148

actions signal the completion of the reasoning pro- 149

cess. We denote the type of action ai as Type(·), 150

where Type(ai) ∈ {verify, solve, <end>}. We 151

define and expect the policy to learn the following 152

action type transition rules: 153

Type(ai+1) =


verify, Type(ai) = solve

solve, Type(ai) = verify

and Parser(ai) = INCORRECT

<end>, Type(ai) = verify

and Parser(ai) = CORRECT

154

Here, Parser(a) ∈ {CORRECT, INCORRECT} 155

(for any action a where Type(a) = verify ) is a 156

function (e.g., a regex) that converts the model’s 157

free-form verification text into binary judgments. 158

For simplicity, we denote the j-th solve action as 159

sj and the j-th verify action as vj . Then we have 160

y = (s1, v1, s2, v2, · · · , sk, vk, <end>). 161

2.2 Initializing Self-verification and 162

Self-correction Behaviors 163

2.2.1 Learning Valid Self-verification 164

Learning to perform valid self-verification is the 165

most crucial part in S2R. We explore two methods 166

for constructing self-verification behavior: 167
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Figure 2: Overview of S2R.

“Problem-Solving” Verification The most intuitive168

method for verification construction is to query ex-169

isting models to generate verifications on the policy170

models’ responses. By querying existing models,171

we found that existing models tend to perform ver-172

ification in a “Problem-Solving” manner, i.e., by173

re-solving the problem and checking whether the174

answer matches the given one. We refer to this kind175

of verification as “Problem-Solving” Verification.176

“Confirmative” Verification "Problem-solving"177

verification is intuitively not the ideal verification178

behavior we seek. Ideally, we expect the verifica-179

tion to think outside the box and re-examine the so-180

lution from a new perspective, rather than thinking181

from the same problem-solving view. We refer to182

this type of verification behavior as “Confirmative”183

Verification. Specifically, we construct “Confirma-184

tive” Verification by prompting LLMs to "verify185

the answer without re-solving the problem", and186

filtering out invalid verifications. Detailed imple-187

mentation can be found in Appendix §C.1.188

Based on preliminary experiments, we finally se-189

lected Confirmative Verification for the main exper-190

iments. Due to space limitations, we defer the com-191

parison of these two methods to Appendix §A.1.192

2.2.2 Learning Self-correction193

Another critical part of S2R is enabling the model194

to learn self-correction. Inspired by Kumar et al.195

(2024) and Snell et al. (2024b), we initialize the196

self-correction behavior by concatenating a series197

of incorrect solutions (each followed by a verifi-198

cation recognizing the mistakes) with a final cor-199

rect solution. As demonstrated by Kumar et al.200

(2024), LLMs typically fail to learn valid self-201

correction behavior through SFT, but the validity202

of self-correction can be enhanced through rein- 203

forcement learning. Thus, we only initialize the 204

self-correcting behavior at this stage, leaving fur- 205

ther enhancement of the capability to the RL stage. 206

207
2.2.3 Constructing Dynamic Trajectory 208

We construct the full trial-and-error trajectories for 209

behavior initialization based on three principles: 210

(i) To ensure diversity, we construct trajectories of 211

various lengths, i.e., we cover k ∈ {1, 2, 3, 4} for 212

y = (s1, v1, · · · , sk, vk) in the trajectories. (ii) To 213

ensure LLMs learn to verify and correct their own 214

errors, we sample the failed trials in each trajectory 215

from the LLMs’ own responses. (iii) To ensure our 216

test-time scaling method allocates reasonable effort 217

to varying levels of problems, i.e., more difficult 218

problems require more trial-and-error iterations, 219

we determine the length of each trajectory based 220

on the accuracy of the sampled responses for each 221

base model. 222

2.2.4 Behavior Initialization with SFT 223

Once the self-verifying and self-correcting training 224

data DSFT is ready, we optimize the policy π by 225

minimizing the following objective: 226

L = −E(x,y)∼DSFT

∑

at∈y

δmask(at) log π(at | x, y:at)

(1) 227
where the mask function is defined as: 228

δmask(at) =


1, if Type(at) = verify

1, if Type(at) = solve and t = T − 1

1, if Type(at) = <end> and t = T

0, otherwise

229

2.3 Boosting Thinking Capabilities with RL 230

After Stage 1, we initialize the policy model π 231

with self-verification and self-correction behavior, 232
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obtaining πSFT . We then further enhance these233

capabilities via reinforcement learning. We explore234

two simple RL algorithms: the outcome-level RE-235

INFORCE Leave-One-Out (RLOO) algorithm and236

a process-level group-based RL algorithm.237

2.3.1 Outcome-level RLOO238

We first introduce the outcome-level RLOO algo-239

rithm (Ahmadian et al., 2024; Kool et al., 2019)240

to further enhance the self-verification and self-241

correction capabilities of πSFT . Given a problem242

x and the response y = (s1, v1, ..., sT , vT ), we243

define the reward function Ro(x, y) based on the244

correctness of the last solution sT :245

Ro(x, y) =

{
1, Vgolden(sT ) = correct

−1, otherwise
246

Here Vgolden(·) ∈ {correct, incorrect} repre-247

sents ground-truth validation by matching the gold248

answer with the given solution. We calculate the249

advantage of each response y using an estimated250

baseline and KL reward shaping as follows:251

A(x, y) = Ro(x, y)− b̂− β log
πθ(y|x)
πref (y|x)

(2)252

where β is the KL divergence regularization coeffi-253

cient, and πref is the reference policy (in our case,254

πSFT ). b̂(x, y(m)) = 1
M−1

∑
j=1,...,M

j ̸=m
.Ro(x, y

(j))255

is the baseline estimation of RLOO, which repre-256

sents the leave-one-out mean of M sampled out-257

puts {y(1), ...y(M)} for each input x, serving as a258

baseline estimation for each y(m).259

Then, we optimize πθ by minimizing the follow-260

ing objective after each sampling episode:261

L(θ) = −E x∼D
y∼πθold

(·|x)

[
min

(
r(θ)A(x, y),

clip
(
r(θ), 1− ϵ, 1 + ϵ

)
A(x, y)

)] (3)262

where r(θ) = πθ(y|x)
πθold (y|x)

is the probability ratio.263

By optimizing the entire trajectory with only264

outcome-level supervision, we aim to incentivize265

the policy model to explore more dynamic self-266

verification and self-correcting trajectories on its267

own, which has been demonstrated as an effective268

practice in recent work (Guo et al., 2025).269

2.3.2 Process-level Group-based RL270

Process-level supervision has demonstrated effec-271

tiveness in math reasoning (Lightman et al., 2023a;272

Wang et al., 2024b). Since the trajectory of S2R273

thinking is naturally divided into self-verification274

and self-correction processes, it is intuitive to adopt 275

process-level supervision for RL training. 276

Inspired by RLOO and process-level GRPO 277

(Shao et al., 2024), we designed a group-based 278

process-level optimization method. Specifically, 279

we regard each action a in the output trajectory y 280

as a sub-process and define the action level reward 281

function Ra(a | x, y:a) based on the action type: 282

Ra(sj | x, y:sj ) =
{
1, Vgolden(sj) = correct

−1, otherwise
283

284
Ra(vj | x, y:vj ) =

{
1, Parser(vj) = Vgolden(sj)

−1, otherwise
285

To calculate the advantage of each action at, we 286

estimate the baseline as the average reward of the 287

group of actions sharing the same reward context: 288

289
R(at | x, y) = (Ra(ai | x, y:ai))

t−1
i=1 290

which is defined as the reward sequence of the pre- 291

vious actions y:at of each action at. The main idea 292

is that the actions sharing the same reward context 293

are provided with similar amounts of information 294

before the action is taken. For instance, all actions 295

sharing a “R(at|x, y) = (−1, 1)” reward context 296

are provided with the same information about the 297

problem, a failed attempt, and a reassessment on 298

the failure. 299

We denote the set of actions sharing the same 300

reward context R(at | x, y) as G(R(at | x, y)). 301

Then the baseline can be estimated as follows: 302

b̂(at | x, y) =
1

|G(R(at|x, y))|
∑

a∈G(R(at|x,y))

Ra(a|x(a), y(a)
:a )

(4) 303

And the advantage of each action at is: 304

A(at | x, y) =Ra(at | x, y:at)− b̂(at | x, y)

− β log
π(at | x, y)
πref(at | x, y)

(5) 305

Putting it all together, we minimize the following 306

surrogate loss function to update the policy param- 307

eters θ, using trajectories collected from πold: 308

L(θ) = −E x∼D
y∼πθold

(·|x)

[
1

|y|a
∑

a∈y

min
(
ra(θ)A(a|x, y:a),

clip
(
ra(θ), 1− ϵ, 1 + ϵ

)
A(a|x, y:a)

)]

(6)

309

where ra(θ) =
π(a|x,y:a)

πθold (a|x,y:a)
is the importance ratio. 310

2.4 More Efficient Training with Offline RL 311

While online RL is known for its high resource 312

requirements, offline RL, which does not require 313

real-time sampling during training, offers a more 314

efficient alternative for RL training. Additionally, 315
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Stage 1: Behavior Initialization
Base Model Source # Training Data
Llama-3.1-8B-Instruct MATH 4614
Qwen2-7B-Instruct MATH 4366
Qwen2.5-Math-7B MATH 3111

Stage 2: Reinforcement Learning
Base Model Source # Training Data
Llama-3.1-8B-Instruct MATH+GSM8K 9601
Qwen2-7B-Instruct MATH+GSM8K 9601
Qwen2.5-Math-7B MATH+OpenMath2.0 10000

Table 1: Training data statistics.

offline sampling allows for more accurate base-316

line calculations with better trajectories grouping317

for each policy. As part of our exploration into318

more efficient RL training in S2R framework, we319

also experimented with offline RL to assess its po-320

tential in further enhancing the models’ thinking321

abilities. Due to space limitation, we include the322

experiments, more details and formal definition for323

offline RL in Appendix §A.2 and §F.2.324

3 Experiment325

To verify the effectiveness of the proposed method,326

we conducted extensive experiments across 3 dif-327

ferent base policy models on various benchmarks.328

3.1 Experiment Setup329

Base Models To evaluate the general applicabil-330

ity of our method across different LLMs, we con-331

ducted experiments using three distinct base mod-332

els: Llama-3.1-8B-Instruct (Dubey et al., 2024),333

Qwen2-7B-Instruct (qwe, 2024), and Qwen2.5-334

Math-7B (Qwen, 2024). Among which, Llama-3.1-335

8B-Instruct and Qwen2-7B-Instruct are versatile336

general-purpose models, while Qwen2.5-Math-7B337

is a state-of-the-art model tailored for mathemati-338

cal problem-solving and has been widely adopted339

in recent research on math reasoning (Guan et al.,340

2025; Cui et al., 2025; Zeng et al., 2025).341

Training Data Setup For Stage 1: Behavior Ini-342

tialization, we used the widely adopted MATH343

(Hendrycks et al., 2021a) training set for dynamic344

trial-and-error data collection 1. For each base345

model, we sampled 5 responses per problem in the346

training data. After data filtering and sampling, we347

constructed a dynamic trial-and-error training set348

consisting of 3k-4k instances for each base model.349

Detailed statistics of the training set are shown350

in Table 1. For Stage 2: Reinforcement Learn-351

ing, we used the MATH+GSM8K (Cobbe et al.,352

1We use the MATH split from Lightman et al. (2023a), i.e.,
12000 problems for training and 500 problems for testing.

2021a) training data for RL training on the policy 353

πSFT initialized from Llama-3.1-8B-Instruct and 354

Qwen2-7B-Instruct. Since Qwen2.5-math-7b al- 355

ready achieves high accuracy on the GSM8K train- 356

ing data after Stage 1, we additionally included 357

training data sampled from the OpenMath2 dataset 358

(Toshniwal et al., 2024). Following (Cui et al., 359

2025), we filtered out excessively easy or difficult 360

problems based on each πSFT to enhance the effi- 361

ciency and stability of RL training, obtaining RL 362

training sets consisting of approximately 10000 in- 363

stances. Detailed statistics of the final training data 364

can be found in Table 1. More details on training 365

data construction can be found in Appendix §C.1. 366

Baselines We benchmark our proposed method 367

against four categories of strong baselines: 368

Frontier LLMs includes cutting-edge proprietary 369

models such as GPT-4o, OpenAI’s o1-preview and 370

o1-mini. We source the results for these models 371

from public technical reports (Team, 2024). 372

Top-tier open-source reasoning models covers 373

state-of-the-art open-source models known for 374

their strong reasoning capabilities, including 375

NuminaMath-72B (LI et al., 2024), LLaMA3.1- 376

70B-Instruct (Dubey et al., 2024), and Qwen2.5- 377

Math-72B-Instruct (Yang et al., 2024). 378

Enhanced models from Qwen2.5-Math-7B: We 379

also evaluate S2R against 3 competitive baselines 380

that have recently showed superior performance 381

based on Qwen2.5-Math-7B: Eurus-2-7B-PRIME 382

(Cui et al., 2025), rStar-Math-7B (Guan et al., 383

2025), Qwen2.5-7B-SimpleRL (Zeng et al., 2025). 384

SFT with different CoT data: We also compare 385

with training on competitive types of CoT reason- 386

ing, including the original CoT solution in the 387

training datasets, and Long-CoT solutions distilled 388

from QwQ-32B-Preview (Team, 2024), a widely 389

adopted open-source o1-like model (Chen et al., 390

2024c; Zheng et al., 2024). We provide more de- 391

tails on the data construction in Appendix §C.2.3. 392

Evaluation Datasets We evaluate the proposed 393

method on 7 diverse mathematical benchmarks: 394

the GSM8K (Cobbe et al., 2021b) and MATH500 395

(Lightman et al., 2023a) test sets, challenging out- 396

of-distribution benchmarks including the AIME 397

2024 competition problems (AI-MO, 2024a), the 398

AMC 2023 exam (AI-MO, 2024b), the advanced 399

reasoning tasks from Olympiad Bench (He et al., 400

2024), college-level problem sets from College 401

Math (Tang et al., 2024a) and real-world standard- 402

ized tests from the GaoKao (Chinese College En- 403
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Model MATH
500

AIME
2024

AMC
2023

College
Math

Olympiad
Bench GSM8K GaokaoEn

2023 Average

Frontier LLMs
GPT-4o 76.6 9.3 47.5 48.5 43.3 92.9 67.5 55.1
GPT-o1-preview 85.5 44.6 90.0 - - - - -
GPT-o1-mini 90.0 56.7 95.0 57.8 65.3 94.8 78.4 76.9

Top-tier Open-source Reasoning LLMs
NuminaMath-72B-CoT 64.0 3.3 70.0 39.7 32.6 90.8 58.4 51.3
LLaMA3.1-70B-Instruct 65.4 23.3 50.0 42.5 27.7 94.1 54.0 51.0
Qwen2.5-Math-72B-Instruct 85.6 30.0 70.0 49.5 49.0 95.9 71.9 64.6

General Model: Llama-3.1-8B-Instruct
Llama-3.1-8B-Instruct 48.0 6.7 30.0 30.8 15.6 84.4 41.0 36.6
Llama-3.1-8B-Instruct + Original Solution SFT 31.0 3.3 7.5 22.0 8.0 58.7 28.3 22.7
Llama-3.1-8B-Instruct + Long CoT SFT 51.4 6.7 27.5 36.3 19.0 87.0 48.3 39.5
Llama-3.1-8B-S2R-BI (ours) 49.6 10.0 20.0 33.3 17.6 85.3 41.0 36.7
Llama-3.1-8B-S2R-PRL (ours) 53.6 6.7 25.0 33.7 18.5 86.7 43.1 38.2
Llama-3.1-8B-S2R-ORL (ours) 55.0 6.7 32.5 34.7 20.7 87.3 45.2 40.3

General Model: Qwen2-7B-Instruct
Qwen2-7B-Instruct 51.2 3.3 30.0 18.2 19.1 86.4 39.0 35.3
Qwen2-7B-Instruct + Original Solution SFT 41.2 0.0 25.0 30.1 10.2 74.5 34.8 30.8
Qwen2-7B-Instruct + Long CoT SFT 60.4 6.7 32.5 36.3 23.4 81.2 53.5 42.0
Qwen2-7B-S2R-BI (ours) 61.2 3.3 27.5 41.1 27.1 87.4 49.1 42.4
Qwen2-7B-S2R-PRL (ours) 65.4 6.7 35.0 36.7 27.0 89.0 49.9 44.2
Qwen2-7B-S2R-ORL (ours) 64.8 3.3 42.5 34.7 26.2 86.4 50.9 44.1

Math-Specialized Model: Qwen2.5-Math-7B
Qwen2.5-Math-7B 51.0 16.7 45.0 21.5 16.7 58.3 39.7 35.6
Qwen2.5-Math-7B-Instruct 83.2 13.3 72.5 47.0 40.4 95.6 67.5 59.9
Eurus-2-7B-PRIME (Cui et al., 2025) 79.2 26.7 57.8 45.0 42.1 88.0 57.1 56.6
rStar-Math-7B 2(Guan et al., 2025) 78.4 26.7 47.5 52.5 47.1 89.7 65.7 58.2
Qwen2.5-7B-SimpleRL(Zeng et al., 2025) 82.4 26.7 62.5 - 43.3 - - -
Qwen2.5-Math-7B + Original Solution SFT 58.0 6.7 42.5 35.8 20.0 79.5 51.9 42.1
Qwen2.5-Math-7B + Long CoT SFT 80.2 16.7 60.0 49.6 42.1 91.4 69.1 58.4
Qwen2.5-Math-7B-S2R-BI (ours) 81.6 23.3 60.0 43.9 44.4 91.9 70.1 59.3
Qwen2.5-Math-7B-S2R-PRL (ours) 83.4 26.7 70.0 43.8 46.4 93.2 70.4 62.0
Qwen2.5-Math-7B-S2R-ORL (ours) 84.4 23.3 77.5 43.8 44.9 92.9 70.1 62.4

Table 2: The performance of S2R and other strong baselines on the most challenging math benchmarks is presented.
BI refers to the behavior-initialized models through supervised fine-tuning, ORL denotes models trained with
outcome-level RL, and PRL refers to models trained with process-level RL. The highest results are highlighted in
bold and the second-best results are marked with underline.

trance Exam) En 2023 (Liao et al., 2024). Detailed404

description of these datasets is in Appendix §D.1.405

Evaluation Metrics We report Pass@1 accuracy406

for all baselines. For inference, we employ vLLM407

and develop evaluation scripts based on Qwen408

Math’s codebase. All evaluations are performed us-409

ing greedy decoding. Details of the prompts used,410

and all other implementation details are provided411

in Appendix §C.3 and §D.2.412

3.2 Main Results413

Table 2 shows the main results of S2R compared414

with baseline methods. We can observe that: (1)415

S2R consistently improves the reasoning abilities416

of models across all base models. Notably, on417

Qwen2.5-Math-7B, S2R improves the base model418

2To ensure a fair comparison, we report the Pass@1
(greedy) accuracy obtained without the process preference
model of rStar, rather than the result obtained with increased
test-time computation using 64 trajectories.

by 32.2% on MATH500 and by 34.3% on GSM8K. 419

(2) Generally, S2R outperforms the baseline meth- 420

ods derived from the same base models across 421

most benchmarks. Specifically, on Qwen2.5-Math- 422

7B, S2R surpasses several recently proposed com- 423

petitive baselines, such as Eurus-2-7B-PRIME, 424

rStar-Math-7B and Qwen2.5-7B-SimpleRL. While 425

Eurus-2-7B-PRIME and rStar-Math-7B rely on 426

larger training datasets (Fig.1) and require more 427

data construction and reward modeling efforts, S2R 428

only needs linear sampling efforts for data construc- 429

tion, 10k RL training data and rule-based reward 430

modeling. These results highlight the efficiency of 431

S2R. (3) With the same scale of SFT data, S2R also 432

outperforms the long-CoT models distilled from 433

QwQ-32B-Preview, showing that learning to self- 434

verify and self-correct is an effective alternative to 435

long-CoT for test-time scaling in smaller LLMs. 436

Comparing process-level and outcome-level RL, 437

we find that outcome-level RL generally outper- 438
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Model FOLIO CRUX-
Eval

Strategy-
QA

MMLUPro-
STEM

Qwen2.5-Math-72B-Instruct 69.5 68.6 94.3 66.0
Llama-3.1-70B-Instruct1 65.0 59.6 88.8 61.7
QwQ-32B-Preview 1 84.2 65.2 88.2 71.9

Eurus-2-7B-PRIME 56.7 50.0 79.0 53.7
Qwen2.5-Math-7B-Instruct 61.6 28.0 81.2 44.7
Qwen2.5-Math-7B 37.9 40.8 61.1 46.0
Qwen2.5-Math-7B-S2R-BI (ours) 58.1 48.0 88.7 49.8
Qwen2.5-Math-7B-S2R-PRL (ours) 61.6 50.9 90.8 50.0

Table 3: Performance of the proposed method and the
baseline methods on 4 cross-domain tasks.

forms process-level RL across the three models.439

This is likely because outcome-level RL allows440

models to explore trajectories without emphasizing441

intermediate accuracy, which may benefit enhanc-442

ing long-thought reasoning in stronger base models443

like Qwen2.5-Math-7B. In contrast, process-level444

RL, which provides guidance for each intermediate445

verification and correction step, may be effective446

for models with lower initial capabilities, such as447

Qwen2-7B-Instruct. As shown in Figure 3, process-448

level RL can notably enhance the verification and449

correction abilities of Qwen2-7B-S2R-BI.450

3.3 Generalizing to Cross-domain Tasks451

Despite training on math reasoning tasks, we found452

that the learned self-verifying and self-correcting453

capability can also generalize to out-of-distribution454

general domains. In Table 3, we evaluate the455

SFT model and the outcome-level RL model from456

Qwen2.5-Math-7B on four cross-domain tasks:457

FOLIO (Han et al., 2022) on logical reasoning,458

CRUXEval (Gu et al., 2024) on code reasoning,459

StrategyQA (Geva et al., 2021) on multi-hop rea-460

soning and MMLUPro-STEM on multi-task com-461

plex understanding (Wang et al., 2024c; Shen et al.,462

2025)2. The results show that after learning to self-463

verify and self-correct, the proposed method effec-464

tively boosts the performance of the base model465

across all tasks, and achieves comparative results to466

the baseline models, demonstrating that the learned467

self-verifying and self-correcting capabilities are468

general thinking capabilities that also benefiting469

general domains during thinking. For better illus-470

tration, we show cases on how the trained models471

perform self-verifying and self-correcting on gen-472

eral tasks in Appendix §G.473

3.4 Boosting Thinking Abilities with RL474

In this experiment, we investigate the effect of475

RL training on the models’ self-verifying and self-476

1The results are reported by Shen et al. (2025).
2Details of these datasets are provided in Appendix §D.1.
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Figure 3: Evaluation on verification and correction.

correcting capabilities. We assess self-verification 477

using the following metrics: (1) Verification Accu- 478

racy: The overall accuracy of verification predic- 479

tions. (2) Error Recall: The recall of verification 480

when the preceding answers are incorrect. (3) Cor- 481

rect Precision: The precision of verification when 482

it predicts the answers as correct. Both Error Re- 483

call and Correct Precision directly affect the final 484

answer accuracy: if verification fails to detect an 485

incorrect answer, or if it incorrectly predicts an 486

answer as correct, the final answer will be wrong. 487

For self-correction, we use the following metrics: 488

(1) Incorrect to Correct Rate: the rate at which 489

the model successfully corrects an incorrect ini- 490

tial answer to a correct final answer. (2) Correct 491

to Incorrect Rate: the rate at which the model 492

incorrectly changes a correct initial answer to an in- 493

correct final answer. We provide formal definitions 494

of the metrics in Appendix §E. 495

In Figure 3, we present the results of behavior- 496

initialized model (SFT) and different RL mod- 497

els obtained from Qwen2.5-Math-7B. We observe 498

that: (1) Both RL methods effectively enhance 499

self-verification accuracy. The process-level RL 500

shows larger improvement on accuracy, while the 501

outcome-level RL consistently improves Error Re- 502

call and Correct Precision. This might be be- 503

cause process-level supervision indiscriminately 504

promotes verification accuracy in intermediate 505

steps, while outcome-level supervision allows the 506

policy model to explore freely in intermediate steps 507

and only boosts the final answer accuracy, thus 508

mainly enhancing Error Recall and Correct Preci- 509

sion (which directly relate to final answer accuracy). 510

(2) Both RL methods can successfully enhance the 511

models’ self-correction capability. Notably, the 512

model’s ability to correct incorrect answers is sig- 513

nificantly improved after RL training. The rate of 514

model mistakenly altering correct answers is also 515

notably reduced. This comparison demonstrates 516
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that S2R can substantially enhance the validity of517

models’ self-correction ability.518
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Figure 4: The accuracy and average trial number of
different models across difficulty levels on MATH500.

3.5 Improvement across Difficulty Levels519

To further illustrate the effect of S2R training, Fig-520

ure 4 shows the answer accuracy and average num-521

ber of trials (i.e., the average value of "K" across522

all y = (s1, v1, · · · , sK , vK) under each difficulty523

level) for the SFT and SFT+RL models. We ob-524

serve that: (1) By learning to self-verify and self-525

correct during reasoning, the models learn to dy-526

namically allocate test-time effort. For easier prob-527

lems, the models can reach a confident answer with528

fewer trials, while for more difficult problems, they529

require more trials to achieve a confident answer.530

(2) RL further improves test-time effort allocation,531

particularly for less capable model (e.g., Llama3.1-532

8B-Instruct). (3) After RL training, the answer533

accuracy for more difficult problems is notably534

improved, demonstrating the effectiveness of the535

self-verifying and self-correcting paradigm in en-536

hancing the models’ reasoning abilities.537

4 Related Work538

Scaling Test-time Compute Scaling test-time com-539

pute recently garners wide attention in LLM rea-540

soning (Snell et al., 2024b; Wu et al., 2024). Ex-541

isting studies include Aggregation-based methods542

(Wang et al., 2023, 2024b; Zhang et al., 2024b),543

Search-based methods (Tian et al., 2024; Wang544

et al., 2024a) and Iterative-refine-based methods545

(Madaan et al., 2024a; Shinn et al., 2024). Recently,546

there is a growing focus on training LLMs to per-547

form test-time search by conducting longer and548

deeper thinking (OpenAI, 2024; Guo et al., 2025).549

In this work, we also present an efficient method for550

training LLMs to perform effective test-time scal-551

ing through self-verification and self-correction.552

Self-verification and Self-correction Self-553

verification and self-correction are promising 554

solutions for effective LLM reasoning (Madaan 555

et al., 2024b). As direct prompting for self- 556

verification or self-correction is shown to be 557

suboptimal in many scenarios (Huang et al., 2023; 558

Tyen et al., 2023), recent studies explore various 559

approaches to enhance these capabilities during 560

post-training (Saunders et al., 2022; Rosset et al., 561

2024). However, recent work shows that behavior 562

imitation via SFT alone is insufficient for achieving 563

valid self-verification or self-correction (Kumar 564

et al., 2024; Qu et al., 2025). In this work, we 565

propose an effective method to equip LLMs with 566

more valid self-verification and self-correction 567

abilities through principled SFT and RL training. 568

RL for LLM Reasoning Reinforcement learning 569

has proven effective in enhancing LLM reasoning 570

(Lightman et al., 2024; Havrilla et al., 2024). Previ- 571

ous studies typically employ RL in an actor-critic 572

framework, and focus on developing accurate re- 573

ward models, particularly process-level reward for 574

RL training (Setlur et al., 2024, 2025). Recent 575

studies have demonstrated that simplified reward 576

modeling (Ahmadian et al., 2024; Shao et al., 2024) 577

in RL training also effectively enhance LLM rea- 578

soning. Recent advances in improving LLMs’ deep 579

thinking (Guo et al., 2025; Team et al., 2025) fur- 580

ther highlight the importance of utilizing unhack- 581

able rewards to consistently enhance LLM reason- 582

ing. In this work, we conducted extensive exper- 583

iments on RL for LLM reasoning, showing that 584

simplified advantage estimation and RL framework 585

enable effectively enhancing LLM reasoning. 586

Due to space limitation, we include complete 587

discussion on related work in Appendix §B. 588

5 Conclusion 589

In this work, we propose S2R, an efficient frame- 590

work for enhancing LLM reasoning by teaching 591

LLMs to iteratively self-verify and self-correct 592

during reasoning. We introduce a principled ap- 593

proach for behavior initialization and explore both 594

outcome-level and process-level RL to further 595

strengthen the models’ thinking abilities. Exper- 596

imental results across 3 base models on 7 math 597

reasoning benchmarks demonstrate that S2R sig- 598

nificantly enhances LLM reasoning with minimal 599

resource requirements. S2R also provides an in- 600

terpretable framework for understanding how SFT 601

and RL enhance LLMs’ deep reasoning, and offer 602

insights into how RL training can be effectively 603

employed to enhance LLMs’ long-CoT reasoning. 604
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Limitations605

We outline the limitations of this work as follows:606

(1) Limitations in Model Size: In this work, we607

experimented and evaluated S2R on smaller LLMs608

(up to 8B prarameters). While learning to self-609

verify and self-correct for enhancing LLMs’ deep610

thinking is suitable for smaller and less powerful611

models, it would be interesting to explore whether612

these phenomena differ in larger models, as pre-613

vious work suggests that the emergent abilities of614

larger models may differ from smaller ones (Wei615

et al., 2022; Schaeffer et al., 2024; Guo et al.,616

2025). Additionally, since we have explored of-617

fline RL for more efficient RL training, offline RL618

could be a promising choice for efficiently enhanc-619

ing the reasoning abilities of larger models. We620

leave the investigation of larger models in future621

work. (2) Limitations in Discussion of More Re-622

cent Work: Recently, the Deepseek R1 series (Guo623

et al., 2025), particularly R1-Zero, has drawn sig-624

nificant global attention. Many projects are attempt-625

ing to replicate the success of the R1 series. Due626

to time constraints, we only included three recent627

works in our discussion: Eurus-2-7B-PRIME (Cui628

et al., 2025), rStar-Math-7B (Guan et al., 2025)629

and Qwen2.5-7B-SimpleRL (Zeng et al., 2025),630

along with the previously released o1-like model631

QwQ-32B-Preview (Team, 2024) as the distillation632

baseline. Nevertheless, despite these recent efforts,633

we believe our work stands as an independent con-634

tribution that offers novel insights into enhancing635

LLMs’ long-thought reasoning.636
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Datasets
Average

Model MATH
500

AIME
2024

AMC
2023

College
Math

Olympiad
Bench GSM8K GaokaoEn

2023

General Model: Qwen2-7B-Instruct
Qwen2-7B-Instruct 51.2 3.3 30.0 18.2 19.1 86.4 39.0 35.3
Qwen2-7B-S2R-BI (ours) 61.2 3.3 27.5 41.1 27.1 87.4 49.1 42.4
Qwen2-7B-S2R-PRL (ours) 65.4 6.7 35.0 36.7 27.0 89.0 49.9 44.2
Qwen2-7B-S2R-ORL (ours) 64.8 3.3 42.5 34.7 26.2 86.4 50.9 44.1
Qwen2-7B–Instruct-S2R-PRL-offline (ours) 61.6 10.0 32.5 40.2 26.5 87.6 50.4 44.1
Qwen2-7B-Instruct-S2R-ORL-offline (ours) 61.0 6.7 37.5 40.5 27.3 87.4 49.6 44.3

Math-Specialized Model: Qwen2.5-Math-7B
Qwen2.5-Math-7B 51.0 16.7 45.0 21.5 16.7 58.3 39.7 35.6
Qwen2.5-Math-7B-S2R-BI (ours) 81.6 23.3 60.0 43.9 44.4 91.9 70.1 59.3
Qwen2.5-Math-7B-S2R-PRL (ours) 83.4 26.7 70.0 43.8 46.4 93.2 70.4 62.0
Qwen2.5-Math-7B-S2R-ORL (ours) 84.4 23.3 77.5 43.8 44.9 92.9 70.1 62.4
Qwen2.5-Math-7B-S2R-PRL-offline (ours) 83.4 23.3 62.5 50.0 46.7 92.9 72.2 61.6
Qwen2.5-Math-7B-S2R-ORL-offline (ours) 82.0 20.0 67.5 49.8 45.8 92.6 70.4 61.2

Table 4: Comparison of S2R using online and offline RL training.

A Additional Experiments1026

A.1 Problem-solving v.s. Confirmative1027

Verification1028

We first compare the Problem-solving and Confir-1029

mative Verification methods described in §2.2.1.1030

In Table 5, we present the verification results of1031

different methods on the Math500 test set. We re-1032

port the overall verification accuracy, as well as the1033

initial verification accuracy when the initial answer1034

is correct (Vgolden(s0) = correct) and incorrect1035

(Vgolden(s0) = incorrect), respectively.1036

Base Model Methods
Overall

Verification
Acc.

Initial Verification Acc.
Vgolden(s0)
= correct

Vgolden(s0)
= incorrect

Llama3.1-8B-Instruct
Problem-solving 80.10 87.28 66.96

Confirmative 65.67 77.27 78.22

Qwen2-7B-Instruct
Problem-solving 73.28 90.24 67.37

Confirmative 58.31 76.16 70.05

Qwen2.5-Math-7B
Problem-solving 77.25 91.21 56.67

Confirmative 61.58 82.80 68.04

Table 5: Comparison of problem-solving and confirma-
tive verification.

We observe from the table that: (1) Gener-1037

ally, problem-solving verification achieves superior1038

overall accuracy compared to confirmative verifi-1039

cation. This result is intuitive, as existing models1040

are trained for problem-solving, and recent studies1041

have highlighted the difficulty of existing LLMs in1042

performing reverse thinking (Berglund et al., 2023;1043

Chen et al., 2024b). During data collection, we also1044

found that existing models tend to verify through1045

problem-solving, even when prompted to verify1046

without re-solving (see Table 6 in Appendix §C.1).1047

(2) In practice, accuracy alone does not fully re-1048

flect the validity of a method. For example, when 1049

answer accuracy is sufficiently high, predicting all 1050

answers as correct will naturally lead to high verifi- 1051

cation accuracy, but this is not a desired behavior. 1052

By further examining the initial verification accu- 1053

racy for both correct and incorrect answers, we 1054

found that problem-solving verification exhibits a 1055

notable bias toward predicting answers as correct, 1056

while the predictions from confirmative verification 1057

are more balanced. We deduce that this bias arises 1058

might be because problem-solving verification is 1059

more heavily influenced by the preceding solution, 1060

aligning with previous studies showing that LLMs 1061

struggle to identify their own errors (Huang et al., 1062

2023; Tyen et al., 2023). In contrast, confirma- 1063

tive verification performs verification from differ- 1064

ent perspectives, making it less influenced by the 1065

LLMs’ preceding solution. 1066

In all experiments, we used confirmative verifi- 1067

cation for behavior initialization. 1068

A.2 Exploring Offline RL 1069

As described in §2.4, we explore offline RL as 1070

a more efficient alternative to online RL train- 1071

ing, given the effectiveness of offline RL has been 1072

demonstrated in recent studies (Baheti et al., 2023; 1073

Cheng et al., 2025). 1074

Table 4 presents the results of offline RL with 1075

process-level and outcome-level supervision, com- 1076

pared to online RL. We can observe that: (1) Differ- 1077

ent from online RL, process-level supervision out- 1078

performs outcome-level supervision in offline RL 1079

training. This interesting phenomenon may be due 1080

to: a) Outcome-level RL, which excels at allowing 1081

models to freely explore dynamic trajectories, is 1082
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more suitable for on-the-fly sampling during online1083

parameter updating. b) In contrast, process-level1084

RL, which requires accurate baseline estimation for1085

intermediate steps, benefits from offline trajectory1086

sampling, which can provide more accurate base-1087

line estimates with larger scale data sampling. (2)1088

Offline RL consistently improves performance over1089

the behavior-initialized models across most bench-1090

marks and achieves comparable results to online1091

RL. These results highlight the potential of offline1092

RL as a more efficient alternative for enhancing1093

LLMs’ deep reasoning.1094

B Complete Discussion on Related Work1095

B.1 Scaling Test-time Compute1096

Scaling test-time compute recently garners wide1097

attention in LLM reasoning (Snell et al., 2024b;1098

Wu et al., 2024; Brown et al., 2024). Existing1099

studies have explored various methods for scaling1100

up test-time compute, including: (1) Aggregation-1101

based methods that samples multiple responses for1102

each question and obtains the final answer with1103

self-consistency (Wang et al., 2023) or by select-1104

ing best-of-N answer using a verifier or reward1105

model (Wang et al., 2024b; Zhang et al., 2024b;1106

Lightman et al., 2023b); (2) Search-based meth-1107

ods that apply search algorithms such as Monte1108

Carlo Tree Search (Tian et al., 2024; Wang et al.,1109

2024a; Zhang et al., 2024a; Qi et al., 2024), beam1110

search (Snell et al., 2024b), or other effective al-1111

gorithms (Feng et al., 2023; Yao et al., 2023) to1112

search for correct trajectories; (3) Iterative-refine-1113

based methods that iteratively improve test per-1114

formance through self-refinement (Madaan et al.,1115

2024a; Shinn et al., 2024; Chen et al., 2024a). Re-1116

cently, there has been a growing focus on training1117

LLMs to perform test-time search on their own,1118

typically by conducting longer and deeper thinking1119

(OpenAI, 2024; Guo et al., 2025). These test-time1120

scaling efforts not only directly benefit LLM rea-1121

soning, but can also be integrated back into training1122

time, enabling iterative improvement for LLM rea-1123

soning (Qin et al., 2024; Feng et al., 2023; Snell1124

et al., 2024b). In this work, we also present an1125

efficient framework for training LLMs to perform1126

effective test-time scaling through self-verification1127

and self-correction iterations. This approach is1128

achieved without extensive efforts, and the perfor-1129

mance of S2R can also be consistently promoted1130

via iterative training.1131

B.2 Self-verification and Self-correction 1132

Enabling LLMs to perform effective self- 1133

verification and self-correction is a promising 1134

solution for achieving robust reasoning for LLMs 1135

(Madaan et al., 2024b; Paul et al., 2023; Lightman 1136

et al., 2023a), and these abilities are also critical 1137

for performing deep reasoning. Previous studies 1138

have shown that direct prompting of LLMs for 1139

self-verification or self-correction is suboptimal 1140

in most scenarios (Huang et al., 2023; Tyen et al., 1141

2023; Ma et al., 2024; Zhang et al., 2024c). As 1142

a result, recent studies have explored various 1143

approaches to enhance these capabilities during 1144

post-training (Saunders et al., 2022; Rosset 1145

et al., 2024; Kumar et al., 2024). These methods 1146

highlight the potential of using human-annotated 1147

or LLM-generated data to equip LLMs with 1148

self-verification or self-correction capabilities, 1149

while also indicating that behavior imitation via 1150

supervised fine-tuning alone is insufficient for 1151

achieving valid self-verification or self-correction 1152

(Kumar et al., 2024; Qu et al., 2025). In this work, 1153

we propose effective methods to enhance LLMs’ 1154

self-verification and self-correction abilities 1155

through principled imitation data construction and 1156

RL training, and demonstrate the effectiveness of 1157

our approach with in-depth analysis. 1158

B.3 RL for LLM Reasoning 1159

Reinforcement learning has proven effective in en- 1160

hancing LLM performance across various tasks 1161

(Ziegler et al., 2019; Stiennon et al., 2020; Bai et al., 1162

2022; Ouyang et al., 2022). In LLM reasoning, pre- 1163

vious studies typically employ RL in an actor-critic 1164

framework (Lightman et al., 2024; Havrilla et al., 1165

2024; Tajwar et al., 2024), and research on devel- 1166

oping accurate reward models for RL training has 1167

been a long-standing focus, particularly in reward 1168

modeling for Process-level RL (Lightman et al., 1169

2024; Setlur et al., 2024, 2025; Luo et al., 2024). 1170

Recently, several studies have demonstrate that sim- 1171

plified reward modeling and advantage estimation 1172

(Ahmadian et al., 2024; Shao et al., 2024; Team 1173

et al., 2025; Guo et al., 2025) in RL training can 1174

also effectively enhance LLM reasoning. Recent 1175

advances in improving LLMs’ deep thinking (Guo 1176

et al., 2025; Team et al., 2025) further highlight the 1177

effectiveness of utilizing unhackable rewards (Gao 1178

et al., 2023; Everitt et al., 2021) to consistently 1179

enhance LLM reasoning. In this work, we also 1180

show that simplified advantage estimation and RL 1181
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framework enable effective improvements on LLM1182

reasoning. Additionally, we conducted an analysis1183

on process-level RL, outcome-level RL and offline1184

RL, providing insights for future work in RL for1185

LLM reasoning.1186

C Implementation Details1187

C.1 Verification Processing and SFT Data1188

Construction1189

Given the responses sampled from the original1190

LLM policy, we prompt frontier LLMs for initial1191

verifications. In order to construct more valid veri-1192

fication, we force the LLMs to “verify without re-1193

solving the problem” and filter out invalid verifica-1194

tions during data processing. We found that despite1195

being instructed to "verify without re-solving the1196

problem", most existing LLMs still biased to solve1197

the problem again, as shown in Table 6. Finally,1198

we collected the verification data by querying gpt-1199

4-preview-11063 , which shows strong instruction-1200

following ability to "verify without re-solving the1201

problem" and can perform plausible verification1202

such as adopting reverse thinking, inductive reason-1203

ing and other methods.1204

For these collected prompts, we refine the re-1205

maining verifications using gpt-4o to improve flu-1206

ency and clarity. During this refinement, we in-1207

struct gpt-4o to append a conclusion at the end of1208

each verification based on its stance—for example:1209

“Therefore, the answer is correct/incorrect/cannot1210

verify.” Finally, we discard any verifications where1211

the judgment does not align with the actual correct-1212

ness of the answer. The prompts we used during1213

the whole process are provided in Appendix §C.3.1214

With the refined and filtered verifications, we1215

construct the SFT data as follows. For each prob-1216

lem, we determine the number of answer attempts1217

required to eventually obtain a correct answer1218

based on the accuracy from the initial sampling.1219

The lower the accuracy, the more rounds of re-1220

sponses are generated. In our implementation, we1221

categorize all problems into four difficulty levels1222

and construct answer sequences with 1, 2, 3, or 41223

rounds, according to descending accuracy. Then,1224

after an incorrect answer, we append “Wait, let me1225

recheck my solution” along with the corresponding1226

verification. If that answer is not the final attempt,1227

we further append “Let me try again.” We ensure1228

that the last answer in the sequence is correct. Ad-1229

ditionally, we ensure that the answers in each round1230

3https://openai.com/api/

for a given problem are distinct. Figure 5 is an ex- 1231

ample of SFT data constructed with 4 rounds of 1232

responses. 1233

C.2 Baseline Details 1234

C.2.1 Baseline Implementations 1235

In Table 2, the reported results for Frontier LLMs 1236

and Top-tier Open-source Reasoning LLMs are 1237

sourced from Guan et al. (2025). We evalu- 1238

ate Llama-3.1-8B-Instruct (Dubey et al., 2024), 1239

Qwen2-7B-Instruct (qwe, 2024), Qwen2.5-Math- 1240

7B, Qwen2.5-Math-7B-Instruct and Qwen2.5- 1241

Math-72B-Instruct(Yang et al., 2024) using the 1242

same process described in Section §3.1. For Eurus- 1243

7B-PRIME (Cui et al., 2025), rStar-Math-7B (Guan 1244

et al., 2025), and Qwen2.5-7B-SimpleRL (Zeng 1245

et al., 2025), we report results directly from the 1246

original papers. 1247

In Table 3, the results for Llama-3.1-70B- 1248

Instruct and QwQ-32B-Preview are taken from 1249

Shen et al. (2025). For the remaining baselines, 1250

we follow the official evaluation protocol of the 1251

dataset project4. 1252

C.2.2 Baseline License 1253

In this work, we utilize the Llama-3.1-8B- 1254

Instruct model, whose license can be reviewed 1255

at https://huggingface.co/meta-llama/ 1256

Llama-3.1-8B-Instruct/blob/main/LICENSE. 1257

In addition, the models Qwen2-7B-Instruct, 1258

Qwen2.5-Math-7B, Eurus-2-7B-PRIME, and 1259

project vLLM are distributed under the Apache 1260

License 2.0. We gratefully acknowledge the 1261

contributions of the open-source community 1262

and strictly adhere to the terms of the respective 1263

licenses. 1264

C.2.3 Baseline SFT Data Construction 1265

Original Solution SFT Data In this setting, we 1266

use the solution from the original dataset as sft data. 1267

To ensure a fair comparison, we maintain the same 1268

training data volume as our behavior initialization 1269

approaches. 1270

Long CoT SFT Data We also introduce a base- 1271

line by fine-tuning on Long CoT responses gener- 1272

ated by QwQ-32B-Preview (Team, 2024). Specif- 1273

ically, we instruct QwQ to generate responses to 1274

4https://github.com/Yale-LILY/FOLIO
https://github.com/facebookresearch/cruxeval
https://github.com/eladsegal/strategyqa
https://github.com/TIGER-AI-Lab/MMLU-Pro
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given problems and filter out those with incorrect1275

answers. The remaining high-quality responses1276

are then used for supervised fine-tuning. Impor-1277

tantly, we ensure that the total training data volume1278

remains consistent with that used in our behavior1279

initialization approach. The prompt we use for1280

QwQ is provided in Appendix §C.3.1281

C.3 Prompts1282

The prompts we use in all experiments are as fol-1283

lows:1284

Sampling Responses During Training/Inference
Please reason step by step, and put your final answer within1285
\boxed{}.1286
Problem: {problem}12871288

Verification Refinement
You are a math teacher. I will give you a math problem and1289
an answer.1290
Verify the answer's correctness without step−by−step1291
solving. Use alternative verification methods.1292
Question: {problem}1293
Answer: {answer}1294
Verification:12951296

Verification Collection
Refine this verification text to read as a natural self−check1297
within a solution. Maintain logical flow and professionalism.1298
Key Requirements:1299
1. Avoid phrases like "without solving step−by−step" or "as1300
a math teacher".1301
2. Treat the answer as your own prior solution.1302
3. Conclude with EXACTLY one of:1303
Therefore, the answer is correct.1304
Therefore, the answer is incorrect.1305
Therefore, the answer cannot be verified.1306
Original text: {verification}13071308

D Detailed Experiment Settings1309

D.1 Datasets1310

Details of each test dataset we used as benchmark1311

are as follows:1312

D.1.1 In-domain Datasets1313

MATH500 (Lightman et al., 2023b) offers a1314

streamlined slice of the broader MATH (Hendrycks1315

et al., 2021b) dataset, comprising 500 test problems1316

selected through uniform sampling. Despite its1317

smaller scope, it maintains a distribution of topics1318

and difficulty levels that mirrors the larger MATH1319

corpus.1320

GSM8K (Cobbe et al., 2021a) features around1321

8,500 grade-school math word problems. The1322

dataset focuses on simple arithmetic through early1323

Without Asking for Confirmative Verification
Model Confirmative out of 100

GPT-4o 26
GPT-4-Preview-1106 32
QwQ-32B-preview 37
Llama-3.1-70B-Instruct 28

Asking for Confirmative Verification
Model Confirmative out of 100

GPT-4o 44
GPT-4-Preview-1106 61
QwQ-32B-preview 58
Llama-3.1-70B-Instruct 50

Table 6

algebra and includes 1,319 distinct tasks in its test 1324

set. 1325

OlympiadBench (He et al., 2024) collects 8,476 1326

advanced math and physics questions drawn from 1327

Olympiad contexts, with some originating from the 1328

Chinese college entrance exam. We use the subset 1329

of 674 text-only competition questions, providing 1330

open-ended math challenges. 1331

AMC2023 (AI-MO, 2024b) and AIME (AI-MO, 1332

2024a) each supply a set of challenging exam-style 1333

problems: 40 questions from AMC 2023 and 30 1334

from AIME 2024, all in text-only format. 1335

CollegeMath (Tang et al., 2024b) is a dataset 1336

targeting advanced college-level mathematics, 1337

drawn from nine textbooks spanning seven major 1338

fields—algebra, pre-calculus, calculus, vector cal- 1339

culus, probability, linear algebra, and differential 1340

equations. The final collection comprises 1,281 1341

training examples and 2,818 test examples. 1342

Gaokao2023en (Liao et al., 2024) is a dataset 1343

consisting of 385 mathematics problems sourced 1344

from the 2023 Chinese higher education entrance 1345

examination, which have been professionally trans- 1346

lated into English. 1347

D.1.2 Cross-domain Datasets 1348

FOLIO (Han et al., 2022) is meticulously anno- 1349

tated to assess intricate logical reasoning in natural 1350

language. It pairs 1,430 conclusions with 487 sets 1351

of premises—each verified using first-order logic 1352

(FOL)—and contains 203 unique problems in its 1353

test portion. 1354

CRUXEval (Gu et al., 2024) tests code compre- 1355

hension and reasoning through 800 concise Python 1356

functions (spanning 3–13 lines). Each function 1357
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Model Learning Rate Batch Size KL Coefficient Max Length Training Epochs

Llama-3.1-8B-Instruct 5e-6 32 0.1 8000 3
Qwen2-7B-Instruct 5e-6 32 0.1 6000 3
Qwen2.5-Math-7B 5e-6 32 0.01 8000 3

Table 7: Model Training Hyperparameter Settings (SFT)

Model Learning Rate
Training

Batch Size
Forward

Batch Size
KL Coefficient Max Length

Sampling
Temperature

Clip Range Training Steps

Llama-3.1 5e-7 64 256 0.05 8000 0.7 0.2 500
Qwen2-7B-Instruct 5e-7 64 256 0.05 6000 0.7 0.2 500
Qwen2.5-Math-7B 5e-7 64 256 0.01 8000 0.7 0.2 500

Table 8: Model Training Hyperparameter Settings (RL)

is accompanied by one or more input-output ex-1358

amples. The goal is to predict the correct outputs1359

given the function body and a specific input. The1360

test partition encompasses all 800 problems.1361

StrategyQA (Geva et al., 2021) targets multi-1362

hop reasoning questions where the necessary inter-1363

mediate steps are not explicit. Each of its 2,7801364

items includes a strategic query, a breakdown of1365

the reasoning steps, and supporting evidence drawn1366

from Wikipedia.1367

MMLUProSTEM is extracted from MMLU-1368

Pro (Wang et al., 2024c). Following Satori (Shen1369

et al., 2025), we conduct evaluations on six STEM1370

subsets—physics, chemistry, computer science, en-1371

gineering, biology, and economics.1372

D.2 Hyperparameters Setting1373

During behavior initialization with SFT, we use a1374

batch size of 32 and adopt a learning rate of 5e-1375

6. We set the maximum sequence length 8000 to1376

accommodate long responses and verifications. To1377

balance stability and convergence during training,1378

we add a KL punishment to the training loss, and1379

the KL coefficient is set to 0.1.1380

During reinforcement learning, for each train-1381

ing batch, we use a training batch size of 64, and1382

sample n responses for each question in a batch,1383

resulting a forward batch size of 64n. For each1384

forward batch, we update the model for n step1385

with the training batch size 64. Specifically, for1386

both process-level and outcome-level RL, we adopt1387

n = 4 (i.e., for RLOO, the sample number is also1388

4). More hyperparameters of the RL training are1389

presented in Table 8. We use the BF16 model pre-1390

cision in all experiments.1391

Main hyperparameters used in the experiments1392

are illustrated in Table 7 and 8.1393

D.3 Experiment Environment 1394

All experiments are implemented using the Py- 1395

Torch framework on 32 NVIDIA H20 (96GB) 1396

GPUs or 32 NVIDIA A100Pro (40GB) GPUs. Our 1397

training code is built upon Hugging Face TRL5. For 1398

inference, we use a single NVIDIA A100 (40GB) 1399

GPU with vLLM-0.5.46. We utilize transformers 1400

version 4.39.3 for fine-tuning Qwen2-7B-Instruct 1401

and Qwen2.5-Math-7B, version 4.44.0 for fine- 1402

tuning Llama-3.1-8B, and version 4.46.3 for re- 1403

inforcement learning. We use PyTorch 2.1.1 across 1404

our training pipeline. Our evaluation code is built 1405

upon Qwen Math’s evaluation codebase7. 1406

E Metrics Definition 1407

We include the formal definition of metrics we use 1408

for analyzing self-verification and self-correction 1409

behaviors of the post-trained models as follows. 1410

E.1 Notations 1411

We first present the main notations used in our 1412

formulation in Table 9. 1413

E.2 Self-Verification Metrics 1414

E.2.1 Verification Accuracy (VA) 1415

Verification Accuracy measures how often the ver- 1416

ification prediction matches the ground-truth cor- 1417

rectness (N is the total number of verifications in 1418

the responses to the test set): 1419

VA = 1
N

∑N
t=1 I

(
Parser(vt) = Vgolden(st)

)
.

(7) 1420

5https://github.com/huggingface/trl
6https://github.com/vllm-project/vllm
7https://github.com/QwenLM/Qwen2.5-Math
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Variable Description
π The policy
x Problem instance

y
Series of predefined actions:

y = {a1, a2, . . . , an}
ai The i-th action in the response y, and let

Type(ai) ∈ {verify, solve, <end>}
sj jth attempt to solve the problem
vj jth self-verification for the jth attempt

Parser(·) Parser(vj) ∈ {correct, incorrect}
The text parser to get the self-verification result
indicating the correctness of action sj

Vgolden(·) Vgolden(ai) ∈ {correct, incorrect}
R(·) The rule based reward function

R(·) ∈ {−1, 1}

R(sj) =

{
1, Vgolden(sj) = correct

−1, otherwise

R(vj) =

{
1, Parser(vj) = Vgolden(sj)

−1, otherwise

<end> End of action series

I(·)
The indicator function, I(·) ∈ {0, 1}.
I(·) = 1 if the condition inside holds true,
and I(·) = 0 otherwise.

Table 9: Variable Lookup Table

E.2.2 Error Recall (ER)1421

Error Recall measures the recall of detecting incor-1422

rect answers (i.e., the fraction of actually incorrect1423

answers that are successfully identified as incor-1424

rect):1425

ER =

∑
t I
(
R(st−1)=−1

)
I
(

Parser(vt)=incorrect

)
∑

t I
(
R(st−1)=−1

) .

(8)1426

E.2.3 Correct Precision (CP)1427

Correct Precision measures the precision when the1428

verification model predicts an answer to be correct1429

(i.e., among all “correct” predictions, how many1430

are truly correct):1431

CP =

∑
t I
(

Parser(vt)=correct

)
I
(
R(st−1)=1

)
∑

t I
(

Parser(vt)=correct

) .

(9)1432

E.3 Self-Correction Metrics1433

E.3.1 Incorrect to Correct Rate (ICR)1434

The rate at which the model successfully corrects1435

an initially incorrect answer (R(s0) = −1) into a1436

correct final answer (R(sT ) = 1). Formally:1437

ICR =

∑N
i=1 I

(
R(s0) = −1

)
I
(
R(sT ) = 1

)∑N
i=1 I

(
R(s0) = −1

) .

(10)1438

where N is the total number of responses to the test 1439

set. 1440

E.3.2 Correct to Incorrect Rate (CIR) 1441

The rate at which the model incorrectly alters an ini- 1442

tially correct answer (R(s0) = 1) into an incorrect 1443

final answer (R(sT ) = −1). Formally: 1444

CIR =

∑N
i=1 I

(
R(s0) = 1

)
I
(
R(sT ) = −1

)∑N
i=1 I

(
R(s0) = 1

) .

(11) 1445

where N is the total number of responses to the test 1446

set. 1447

F Offline RL Training Details 1448

In this section, we provide additional details on 1449

the offline reinforcement learning training process, 1450

including formal definition, ablation studies, and 1451

implementation details. 1452

F.1 Accuracy-Grouped Baseline Definition 1453

To fully leverage the advantages of offline RL, 1454

which does not require real-time sampling, we ex- 1455

plore more appropriate baseline selection by further 1456

grouping trajectories based on problem difficulty. 1457

Intuitively, for two trajectories y(1) and y(2) sam- 1458

pled under questions of different difficulty levels, 1459

and their corresponding actions a(1)t and a
(2)
t at the 1460

same position, even if they share identical reward 1461

contexts, their expected returns (baselines) should 1462

differ, i.e., the expected return is typically lower 1463

for more challenging problems. 1464

We measure a problem’s difficulty by estimating 1465

how often it is solved correctly under the current 1466

sampling policy. Concretely, we sample multiple 1467

trajectories in parallel for each problem. The frac- 1468

tion of these trajectories that yield a correct final 1469

answer serves as the problem’s accuracy. We then 1470

discretize this accuracy into separate bins, effec- 1471

tively grouping the problems according to their 1472

estimated difficulty. All trajectories belonging to 1473

problems within the same accuracy bin form a com- 1474

mon subset. 1475

Compared to using direct reward contexts alone, 1476

this accuracy-based grouping offers a more ro- 1477

bust estimate of expected returns, problems in 1478

the same bin share similar success rates. More- 1479

over, unlike a pre-defined difficulty grouping, these 1480

bins adjust dynamically as the model’s capabili- 1481

ties evolve. Building on this approach, we propose 1482

two accuracy-based baseline estimation methods 1483

for offline RL as follows. 1484
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Accuracy Range Retained Questions MATH500 AIME2024 AMC2023 College Math Olympiad Bench GSM8K GaokaoEn2023 Average

[0.1− 0.7] 1805 83.4 23.3 62.5 50.0 46.7 92.9 72.2 61.6
[0.2− 0.8] 2516 82.6 23.3 70.0 49.8 45.3 92.4 70.1 61.9
[0.3− 0.9] 4448 81.6 23.3 70.0 49.4 44.7 92.0 68.1 61.3
[0− 1] Full 80.6 26.7 67.5 50.0 43.0 91.4 67.0 60.9

Table 10: Comparison of question filtering accuracy selection.

F.1.1 Accuracy-Grouped Baseline With1485

Position Group1486

Within each accuracy bin, we further split actions1487

based on their position in the trajectory. Concretely,1488

we consider all actions occurring at the same step1489

index across trajectories in the same bin to be com-1490

parable, and we compute their average return to1491

serve as the baseline. Thus, when we look up the1492

baseline for a particular action at a given step in a1493

trajectory, we use the average return of all actions1494

taken at that same step index in all trajectories be-1495

longing to the same accuracy bin.1496

F.1.2 Accuracy-Grouped Baseline With1497

Reward Context1498

We also propose combining accuracy-based group-1499

ing with reward-context grouping. The underly-1500

ing assumption is that even if two actions share1501

the same immediate reward context, their expected1502

returns can differ if they originate from different1503

difficulty bins. Generally, problems that are harder1504

to solve exhibit lower expected returns. Conse-1505

quently, we first bin the trajectories by accuracy,1506

then further group them by common reward con-1507

text. Within each sub-group, we average the returns1508

of all relevant actions to obtain the baseline.1509

F.2 Offline RL Implementation Details1510

In each iteration of offline RL training, we gen-1511

erate multiple trajectories (e.g., eight) per prompt1512

in parallel. We then apply prompt filtering, rejec-1513

tion sampling, accuracy-based baseline estimation,1514

advantage computation, and policy updates. Imple-1515

mentation details follow.1516

F.2.1 Prompt Filtering1517

As we sample multiple trajectories for each prompt,1518

we compute the accuracy of each prompt. We retain1519

prompts whose accuracy falls within a predefined1520

range.1521

Our ablation study on Qwen2.5-Math-7B shown1522

in Table 10 confirms that filtering improves perfor-1523

mance. The most stable results are obtained with1524

an accuracy range of [0.1, 0.7], suggesting that in-1525

cluding moderately difficult samples enhances the1526

model’s reasoning capabilities. 1527

F.2.2 Rejection Sampling 1528

We discard any trajectory that does not follow 1529

the alternation pattern of solution and verification: 1530

y = (s1, v1, . . . , sk, vk). Additionally, we remove 1531

malformed trajectories such as y = (s1, s2, v1). To 1532

mitigate reward hacking due to excessively long 1533

outputs, we eliminate trajectories where R(st) = 1 1534

and R(vt) = 1 at timestep t, but further actions are 1535

taken at t + 1. Moreover, we discard trajectories 1536

containing more than 20 actions, as excessive ac- 1537

tion sequences can introduce instability and deviate 1538

from expected solution structures. 1539

F.2.3 Loss Function 1540

To determine the best offline baseline method, 1541

we conducted ablation studies on Qwen2.5-Math- 1542

7B shown in Table 11. We found that using the 1543

accuracy-grouped baseline with an additional divi- 1544

sion by position provides the most stable results. 1545

When computing advantages, we subtract both the 1546

baseline and a scaled relative policy term like Equa- 1547

tion 5. Notably, we fix πref as the reference policy 1548

instead of being updated at each iteration. 1549

F.2.4 Training Hyperparameter Settings 1550

We use a batch size of 64, a maximum learning rate 1551

of 5 × 10−7, and a KL penalty coefficient of 0.1. 1552

The maximum training sequence length is set to 1553

8192. We apply a warm-up phase of 5 steps and 1554

a clipping range parameter of 0.2. We use BF16 1555

model precision in all experiments. 1556

G Demo Cases 1557

To intuitively demonstrate the effectiveness of our 1558

proposed method, we present the model’s inference 1559

examples after RL on the MATH500 and Strate- 1560

gyQA datasets in the Figure 6 and Figure 7. 1561

H Other Discussion 1562

H.1 Discussion on Potential Risk 1563

We have carefully considered potential risks as- 1564

sociated with our work and found no significant 1565

concerns. Our approach, focused on enhancing 1566
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Datasets
AverageBaseline Method MATH500 AIME2024 AMC2023 College Math Olympiad Bench GSM8K GaokaoEn2023

Based on reward context 82.4 26.7 65.0 50.1 46.1 92.9 71.2 62.1
Based on accuracy group with position 83.4 23.3 62.5 50.0 46.7 92.9 72.2 61.6
Based on accuracy group with reward context 82.4 23.3 67.5 49.3 45.8 93.3 71.2 61.8

Table 11: The performance of different baselines

Problem: Lizzy, Megan, Oscar, and Patrick each have x pieces of candy, where x is a positive integer. Unfortunately, Patrick is the only one of the four who likes candy. So Lizzy gives all her
candy to Megan. Then Megan gives all the candy she now has (which includes the candy Lizzy gave her) to Oscar. Then Oscar gives all the candy he now has to Patrick.
Let P be the number of pieces of candy Patrick has in the end. How many of the following statements are true? (Assume that we do not know exactly what x is.)

(a) 2 can be a divisor of P .

(b) 2 must be a divisor of P .

(c) 3 can be a divisor of P .

(d) 3 must be a divisor of P .

(e) 4 can be a divisor of P .

(f) 4 must be a divisor of P .

Response:
Let’s analyze each statement step-by-step, considering the transformation of the pieces of candy from Lizzy to Megan, then to Oscar, and finally to Patrick. . .Wait, let me recheck my solution.

To verify the correctness of the answer, we need to consider. . . Therefore, the answer is incorrect. Let me try again. Given that Lizzy, Megan, Oscar, and Patrick each start with x pieces of
candy. . .Wait, let me recheck my solution. To verify the solution, we will analyze the number of pieces of candy, . . . Therefore, the answer is incorrect. Let me try again. First, let’s break down
the candy distribution process. . .Wait, let me recheck my solution. To verify the answer, I will assess the properties of the. . . Let me try again.

To solve this problem, let’s denote the initial number of pieces of candy each person has as x. . .Wait, let me recheck my solution. To verify the answer, we need to evaluate the given statements
based on the problem conditions.

Lizzy, Megan, Oscar, and Patrick each start with x pieces of candy. The total amount of candy remains constant as it is transferred among them. Ultimately, Patrick ends up with all the
candy, totaling 4x pieces.

Let’s examine each statement:

(a) 2 can be a divisor of P : This is true because if x is even, then 4x is even and divisible by 2.

(b) 2 must be a divisor of P : This is true because 4x is always divisible by 2, regardless of x.

(c) 3 can be a divisor of P : This is true if x is a multiple of 3, then 4x will also be a multiple of 3.

(d) 3 must be a divisor of P : This is false because if x is not a multiple of 3, then 4x will not be a multiple of 3.

(e) 4 can be a divisor of P : This is true as 4x is divisible by 4.

(f) 4 must be a divisor of P : This is true because 4x is always divisible by 4, regardless of x.

Five statements are true: (a), (b), (c), (e), and (f). The only false statement is (d).
Therefore, the answer is correct.

Figure 5: SFT data example.

LLM reasoning through self-verification and self-1567

correction, does not introduce malicious or harmful1568

effects, privacy issues, or security threats. Addi-1569

tionally, it does not contribute to biases, fairness1570

concerns, or environmental impact. We believe our1571

work is safe for responsible use in research.1572

H.2 Use of AI Assistant1573

In this work, we utilized an AI assistant solely for1574

the purpose of refining and polishing the language1575

of the manuscript. The AI assistant was employed1576

to improve clarity, flow, and overall readability,1577

ensuring the text adhered to academic writing stan-1578

dards. It was not involved in any data analysis,1579

experimentation, or formulation of ideas. All re-1580

search design, methodology, results, and conclu-1581

sions were developed independently by the authors.1582

The use of the AI assistant was limited to language1583

enhancement and did not influence the content or1584

scientific integrity of the work.1585
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Problem: There are an infinite number of vectors v such that 


1
2
−5


× v =



90
30
30


 .

Find the vector v that has the smallest magnitude.

Reponse: To find the vector v that satisfies the equation




1
2
−5


× v =



90
30
30


 and has the smallest magnitude, we start by letting v =



x
y
z


. The cross product




1
2
−5


×



x
y
z


 is

given by:


1
2
−5


×



x
y
z


 =




2z + 5y
−5x+ z
2x− y




We set this equal to



90
30
30


, giving us the system of equations:





2z + 5y = 90

−5x+ z = 30

2x− y = 30
We solve the third equation for y:
y = 2x− 30
Substitute y = 2x− 30 into the first equation:
2z + 5(2x− 30) = 90 =⇒ 2z + 10x− 150 = 90 =⇒ 2z + 10x = 240 =⇒ z + 5x = 120 =⇒ z = 120− 5x
Now substitute z = 120− 5x into the second equation:
−5x+ (120− 5x) = 30 =⇒ −10x+ 120 = 30 =⇒ −10x = −90 =⇒ x = 9
Using x = 9, we find y and z:
y = 2(9)− 30 = 18− 30 = −12
z = 120− 5(9) = 120− 45 = 75

Thus, the vector v is




9
−12
75


. To confirm that this is the vector with the smallest magnitude, we note that the general solution to the system of equations is of the form

v =




9
−12
75


+ t




1
2
−5


 for some scalar t.

The magnitude of v is minimized when t = 0, which corresponds to the vector




9
−12
75


.

The magnitude is




9
−12
75


 .

Wait, let me recheck my solution.
To verify the correctness of the given answer, we can use the properties of the cross product and the given vectors.

The cross product of two vectors a and b is orthogonal to both a and b. Given that a =




1
2
−5


 and v are such that their cross product is c =



90
30
30


, we can check if the given

answer v =




9
−12
75


 satisfies this property.

First, we check if a and v are orthogonal to c by taking the dot product:
1. a · c = (1)(90) + (2)(30) + (−5)(30) = 90 + 60− 150 = 0 2. v · c = (9)(90) + (−12)(30) + (75)(30) = 810− 360 + 2250 = 2700
Since v · c ̸= 0, the given answer v is not orthogonal to c, which means it cannot be the correct vector v that satisfies the cross product equation.
Therefore, the answer is incorrect.
Let me try again.

To find the vector v such that




1
2
−5


× v =



90
30
30


, we start by letting v =



x
y
z


. The cross product




1
2
−5


×



x
y
z


 is given by the determinant of the following matrix:

∣∣∣∣∣∣

i j k
1 2 −5
x y z

∣∣∣∣∣∣
= i(2z + 5y)− j(z + 5x) + k(y − 2x).

This gives us the vector:


2z + 5y
−z − 5x
y − 2x


 .

We set this equal to



90
30
30


, so we have the system of equations:





2z + 5y = 90,

−z − 5x = 30,

y − 2x = 30.
From the second equation, we solve for z:
−z − 5x = 30 =⇒ z = −5x− 30.
From the third equation, we solve for y:
y − 2x = 30 =⇒ y = 2x+ 30.
Substitute y = 2x+ 30 and z = −5x− 30 into the first equation:
2(−5x− 30) + 5(2x+ 30) = 90.
Simplify the left side:
−10x− 60 + 10x+ 150 = 90 =⇒ 90 = 90.
This is an identity, so the system is consistent and has infinitely many solutions. The general solution is:

v =




x
2x+ 30
−5x− 30


 .

To find the vector v with the smallest magnitude, we minimize the expression for the magnitude of v:
∥v∥ =

√
x2 + (2x+ 30)2 + (−5x− 30)2.

Simplify the expression inside the square root:
x2 + (2x+ 30)2 + (−5x− 30)2 = x2 + (4x2 + 120x+ 900) + (25x2 + 300x+ 900) = 30x2 + 420x+ 1800.
To minimize 30x2 + 420x+ 1800, we complete the square:
30x2 + 420x+ 1800 = 30(x2 + 14x+ 60) = 30((x+ 7)2 − 49 + 60) = 30((x+ 7)2 + 11) = 30(x+ 7)2 + 330.
The minimum value occurs when x = −7, and the minimum value of the expression is 330. Substituting x = −7 into the expression for v, we get:

v =




−7
2(−7) + 30
−5(−7)− 30


 =




−7
−14 + 30
35− 30


 =



−7
16
5


 .

Thus, the vector v that has the smallest magnitude is



−7
16
5


 .

Wait, let me recheck my solution.
To verify the correctness of the given answer, we can use the properties of the cross product and the given vectors.

The cross product of two vectors a and b is orthogonal to both a and b. Given that a =




1
2
−5


 and v are such that their cross product is c =



90
30
30


, we can check if the given

answer v =



−7
16
5


 satisfies this property.

First, we check if a and v are orthogonal to c by taking the dot product:
1. a · c = (1)(90) + (2)(30) + (−5)(30) = 90 + 60− 150 = 0 2. v · c = (−7)(90) + (16)(30) + (5)(30) = −630 + 480 + 150 = 0
Since both dot products are zero, the given answer v is orthogonal to c, which means it could be a correct vector v that satisfies the cross product equation.
Therefore, the answer is correct.

Figure 6: MATH500 Case.
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Problem You are given the following facts:

1. Chlorine, when added to water, creates household bleach.

2. Household bleach is available at most dollar stores.

Based on the facts above, answer the following question. Your final answer should be either ”True” or ”False”.
Problem: Can you buy chlorine at a dollar store?
Response To determine if you can buy chlorine at a dollar store, let’s analyze the given facts step by step:

1. Fact 1 states that when chlorine is added to water, it creates household bleach.

2. Fact 2 states that household bleach is available at most dollar stores.

From Fact 2, we know that household bleach is available at dollar stores. However, Fact 1 does not provide any direct information about the availability of chlorine itself at dollar stores. It only
tells us that chlorine, when added to water, produces household bleach.
Since Fact 1 does not provide information about the direct sale of chlorine, we cannot conclude that chlorine is available at dollar stores based solely on the given facts.

Therefore, the answer is: False
Wait, let me recheck my solution.
The answer provided is ”False.” To verify this, let’s examine the logical structure of the given statements and the inferred conclusion.
The first statement asserts that when chlorine is added to water, it creates household bleach. The second statement claims that household bleach is available at most dollar stores.
From these two statements, we can infer that if household bleach is available at dollar stores, it is possible that chlorine, when added to water, could be used to create household bleach that is
sold at dollar stores. However, the statements do not explicitly confirm the availability of chlorine at dollar stores.
The answer ”False” implies that it is not possible to buy chlorine at a dollar store. Given that the statements do not provide information about the direct sale of chlorine, but rather the creation
of bleach from chlorine, the answer ”False” is not necessarily incorrect. It is possible that chlorine is not sold at dollar stores, but it could be used to create bleach that is sold there.
Therefore, the answer is incorrect.
Let me try again.
To determine if you can buy chlorine at a dollar store, let’s analyze the given facts step by step.

1. Fact 1: Chlorine, when added to water, creates household bleach.

2. Fact 2: Household bleach is available at most dollar stores.

From Fact 2, we know that household bleach is a product that can be found at dollar stores. However, Fact 1 only states that chlorine, when added to water, creates household bleach. It does
not provide any information about whether chlorine itself is sold at dollar stores.
Since the availability of chlorine at dollar stores is not mentioned in the facts provided, we cannot definitively conclude that chlorine is available at dollar stores based solely on the given
information.
Therefore, the answer is: False
Wait, let me recheck my solution.
The answer provided is ”False.” To verify this, let’s examine the logical structure of the given statements and the inferred conclusion.
The first statement asserts that when chlorine is added to water, it creates household bleach. The second statement claims that household bleach is available at most dollar stores.
From these two statements, we can infer that if household bleach is available at dollar stores, it is possible that chlorine, when added to water, could be used to create household bleach that is
sold at dollar stores. However, the statements do not explicitly confirm the availability of chlorine at dollar stores.
The answer ”False” implies that it is not possible to buy chlorine at a dollar store. Given that the statements do not provide information about the direct sale of chlorine, but rather the creation
of bleach from chlorine, the answer ”False” is not necessarily incorrect. It is possible that chlorine is not sold at dollar stores, but it could be used to create bleach that is sold there.
Therefore, the answer is incorrect.
Let me try again.
To determine whether you can buy chlorine at a dollar store, let’s analyze the given facts step by step.

1. Fact 1: Chlorine, when added to water, creates household bleach.

2. Fact 2: Household bleach is available at most dollar stores.

From Fact 2, we know that household bleach is available at most dollar stores. Since household bleach is made by adding chlorine to water, it implies that the process of making household bleach
involves chlorine. However, Fact 1 does not provide any information about the direct sale of chlorine itself at dollar stores.
Given that household bleach is available at dollar stores and it is made from chlorine, it is reasonable to infer that chlorine is also available at dollar stores, as it is a necessary component for
making household bleach.
Therefore, based on the given facts, it is reasonable to conclude that you can buy chlorine at a dollar store.

True
Wait, let me recheck my solution.
The answer provided is ”True.” To verify this, let’s examine the logical structure of the given statements and the inferred conclusion.
The first statement asserts that when chlorine is added to water, it creates household bleach. The second statement claims that household bleach is available at most dollar stores.
From these two statements, we can infer that if household bleach is available at dollar stores, it is possible that chlorine, when added to water, could be used to create household bleach that is
sold at dollar stores. This inference supports the conclusion that chlorine can be bought at a dollar store, as it is a necessary component for producing household bleach.
Therefore, the answer is correct.

Figure 7: StrategyQA Case.
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