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Abstract
This paper presents our submission to the L+M-
24 shared task, focused on translating molec-
ular structures into natural language descrip-
tions, known as the molecule captioning task.
We selected a small language model (SLM),
Phi-3-mini-4k, to evaluate the impact of con-
tinued pretraining and instruction tuning for
domain-specific chemical knowledge. The Phi-
3 model was continued pretrained with 90M
chemistry textbooks and abstracts, followed
by instruction tuning on 150K question an-
swering sets of SMILES and general chem-
istry knowledge. Despite the continued pre-
training phase not including direct exposure
to SMILES representations, it significantly en-
hanced the Phi-3 model’s performance, a 300%
increase for the BLEU scores, in the molecule
captioning task. The code and model are re-
leased at https://github.com/bluesky333/
Phi3KnowChem to facilitate research in chemi-
cal small language modeling.

1 Introduction

The intersection of natural language processing
(NLP) and chemistry began with drug discovery
and biochemistry but recently moved to the other
fields of chemistry such as electrochemistry for bat-
tery and rheology for chemical property prediction
(Krallinger et al., 2015; Li et al., 2016; Huang and
Cole, 2022; Kim et al., 2023). With the recent ad-
vancement of large language models (LLMs), the
language model for chemistry domain knowledge
started to cover molecule representation such as
the simplified molecular-input line-entry system
(SMILES) and 3D structure of molecules (Edwards
et al., 2022; Taylor et al., 2022; Fang et al., 2023;
Zhang et al., 2024a,b). As the research in LLMs
has been facilitated by the benchmark datasets for
evaluating the model’s understanding of domain
knowledge, there has been a pressing need for a
benchmark specifically for molecule and language
models (Hendrycks et al., 2020).

To address this gap, the L+M-24 shared task was
introduced as one of the first competitions focused
on translating between language and molecule
representations (Edwards et al., 2024). This
task involves generating captions based on input
molecules represented in SMILES, pushing the
boundaries of molecule captioning by leveraging
language models. The task covers four key appli-
cations within chemical knowledge: biochemistry,
electrochemistry, organoleptics, and agricultural
chemistry. Progress in these specific is essential for
building foundational models applicable to small
molecule applications.

Traditionally, models designed for such tasks
require extensive domain-specific pretraining and
fine-tuning with molecule representation to under-
stand and generate chemistry-related text effec-
tively (Edwards et al., 2022; Taylor et al., 2022;
Fang et al., 2023; Zhang et al., 2024a). This pro-
cess is often resource-intensive and requires large,
specialized datasets.

In this work, we explore the efficacy of contin-
ued pretraining and instruction tuning on a small
language model (SLM), specifically the 3.8B pa-
rameter model, Phi-3-mini-4k, for the molecule
captioning task.

Our approach involves two primary stages:

1. Continued Pretraining: We further pretrain
the Phi-3-mini-4k model using a corpus of
90 million chemistry textbooks and abstracts.
This step aimed to infuse the model with a
broad and deep understanding of chemical
language and concepts.

2. Instruction Tuning: We further refined the
model with 150,000 instruction tuning tasks
focused on SMILES question answering and
general chemistry knowledge question an-
swering. This step was designed to enhance
the model’s ability to handle SMILES repre-
sentation and chemical queries.
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The resulting models underwent fine-tuning with
the shared task’s training data for 1 epoch, and our
best-performing model surpassed the performance
of the MolT5-base model, which was trained with
100 million SMILES strings (Edwards et al., 2022).

The contributions of this paper are as follows:

1. Pretraining without molecule still helps.
Our study demonstrates that continued pre-
training using a chemical text corpus signifi-
cantly enhances performance in molecule cap-
tioning tasks, even without direct exposure
to molecular representations. We saw an al-
most 300% increase for BLEU scores, about
a 67% increase for the ROUGE score, and a
19% increase for Meteor with the continued
pretraining.

2. Phi-3KnowChem model. We introduce the
Phi-3KnowChem model, a small language
model (SLM) based on the Phi-3 architec-
ture, pretrained with a chemical corpus and
instruction-tuning datasets. To the best of our
knowledge, this is the first Phi-3 model specif-
ically trained for the chemical domain.

3. Open source. To foster research in chemical
small language modeling, we will release the
model weights and codes to prompote repro-
ducibility and collaboration in the field.

2 Methods

2.1 Language Model

Phi-3 (Abdin et al., 2024) We use Phi-3-mini-4K
model, which we refer to as Phi-3 model through-
out our paper. Phi-3 has 3.8B parameters and is
trained on an augmented textbook corpus and high-
quality web data consisting of 3.3 trillion tokens.
While specific training details are not disclosed,
Phi-3 building blocks are reported to be a simi-
lar structure to the Llama-2 model (Touvron et al.,
2023). Phi-3 showed an outstanding performance
in MMLU which includes high school chemistry
and college chemistry subjects (Hendrycks et al.,
2020).

2.2 Pretrain Data

The pretraining corpus comprised 8 million tokens
sourced from chemistry textbooks and an addi-
tional 82 million tokens extracted from chemical
journal abstracts published by the Royal Society
of Chemistry (Chen et al., 2020). The textbook

data was acquired from the HuggingFace reposi-
tory 1. This diverse corpus provides a rich source
of chemical language and concepts, enabling the
model to develop a comprehensive understanding
of the domain. Examples of the pretraining corpus
are provided in Table 1.

Textbook
To discuss the electronic states of atoms we
need a system of notation for multi-electron
wavefunctions. As we saw in Chapter 8, the
assignment of electrons to orbitals is called
the electron configuration of the atom. One
creates an electronic configuration represent-
ing the electronic structure of a multi-electron
atom or ion in its ground or lowest-energy state
as follows.
RSC Abstract
Rhenium, the non - noble metal with an accept-
able price, was found to be a good additive that
largely improved Pt / WO3 / ZrO2 catalysis for
glycerol hydrogenolysis. Compared with con-
ventionally employed Pt / WO3 / ZrO2, the Re
- promoted catalyst led to almost quantitative
glycerol conversion (> 99% vs. 57.7%), giving
useful C3 alcohols in excellent total selectiv-
ity (> 95%) under reduced reaction pressure
(2.5 MPa). The addition of Re led to such
an impressive enhancement of the catalyst ac-
tivity that even the reaction performed under
atmospheric H2 pressure (0.1 MPa) afforded
96.8% glycerol conversion and a good selectiv-
ity of C3 compounds at 95.2%. Further XRD,
Raman, BET, CO chemisorption, TEM, H2-
TPR, XPS, NH3-TPD, 1H MAS NMR and
Py-IR studies indicated that introduction of
Re greatly improved the dispersion of Pt and
catalyst acidity, and resulted in this largely en-
hanced catalyst activity.

Table 1: Examples of Pretrain Corpus.

2.3 Instruction Tuning Data

The instruction tuning phase utilized two primary
datasets:

1. SMILES Question Answering Pairs: Con-
sisting of 129,699 question-answer pairs from
ChEMBL, this dataset contains 3,892 unique

1Hack90/libre_chem_textbooks



SMILES representations. The dataset was ac-
quired from the HuggingFace repository. 2

Each pair involves a question related to the
chemical properties of the molecule, along
with the corresponding answer.

2. CAMEL-AI Chemistry Dataset: Chemistry
instruction tuning dataset which was gener-
ated using GPT-4 was used to cover a broad
range of chemical queries and tasks (Li et al.,
2024). The dataset is made up of 20,000 in-
struction pairs in 25 topics and 25 subtopics
for each topic. By incorporating this diverse
dataset into the instruction tuning process, we
aimed to further refine the model’s ability to
comprehend and respond to various chemical
queries beyond SMILES representation.

The examples of the instruction tuning data are
shown in Table 2.

SMILES QA
SMILES: CC(=O)/N=c1/sc(S(N)(=O)=O)nn1C
Question: How many rotatable bonds does this
compound have?
Answer: 1
CAMEL-AI Chemistry QA
What are the expected products of the reaction
between sodium chloride (NaCl) and silver
nitrate (AgNO3)? Provide the balanced chem-
ical equation and identify the type of reaction
that occurs.
Answer: When sodium chloride (NaCl) re-
acts with silver nitrate (AgNO3), a double dis-
placement reaction occurs, also known as a
metathesis reaction. The expected products
of this reaction are silver chloride (AgCl) and
sodium nitrate (NaNO3). The balanced chemi-
cal equation for this reaction is:
NaCl (aq) + AgNO3 (aq) → AgCl (s) +
NaNO3 (aq)
In this reaction, the sodium (Na) and silver
(Ag) ions switch places, forming new com-
pounds. Silver chloride (AgCl) is an insoluble
solid that precipitates out of the solution, while
sodium nitrate (NaNO3) remains dissolved in
the solution.

Table 2: Examples of instruction tuning dataset.

2alxfgh/ChEMBL_Drug_Instruction_Tuning

3 Experiment and Results

3.1 SLM Training
We conducted continued pretraining and instruc-
tion tuning using 8 A6000 GPUs, each with 48 GB
GPU memory. We used LLaMaFactory3 and used
Deep3 for efficient training (Rasley et al., 2020).
Continued pretraining was done with an epoch of
3 and a learning rate of 1e-5. The instruction tun-
ing was done with the same learning rate as the
continued pretraining but only for 1 epoch. The
total training took less than a day. We named the
resulting model as Phi-3-KnowChem.

For the shared task fine-tuning, we used a differ-
ent computational resource, 2 A5000 GPUs with
a total GPU memory of 48 GB. The finetuning for
the shared task was done using low-rank adaptation
(LoRA) and deepSpeed zero redundancy optimizer
to reduce the GPU memory requirement (Rasley
et al., 2020; Hu et al., 2021). We trained the model
for the captioning task with a learning rate of 1e-
3 and epoch 1. Hyperparameters for LoRA were
as follows: rank - 128, alpha 256, and projector
learning rate 2e-5. We used a simple prompt for
the training and the evaluation: ‘Describe the input
molecule represented in SMILES. SMILES string’.
The whole train dataset for the task was used for
the fine-tuning.

3.2 Evaluation
For the evaluation, we used 1 A5000 GPU and used
temperature of 1. For the baseline performance, we
used the greedy search as the decoding strategy.
We change this strategy with the beam search using
multinomial sampling. The number of beams was
3. For the evaluation metrics scoring, we submitted
the text output to the codabench. The evaluation
metrics used include BLEU-2, BLEU-4, Meteor,
ROUGE-1, ROUGE-2, and ROUGE-L.

3.3 Evaluation Results
The results in Table 3 for the chemical language
training provide several notable trends. Firstly, the
baseline Phi-3 model perform very poorly on the
task even after 1 epoch of finetuning. This sug-
gests that the model has a limited understanding of
chemistry-specific language, as indicated by lowest
scores across all metrics (Meteor: 0.5582, ROUGE-
1: 0.4225, ROUGE-2: 0.3186, ROUGE-L: 0.3016).
These baseline scores highlight the challenges of
molecule captioning when using a general language

3https://github.com/hiyouga/LLaMA-Factory



Model BLEU-2 BLEU-4 Meteor ROUGE-1 ROUGE-2 ROUGE-L
Phi-3 0.2299 0.1678 0.5582 0.4225 0.3186 0.3016

Phi-3+PT 0.6804 0.4922 0.6644 0.7074 0.5308 0.5142
Phi-3+PT+IT 0.6959 0.5023 0.6750 0.7232 0.5373 0.5193

Phi-3+PT+IT+Beam 0.7056 0.5083 0.6901 0.7261 0.5361 0.5201

Table 3: Molecule Captioning Evaluation Results. The result is sorted by the ROUGE-L. PT stands for continued
pretrained model. IT stands for instruction-tuned model. Beam stands for the beam search decoding strategy.

Prompt
Describe the input molecule represented in SMILES.
CSc1ccc(C(C)N(C)C)cn1
Phi-3
The molecule is a anti viral. The molecule is a hiv inhibitor and is anti viral compound.
The molecule is a hiv integrase inhibitor and is anti viral agent. The molecule is a hiv replication
inhibitor and is anti viral agent compound. The molecule is a hiv protease inhibitor and
is anti viral agent, belonging to the anti viral class of molecules. The molecule is
a hiv treatment and is anti viral compound, anti viral activity, and anti viral. The molecule is
a hiv integrase inhibitor and is anti viral compound, anti viral activity, and anti viral.
The molecule is a hiv inhibitor and aids treatment, belonging to the anti viral compound class of
molecules. The molecule is a hiv treatment and aids treatment, impacting both hiv treatment and aids.
The molecule is a hiv inhibitor and aids treatment, impacting both hiv replication and cancer
Phi-3+PT
The molecule is a anti inflammatory.
Phi-3+PT+IT
The molecule is a anti inflammatory.
Phi-3+PT+IT+Beam
The molecule is a anti viral and belongs to the anti viral agent class of molecules, with the
characteristic of being anti viral.

Table 4: Response comparison between baseline Phi-3 and trained models. The example was randomly sampled.

model that lacks specialized training in the chemi-
cal domain.

Additionally, the effect of continued training is
observed. Continued pretraining (PT) on a large
corpus of chemistry texts resulted in significant
improvements across all evaluation metrics. The
continued pretraining effectively infused the model
with domain-specific knowledge, enhancing its per-
formance by a substantial margin even without ex-
posure to SMILES string. The performance boost
with the continued pretraining was almost 300%
increase for BLEU scores, about 67% increase for
the ROUGE score, and 19% increase for Meteor.
Adding an instruction tuning (IT) phase which con-
tained about 4K unique SMILES representations
further improved the model’s performance in the
molecule captioning task for all the evaluation met-
rics. This shows that prior exposure to SMILES
representation can improve the performance of the

related downstream task.

Beam search with multinomial sampling also
increased the performance in all the evaluation met-
rics except ROUGE-2. This suggests that while
continued pretraining and instruction tuning lay
a strong foundation for chemical language under-
standing, advanced decoding techniques like beam
search can further refine the output quality.

The model responses were compared as shown
in Table 4. Rather than giving the right caption for
the molecule, the Phi-3 model repeated sentences
describing an anti-viral agent. Also, we see gram-
matical mistakes, using ‘a’ instead of ‘an’. The
continued pretrained model and instruction-tuned
model both gave the same response, while the beam
search strategy yielded a different response that was
slightly longer than the other two models.



4 Conclusion

In this paper, we have presented our approach and
findings from experimenting with the Phi-3-mini-
4k model on the molecule captioning task as part of
the L+M-24 shared task. Our experiment focused
on evaluating the efficacy of continued pretraining
and instruction tuning for enhancing the model’s
domain-specific chemical knowledge and its ability
to generate accurate molecular descriptions.

The results demonstrated that both continued pre-
training and instruction tuning play critical roles
in enhancing the performance of the Phi-3 model
on molecule captioning tasks. Continued pretrain-
ing with a chemistry-specific corpus provides a
substantial boost by enriching the model’s knowl-
edge base, while instruction tuning with targeted
question-answer pairs refines its ability to handle
specific queries related to chemical structures. The
addition of beam search decoding, though provid-
ing marginal gains, contributes to producing higher-
quality and more accurate descriptions. These find-
ings highlight the importance of domain-specific
training and advanced decoding strategies in im-
proving the capabilities of language models for
specialized tasks like molecule captioning. In fact,
on the leaderboard, our Phi-3-KnowChem outper-
formed the MolT5-base model.

Nevertheless, while these findings provide valu-
able insights, further in-depth analysis is warranted
to explore the nuances of model performance in the
chemical domain fully. The exploration of other
tasks such as chemical property prediction can con-
tribute to more accurate and comprehensive assess-
ments of LM performance in real-world chemical
applications.

Limitation

The computational constraints restricted the size
and complexity of the models that could be feasibly
trained and evaluated. There are larger versions of
the Phi-3 model, 7B, and 14B models which can
potentially perform much better than the version
we used in this study.

Broader Impacts and Ethics Statement

Our work does not raise any major ethical con-
cerns regarding the usage of the Phi-3 model as
it was used for research purposes only. However,
our Phi-3-KnowChem is not rigorously tested for
use in real-world chemical applications or scenar-

ios. Thus, they may not be suitable for use in the
decision-making process for the chemical industry.
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