Under review as a conference paper at ICLR 2025

SCAR: EFFICIENT INSTRUCTION-TUNING FOR LARGE
LLANGUAGE MODELS VIA STYLE CONSISTENCY-AWARE
RESPONSE RANKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have shown that maintaining a consistent response style by human
experts and enhancing data quality in training sets can significantly improve the
performance of fine-tuned Large Language Models (LLMs) while reducing the
number of training examples needed. However, the precise definition of style and
the relationship between style, data quality, and LLM performance remains unclear.
This research identifies two key stylistic elements in responses: linguistic form and
semantic surprisal. We find that, among training data of comparable quality, higher
consistency in these response elements leads to better LLM performance. Inspired
by this, we introduce Style Consistency-Aware Response Ranking (SCAR), which
automatically prioritizes instruction-response pairs in the training set based on their
response stylistic consistency. By selecting the most style-consistent examples,
sometimes as few as 0.7% of the full dataset, the fine-tuned LLMs can match or
even surpass the performance of models trained on the entire dataset in coding
and open-ended question-answering benchmarks. Code and data are available
athttps://anonymous.4open.science/r/SCAR-0233/.

1 INTRODUCTION

Instruction-following Large Language Models (LLMs), such as GPT-3.5 and GPT-4 (Achiam et al.|
2023), have transformed natural language processing by demonstrating remarkable generalization
across a wide range of tasks (Brown et al., 2020; |Chung et al., [2022} |[Ouyang et al.,[2022)). These
models are typically trained through several stages: an initial phase of unsupervised pre-training on a
vast corpus of text, followed by post-training stages, which include supervised fine-tuning (SFT) on a
smaller dataset of instruction-response pairs and reinforcement learning (Bai et al., [2022).

Recent studies, such as AlpaGasus (Chen et al.,2024) and LIMA (Zhou et al.,|2024), demonstrate that
carefully curated, smaller datasets can outperform larger ones in improving LLM SFT performance.
AlpaGasus finds that smaller datasets with higher quality scores, rated by GPT-4 for helpfulness or
correctness, outperform significantly larger ones when used to fine-tune high-capacity LLMs. The
Superficial Alignment Hypothesis, proposed in LIMA, suggests that pre-trained language models
already possess the necessary knowledge, and the primary goal of fine-tuning is to guide the model
toward adopting specific response styles, thus not requiring large amounts of data. LIMA achieves
notable performance with only 1,000 high-quality instruction-response pairs, optimized for consistent
style by human experts. However, this hypothesis raises three open questions: (i) What key elements
constitute response styles that impact LLM SFT? (ii) How do data quality (i.e., helpfulness, cor-
rectness) relate to style consistency in influencing efficient SFT? (iii) Can we develop an automatic
method that measures stylistic elements to curate smaller, stylistically consistent datasets for more
efficient SFT at a lower cost, without relying on human experts?

Text style is shaped by consistent choices across various linguistic elements (Kang & Hovyl 2021}
Karlgren| |2004)), such as lexical, syntactic, and semantic features (DiMarco & Hirst, [1993). Our
empirical studies have identified two key stylistic factors within responses that significantly affect
LLM SFT performance: Linguistic Form and Semantic Surprisal. Linguistic Form mainly
involves lexical and syntactic choices that shape how a response is presented without altering its
meaning. This includes tone (formal or informal), word choice, sentence structure, formatting (bullet

https://anonymous.4open.science/r/SCAR-0233/

Under review as a conference paper at ICLR 2025

points or headings), and transition words. Semantic Surprisal, in our definition, refers to the choices
of solutions, ideas, or approaches in a response that affects how predictably or unexpectedly it
addresses the instruction, focusing primarily on its semantic relationship to the instruction. We
find that when comparing instruction-response pairs with similar levels of data helpfulness and
correctness, greater consistency in both linguistic form and the semantic surprisal leads to notably
improved LLM performance on downstream tasks.

Achieving style consistency is challenging, even for human experts. We discover that data with
LLM-generated responses exhibiting consistent styles and can significantly outperform human-
crowdsourced data in improving LLM performance. Inspired by this, we introduce Style Consistency-
Aware Response Ranking (SCAR), a novel ranking-based model that prioritizes instruction-response
pairs by ensuring their stylistic consistency while maintaining data quality. SCAR is trained on LLM-
synthesized and human-crowdsourced datasets to reward responses with higher style consistency
regarding linguistic form and surprisal. Enhanced with representation learning, SCAR can better
distinguish between these two elements and prioritize aspects that improve LLM performance.
Experiments show that by selecting the most style-consistent examples, sometimes as little as 0.7%
of the original dataset, fine-tuned LLMs can match or surpass the performance of models trained on
full datasets like Octocoder-15.5b (Muennighoff et al., 2023)) and OLMO-7b-SFT (Groeneveld et al.,
2024) on coding (HumanEval; |Chen et al.[2021)) and open-ended question answering (AlpacaEval;
Dubois et al.|2023)) benchmarks. SCAR outperforms leading data selection baselines for efficient
SFT, enhancing LLM performance while reducing computational costs.

In summary, our contributions are three-fold:

* We introduce and define key response style elements that influence LLM SFT performance.
Our empirical analysis shows that, for training datasets with similar correctness and helpful-
ness, greater consistency in linguistic form and semantic surprisal significantly enhances
LLM performance across various benchmarks.

* We present SCAR, a ranking method that learns distinct representations for linguistic form
and semantic surprisal, selecting style-consistent and high-quality examples for efficient
LLM SFT.

* Our extensive experiments demonstrate that SCAR outperforms data selection baselines,
enabling LLMs trained on a small fraction (e.g., 25%, 0.7%) of the original data selected by
SCAR to match or exceed the performance of models trained on the full dataset for coding
and open-ended tasks, significantly reducing computational costs.

2 IMPACT OF STYLES ON LLM FINE-TUNING

In this section, we study two research questions: i) What key elements in response style can influence
LLM SFT? and ii) How do style consistency and data quality impact LLM performance?

RQ1: WHAT FACTORS CONSTITUTE RESPONSE STYLE

Through empirical analysis of stylistic differences between synthetically generated and human-written
instruction-tuning data, we identified two key sets of stylistic features in responses that significantly
influence LLM alignment performance.

Linguistic Form refers to the structure of language, including how words and sentences are organized
and interact (Fabb| [2001; |(Chomsky}, (1957} Jurafsky, [2000). In our context, it denotes elements that
shape the presentation of a response, mostly independent of semantics, such as tone (formal or
informal), transitional word choice, sentence structure, formatting (bullet points or heading lines),
variable naming conventions, etc. For example, GPT-3.5 responses tend to be formal, structured
with bullet points, and frequently use transitional phrases. In contrast, human responses, authored by
diverse individuals, typically exhibit greater variation in their use of these linguistic elements.

Semantic Surprisal refers to how predictable or surprising a response is in relation to the given
instruction, largely influenced by its semantic content, such as the choice of solutions, ideas, or
approaches. For example, when presented with questions about sorting algorithms, GPT-3.5 typically
follows a consistent style, often suggesting less surprising solutions like merge sort. In contrast,

Under review as a conference paper at ICLR 2025

Table 1: Examples of different response types for a given instruction. Some details are abbreviated as
*...” due to space limits. Shared surprisal-related style elements between “Human” and ‘“Referenced”
responses are highlighted in , and shared linguistic form elements between “Referenced” and
“Direct” responses are in green.

Instruction

Why is FIFA against adding instant replay to the game?
Human Response

There are a few fundamental considerations:

... In 2008,
FiFA President Sepp Blatter said: ...
Human Referenced Response from GPT-3.5-turbo
FIFA is against adding instant replay to the game for several reasons. One of the main concerns is that
,... Additionally, ;... Another factor is that
Direct Response from GPT-3.5-turbo
FIFA is against adding instant replay to the game because they believe it would disrupt the flow of the game and potentially lead to delays.

They also argue that human error is a part of the game ... Additionally, implementing instant replay would require significant changes to
the rules and regulations of the game, ...

human responses tend to vary more—some offering common solutions, and others suggesting less
expected algorithms like StoogeSort or custom approaches.

Many works (Lin et al.l 2023} Hovyl [1987) define style as non-semantic. For instance, [Lin et al.
(2023) investigates “stylistic tokens,” which are similar to our concept of Linguistic Form, and
their effect on LLM alignment through in-context learning. In contrast, our work adopts a broader
definition of style, following [DiMarco & Hirst] (1993); Jin et al.|(2022). We examine how stylistic
preferences for both surface-level and semantic features influence LLM alignment through SFT.

RQ2: INFLUENCE OF STYLE CONSISTENCY AND DATA QUALITY ON LLM PERFORMANCE

We collect both human-written and synthetic data in coding and general open-ended domains, and
conduct stylometric and quality analyses on this data. Following this, we fine-tune base LLMs to
explore the effects of style consistency and data quality on their performance.

We control style variations to create three dataset types—human-written, referenced, and —to
explore how linguistic form and response surprisal impact LLM performance. In the coding domain,
we collect 10,000 human-written instruction-response pairs from StackExchangeﬂ, an online platform
that includes 11 million pairs of coding questions and answers. We use the LIMA dataset, including
1,000 human-generated examples, for the general domain. Additionally, we generate two synthetic
response types with controlled styles: “referenced” and “direct.” “Referenced” responses are crafted
by an instruction-tuned chat-LLM that rewrites human responses to retain their semantic meaning,
similar to the method in|Yang et al.|(2024])). This approach largely preserves the surprisal level of
the human-written responses while altering their linguistic form. In contrast, chat-LLM creates
“direct” responses from scratch with a temperature of O after reading the instructions, potentially
producing different semantics and significantly varying their levels of predictability compared to
human responses. Table|l|illustrates these response types.

We also isolate the effects of data quality on LLM performance by using three chat-LLMs with
different capabilities to generate synthetic “referenced” and “direct” datasets. The models employed
are GPT-3.5-TURBO, LLAMA-2-70B-CHAT-HF, and LLAMA-2-13B-CHAT-HF (Touvron et al.,
2023), with GPT-3.5-TURBO being the most advanced, followed by LLAMA-2-70B-CHAT-HF
and LLAMA-2-13B-CHAT-HF, according to the arena-leaderboard (Zheng et al.l 2024). We find
hallucinations that occur during the LLM rewriting and generation of “referenced” and “direct”
responses can significantly affect the quality of the resulting synthetic data.

Stylometric Analysis. 7o analyze the linguistic form of human and synthetic responses, we use
five common metrics in authorship attribution analysis (Tripto et al., 2023; Zheng & Jin, 2023).
These include the Type Token Ratio (TTR) (Templin, |1957), Measure of Textual Lexical Diversity
(MTLD) (McCarthy, 2005) for functional words, Flesch score (Kincaid et al.,|1975)), average sentence
length, and punctuation frequency. Higher TTR and MTLD values indicate greater lexical diversity,
while a higher Flesch score suggests improved readability. We identify functional words (y,)

"https://stackexchange.com/

Under review as a conference paper at ICLR 2025

in the response (y) using a lexicon based on heuristic POS-tagging rules. To assess semantic
surprisal, we compute perplexity, a standard metric for measuring text surprisal (Oh & Schuler, 2023}
Michaelov et al.,|2023; Goodkind & Bicknell, 2018), denoted as PPL(y..|x), using META-LLAMA-3-
8B (Al@Metal, 2024). Here, y. denotes the semantically relevant portion of the response, while x
is the instruction. Higher PPL(y,|x) values indicate greater surprisal of the semantic content given
the instruction. To obtain y., we apply a method similar to “style removal” from |Mir et al.|(2019)),
filtering out functional words (y,,) to reduce the influence of linguistic form in y.

T-SNE (Van der Maaten & Hinton, 2008) plots
(Figure([1] left) show that embeddings of GPT-
3.5-TURBO-generated “referenced” and “direct”
responses cluster tightly in the center, indicating
that both synthetic response types share con-
sistent and similar linguistic forms. These em-
beddings are created by vectorizing five author-
ship attribution metrics and the IDs of functional
words. Conversely, human responses are more
dispersed in the outer region, showing lower
consistency. Figure|[T] (right) shows “direct” re-
SPONSCs have a more skewed.peljple?dty Qistri— Figure 1: (Left) T-SNE plot showing the em-
buthn towar'ds lower Yalues, 1pd1cat1ng higher beddings of the linguistic forms of human and
conmftency n se’fnannc surprisal compared to GPT-3.5-TURBO responses to LIMA instructions.
both “referenced” and human ones. (Right) Density plot of perplexity detailing the sur-
Standard deviations (Std.) of TTR and perplex- prisal levels of these responses.

ity for different response types are listed in Ta-

ble[2] with additional linguistic form and text surprisal metrics detailed in Table[§|(Appendix[A.6). We
observe human responses have much higher Std. values regarding TTR, perplexity and other metrics
compared to synthetic responses, and “referenced” responses exhibit a higher perplexity Std. than
“direct” responses. The Std. values of these metrics across “referenced” and “direct” responses from
LLAMA-70B-CHAT-HF, LLAMA-13B-CHAT-HF, and GPT-3.5-TURBO indicate synthetic responses
from all these LLMs have higher consistency in both stylistic elements than human ones.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Density

Perp\éxity écore

Using Conditional Mutual Information (CMI) (Wyner, |1978)), we also evaluate the conditional inde-
pendence between semantic () and non-semantic (y,,) words in the response y and the instruction x.
For LIMA instructions, I (y.; = | y,) = 0.4 and I(y,; | y.) = 0.15; for StackExchange instructions,
I(ye;x | yp) = 0.49 and I(y,; = | y.) = 0.03. These findings suggest that linguistic form features
are significantly less dependent on the instruction than semantic content.

Data Quality Analysis. We evaluate a sample of 100 examples from each dataset using GPT-4-1106-
PREVIEW. We rate the scores for two data quality metrics, helpfulness and correctness, using the
adjusted prompt from the automatic data evaluator ICE-Score (Zhuol 2024) for the coding domain
and AlpaGasus (Chen et al.,[2024) for the open-ended domain, and then calculate the average scores
across the samples. Higher scores indicate better quality. Table 2] reveals that in the coding domain,
GPT-3.5-TURBO-generated responses match the quality of human-written ones, while other LLMs
produce lower-quality data. In the open domain, LLAMA2-70B-CHAT-HF and GPT-3.5-TURBO
responses are comparable in quality to human-written responses, whereas LLAMA?2-13B-CHAT-HF
responses are of lower quality.

Impact on LLM Performance. We evaluate the CODELLAMA-7B model fine-tuned with LoRA (Hu
et al.}2021) on various datasets using HumanEval (Python) (Chen et al.,|2021) and MultiPL-E (Java,
JavaScript, C++) (Cassano et al.| [2023)) benchmarks. For the coding domain, we report average
Pass@1 and average Pass@10 execution accuracies across 164 coding questions spanning four
programming languages. We also measure the length control win rate (L.C. WinRate) (Dubois et al.,
2024) by comparing responses from the LoRA fine-tuned META-LLAMA-3-8B with those from
GPT-4-PREVIEW-1106 on 2500 open-domain instructions from AlpacaEval. We use LLAMA-70B-
CHAT-HF as our automatic evaluator for its cost-effectiveness ($0.9 per evaluation). This evaluator is
comparable with GPT-4 evaluators in correlating with human judgment, surpassing human-to-human
agreement (67.5 vs. 65.7f]

“https://github.com/tatsu-lab/alpaca_eval/

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison of CODELLAMA-7B and LLAMA3-8B fine-tuned on training sets
curated using different methods and various LLMs, along with data quality and stylometric analysis
metrics for the training sets.

StackExchange LIMA
Stylometric Data CODELLAMA-7B Stylometric Data LLAMA3-8B
Data Curation Analysis Quality Performance Analysis Quality Performance
Methods | ~ Std. TTR/™ ~ Helpfulness/ = Avg. Pass@1/ | Std. TTR/ =~ Helpfulness/ i}; {V;nil; t; B
Std. PPL(y.|z) Correctness Avg. Pass@10 Std. PPL(y.|z) Correctness o

Human Response 22.27/0.99 3.34/3.57 31.65/46.63 19.54/71.28 4.32/4.37 229
GPT-3.5-TURBO

Referenced 7.95/0.57 3.65/3.60 31.66/48.82 17.43/53.19 4.05/4.32 4.07

Direct 7.7510.55 3.55/3.50 35.11/49.68 16.43/28.28 4.18/4.49 7.15
LLAMA2-70B-CHAT-HF

Referenced 11.09/0.80 3.47/3.33 30.16 /46.44 16.08 / 33.37 4.25/4.36 4.27

Direct 12.49/0.45 3.03/3.03 33.11/47.35 15.60/16.08 4.33/4.44 8.14
LLAMA2-13B-CHAT-HF

Referenced 7.29/0.64 2.82/2.54 26.88 /42.87 12.96/30.53 4.03/4.00 3.94

Direct 8.27/0.63 2.09/1.93 25.13/37.73 13.18/15.86 3.66/3.78 6.80

Overall, for two sets of responses of the same type (either “referenced” or “direct”), the lower-quality
set results in poorer LLM performance, underscoring the essential role of data quality in LLM SFT.
Notably, when both “direct” and “referenced” responses are generated by the same chat-LLM, the
“direct” responses consistently achieve superior performance, when their data quality is comparable to
or even slightly inferior to that of the “referenced” responses. Moreover, both “direct” and “referenced”
responses generally outperform human-generated data across various domains in LLM fine-tuning,
highlighting the advantages of maintaining consistent linguistic patterns and semantic surprisal.

An exception in LLM performance trends occurs with data generated by LLAMA2-13B-CHAT in
the coding domain, where “direct” responses, scoring 2 in helpfulness and correctness, significantly
lag behind both “referenced” responses, which score 2.5, and human data, which scores 3.3. We
find LLAMA2-13B-CHAT struggles to generate correct and helpful “direct” responses and fails to
preserve semantics when rewriting human responses into “referenced” responses, which may explain
the similar perplexity standard deviations between its two generated response types.

Takeaway. The analysis reveals several insights:

* The linguistic form and semantic surprisal inherent in the response styles of the training
data significantly influence the performance of LLM SFT.

* The LLM-generated responses demonstrate higher style consistency than human responses,
with “direct” responses showing the greatest consistency in linguistic form and semantic
surprisal.

* Both improved data quality and style consistency in a dataset enhance LLM SFT, and
among datasets of similar quality, those with higher style consistency yield better LLM
performance.

3 STYLE CONSISTENCY-AWARE RANKING

Inspired by the findings, we develop a Style Consistency-Aware Ranker to capture response differ-
ences in linguistic form and surprisal-determining features. This ranker selects training examples
with consistent response styles to enhance LLM SFT.

Ranking Objective. Given a dataset D = {(z;, yd, y7, y*)} ¥ |, where ; represents the instruction,
yd and y! are the “direct” and human “referenced” responses from chat-LLMs, respectively, and y
represents the human response. We aim to learn a ranking function R(x,y) that assigns higher
scores to responses consistently adhering to a beneficial response style. The objective for each
instance is to learn the ranking function:

‘Cr(maydvyTuyh) = Z max(07a—R9(x,y“)—|—R9(:E,yb))
(ye,y®)eP
s.t. min(f(z,y?), f(a?,yb)) >0)]

Under review as a conference paper at ICLR 2025

where P = {(y%,9"), (y",y"), (y?,y")} represents the set of desired pairwise orderings, based
on the findings from Section 2] that “direct” responses are more consistent in surprisal levels than
“referenced” ones, “referenced” responses are more consistent in linguistic form than human data, and
“direct” responses are more consistent than human data in both stylistic feature types. The margin «
ensures the difference in the ranking scores assigned by Rg(x, y), while the quality measure function
f(x,y) evaluates the quality (e.g., helpfulness, correctness) of the response y given the instruction .
The quality measure function f can be implemented using strong LLMs such as GPT-3.5 or GPT-4
with a prompt, as in |Chen et al.|(2024), to evaluate the helpfulness and correctness of the answers
and average these scores to obtain the final quality score. The quality threshold o ensures the ranker
rewards only those responses that are not only style-consistent but also of high quality, preventing it
from favouring unhelpful or erroneous ones.

Reward Function. The reward function Rg g/:lr, y) is modelled as a neural network that takes
representations of semantic surprisal v, € R and linguistic form v,, € R'**_ and computes a
scalar reward score using a multi-layer perceptron (MLP):

Rg(z,y) = MLP,([vp;v]), where v.=MLP.([V);V]]), v,=MaxPool(V,). (2)

Our independence tests reveal that semantic content is more instruction-dependent than linguistic
form, motivating separate pathways for v,, and v.. Prior work measures text surprisal via text—context
representation similarity (Michaelov et al., 2023 |Karampiperis et al., 2014)). Inspired by this, we
derive v.. by concatenating the initial token representations of the instruction and response (V9 and
Vg) and processing them through an MLP inspired by Relation Networks (Sung et al.l |2018) to
capture their semantic relationship. In contrast, v,, is obtained by applying max pooling over the
response sequence V, to capture surface-level features. Sequence representations V are generated
using an encoder such as ROBERTA-BASE (Liu et al.| 2019). This separation also helps disentangle
the two types of features, enabling better representation learning for distinct style elements.

Style Representation Learning. Accurately capturing distinct representations for linguistic form
(vp) and semantic surprisal (v,) is challenging, as these features can still become entangled during the
learning process, even with our specialized separation design. To address this, we leverage observed
similarities: the linguistic form of “referenced” responses is more similar to “direct” responses than
to human responses, and the semantic surprisal of “referenced” responses is closer to that of human
responses than to “direct” ones, as shown in Figure|l} We introduce a regularization term using triplet
margin losses to enforce these similarity patterns:

E'r'l(xv yd7 yTv yh) =)‘P max{O, d(V§7 V;) - d(V;a VZ) + ﬂp}
+Ae max{0, d(v?7 Vo) — d(ve, V:;L) + B}, 3)

where d(v;,v;) = ||[v; — v;||, is the distance function and /3 values are the margins.

Final Loss Function. The final loss function combines the ranking loss and the representation
learning losses: Lgcqr = L + L, This combined loss function guides the model to distinguish
between different styles while maintaining high-quality, relevant responses, enabling the selection of
style-consistent examples for efficient LLM fine-tuning.

Ranking and Filtering. After training reward function Rg(x, y), it ranks instruction-response pairs
(z,y) in a held-out dataset. The top k% of examples with the highest scores are selected to create a
style-consistent subset for fine-tuning pre-trained LLMs. This filtered dataset is expected to improve
the performance of fine-tuned LLMs on target tasks more than using the entire original dataset.

4 EXPERIMENTS

We train SCAR using data from the coding and open-ended question-answering domains to select
examples for LLM SFT from the full dataset in these same domains.

Ranker Data. We collect instructions for SCAR training and evaluation, which include 10,000
randomly selected examples from StackExchange for the code domain, and 6,000 instructions from a
combination of 5,000 random Dolly (Conover et al.;|2023)) data samples and the full LIMA dataset.
Dolly is a human-curated dataset with 15,000 high-quality instruction-response pairs. We create
the data by pairing instructions with human responses and the “referenced” and “direct” responses

Under review as a conference paper at ICLR 2025

Human Mixed Synthetic Human Mixed Synthetic

50% 25% 12.5% 50% 25% 12.5% 50% 25% 10% 50% 25% 10%
Code Domain Open-ended Domain

—*— Random —¥— Perplexity —#— Superfiltering HFR —e— ALPAGASUS —+— Diversity =4 = SCAR(OOD) == SCAR(ID) Full Data

Figure 2: The performance of LLMs fine-tuned on human and synthetic data subsets of various sizes
in code and open domains, sampled with different data selection approaches.

generated by GPT-3.5-turbo, as described in Section[2] Due to budget limitations, we use GPT-3.5-
TURBO to rate the helpfulness and correctness of responses according to the constraint in Eq.([T). We
randomly allocate the data with an 8:1:1 ratio for training, validation, and testing of the ranker.

Ranker Evaluation. We report the accuracy of the ranker in correctly rating responses on the test,
where the goal is to rate “direct” responses higher than “referenced” responses and “referenced”
responses higher than human responses. These accuracies are denoted as Acc(y? = y" = y"),
Acc(y” = y"), and Acc(y? = y"), respectively.

LLM SFT Data. SCAR and other baselines select data from two sources, held out from the
ranking training data. These sources provide diverse but style-inconsistent examples: i) Human-
Crowdsourced Data, curated by many authors, making it diversified and naturally style-inconsistent.
ii) Mixed Synthetic Data, generated by GPT-3.5-TURBO using various system prompts, reflecting
the practical use of multiple open-source synthetic datasets to enhance diversity.

For the code domain, human-written data comes from a sample of 20,000 crowdsourced examples
StackExchange. To ensure quality, we select examples with instructions that include code blocks and
answers with a rating above 2.

The mixed synthetic data comprises 20,000 examples, sourced evenly from: i) 5000 StackExchange
instructions with “direct” responses, ii) 5000 StackExchange instructions with “referenced” responses,
iii) 5,000 coding examples curated using Evol-Instruct (Luo et al.| 2023) by Zan et al.| (2023)), and
iv) 5,000 coding examples generated using Self-Instruct (Wang et al. 2023b). The instructions
cover Python, Java, JavaScript, and C++, identified using guesslan‘ For Self-Instruct, we use
GPT-3.5-TURBO to generate responses in the target programming languages.

For the open-ended domain, human-written data comes from 10,000 Dolly examples, which are held
out from the Dolly examples used for ranker training.

Mixed synthetic data includes 10,000 examples, evenly sourced from: i) 2,500 held-out Dolly
instructions with “direct” answers, ii) 2,500 Dolly instructions with “referenced” answers, iii) 2500
open-domain examples using Self-Instruct by LaMini (Wu et al.,|2023b)), and iv) examples curated
using Evol-Instruct from Xu et al.|(2023).

Data Selection and LLM SFT. The data selection methods sample 50%, 25%, and 12.5% of coding-
domain data to fine-tune CODELLAMA-7B, and 50%, 25%, and 10% of open-domain data to fine-tune
LLAMA3-8B. Both LLMs use LoRA to accommodate our limited computational resources.

LLM Evaluation. We use HumanEval and Multip-E for coding evaluation, reporting
the Avg. Pass@(1+10) = (Ave P““erA”g Pass@10) across four languages for fine-tuned
CODELLAMA-7B. For general tasks, we use AlpacaEval and report the L.C. WinRate of outputs
from fine-tuned LLAMA3-8B compared to GPT-4-PREVIEW-1106, as in Section 2]

Data Selection Baselines. We compare SCAR in two settings with six baselines:

(i) RANDOM: Randomly select examples.

Shttps://github.com/yoeo/guesslang

https://github.com/yoeo/guesslang

Under review as a conference paper at ICLR 2025

(i) PERPLEXITY (Albalak et al.,[2024): Select examples with the lowest response perplexity
(PPL(y|z)) computed using LLAMA3-8B.

(iii) SUPERFILTERING (Li et al.}[2024)): Select the most challenging examples for LLMs with
the highest Instruction-Following Difficulty (IFD) score. Here, we compute IFD as Pg;éz(’g)
using LLAMA3-8B. (

(iv) HUMAN FEEDBACK RANKING (HFR): Use the same ranker architecture as SCAR trained
on 10,000 stack-exchange-paired (Lambert et al.| 2023)) examples annotated given human
preference (each instruction paired with positive and negative responses) for coding domain
and 6000 human preference examples from Anthropic RLHF data (Bai et al., | 2022) for the
general domain.

(v) ALPAGASUS (Chen et al.l [2024)): Select data based on response quality scores rated by
GPT-3.5-TURBO, consistent with the rating method used in our ranker.

(vi) DIVERSITY: Apply k-means clustering to diversify examples by selecting randomly from
each cluster, a method commonly used in active learning (L1 & Haffari, 2023} [Li et al.,
2023c;|Zhdanovl, [2019).

(vii) SCAR(ID): SCAR trained on in-domain (ID) data (e.g., code) and selects examples within
the same domain.

(viii) SCAR(OOD): SCAR trained on in-domain data and select examples from an out-of-domain
(OOD) dataset. For instance, SCAR(OOD) is trained on the code domain and selects data
from the open domain or vice versa.

4.1 MAIN RESULTS AND DISCUSSION

Effectiveness of SCAR-Selected Data. As in Figure[2] SCAR(ID) can enhance SFT performance
while lowering computational costs. LLMs fine-tuned on only 25% and 10% of SCAR(ID)-selected
data achieve comparable or superior performance to models trained on full datasets in coding and
general domains, respectively.

SCAR(ID)-selected data consistently outperforms other baselines in fine-tuning LLMs, while some
baselines show unstable performance. SUPERFILTERING performs poorly in the coding domain. We
observe that it may assign high IFD scores to erroneous examples in crowdsourced coding data of
varying quality. PERPLEXITY and ALPAGASUS-selected data result in similar LLM performance
trends. However, their performance is inferior to SCAR(ID), which we attribute to their lack of
style consistency. Traditional active learning methods like RANDOM and DIVERSITY sampling
are less effective for LLM fine-tuning. This is likely due to LLMs requiring less data diversity for
effective fine-tuning, as evidenced by smaller datasets outperforming larger ones, and because our
style-inconsistent target scenario inherently includes diversity. Surprisingly, HFR underperforms in
most scenarios, suggesting that training the ranker on inconsistent human preferences from diverse
authors may hinder its ability to select the most beneficial training data for LLMs.

Impact of Selected Data Sizes. Figure [2| shows that in the coding domain, using fewer data selected
by various methods usually lowers LLM performance. However, in the open-ended domain, most
methods can select fewer synthetic data to fine-tune LLMs that outperform those trained on the full
dataset. With SCAR(ID), reducing data consistently improves LLM performance in the open domain.
This demonstrates SCAR(ID)’s superiority and, to some extent, supports the Superficial Alignment
Hypothesis, indicating that LLMs don’t always need vast amounts of data to perform well.

Impact of SCAR Perfqrmance. Table ShOWS Table 3: SCAR’s ranking accuracies when trained
that SCAR(OOD) achieves lower accuracies with in-domain or out-of-domain examples and

than SCAR(D) in both domains, explaining tested on ranking data from code and open do-
the lower LLM performance with SCAR(OOD)- mains.

selected data. Despite this, SCAR(OOD) out-

performs other selection baselines in most cases, CSSAR((I)D) gCC?R(O(;)D)

demonstrating its cross-domain robustness. The SE—) R L

Acc(y? = y" = y") | 9820 64.77 | 64.26 4585

larger accuracy gap between SCAR(OOD) and a. Zr

SCAR(ID) in th d in indi h Acc(y® = y") 98.40 80.80 | 68.29 67.88
(. .) in the open domain indicates t e.1t Acc(y™ = yM) 99.80 8147 | 95.58 69.89

generalizing from code to open-ended data is

more challenging than vice versa. Differentiating semantic surprisal-related features is more difficult

Under review as a conference paper at ICLR 2025

than distinguishing linguistic form, particularly when selecting code data in out-of-domain settings,
as shown by comparing Acc(y? = y") (68.29) and Acc(y” = y") (95.58).

Stylometric and Data Quality Analysis of
SCAR-Selected Data. Table 4l shows that Taple 4: Stylometric and quality analysis of data
SCAR(ID) improves style consistency in the gybsets selected by SCAR(ID) from the full human-

selected Dolly data, reflected by consistently crowdsourced StackExchange and Dolly datasets.
lower TTR and perplexity standard deviation

compared to the full dataset. However, for | Std. TTR | Std. PPL | Helpful | Correct
code data, while the TTR standard deviation ‘ StackExchange ‘
decreases, the perplexity standard deviation in- 100% 21.43 1.80 2.84 2.68
creases when selecting smaller subsets (25%, ggg‘; %2;2 %g% %% 3%
12.5%), suggesting that differentiating semantic 12.5% 14.29 1.94 2.67 2.77
surprisal features in code is challenging. This]6);1% - -
may explain the sudden performance drop in 50% | 28.43 5432 308 399
LLMs fine-tuned on these smaller code subsets. 25% 24.74 4951 3.96 3.93
Moreover, our method preserves average data 10% 23.73 3958 5.98 iy

quality (helpfulness, correctness), as rated using
GPT-4-1106-PREVIEW, comparable to the full dataset, likely due to the use of the data quality
constraint in Eq. (T) during ranker training.

Effectiveness of SCAR on Open-Source Table 5: L.C. WinRate for OLMO and average
LLMs. We fine-tune OLMO-7B (Groeneveld Pass@(1+10) for Starcoder fine-tuned on original

et al.,2024) and STARCODER-15.5B (Lietal., gjzes (320k, 13k) and their subsets (10k, 5k, 2.5k).
2023b) on subsets of their publicly available

. Data Sizes 320k 10k 5k 2.5k

SFT datasets. Specifically, we select 2.5k, 5k, OLMO-78 LC.WinRate | 386 | 537 564 408
and 10k examples from the allenai/tulu-v2-sft- Data Sizes 3k | 10k 5k 25k
p Jf STARCODER-13.5B | Ayo ‘pacs@(1+10) | 37.85 | 39.69 40.09 40.14

mixtur{] (320k) and bigcode/guanaco-commit.
(13k) datasets. These subsets consist of a mix-
ture of synthetic and human-generated data, selected using the SCAR(ID) method. We then compare
their performance to the official checkpoints, OLMO-7B-SFT and OCTOCODER-15.5B (Muen-
nighoff et al.,2023), which were instruction-tuned on the full datasets. Table E] shows that SCAR-
selected subsets significantly boost performance, achieving these results with only 0.7% to 20% of the
original data, as measured by L.C. WinRate on AlpacaEval and average Pass@(1+10) on HumanEval
and MultiPL-E.

4.2 ABLATION STUDY

To evaluate the effectiveness of SCAR(ID) components, we compare the full ranker training setting
(Full, GPT-3.5) against variations without the quality constraint in Eq. (I) (w/o con, GPT-3.5),
without representation learning in Eq. (3) (w/o rl, GPT-3.5), and without “referenced” responses
during training (w/o ref, GPT-3.5). We also generate synthetic data to train the ranker using LLAMA?2-
13B (Full, Llama2-13b), LLAMA2-70B (Full, Llama2-70b), and LLAMA3-70B (Full, Llama3-70b),
as well as LLAMA2-13B without the quality constraint (w/o con, Llama2-13b).

Style Representation Learning. Figure [3| shows that removing the representation learning loss
(w/o 11, GPT-3.5) or excluding “referenced” responses (w/o ref, GPT-3.5) only slightly reduces LLM
performance in the code domain. The objective in Eq. (3) is likely satisfied even without the loss
because “referenced” responses provide an intermediate style during training, which is why we set a
low coefficient (0.1) for this loss. However, excluding “referenced” responses significantly degrades
performance in the open domain (Table [I6] Appendix) and disrupts the optimization of Eq. (3).
Table|17]in the Appendix further analyses the representation learning results.

Data Quality Constraint. Figure [3|(2nd) shows that removing the data quality constraint in Eq.
significantly worsens the performance of LLMs fine-tuned on human-crowdsourced data when
SCAR is trained on lower-quality datasets, such as LLAMA2-13B-generated responses (w/o con,
Llama2-13b), compared to using the constraint (Full, Llama2-13b). In this case, SCAR tends to select
style-consistent but erroneous or unhelpful examples from LLM SFT data with varying quality(e.g.

“https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture
>https://huggingface.co/datasets/bigcode/guanaco-commits

Under review as a conference paper at ICLR 2025

Mixed Synthetic, GPT-3.5

—e— Full,GPT-3.5 =+ w/ocon,GPT-3.5 -=- wjor,GPT-3.5 =+ w/o ref, GPT-3.5 Full, Llama2-70b === Full, Llama2-13b -~ w/o con, Llama2-13b Full, Llama3-70b |

Figure 3: Different LLM fine-tuning performance using SCAR(ID) trained under various settings to
select subsets with various sizes from full human-written and GPT-3.5 synthesized code data.

crowdsourced data). However, in other cases, removing the quality constraint has minimal impact on
data selection performance.

LLMs for Generating SCAR Training Data. Figure [3]shows that using Llama-generated synthetic
data for training SCAR slightly reduces fine-tuned LLM performance compared to GPT-3.5-generated
data, but the impact is more severe with LLAMA2-13B-generated data. This is likely because the
quality constraint filters out 90% of low-quality LLAMA2-13B examples, limiting the ranker’s
generalization ability. Style misalignment between the LLAMA2 and GPT-3.5 data may also affect
data selection performance when selecting mixed synthetic GPT-3.5 data.

5 RELATED WORK

Instruction-Tuning Data Selection. Instruction-tuning trains LLMs to follow complex instructions
in various contexts (Wel et al., 2021} |Sanh et al., 2021)). Data are sourced from human-curated
examples (Wang et al., 2022bj |[Zhou et al.,|2024) and LLM outputs (Xu et al., [2023 Wang et al.|
2022a). Studies (Zhou et al., 2024} (Chen et al., [2024; L1 et al., [2024; [2023a;; |[Lu et al., [2023; [Liu
et al.) show that smaller, high-quality datasets can outperform significantly larger ones in boosting
LLM performance. LIMA uses expert human curation for stylistic consistency (Zhou et al.| [2024)),
while AlpaGasus (Chen et al.| 2024) utilizes LLMs to assess data quality. |Li et al.[(2024; 2023al)
apply Instruction Following Difficulty scores to identify effective training examples. Lu et al.|(2023)
enhances data diversity by tagging instructional elements while |Bukharin & Zhao|(2023) does so by
measuring instruction embedding similarities.

Automatic Authorship Detection. Our method relates to authorship detection studies. Traditional
authorship detection used lexical features like TTR, MTLD, and Flesch readability scores (Tripto
et al., 2023 [Zheng & Jin,|2023). Recent focus has shifted to distinguishing human and machine-
generated texts using advanced neural networks to analyze styles at the corpus (Mitchell et al., [2023]
Su et al., 2023) or the sentence levels (Zeng et al., 2024} [2023; [Wang et al., 2023aj; [Zeng et al.).
Recent studies (Xu & Sheng, [2024; Su et al., [2023; Wang et al., |[2023a; Mitchell et al.| 2023} |Wu
et al.| |2023a) have demonstrated that perplexity can effectively differentiate between human and
machine-generated text styles. These findings further validate our choice of using perplexity for
stylometric analysis.

6 CONCLUSION

Our empirical study demonstrates that, among training datasets with comparable helpfulness and
correctness, those with higher consistency in linguistic form and semantic surprisal significantly
enhance the performance of fine-tuned LLMs. Building on this insight, we propose SCAR, a ranking
method designed to measure and select stylistically consistent training data for LLM fine-tuning. Our
experiments show that LLMs fine-tuned on small subsets of the original dataset—using as little as
0.7% of the data selected by SCAR—can outperform models trained on the full datasets. Moreover,
SCAR consistently outperforms other data selection baselines in LLM fine-tuning.

10

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

Our experiments leverage both proprietary models (GPT-3.5 and GPT-4) accessible via the OpenAl
AP]E], as well as the open-source LLAMA model family, including LLAMA-2, CODELLAMA, and
LLAMA-3. To facilitate reproducibility, we specify the exact versions used (e.g., GPT-3.5-TURBO-
0125 and GPT-4-1106-PREVIEW). The GPU resources and training configurations used for fine-
tuning the open-source models are detailed in Appendix[A.4] For prompts used in our experiments, we
include those adopted from prior works when the experimental settings are comparable, ensuring fair
comparisons. For the newly designed prompts, we provide the exact formulations in Appendix
and[A.3] alongside two representative example outputs generated by these prompts. Additionally,
we have made our code and datasets available in an anonymous GitHub repository, as referenced
in https://anonymous. 4open.science/r/SCAR-0233/, to enable replication of our findings.

ETHICS STATEMENT

This study introduces SCAR, a data selection method designed to enhance LLM performance by
maintaining consistency in linguistic form and semantic surprisal. We leverage publicly available
datasets such as tulu-v2, guanaco-commits, LIMA, and StackExchange, ensuring compliance with
privacy regulations and minimizing the inclusion of sensitive information.

To promote transparency and reproducibility, we provide detailed descriptions of our data selection
process and experimental setups, enabling others to replicate our findings. By openly sharing our
methodologies, we aim to contribute to the development of responsible and ethical Al technologies.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-1lama/llama3/blob/
main/MODEL_CARD. md.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
for language models. arXiv preprint arXiv:2402.16827, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Alexander Bukharin and Tuo Zhao. Data diversity matters for robust instruction tuning. arXiv
preprint arXiv:2311.14736, 2023.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-e:
a scalable and polyglot approach to benchmarking neural code generation. IEEE Transactions on
Software Engineering, 2023.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with fewer data.
International Conference on Learning Representations, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Shttps://platform.openai.com/docs/models

11

https://anonymous.4open.science/r/SCAR-0233/
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://platform.openai.com/docs/models

Under review as a conference paper at ICLR 2025

Noam Chomsky. Syntactic Structures. De Gruyter Mouton, Berlin, Boston, 1957. ISBN
9783112316009. doi: doi:10.1515/9783112316009. URL https://doi.org/10.1515/
9783112316009.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly
open instruction-tuned 1lm, 2023. URL https://www.databricks.com/blog/2023/04/12/
dolly-first-open-commercially-viable-instruction-tuned-11m.

Chrysanne DiMarco and Graeme Hirst. A computational theory of goal-directed style in syntax.
Computational Linguistics, 19(3):451-500, 1993.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for methods that
learn from human feedback, 2023.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

N. Fabb. Language and literature. In Neil J. Smelser and Paul B. Baltes (eds.), International
Encyclopedia of the Social & Behavioral Sciences, pp. 8292-8297. Pergamon, Oxford, 2001.
ISBN 978-0-08-043076-8. doi: https://doi.org/10.1016/B0-08-043076-7/03063-1. URL https:
//www.sciencedirect.com/science/article/pii/B0080430767030631.

Adam Goodkind and Klinton Bicknell. Predictive power of word surprisal for reading times is a linear
function of language model quality. In Proceedings of the 8th workshop on cognitive modeling
and computational linguistics (CMCL 2018), pp. 10-18, 2018.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerat-
ing the science of language models. arXiv preprint arXiv:2402.00838, 2024.

Eduard Hovy. Generating natural language under pragmatic constraints. Journal of Pragmatics, 11
(6):689-719, 1987.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova, and Rada Mihalcea. Deep Learning for Text Style
Transfer: A Survey. Computational Linguistics, 48(1):155-205, 04 2022. ISSN 0891-2017. doi:
10.1162/coli_a_00426. URL https://doi.org/10.1162/coli_a_00426.

Daniel Jurafsky. Speech and language processing, 2000.

Dongyeop Kang and Eduard Hovy. Style is NOT a single variable: Case studies for cross-stylistic
language understanding. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.),
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 2376-2387, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.185. URL https://aclanthology.org/2021.acl-1long.185.

Pythagoras Karampiperis, Antonis Koukourikos, and Evangelia Koliopoulou. Towards machines for
measuring creativity: The use of computational tools in storytelling activities. In 2014 IEEE 14th
International Conference on Advanced Learning Technologies, pp. 508-512. IEEE, 2014.

Jussi Karlgren. The wheres and whyfores for studying textual genre computationally. In AAAI
Technical Report (7), pp. 68—70. Citeseer, 2004.

12

https://doi.org/10.1515/9783112316009
https://doi.org/10.1515/9783112316009
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.sciencedirect.com/science/article/pii/B0080430767030631
https://www.sciencedirect.com/science/article/pii/B0080430767030631
https://doi.org/10.1162/coli_a_00426
https://aclanthology.org/2021.acl-long.185

Under review as a conference paper at ICLR 2025

J Peter Kincaid, Robert P Fishburne Jr, Richard L Rogers, and Brad S Chissom. Derivation of new
readability formulas (automated readability index, fog count and flesch reading ease formula) for
navy enlisted personnel. 1975.

Nathan Lambert, Lewis Tunstall, Nazneen Rajani, and Tristan Thrush. Huggingface h4 stack ex-
change preference dataset, 2023. URL https://huggingface.co/datasets/HuggingFaceH4/
stack-exchange-preferences.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
selection for instruction tuning. arXiv preprint arXiv:2308.12032, 2023a.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning Cheng, and Tianyi
Zhou. Superfiltering: Weak-to-strong data filtering for fast instruction-tuning. arXiv preprint
arXiv:2402.00530, 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023b.

Zhuang Li and Gholamreza Haffari. Active learning for multilingual semantic parser. In Findings of
the Association for Computational Linguistics: EACL 2023, pp. 633639, 2023.

Zhuang Li, Lizhen Qu, Philip R Cohen, Raj Tumuluri, and Gholamreza Haffari. The best of
both worlds: Combining human and machine translations for multilingual semantic parsing with
active learning. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 9511-9528, 2023c.

Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu, Nouha Dziri, Melanie Sclar, Khyathi Chandu,
Chandra Bhagavatula, and Yejin Choi. The unlocking spell on base llms: Rethinking alignment via
in-context learning. In The Twelfth International Conference on Learning Representations, 2023.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
alignment? a comprehensive study of automatic data selection in instruction tuning. In The Twelfth
International Conference on Learning Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuangi Tan, Chang Zhou, and
Jingren Zhou. # instag: Instruction tagging for analyzing supervised fine-tuning of large language
models. In The Twelfth International Conference on Learning Representations, 2023.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Philip M McCarthy. An assessment of the range and usefulness of lexical diversity measures and
the potential of the measure of textual, lexical diversity (MTLD). PhD thesis, The University of
Memphis, 2005.

JA Michaelov, MD Bardolph, CK Van Petten, BK Bergen, and S Coulson. Strong prediction: Lan-
guage model surprisal explains multiple n400 effects. neurobiology of language, 1-71. Technical
report, Retrieved 2023-04-25, from https://doi. org/10.1162/nol a 00105 doi: 10.1162 ..., 2023.

Remi Mir, Bjarke Felbo, Nick Obradovich, and Iyad Rahwan. Evaluating style transfer for text.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp- 495-504, 2019.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn.
Detectgpt: Zero-shot machine-generated text detection using probability curvature. In International
Conference on Machine Learning, pp. 24950-24962. PMLR, 2023.

13

https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-preferences
https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-preferences

Under review as a conference paper at ICLR 2025

Niklas Muennighoff, Qian Liu, Armel Randy Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue
Zhuo, Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack:
Instruction tuning code large language models. In The Twelfth International Conference on
Learning Representations, 2023.

Byung-Doh Oh and William Schuler. Why Does Surprisal From Larger Transformer-Based Language
Models Provide a Poorer Fit to Human Reading Times? Transactions of the Association for
Computational Linguistics, 11:336-350, 03 2023. ISSN 2307-387X. doi: 10.1162/tacl_a_00548.
URL|https://doi.org/10.1162/tacl_a_00548.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730-27744, 2022.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training enables
zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

Jinyan Su, Terry Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank information for
zero-shot detection of machine-generated text. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 1239512412, 2023.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1199-1208, 2018.

Mildred C Templin. Certain language skills in children: Their development and interrelationships,
volume 10. JSTOR, 1957.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Nafis Tripto, Adaku Uchendu, Thai Le, Mattia Setzu, Fosca Giannotti, and Dongwon Lee. HANSEN:
Human and AI spoken text benchmark for authorship analysis. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023, pp.
13706-13724, Singapore, December 2023. Association for Computational Linguistics. doi: 10.
18653/v1/2023.findings-emnlp.916. URL https://aclanthology.org/2023.findings-emnlp.
916.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Pengyu Wang, Linyang Li, Ke Ren, Botian Jiang, Dong Zhang, and Xipeng Qiu. Seqxgpt: Sentence-
level ai-generated text detection. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pp. 1144-1156, 2023a.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.
arXiv preprint arXiv:2212.10560, 2022a.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al.
Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks. arXiv
preprint arXiv:2204.07705, 2022b.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
The 61st Annual Meeting Of The Association For Computational Linguistics, 2023b.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH Hoi.
Codet5+: Open code large language models for code understanding and generation. arXiv preprint
arXiv:2305.07922, 2023c.

14

https://doi.org/10.1162/tacl_a_00548
https://aclanthology.org/2023.findings-emnlp.916
https://aclanthology.org/2023.findings-emnlp.916

Under review as a conference paper at ICLR 2025

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2021.

Kangxi Wu, Liang Pang, Huawei Shen, Xueqi Cheng, and Tat-Seng Chua. Llmdet: A third party large
language models generated text detection tool. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 2113-2133, 2023a.

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muhammad Abdul-Mageed, and Alham Fikri Aji.
Lamini-lm: A diverse herd of distilled models from large-scale instructions. arXiv preprint
arXiv:2304.14402, 2023b.

A.D. Wyner. A definition of conditional mutual information for arbitrary ensembles. Infor-
mation and Control, 38(1):51-59, 1978. ISSN 0019-9958. doi: https://doi.org/10.1016/
S0019-9958(78)90026-8. URL |https://www.sciencedirect.com/science/article/pii/
S0019995878900268.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
e-prints, pp. arXiv—2304, 2023.

Zhenyu Xu and Victor S Sheng. Detecting ai-generated code assignments using perplexity of large
language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
23155-23162, 2024.

Zhaorui Yang, Tianyu Pang, Haozhe Feng, Han Wang, Wei Chen, Minfeng Zhu, and Qian Liu.
Self-distillation bridges distribution gap in language model fine-tuning. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1028—1043, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.58.
URL https://aclanthology.org/2024.acl-1long.58.

Daoguang Zan, Ailun Yu, Bo Shen, Jiaxin Zhang, Taihong Chen, Bing Geng, Bei Chen, Jichuan Ji,
Yafen Yao, Yongji Wang, and Qianxiang Wang. Can programming languages boost each other via
instruction tuning?, 2023.

Zijie Zeng, Shiqi Liu, Lele Sha, Zhuang Li, Kaixun Yang, Sannyuya Liu, Dragan Gasevic, and Guan-
liang Chen. Detecting ai-generated sentences in human-ai collaborative hybrid texts: Challenges,
strategies, and insights.

Zijie Zeng, Lele Sha, Yuheng Li, Kaixun Yang, Dragan Gasevié, and Guanliang Chen. Towards auto-
matic boundary detection for human-ai hybrid essay in education. arXiv preprint arXiv:2307.12267,
2023.

Zijie Zeng, Lele Sha, Yuheng Li, Kaixun Yang, Dragan GaSevi¢, and Guangliang Chen. Towards
automatic boundary detection for human-ai collaborative hybrid essay in education. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pp. 22502-22510, 2024.

Fedor Zhdanov. Diverse mini-batch active learning. arXiv preprint arXiv:1901.05954, 2019.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Wanwan Zheng and Mingzhe Jin. A review on authorship attribution in text mining. Wiley Interdisci-
plinary Reviews: Computational Statistics, 15(2):e1584, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Terry Yue Zhuo. Ice-score: Instructing large language models to evaluate code. In Findings of the
Association for Computational Linguistics: EACL 2024, pp. 2232-2242, 2024.

15

https://www.sciencedirect.com/science/article/pii/S0019995878900268
https://www.sciencedirect.com/science/article/pii/S0019995878900268
https://aclanthology.org/2024.acl-long.58

Under review as a conference paper at ICLR 2025

A

Al

APPENDIX

CASE STUDIES

Table 6: Comparison of the three responses regarding FIFA’s stance on instant replay.

Instruction

Why is FIFA against adding instant replay to the game?

Human Response

There are a few fundamental considerations:

Uncertainty is a part of the game. The referee and linesmen are the arbiters of the action.
Instant replay would limit their authority.

Football is global. Many places do not have access to the technology necessary to
implement instant replay.

Football is a fast-paced game with few opportunities for stoppage. Instant replay would
unnecessarily slow the pace.

In 2008, FiFA President Sepp Blatter said:

"Let it be as it is and let’s leave [football] with errors. The television companies will have
the right to say [the referee] was right or wrong, but still the referee makes the decision — a
man, not a machine."

Blatter and others at FIFA have repeatedly argued against using instant replay. But lately,
FIFA has begun to come around on the idea. At FIFA’s Congress in Sdo Paulo prior to the
2014 World Cup, Blatter proposed allowing managers 2 challenges per game, much like
the NFL handles challenges today.

Although it’s not quite "instant replay," in 2012 FIFA approved two different goal-line
technologies to improve referee accuracy: "Hawk-Eye" — which uses visual triangulation
to determine ball location — and "GoalRef" — which uses a microchip in the ball and
magnetic sensors within goalposts. (Many say FIFA approved the technologies in response
to Frank Lampard’s snubbed "goal" against Germany in the 2010 World Cup.) In 2013,
FIFA announced it would use GoalControl, a German competitor to Hawk-Eye, at the
Confederations Cup, basically a rehearsal for the World Cup. After a successful run at that
tournament, FIFA announced it would implement GoalControl at the 2014 World Cup. The
Guardian provides a pretty helpful FAQ on the technology.

FIFA may choose to implement further changes to approved goal-line technology and
referee rules when it meets again after the World Cup.

Human Referenced Response from GPT-3.5

FIFA is against adding instant replay to the game for several reasons. One of the main
concerns is that uncertainty is seen as a natural part of the game, and implementing instant
replay would limit the authority of the referees and linesmen. Additionally, football is a
global sport, and many regions may not have the necessary technology to support instant
replay. Another factor is that football is a fast-paced game with minimal stoppages, so
introducing instant replay could potentially disrupt the flow of the game. Ultimately, FIFA
has historically been hesitant to embrace instant replay, preferring to maintain the human
element in decision-making on the field.

Direct Response from GPT-3.5

FIFA is against adding instant replay to the game because they believe it would disrupt
the flow of the game and potentially lead to delays. They also argue that human error is
a part of the game and adding instant replay could take away from the excitement and
unpredictability of live sports. Additionally, implementing instant replay would require
significant changes to the rules and regulations of the game, which FIFA may be hesitant to
do.

16

Under review as a conference paper at ICLR 2025

Table 6] provides complete examples of human, “referenced,” and “direct” responses to the instruction,
preserving all details. As shown, the “referenced” response closely aligns with the semantic content
of the human response, thereby reflecting comparable semantic surprisal. In contrast, the “direct”
response maintains a similar tone and formatting to the “referenced” response, indicating a shared
linguistic form between them.

A.2 PROMPT FOR GENERATING REFERENCED RESPONSE

The prompt used to rewrite the human response to generate the “referenced” response is as follows:

Reference Answer:
{human response}

Background

You are a knowledgeable AI assistant.

Above is the reference answer. Below is an instruction that
describes a task. Given the reference answer, write a response
that appropriately completes the request.

Please keep the semantics of the reference answer unchanged in
your response, while pretending as if you have never seen the
reference answer, when crafting your final response.

Instruction:
{instruction}

Response:

A.3 PROMPT FOR GENERATING DIRECT RESPONSE

The prompt instruction to generate “direct” response is as follows:

Background

You are a knowledgeable AI assistant.

Below is an instruction that describes a task. Please write a
response that appropriately completes the request.

Instruction:
{instruction}

Response:

A.4 IMPLEMENTATION DETAILS

We fine-tune the META-LLAMA-3-8B and CODELLAMA-7B-HF models using LoRA, a parameter-
efficient tuning method, on NVIDIA A100 GPUs to minimize computational costs. Both models
undergo three training epochs with a learning rate of 2 x 10~°, using a cosine learning rate scheduler
and a warm-up ratio of 0.03. Training is performed with BF16 and TF32 precision modes enabled.
For META-LLAMA-3-8B, we employ a single GPU with a batch size of 2, while for CODELLAMA-
7B-HF, two GPUs are used with the same batch size, incorporating LoRA parameters setto r = 8
and o« = 16. For the OpenAl models, we adopt gpt-3.5-turbo-0125 and gpt-4-1106-preview as
our default configurations.

The SCAR ranker is trained with a learning rate of 2 x 10~5 for up to 20 epochs, using early
stopping based on validation performance. For code domain tasks, we utilize CODETSP-110M-

17

Under review as a conference paper at ICLR 2025

EMBEDDING (Wang et al.||2023c)) for contextual representation encoding, while for open-domain
tasks, we employ ROBERTA-BASE (Liu et al.|[2019).

A.5 COMPREHENSIVE EVALUATION RESULTS FOR LLM PERFORMANCE ON CODING TASKS

Table|/| presents the detailed results for the coding tasks mentioned in Table 2} providing a compre-
hensive breakdown of the Pass@1 and Pass@ 10 metrics for each task, rather than just the average
scores.

Table [/|reveals that “direct” responses outperform “referenced” responses across most programming
benchmarks, suggesting that generating answers without mirroring human semantic content yields
better results for coding tasks. For instance, GPT-3.5-turbo-generated “direct” achieves a Pass@ 1
of 38.95% on the HumanEval benchmark, compared to 30.83% for GPT-3.5-turbo-generated “ref-
erenced,” and similar trends are observed across Java, JavaScript, and C++ benchmarks. Human
responses also lag behind “direct” and “referenced” responses, indicating that synthetic data can
sometimes offer better stylistic consistency, which can boost LLM SFT performance. Llama2-70b-
chat performs notably better than its smaller counterpart, Llama2-13b-chat, showing a clear advantage
due to larger model scale, though it still falls short of GPT-3.5-turbo in most metrics, highlighting
GPT-3.5-turbo’s stronger coding capabilities. Interestingly, JavaScript stands out with relatively
higher scores across the board, possibly due to its simpler syntax and predictable patterns that LLMs
can easily replicate. Overall, these results emphasize the effectiveness of “direct” responses and the
critical role of data quality in fine-tuning LLLMs for code generation.

Table 7: Detailed performance comparison of fine-tuned Codel.lama-7b evaluated on HumanEval
(Python) and MultiPL-E (Java, JavaScript, C++) coding benchmarks. The LLMs are fine-tuned on
training sets curated with different response generation strategies and LLMs. Pass@1 and Pass@ 10
scores for each programming language are reported.

Data Curation HumanEval MultiPL-E
Methods |~ " Python | Java JavaScript =~ C++
Pass@1/Pass@10 | Pass@1/Pass@10 Pass@1/Pass@10 Pass@1/Pass@10
Human Response 32.93/47.93 29.78 1 42.35 33.84/51.85 30.05/44.38
GPT-3.5-turbo
Referenced 30.83/54.61 31.53/42.43 33.96/53.19 30.31/45.05
Direct 38.95/53.82 32.11/44.49 37.86/53.97 31.52/46.45
Llama2-70b-chat
Referenced 30.94/48.18 29.71/41.84 32.36/52.13 27.64 /43.59
Direct 37.26/50.14 29.96 /42.73 35.52/50.66 29.69 /45.86
Llama2-13b-chat
Referenced 26.20/43.52 26.65/38.45 29.02 /4791 25.63 /41.60
Direct 26.16/39.13 22.77/33.04 28.57/43.56 23.01/35.19

A.6 COMPREHENSIVE EVALUATION RESULTS FOR STYLOMETRIC ANALYSIS

To quantitatively evaluate the stylistic consistency across datasets, we employed five widely-used
stylometric metrics to capture variations in linguistic form, along with perplexity to assess semantic
surprisal:

Linguistic Form Metrics:

1. Type-Token Ratio (TTR): Measures lexical diversity by calculating the ratio of unique
words (types) to the total number of words (tokens) in a text. A higher TTR indicates greater
lexical diversity.

2. Measure of Textual Lexical Diversity (MTLD): MTLD is less sensitive to text length
compared to TTR. It computes the average length of sequential word strings that maintain a
given TTR value, where higher MTLD scores suggest greater lexical diversity.

3. Average Sentence Length (Avg. Sent. Len.): Calculates the average number of words per
sentence, providing insights into the syntactic complexity of the text.

4. Punctuation Frequency (Punct. Freq.): Computes the frequency of punctuation marks
within each response, reflecting the density of punctuation usage.

18

Under review as a conference paper at ICLR 2025

Table 8: Comprehensive performance comparison of stylometric analysis across datasets using
instructions from StackExchange and LIMA, paired with responses generated by human writers
and various LLMs, presenting the average (Mean) and standard deviation (Std.) for five authorship
detection metrics, as well as Perplexity(y.|x) and Perplexity(y|z).

Data Curation | TTR | MTLD | Avg. Sent. Len. | Punct. Freq. | Flesch Score | PPL(y|z) PPL(y.|z)
Methods [Mean Std. [Mean Std. [Mean Std. | Mean Std. | Mean Std. || Mean Std. | Mean Std.
StackExchange

Human Response | 59.36 22.27 | 14.65 857 | 77.77 7259 | 33.12 2842 | 40.84 4678 || 333 141 | 243 0.99
GPT-3.5-turbo 1

Referenced 3235 795 13.92 2.68 | 43.01 18.51 39.39 21.73 | 5525 1648 1.87 0.3l 1.86 0.57

Direct 34.88 7.75 13.62 2.64 | 43.82 21.52 | 34.65 19.07 | 52.12 36.16 1.84 028 ‘ 1.86 0.55
Llama2-70b-chat '

Referenced 4389 11.09 | 14.68 3.79 | 59.88 39.26 3491 2477 | 5240 20.80 2.02 048 | 2.04 0.80

Direct 44,64 1249 | 1425 387 | 6442 53.47 31.67 24.11 | 5146 21.21 1.62 0.25 ‘ 1.64 0.45

Llama2-13b-chat '
Referenced 31.83 7.29 | 1596 3.03 | 38.59 17.85 | 4693 26.09 | 61.10 15.65 1.80 024 | 193 0.64
Direct 31.91 8.27 15.09 3.06 | 40.15 2634 | 40.29 23.56 | 59.59 16.56 1.74 0.22 ‘ 1.93 0.63
LIMA '
Human Response | 3326 19.54 | 1639 898 | 27.19 33.89 | 56.99 61.87 | 6493 22.89 8.89 8.01 | 9272 71.28
GPT-3.5-turbo '
Referenced 4744 1743 | 15.65 5.63 | 24.81 16.55 1478 1093 | 57.72 21.26 594 586 | 76.88 53.19
Direct 46.61 1643 | 1526 5.39 | 24.69 16.39 14.17 9.44 | 55.06 20.88 3.19 361 ‘ 42.65 28.28
Llama2-70b-chat '
Referenced 38.87 16.08 | 1556 4.75 | 23.96 16.71 2644 1832 | 60.31 18.64 474 5.04 ‘ 52.60 33.37

Direct 36.50 15.60 | 15.34 5.14 | 23.66 15.43 2774 16.67 | 57.83 18.32 2.51 3.11 | 28.06 16.08
Llama2-13b-chat '

Referenced 3439 1296 | 16.52 4.24 | 2391 13.00 | 27.93 1591 | 63.31 17.66 3,70 349 | 4536 30.53

Direct 30.63 13.18 | 15.57 393 | 23.62 17.88 | 33.87 1739 | 59.85 19.11 241 1.13 ‘ 2526 15.86

5. Flesch Reading Ease Score (Flesch Score): Assesses readability based on the average
sentence length and the average number of syllables per word. Higher scores indicate greater
readability.

Semantic Surprisal Metrics:

1. Perplexity of P(y.|z): Measures the surprisal of generating a response given a specific
instruction, focusing only on the semantic content. We isolate semantic content words—such
as nouns, verbs, and adjectives—from functional words like articles and conjunctions using
a heuristic method detailed in Appendix[A.§]

2. Perplexity of P(y|xz): Captures the overall response surprisal given the instruction, includ-
ing the surprisal pattern for both semantic content and linguistic form.

Table [§] presents the average and standard deviation of these metrics across all responses for both
human-written and LLM-generated texts using instructions from the LIMA and StackExchange
datasets.

Our analysis shows that LLM-generated responses have higher stylistic consistency compared to
human-written ones. Across both datasets, responses synthesized by GPT-3.5 and Llama2 demonstrate
lower standard deviations in most metrics, indicating greater consistency in terms of functional word
diversity, sentence length, punctuation usage, and readability.

We observe that “direct” responses achieve higher consistency in semantic and overall response
surprisal than “referenced” responses, as evidenced by their lower perplexity variance. Interestingly,
the “referenced” responses also show greater surprisal consistency than human-written responses,
particularly in the StackExchange code data. This is somewhat counterintuitive, as one would expect
the surprisal consistency of “referenced” responses to closely match that of human outputs. We
hypothesize that this discrepancy occurs due to the following reasons: (i) Even when instructed
to generate “referenced” responses that align closely with semantic content of the original human-
written responses, the LLM may still introduce subtle variations or modifications that deviate from the
original meaning. (ii) Consistent linguistic form features also contribute to the consistency of overall
response surprisal. Despite removing functional words, it is challenging to eliminate all elements of
linguistic form from the response. Additionally, we observe that overall response perplexity PPL(y|x)
follows similar trends to semantic surprisal perplexity PPL(y.|z), implying that semantic content is
the primary factor influencing response surprisal. Furthermore, the average PPL(y.|z) values are
noticeably lower than PPL(y|x) in the open-domain data, likely because removing functional words

19

Under review as a conference paper at ICLR 2025

reduces response fluency and naturalness. In contrast, these PPL values are more comparable in the
code domain, possibly because code blocks are extracted as a whole, preserving the fluency and
integrity of the response.

Notably, the LIMA dataset, curated by human experts for style consistency, still shows lower stylistic
consistency regarding our metrics compared to the LLM-synthesized datasets. This observation
highlights the difficulty of achieving style consistency through manual curation and underscores the
potential of using LLMs to generate stylistically consistent data.

In summary, our stylometric analysis quantitatively confirms the hypothesis that LLM-synthesized
datasets exhibit greater stylistic consistency compared to human-written responses.

A.7 CONDITIONAL MUTUAL INFORMATION CALCULATION

We calculate the Conditional Mutual Information (CMI) to measure the independence between the
semantic content (y,), functional words (y,,), and the instruction (z). The CMI between y. and
given y, is defined as:

N (@) | ..() @)
_ 1 P(ye” | 2@, yp"”)
[(yC’I'yP)N210g< P ())

where N is the total number of examples, and P(ygi) | 2, y;(,i)) and P(yéi) | yj(f)) denote the
conditional probabilities for each instance . Similarly, the CMI between y,, and z given y, is:

N (D) ,.(3) ,,(%)
. _]‘ P(yp ‘ xz vyc)
I(yp;x | ye) = i ;mg (P |59 .

These CMI scores are averaged across all examples in our dataset to provide an overall measure of
independence. We use the META-LLAMA-3-8B language model to estimate the required conditional
probabilities for each instance:

* P(y. | z,yp) and P(y. | yp), which measure the likelihood of the semantic content
conditioned on the instruction and form-related features.

* P(yp, | x,y.) and P(y, | y.), which capture the dependency of functional words given the
instruction and semantic content.

To extract the semantic (y.) and non-semantic (y,) components from each response y, we employ
a heuristic approach based on POS tagging, as outlined in Appendix[A.8] We then calculate CMI
values using StackExchange and LIMA instructions paired with both human-written and GPT-3.5-
turbo-generated responses.

The comparative analysis of CMI scores reveals the extent to which the instruction x influences
Y. and y,. Higher CMI values indicate that semantic content is more strongly influenced by the
instruction, while lower CMI values suggest that functional words are less affected, reflecting a
weaker dependency of linguistic form features on the instruction.

A.8 IDENTIFICATION OF SEMANTIC AND NON-SEMANTIC WORDS

To distinguish between semantic content (y.) and non-semantic (linguistic form-related) words (y,,)
in the responses, we adopt a heuristic approach based on part-of-speech (POS) tagging. Specifically,
content words—nouns, verbs, adjectives, and adverbs—are classified as semantic, while other POS
tags (e.g., pronouns, conjunctions, prepositions, and determiners) are categorized as non-semantic.

For code-related responses, we also treat code blocks as semantic content, given their integral role in
conveying the main content of the response. Code blocks are identified using regular expressions that
capture common code delimiters, such as triple backticks ("~), tildes (~~~), and inline code marked
by single backticks (7).

20

Under review as a conference paper at ICLR 2025

Given the limitations of current NLP techniques, achieving perfect separation between semantic
and non-semantic elements is challenging. However, our primary goal is not absolute precision,
but to perform independence tests on various stylistic features relative to instructions and estimate
semantic surprisal to inform our data selection ranker design. By focusing on comparative patterns,
our approach effectively captures the impact of semantic and non-semantic content on stylistic
consistency, and how these patterns influence data selection, ultimately improving LLM alignment
through SFT.

To illustrate, Table 9] provides an example of how a response is split into semantic and non-semantic
content using this method.

Table 9: Visualization of semantic and non-semantic words selected based on the POS tags in the
response. Semantic words are in blue and functional words are in black.

Instruction
Why is FIFA against adding instant replay to the game?
Response

FIFA is against adding instant replay to the game because they believe it would disrupt the flow
of the game and potentially lead to delays. They also argue that human error is a part of the
game and adding instant replay could take away from the excitement and unpredictability of live
sports. Additionally, implementing instant replay would require significant changes to the rules
and regulations of the game, which FIFA may be hesitant to do.

A.9 COMPREHENSIVE EVALUATION RESULTS FOR DATA SELECTION EXPERIMENTS ON
HUMAN-WRITTEN DATA IN THE CODING DOMAIN

Table [10] offers a comprehensive breakdown of LLM performance when fine-tuned on datasets
sampled using various data selection strategies, expanding upon the average results presented in
Figure 2] While the figure provides aggregated metrics, this table delivers a detailed view of
Pass@1 and Pass@10 scores for each programming language across the HumanEval and MultiPL-E
benchmarks. This detailed presentation highlights performance variations in Python, Java, JavaScript,
and C++.

The performance ranking of data selection methods aligns consistently with the trends shown in
Figure [2] reinforcing our findings’ reliability. Strategies such as SCAR(ID) and Perplexity-based
sampling demonstrate robust performance across most languages, while approaches like HFR and
Superfiltering yield less favourable results, particularly with smaller data proportions. Notably, LLMs
trained on our SCAR(ID)-selected data outperform those trained on the full dataset when the selection
portion exceeds 25%, highlighting the superiority of our method. This result indicates that a carefully
curated subset can sometimes produce better outcomes than using the entire dataset.

For a detailed explanation of the Pass@1 and Pass@ 10 metrics, please refer to the HumanEval paper
by |Chen et al.| (2021}).

A.10 COMPREHENSIVE EVALUATION RESULTS FOR DATA SELECTION EXPERIMENTS ON
MIXED SYNTHETIC DATA IN CODING DOMAIN

Table |1 1] offers a detailed breakdown of the LLM performance results summarized in Figure 2] It
presents Pass@1 and Pass@ 10 scores across four programming languages, evaluating LLMs fine-
tuned on synthetic dataset subsets chosen through various selection methods. This comprehensive
view provides insights into the LLM’s performance on individual tasks and programming languages,
complementing the aggregated results shown in the figure.

A.11 COMPREHENSIVE EVALUATION RESULTS FOR DATA SELECTION EXPERIMENTS IN THE
OPEN DOMAIN

Table [I2] presents the detailed numerical values for the Length Control WinRate, complementing the

visual representation provided in Figure[2] The results show that for the selection of human data,
SCAR(ID) and SCAR(OOD) achieve competitive performance even at reduced data proportions,

21

Under review as a conference paper at ICLR 2025

Table 10: Detailed performance comparison of fine-tuned CodeLlama-7b evaluated on the HumanEval
(Python) and MultiPL-E (Java, JavaScript, C++) coding benchmarks. The models are fine-tuned on
human-written datasets selected with different selection methods and proportions. The table reports
Pass@1 and Pass@10 scores for each individual programming language.

Data Sampling HumanEval MultiPL-E
Methods |~ Python | Java = JavaScript ~ C++
Pass@1/Pass@10 | Pass@1/Pass@10 Pass@1/Pass@10 Pass@1/Pass@10

Full Data 32.87/48.24 30.92/44.92 33.84/52.62 28.51/4391
SCAR (OOD)

50% 31.94/47.80 30.85/43.29 33.91/52.45 29.23/45.28

25% 31.85/46.80 29.97/43.24 33.14/52.75 29.20/45.21

12.5% 30.77 /1 46.80 28.92/41.86 31.23/48.38 28.17/43.61
SCAR (ID)

50% 33.83/50.24 30.10/44.95 34.46 /53.10 28.25/43.71

25% 31.48/48.68 30.76 / 44.60 32.91/52.15 28.92/43.98

12.5% 31.10/47.14 29.46 / 43.06 31.38/49.11 27.61/42.39
Random

50% 29.79 / 44.06 30.14/43.90 32.86/51.61 28.48 /43.89

25% 30.04 /45.76 30.22/42.35 33.06/51.05 28.89/43.89

12.5% 27.94/45.79 27.53/40.47 31.48/51.25 25.29/40.51
Perplexity

50% 33.27/47.90 29.73/42.16 32.67/52.13 28.46 /43.40

25% 32.29/47.05 29.33/42.40 32.45/50.10 28.73/44.78

12.5% 27.40/45.13 28.67/40.77 31.30/50.71 26.36/41.75
Superfiltering

50% 26.50/42.00 29.72 /43.53 32.97/52.40 27.86/44.86

25% 24.12/38.51 29.29/42.76 32.50/53.20 26.89/41.01

12.5% 8.22/25.58 26.79 / 38.83 30.11/49.20 23.99/36.82
HFR

50% 20.29/41.52 30.41/44.11 33.49/51.27 28.71/44.83

25% 11.20/25.73 29.38 /42.81 31.73/51.51 28.09 / 43.07

12.5% 11.04/27.74 27.51/40.82 30.71/49.41 24.91/39.77
AlpaGasus

50% 31.30/44.90 30.59/43.41 34.21/52.48 29.45/43.91

25% 30.32/45.00 29.73/42.78 32.24/51.65 28.29/44.15

12.5% 24.76 / 41.90 28.24/42.12 30.84 /49.56 26.17/41.12
Diversity

50% 33.05/48.38 30.53 /44.06 34.02/53.99 28.84 /42.60

25% 30.38 /44.52 30.04 /42.53 33.34/52.71 28.68 / 44.66

12.5% 25.87/44.07 27.35/39.37 30.48 / 49.65 24.99/40.38

with SCAR(ID) showing a slight advantage as the data size decreases, especially at the 25% and
10% subsets. In contrast, methods such as Random and HFR struggle to maintain consistently high
performance across different data scales.

For the selection of synthetic GPT-3.5-turbo-generated data, SCAR(ID) consistently outperforms other
methods, with WinRates peaking at 6.61 for the 10% subset. This suggests that well-curated synthetic
data can yield high-performing chat-LLMs even at significantly lower data proportions. Interestingly,
traditional methods such as Random and Perplexity show lower performance, highlighting the
importance of selection strategies tailored for stylistic consistency in synthetic data scenarios.

A.12 COMPREHENSIVE STYLE AND QUALITY ANALYSIS OF SCAR-SELECTED DATA

Table [I3] presents an extensive set of results, expanding upon the data shown in Table[d] In addition
to helpfulness and correctness scores, as well as the standard deviations of TTR and perplexity, this
table includes a comprehensive range of stylometric and quality metrics with their corresponding
average and standard deviation values. The results are consistent with our findings in Table |4} SCAR
selection effectively enhances the consistency of the linguistic form in the selected data, as evidenced
by the consistently decreasing standard deviation values across all linguistic form metrics as the
selection portion decreases. Similarly, the standard deviation of semantic surprisal metrics generally

22

Under review as a conference paper at ICLR 2025

Table 11: Detailed performance comparison of fine-tuned CodeLlama-7b evaluated on the HumanEval
(Python) and MultiPL-E (Java, JavaScript, C++) coding benchmarks. The models are all fine-tuned
using GPT-3.5-turbo-generated datasets selected with different data selection methods and varying
proportions. The table reports the Pass@1 and Pass@ 10 scores for each individual programming
language.

Data Sampling HumanEval MultiPL-E
Methods |~ " Python | Java JavaSceript =~ C++
Pass@1/Pass@10 | Pass@1/Pass@10 Pass@1/Pass@10 Pass@1/Pass@10

Full Data 40.63/54.93 32.67/44.24 36.89/54.10 32.68 /45.65
SCAR (OOD)

50% 40.15/55.25 32.15/44.44 37.01/55.59 31.96 /46.59

25% 38.23/52.58 32.57/45.44 37.04/53.20 30.60 / 45.67

12.5% 38.29/52.74 32.46 /45.45 36.07 /53.45 31.91/45.56
SCAR (ID)

50% 40.98 /56.57 32.80/45.75 37.58/55.69 32.73/45.71

25% 39.84/56.75 32.52/43.83 36.67/55.32 32.00/46.26

12.5% 36.93/52.96 32.62/44.82 36.45/52.33 30.43/45.42
Random

50% 39.04 /51.80 31.75/44.85 35.59/55.13 32.76 / 46.34

25% 35.61/52.40 31.33/44.24 36.68 /54.23 30.53 /44.60

12.5% 34.99/51.90 31.34/44.29 3591/51.63 31.08 / 44.49
Perplexity

50% 31.91/50.94 32.44 /1 45.37 37.02/54.75 33.22/46.19

25% 35.55/48.65 31.85/45.44 35.40/51.75 31.28/43.32

12.5% 27.37143.06 30.90/44.19 36.34/48.74 30.46 /42.96
Superfiltering

50% 38.93/54.55 31.80/44.48 35.03 /54.40 32.22/47.25

25% 35.93/51.41 32.47/44.10 34.46/53.13 30.89 /44.90

12.5% 34.35/49.81 30.34/42.81 32.97/50.60 30.46 / 44.22
HFR

50% 39.09 /53.59 32.42/43.90 36.11/53.51 31.60/45.51

25% 38.04 /53.36 32.57/43.51 36.45/54.10 31.27/46.28

12.5% 29.20/50.06 31.87/43.85 35.17/53.94 30.02 /44.31
AlpaGasus

50% 36.88 /53.05 32.20/45.65 36.57/54.84 33.07/45.77

25% 32.52/49.55 31.37/42.82 33.32/51.72 30.37/44.69

12.5% 29.08 / 45.07 31.09/43.09 34.82/52.53 29.73 /44.16
Diversity

50% 39.21/54.95 32.10/45.48 37.25/54.58 32.60/46.33

25% 35.29/51.33 32.00/43.41 36.10/55.44 30.98 /45.19

12.5% 33.60/50.18 31.78 /1 44.92 34.82/51.92 30.91/44.10

Table 12: Detailed comparison of Length Control WinRate for fine-tuned Llama3-8b models evaluated
on AlpacaEval benchmarks. Models are trained using human-written and synthetic GPT-3.5-turbo-
generated data, sampled with various selection methods and proportions.

Methods
SCAR (ID) SCAR (OOD) Random Perplexity Superfiltering HFR AlpaGasus Diversity

Human

100% 2.34

50% 2.24 1.90 2.03 1.74 2.00 1.50 2.09 1.99

25% 243 2.59 1.92 2.12 1.82 1.66 1.83 1.97

10% 2.67 2.02 2.13 2.51 2.04 221 1.96 2.03
Synthetic

100% 3.64

50% 5.56 5.31 2.61 4.17 4.22 3.86 3.86 3.56

25% 5.89 5.08 3.00 4.04 5.70 4.30 3.94 2.51

10% 6.61 4.94 2.38 4.54 5.38 4.06 4.78 3.02

decreases, except in a few cases when selecting smaller portions (e.g., 25%, 12.5%) of human-written
or synthetic code data.

23

Under review as a conference paper at ICLR 2025

Table 13: Detailed performance comparison of the stylometric analysis conducted across the full
datasets and the subsets of the full datasets selected by SCAR(ID) in both code and open domains.
The table reports the average and standard deviation for five authorship metrics, two perplexity
metrics, and average helpfulness and correctness scores.

| TTR | MTLD | Avg. Sent. Len. | Punct. Freq. | Flesch Score
| Mean Std. | Mean Std. | Mean Std. | Mean Std. | Mean Std.

Code Domain

PPL(y |2) | PPL(y.|z) |
Mean Std. | Mean Std. ‘Helpful Correct

Human
100% | 59.16 21.48 | 1505 837 | 6940 66.43 | 30.77 27.17 | 42.75 4436 | 3.83 1.81 | 3.07 1.80 2.84 2.68
50% 50.80 16.78 | 16.34 630 | 68.16 6549 | 37.23 2853 | 4859 30.68 | 3.77 1.72 | 2.85 1.61 3.02 3.01
25% 4743 14.85 | 1658 5.28 | 53.36 48.11 | 3493 27.10 | 49.84 2460 | 3.84 1.73 | 2.83 1.61 2.78 272
125% | 4578 1429 | 1645 498 | 50.50 49.46 | 33.35 2542 | 5126 2225 | 393 1.86 | 3.06 1.94 2.67 271
Synthetic
100% | 36.67 14.45 | 12.13 3.87 | 60.88 61.39 | 37.72 24.62 | 49.17 23.10 | 1.67 0.31 1.66 042 3.63 3.64
50% 36.79 1052 | 13.07 280 | 52.85 36.48 | 3549 2201 | 5052 16.87 | 1.74 031 | 1.67 042 3.52 3.56
25% 36.67 933 | 1329 275 | 4871 2726 | 31.70 17.62 | 51.19 1594 | 183 034 | 1.79 053 3.47 3.44
12.5% | 37.19 9.22 | 1352 298 | 4836 28.54 | 2893 17.02 | 5142 1603 | 1.94 035 | 194 0.63 3.55 3.39
Open Domain
Human
100% | 54.51 3096 | 893 8.00 | 19.90 16.66 7.62 1222 | 6121 28.03 | 523 3.26 | 60.31 65.70 3.95 391
50% 61.24 2843 | 955 792 | 2135 1636 6.58 8.84 | 5827 2433 | 457 269 | 5298 5432 3.98 3.99
25% 62.81 2474 | 1858 7.52 | 2349 17.22 6.92 932 | 5554 21.76 | 4.17 241 | 49.59 49.51 3.96 393
10% 57.01 2373 | 11.26 6.77 | 2544 20.01 7.71 7.16 | 51.78 2240 | 3.93 2.18 | 4239 39.58 3.98 3.99
Synthetic
100% | 55.15 30.04 | 987 7.67 | 23.76 32.82 | 1230 20.53 | 5440 71.06 | 2.75 1.16 | 31.81 31.35 3.93 3.96
50% 4778 21.08 | 1330 5.71 | 27.33 2525 | 18.12 22.09 | 48.61 21.62 | 238 0.72 | 26.67 21.32 3.99 3.99
25% 4196 17.34 | 13.83 440 | 2459 1842 | 2054 19.19 | 4647 19.89 | 233 0.61 | 24.88 16.99 3.98 4.02
10% 40.53 14.83 | 1415 3.87 | 21.49 1193 | 2099 1592 | 42.04 17.74 | 246 0.52 | 26.04 1476 4.00 4.02

A.13 COMPREHENSIVE RESULTS OF ABLATION STUDY

Tables [14] and |15] present detailed performance metrics for various CodeLlama-7b-based models.
These models were fine-tuned on different data subsets selected by SCAR from either human-written
or synthetic responses, with instructions derived from StackExchange. The tables illustrate the
performance of fine-tuned LLMs when using SCAR with various components removed during SCAR
training. This comparison allows us to assess the impact of each SCAR component on the LLM
fine-tuning performance. Unlike the summary results in Figure[3] these tables offer specific numerical
values, enabling clearer and more precise comparisons. The results demonstrate that removing almost
any component of SCAR during ranker training significantly reduces performance, regardless of
whether the data is sourced from human or synthetic origins in the coding domain. This finding
validates the importance of each element in our methodology.

To further explore the impact of representation learning (w/o rl, GPT-3.5) and “referenced” responses
(w/o ref, GPT-3.5) during SCAR training, we conducted two additional analyses, which are detailed
in the following sections.

A.14 IMPACT OF TRAINING SCAR WITHOUT REFERENCED RESPONSES

As shown in Table [T6] excluding “referenced” responses during SCAR(ID) training significantly
reduces the performance of Llama3-8b fine-tuned on SCAR-selected open-domain data subsets when
evaluated on the AlpacaEval benchmark. This result underscores the importance of incorporating
“referenced” responses during ranker training to ensure the ranker effectively captures representations
that model the semantic surprisal of responses in the open domain. In the code domain, however,
excluding “referenced” responses during SCAR training has only a minor effect on data selection and
LLM SFT performance.

A.15 REPRESENTATION SIMILARITIES ANALYSIS

As shown in Table we calculate the cosine similarities between linguistic form representations (v,)
and semantic surprisal representations (v.) for “direct”, “referenced”, and human-written responses.
Specifically, the table reports the cosine similarities between (1) “direct” and “referenced” responses,
(2) “referenced” and human-written responses, and (3) “direct” and human-written responses for both
linguistic form and semantic surprisal representations. According to Eq.[3] we expect the similarity
between “direct” and “referenced” responses to be higher than those between “referenced” and

human or “direct” and human responses for linguistic form representations. Conversely, for semantic

24

Under review as a conference paper at ICLR 2025

Table 14: Comprehensive performance comparison of CodeLlama-7b models fine-tuned on human-
written datasets, evaluated on HumanEval (Python) and MultiPL-E (Java, JavaScript, C++) coding
benchmarks. The training datasets were sampled using various methods at different proportions.
Pass@1 and Pass@10 scores are reported for each programming language.

Data Sampling HumanEval MultiPL-E
Methods [=~ " Python ~ |~ Java =~ JavaSceript ~— C++
Pass@1 /Pass@10 | Pass@1/Pass@10 Pass@1/Pass@10 Pass@1/Pass@10
Human Data
Full, GPT-3.5
50% 32.44/50.38 30.67 / 44.86 34.40/53.16 29.49/45.73
25% 31.98/49.25 30.41/43.65 34.04/52.72 29.19/43.41
12.5% 31.10/47.14 29.46/43.06 31.38/49.11 27.61/42.39
w/o con, GPT-3.5
50% 31.21/50.01 30.14/44.23 34.67/51.90 28.67 /43.90
25% 31.19/47.83 31.22/45.73 32.91/52.41 28.32/44.85
12.5% 30.13/45.39 28.72 /42.68 30.99 / 49.60 27.39/42.85
w/o 11, GPT-3.5
50% 33.60/50.02 30.47/44.53 33.88/52.96 28.91/45.22
25% 31.76 /1 47.47 30.73/43.98 32.51/51.11 29.42 /43.47
12.5% 30.56/45.26 28.82/43.19 31.24/49.35 26.89 /40.95
w/o ref, GPT-3.5
50% 33.63/49.22 31.06/45.11 34.45/53.41 28.66 / 43.96
25% 31.57/48.06 30.84 /44.26 32.89/52.58 29.24 / 45.05
12.5% 30.62 /45.98 28.06/40.71 30.80 / 48.08 28.16/42.80
Full, Llama2-70b
50% 33.27/49.42 30.49/43.21 33.70/51.46 29.24/44.27
25% 29.47/46.12 29.75/43.19 33.33/49.69 29.17/44.39
12.5% 30.76 / 46.79 28.13/40.52 31.23/50.34 27.66/41.58
Full, Llama2-13b
50% 31.90/50.38 30.75/44.29 33.34/51.81 28.62/42.57
25% 31.71/48.49 29.78 /1 43.73 32.20/51.25 28.40/43.16
12.5% 30.29/46.03 28.18 /42.03 30.70/ 48.19 27.47/41.58
w/o con, Llama2-13b
50% 30.76 / 43.63 29.84/44.11 32.07/51.50 28.04 /43.07
25% 30.15/42.78 29.44 / 43.66 32.88/54.14 27.93/44.26
12.5% 27.93/41.07 27.28 /39.27 31.18/49.99 25.57/41.35
Full, Llama3-70b
50% 32.48/50.39 30.68 /45.30 33.49/53.01 29.28/45.13
25% 32.28/49.14 30.04 /43.86 32.09/51.54 28.09/43.63
12.5% 30.40/48.36 28.14/41.71 30.67/49.67 26.99/42.47

surprisal representations, the similarity between “referenced” and human responses should be the
highest.

Interestingly, even without the representation learning regularization loss in Eq. [3]and while incor-
porating “referenced” responses during SCAR training, the observed cosine similarities still align
with our optimization objectives for representation similarities. However, when SCAR training
excludes “referenced” responses or utilizes out-of-domain data, these expected similarity patterns are
significantly disrupted. Consequently, the performance of the Llama3-8b model deteriorates when
fine-tuned on data selected by such SCAR configurations.

In summary, incorporating “referenced” responses and utilizing in-domain data during SCAR training
are crucial for maintaining the desired representation similarities. These findings emphasize the
importance of carefully curating training data within SCAR to effectively model both linguistic
form and semantic surprisal. This approach ensures robust SCAR data selection performance and,
ultimately, enhances LLM performance across different domains.

A.16 COMPREHENSIVE EVALUATION RESULTS OF STARCODER-15.5B

Table[I8| presents the full Pass@ 1 and Pass@ 10 results for the HumanEval and MultiPL-E coding
benchmarks, comparing Starcoder-15.5b fine-tuned with various portions of SCAR-selected data
against Octocoder. The original dataset, comprising 13k examples, was curated by the BigCode
team, who developed both Starcoder and Octocoder specifically to fine-tune Starcoder into Octocoder.

25

Under review as a conference paper at ICLR 2025

Table 15: Comprehensive performance comparison of CodeLlama-7b models fine-tuned on GPT-3.5-
generated datasets, evaluated on HumanEval (Python) and MultiPL-E (Java, JavaScript, C++) coding
benchmarks. The training datasets were selected from the full mixed synthetic dataset with different
sample sizes using our selection approach, SCAR(ID) with various training configurations. Pass@1
and Pass@ 10 scores are reported for each programming language.

Data Sampling HumanEval MultiPL-E
Methods [~ " Python ~ | Java =~ JavaScript ~ C++
Pass@1/Pass@10 | Pass@1/Pass@10 Pass@1/Pass@10 Pass@1/Pass@10
Mixed Synthetic Data
Full, GPT-3.5
50% 40.98 /1 56.57 32.80/45.75 37.58/55.69 32.73/45.71
25% 39.84 /56.75 32.52/43.83 36.67/55.32 32.00/46.26
12.5% 36.93/52.96 32.62/44.82 36.45/52.33 30.43/45.42
w/o con, GPT-3.5
50% 39.65/55.05 32.30/44.40 38.21/54.92 32.17 /1 45.66
25% 39.30/56.87 32.76 /1 45.87 37.43/54.76 32.11/45.77
12.5% 36.56/51.72 33.00/44.48 35.53/53.10 31.02/45.44
w/o rl, GPT-3.5
50% 39.83/54.27 32.28 /43.66 37.66 /55.99 32.53/46.31
25% 38.62/56.03 32.55/43.67 36.75/53.65 32.25/45.06
12.5% 36.02/51.78 32.71/45.68 35.70/52.15 31.70/45.51
w/o ref, GPT-3.5
50% 39.85/55.81 32.13/44.00 36.87/56.79 32.67/46.43
25% 36.80/54.70 32.68 /4591 36.87/57.04 31.61/47.02
12.5% 36.41/50.96 32.66/44.58 35.78 /1 52.21 30.99 / 44.88
Full, Llama2-70b
50% 39.21/52.49 32.39/45.21 37.45/54.87 33.03/46.36
25% 39.23/53.77 31.59/45.21 37.35/55.15 30.81/45.04
12.5% 37.59/51.64 31.44/44.82 37.04/52.55 30.67 / 44.80
Full, Llama2-13b
50% 37.29/53.60 33.24/43.86 37.04/56.29 32.36 / 44.65
25% 36.70/51.88 31.97/44.57 36.35/56.33 31.12/46.04
12.5% 33.78 /48.61 30.61/41.77 34.21/51.66 31.11/45.27
w/o con, Llama2-13b
50% 37.72/53.82 32.18/44.19 37.23/56.76 32.57/46.31
25% 38.59/53.47 32.68/44.97 37.19/55.59 32.00/46.58
12.5% 33.34/49.78 32.05/43.76 35.58/53.38 31.02/46.13
Full, Llama3-70b
50% 39.40/ 54.46 32.87/45.00 36.99 /57.26 32.52/46.38
25% 38.40/54.73 32.54/44.79 37.40/54.46 30.92 / 44.06
12.5% 35.48/50.33 31.80/45.40 36.45/53.71 30.99 / 46.66

Table 16: Comparison of L.C. WinRate on the AlpacaEval benchmark for Llama3-8b fine-tuned on
subsets of human-written and synthetic data selected by SCAR(ID), with and without incorporating
“referenced” responses during ranker training.

Human Mix Synthetic
50% 25% 10% | 50% 25% 10%
Full 224 243 267 | 556 589 6.61
wloref | 1.95 225 199 | 359 474 4.44

Notably, Starcoder-15.5b models fine-tuned on SCAR-selected subsets outperform the original
Octocoder in Pass@1 and Pass @10 across all programming languages.

Octocoder’s Pass@1 score for HumanEval-Python on the BigCode leaderboard is 45.3, which
corresponds to the humanevalsynthesize-python benchmark. This variant of humaneval-python
employs improved prompt formatting, resulting in higher performance. In contrast, our paper reports
Octocoder’s Pass@1 score of 35.56 on the standard humaneval-python benchmark to maintain
consistency with widely accepted evaluation protocols and the default settings used in our experiments.
Both results are sourced from the official BigCode leaderboard data ﬁleﬂ For further details, please

7https ://huggingface.co/spaces/bigcode/bigcode-models-1leaderboard/tree/main/
community_results/bigcode_octocoder_loubnabnl/metrics_octocoder

26

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard/tree/main/community_results/bigcode_octocoder_loubnabnl/metrics_octocoder
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard/tree/main/community_results/bigcode_octocoder_loubnabnl/metrics_octocoder

Under review as a conference paper at ICLR 2025

Table 17: Cosine similarities between linguistic form representations (v,) and semantic surprisal
representations (v.) for “direct”, “referenced”, and human-written responses. The table reports the
cosine similarities between (1) “direct” and “referenced” responses, (2) “referenced” and human-
written responses, and (3) “direct” and human-written responses, separately for linguistic form and
semantic surprisal representations. These similarities are computed using representations from SCAR
rankers trained with different configurations: SCAR(ID) trained on in-domain data, SCAR(ID)
without representation learning regularization (w/o rl), SCAR(ID) without “referenced” responses
(w/o ref), and SCAR(OOD) trained on out-of-domain data. The SCAR rankers are applied to response
triplets generated for the same instructions in the LIMA and StackExchange datasets. Results are
reported separately for each dataset, with higher cosine similarity values indicating greater alignment
between the respective representations.

Linguistic Form Representation Semantic Surprisal Representation

cos(vi,vy) cos(vp,vp) cos(vi,vh) cos(vd,vi) cos(vi,vl) cos(vd,vh)
LIMA
SCAR(ID) 0.9368 0.8970 0.7884 0.8312 0.8801 0.7209
SCAR(ID) w/o rl 0.9050 0.7962 0.6369 0.9406 0.9587 0.8717
SCAR(ID) w/o ref 0.9442 0.7970 0.7249 0.9696 0.8935 0.8544
SCAR(OOD) 0.9416 0.9344 0.8884 0.8887 09115 0.8574
StackExchange
SCAR(ID) 0.9020 0.8574 0.6867 -0.4330 0.9646 -0.4803
SCAR(ID) w/o 1l 0.9274 0.8224 0.6968 0.7312 0.8978 0.4480
SCAR(ID) w/o ref 0.9778 0.8844 0.8660 0.9836 0.9143 0.8952
SCAR(OOD) 0.9702 0.8502 0.8249 0.7451 0.0083 -0.1289

refer to the provided data file URL and the benchmark description in|Muennighoff et al.|(2023)) to
understand the design differences between humanevalsynthesize-python and humaneval-python.

Table 18: Detailed performance comparison of Octocoder and Starcoder-15.5b fine-tuned on various
subsets of the 13k data used to train Octocoder. The models are evaluated on the HumanEval (Python)
and MultiPL-E (Java, JavaScript, C++) coding benchmarks.

Data Sampling HumanEval MultiPL-E
Methods | =~ Python | Java = JavaScript =~ C++
Pass@1/Pass@10 | Pass@1/Pass@10 Pass@1/Pass@10 Pass@1/Pass@10
Octocoder 35.56/51.81 26.03/38.44 32.80/46.97 29.32/41.90
Starcoder-15.5b
10,000 36.29 /53.99 28.29 /39.58 33.22/49.79 30.17/46.20
5,000 36.95/54.07 28.96/39.02 34.53/49.90 32.83/44.47
2,500 37.57 /1 55.65 29.29/41.06 34.09 /49.47 31.19/42.83

27

	Introduction
	Impact of Styles on LLM Fine-tuning
	Style Consistency-Aware Ranking
	Experiments
	Main Results and Discussion
	Ablation Study

	Related Work
	Conclusion
	Appendix
	Case Studies
	Prompt for Generating Referenced Response
	Prompt for Generating Direct Response
	Implementation Details
	Comprehensive Evaluation Results for LLM Performance on Coding Tasks
	Comprehensive Evaluation Results for Stylometric Analysis
	Conditional Mutual Information Calculation
	Identification of Semantic and Non-Semantic Words
	Comprehensive Evaluation Results for Data Selection Experiments on Human-written Data in the Coding Domain
	Comprehensive Evaluation Results for Data Selection Experiments on Mixed Synthetic Data in Coding Domain
	Comprehensive Evaluation Results for Data Selection Experiments in the Open Domain
	Comprehensive Style and Quality Analysis of SCAR-Selected Data
	Comprehensive Results of Ablation Study
	Impact of Training SCAR Without Referenced Responses
	Representation Similarities Analysis
	Comprehensive Evaluation Results of Starcoder-15.5b

