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Abstract

Large language models (LLMs) have achieved impressive human-like performance1

across various reasoning tasks. However, their mastery of underlying inferential2

rules still falls short of human capabilities. To investigate this, we propose a3

logic scaffolding inferential rule generation framework, to construct an inferential4

rule base, ULogic, comprising both primitive and compositional rules across five5

domains. Our analysis of GPT-series models over a rule subset reveals significant6

gaps in LLMs’ logic understanding compared to human performance, especially in7

compositional and structural complex rules with certain bias patterns. We further8

distill these rules into a smaller-scale inference engine for flexible rule generation9

and enhancing downstream reasoning. Through a multi-judger evaluation, our10

inference engine proves effective in generating accurate, complex and abstract11

conclusions and premises, and improve various commonsense reasoning tasks.12

Overall, our work sheds light on LLMs’ limitations in grasping inferential rule and13

suggests ways to enhance their logical reasoning abilities.14

1 Introduction15

Q1: Did Leonardo da 
Vinci ever use a laptop 
for drawing pictures?

Q2: Jane wrote a novel published by 
Jimmy, a publisher born in 1750. Did 
Jane’s grandmother often work by car?

Underlying Logic:
If Person X died before year A and Object Y was invented in year B, 
and A is earlier than B, then Person X can not access Object Y.

year A year B

Person X Object Y

Figure 1: The underlying logic to answer Q1 and Q2.

“Did Leonardo da Vinci ever use a lap-16

top for drawing pictures?” Large lan-17

guage models can swiftly and confidently18

respond “No" [10, 35], demonstrating im-19

pressive reasoning ability that rivals hu-20

man [18, 19]. However, when posed21

with more obscure questions, such as22

Q2 in Figure 1, LLMs are prone to ex-23

hibit uncertainty and errors. This incon-24

sistency raises concerns about whether25

LLMs grasp the underlying logic of mat-26

ters as proficiently as humans [38] (see27

“underlying logic" in Figure 1) and high-28

lights challenging reasoning situations29

(like Q2) where current LLMs might strug-30

gle. Humans naturally abstract underlying31

logic as inferential rules from extensive32

real-world observations [3], beneficial for33

addressing diverse reasoning situations. An inferential rule is typically defined as a premise with a34

set of facts (e.g., “Person X died before ... earlier than B”) leading to a conclusion (e.g., ‘‘Person X35

cannot access Object Y”) [5]. Grasping this rule enables the deduction that a person cannot access an36

object invented posthumously. This work utilizes symbolic logic as a scaffold to generate challenging37
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Inferential Rules of Different Complexities
(Complexity=1) If Person X has an adverse reaction to Food Y, 
then Person X cannot eat Food Y.
(Complexity=2) If Person X has inherited Disease Z2 and Food 
Y should be avoided by those with Disease Z2, then Person X 
cannot eat Food Y.
(Complexity=3) If Person X earns Money Z1 and Material Y is 
sold for Money Z2, and Money Z1 is bigger than Money Z2, then 
Person X can buy Material Y.
(Complexity=4) If Person X works at Job A and Job A pays 
Money Z1, and Material Y is sold for Money Z2, and Money Z1 
is bigger than Money Z2, then Person X can purchase Material Y.

Logic Scaffolding

HasAdverseReaction(Person X, Substance Y) :-
Inherit(Person X, Disease Z), ShouldBeAvoid(Substance 
Y, Disease Z);

CanNotEat(Person X, Food Y) :- HasAdverseReaction( 
Person X, Substance Z), Contains(Food Y, Substance Z);

CanNotEat(Person X, Food Y) :- Inherit(Person X, 
Disease A), ShouldBeAvoid(Substance Z, Disease A), 
Contains(Food Y, Substance Z);

Backward Chaining 

Symbolic Inferential Rules

Human significantly outperforms LLMs in 
understanding rules of different complexities.

	P𝟏 	P"	𝑪 +

Illustration of
Backward Chaining

	P# 	P$	P% +

	P𝟑 	P𝟒	𝑪 + 	P"+

Figure 2: Logic scaffolding uncovers challenging reasoning space for LLMs.

reasoning situations for GPT-series LLMs, as shown in Figure 2. A discernible gap exists between38

LLMs and humans in understanding inferential rules, especially rules with complex premises.39

However, collecting inferential rules at scale is challenging. Previous work relies on manual cu-40

ration [24, 29] or inductive logic programming [22], which are either labor-intensive or limited in41

diversity. Besides, manually crafted rules often appear simple and overly specified, struggling to move42

beyond basic intuition or generalize across diverse situations. For example, the rule If X runs out of43

steam, then X becomes tired from [24] has only one premise fact and narrowly specifies exhaustion.44

To this end, we introduce Logic scaffOlding Inferential Rule gEneration (LOIRE), a framework45

to generate inferential rules of different complexities. LOIRE operates in two stages: primitive rule46

generation and rule composition. Initially, we define “primitive rules” to describe abstract objects47

like Person and Food, and ensure they cannot be decomposed into simpler rules, facilitating broad48

generalization and easy generation. We then incorporate GPT-4’s generative capability and human49

expertise to generate primitive rules with high confidence. This process, consistently guided by50

symbolic logic, involves GPT-4 drafting potential conclusions in various domains, and forming51

premises with one or more facts. We ensure rules’ logical soundness through the model’s self-critique52

and human manual verification. In the second stage, we apply backward chaining [8, 1] upon primitive53

logical rules to automatically construct compositional rules of varied lengths and structures at scale.54

Using this framework, we construct ULogic, an inferential rule base with around 8, 000 primitive and55

6, 000 compositional rules across five domains: object affordance, accessibility, interaction, location,56

and human need. We hope ULogic will serve as a valuable resource, facilitating the assessment57

of LLMs’ proficiency in underlying logic and enhancing flexible rule generation and downstream58

reasoning. We use ULogic to create an entailment probing task with a comprehensive and robust59

evaluation strategy, comparing LLMs’ grasp of inferential rules to human performance. Our analysis60

of GPT-series LLMs (GPT-4, GPT-3.5-Turbo and GPT-3.5-Turbo-Instruct) indicates they have a61

basic understanding of inferential rules but fall short of human proficiency, especially in rules with62

complex premises. Specifically, all models struggle more as the compositional complexity increases.63

While GPT-4 performs consistently on verbalized and symbolic rules, the other models sharply64

degrade on symbolic rules. Additionally, all models exhibit disparities on various rule structures with65

Disjunctive-Transitive rules posing the greatest challenges. Moreover, these LLMs display notable66

polarity biases with GPT-4 showing a necessary bias, underscoring areas for improvement.67

We further distill crafted inferential rules into a smaller-scale inference engine for flexible rule gener-68

ation and downstream reasoning. We design three tasks: conclusion generation, premise completion69

and premise generation, to construct an instruction-tuning dataset for inferential rule distillation.70

Experimental results through a multi-judger evaluation mechanism incorporating automatic metrics,71

LLM evaluators and human preferences show that our inference engine possesses the ability for these72

three tasks. It outperforms GPT-3.5-Turbo across all dimensions of three tasks and even surpasses73

GPT-4 in generating more complex and abstract rules. Moreover, it can generate logical rules that74

enhance downstream commonsense reasoning.75

2 Logic Scaffolding for Inferential Rule Generation76

2.1 Preliminary of Inferential Rules77

To better control the generative capability of LLMs for rule generation, we focus on if-then inferential78

rules with variables, that can be easily expressed as symbolic logic [16]. An inferential rule describes79
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Figure 3: The pipeline of primitive rule generation.

a logical implication from a premise (a set of facts) to a conclusion (a specific fact), where each fact is80

a predicate expression with two variables, and each variable has a designated variable type. For each81

rule, we employ logic scaffolding which first generates its symbolic expression to consistently guide82

its verbalized form. We utilize Prolog [2] to formulate symbolic rules as Conclusion:-Premise,83

where :- indicates the logical implication. For example,84

CanNotEat(Person X,Food Y ):-
AllergicTo(Person X, Substance Z),Contains(Food Y, Substance Z). (1)

The left-hand side is the conclusion and the right hand lists premise facts connected by commas.85

“CanNotEat”, “AllergicTo” and “Contains” are predicate verbs while Person, Food, Substance86

are variable types of variables (X, Y, Z). This symbolic rule can be verbalized as: If Person X is87

allergic to Substance Z and Food Y contains Substance Z, then Person X cannot eat Food Y.88

Primitive Rule We aim to generate primitive rules for further compositions and potential generaliza-89

tion. We formally define primitive rules as follows: (1) they concern abstract objects, like Person90

and Food, rather than specific instances, and their common properties; (2) they cannot be decomposed91

into simpler rules. Inspired by superordinate objects such as instrument, fruit, tool from92

[23], we assemble a collection of abstract objects. We first identify the most common tail nodes of93

“IsA” relations from ConceptNet [30]. For those nodes that are still fine-grained, we further seek94

their general hypernyms by searching ConceptNet and WordNet [15]. We totally gather a list of 3295

most common abstract objects for primitive rule generation, with 18 common properties generated by96

prompting GPT-4, as detailed in Appendix A.1.97

2.2 Primitive Rule Generation Pipeline98

The pipeline of primitive rule generation is illustrated in Figure 3, consisting of five steps. First,99

we randomly select two abstract objects, and generate potential predicates between them to form100

conclusions. GPT-4 is prompted to generate corresponding feasible premises with both single and101

multiple facts, thereby constructing candidate primitive rules. We then apply heuristic methods to102

filter invalid and non-primitive rules, and utilize GPT-4 to select the rules it deems logically correct.103

We further diversify rule predicates via backward/forward chaining [34, 27] with generated single-fact104

rules, and filter excessively repetitive rules. Finally, the diversified rules undergo manual verification105

to ensure the final set of high-confidence primitive rules.106

Step-1: Conclusion Preparation From the set of abstract objects, we select any two, e.g., Person107

and Food, and prompt GPT-4 to generate potential predicates connecting them as conclusions, e.g.,108

CanEat(Person X, Food Y). We attempt every possible pairing of two, where the selected objects can109

be identical. For each pair of objects, {object1} and {object2}, we aim to generate conclusions across110

five domains: {object affordance, accessibility, interaction, location and person’s need}, thereby111

covering diverse scenarios. Explanations and example rules of these domains, and the prompt are112

listed in Appendix A.2. Besides, we negate the generated predicates to yield both positive and113

negative conclusions, e.g., CanNotEat(Person X, Food Y), across object affordance, accessibility, and114

interaction domains, building a complete rule set.115

Step-2: Premise Generation Guided by a symbolic conclusion, we prompt GPT-4 to generate its116

premises in both symbolic and verbalized forms for better controllability. This process involves the117
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logit bias setting, motivating premises to describe relationships between abstract objects and their118

properties. Specifically, premises are generated under the constraint of logit bias, increasing the119

likelihood of these objects and properties appearing in the output. For each conclusion, we create both120

single-fact and multi-fact premises to yield candidate rules of varying lengths. We tailor instructions121

and demonstrations for each domain to prompt GPT-4 for premise generation exploring different122

possibilities, as detailed in Appendix A.4.123

Step-3: Rule Filtering After over-generating candidate primitive rules, we first design heuristic124

methods to filter grammatically invalid or non-primitive rules based on their symbolic forms. For125

grammatically validity, we check if the variables in the premises form a connected graph from126

node “X” to node “Y”, as in Appendix A.5. For primitiveness, we exclude rules with non-primitive127

variable types or those comprising more than 3 premise facts. Besides, we eliminate trivial rules128

containing negative words in both the premise and conclusion, e.g., CanNotEat(Person X, Food Y):-129

CanNotAccess(Person X, Food Z). Since directly generating logically correct rules is challenging,130

we further adopt a self-critic strategy [11] where GPT-4 critiques the accuracy of its self-generated131

rules in a verbalized format, and provides explanations. When prompting GPT-4, we include two132

demonstrations featuring both correct and incorrect rules to mitigate label bias. These demonstrations133

vary across different domains. An example prompt for object affordance is in Appendix A.6.134

Step-4: Rule Diversifying To increase the variety of rule expressions, we diversify predicates135

while maintaining its logical accuracy. Based on symbolic rules, we respectively apply forward136

and backward chaining algorithms to their conclusion and premise with generated single-fact rules,137

as shown in Figure 4. In forward chaining, we take the conclusion as a new premise to generate138

an intermediate single-fact rule, subsequently substituting the original conclusion with this newly139

derived conclusion. In backward chaining, a premise is taken as a conclusion to create an intermediate140

single-fact rule, and replace the original premise with the new-generated one. Intermediate single-fact141

rules are also generated through Step-2 and 3. Each original rule undergoes one forward and one142

backward chaining to derive two diversified rules.

fw-predicate!(𝑋, 𝑌) :-
predicate!(X, Y);

predicate"(Z, Y) :-
bw−predicate"(Z, Y);

fw−predicate!(X, Y) :-
predicate"(X, Z), predicate#(Z, Y);

predicate!(X, Y) :-
predicate"(X, Z), bw−predicate#(Z, Y);

Forward chaining Backward chaining

Original Rule:

Diversified Rules:

Intermediate
Single-fact
rules:

predicate!(X, Y) :- predicate#(X, Z), predicate"(Z, Y);

Figure 4: The forward and backward chaining pro-
cess for diversifying rules.

Primitive Rule:
CanPark(Person X, Vehicle Y) :-Have(Person X, Space A),

RequireForParking(Vehicle Y, Space B), BiggerThan(Space A, Space B);

Have(Person X, Space Y) :-
Rent(Person X, Facility Z), Contain(Facility Z, Space Y);

CanPark(Person X, Vehicle Y) :-
Rent(Person X, Facility Z), Contain(Facility Z, Space A), 

RequireForParking(Vehicle Y, Space B), BiggerThan(Space A, Space B);

Compositional Rule (level=1):

……

Intermediate Rule:

More steps:

Figure 5: Illustration of one backward chain-
ing step.

143

Step-5: Human Verification To obtain more reliable rules, we utilize Amazon Mechanical Turk144

(AMT) to recruit three annotators for manual verification of each rule. They are asked to assess145

the clarity and comprehensibility of its premise and conclusion, and the logical entailment from the146

premise to the conclusion. Only the rules unanimously validated by all three annotators are preserved.147

The AMT template for human verification and rule acceptance rates are listed in Appendix A.7.148

2.3 Rule Composition149

We create more compositional rules by applying backward chaining upon primitive rules with different150

chaining steps. In each step, we select a premise fact from the current rule as a conclusion, deriving a151

new primitive rule that describes its multi-fact premise. This selected fact is then replaced with the152

newly generate premise. This process is iteratively conducted 1 to 3 times, creating rules with varying153

compositional levels (1 to 3). An example of one backward chaining step is shown in Figure 5. The154

intermediate primitive rules used in backward chaining are generated via the pipeline described in155

Sec. 2.2, thus also contributing to our primitive rule set. As the composition of logically correct156

sub-rules is also logically correct, there is no need to verify these compositional rules separately.157
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2.4 Rule Statistics158

Using LOIRE framework, we construct an inferential rule base ULogic comprising 14, 647 rules,159

with 7, 967 primitive and 6, 680 compositional ones. These rules span five key domains: object160

affordance, accessibility, interaction, location and person’s need. They vary in compositional depth161

from 0 to 3, with rule lengths ranging from 1 to 6. Detailed statistics are in Appendix A.8.162

3 Assessing LLMs’ Proficiency in Capturing Inferential Rules163

We utilize ULogic for a systematic evaluation of LLMs’ proficiency in underlying logic compared to164

human competence. Specifically, we select a high-quality probing subset of 1,104 diverse, author-165

verified rules from our rule base (varying in lengths, polarities and structures), and create a binary166

entailment classification task for assessing LLMs’ ability to capture inferential entailment.167

3.1 Analysis Setup168

Considering LLMs’ sensitivity to various input formulations and shortcut biases, we design a169

comprehensive and robust assessment mechanism to ensure reliable analysis. For each inferential170

rule, we convert it into five distinct probing questions to mitigate template bias, as summarized in171

Appendix B.1. We report the average accuracy and variance (the error line of each bar) across five172

templates. Besides, we adopt a two-shot chain of thought (CoT) prompting strategy [39] requiring the173

model to generate a rationale after presenting its answer, using ”and also explain why.” We include174

one correct rule and one incorrect rule in the two demonstrations to minimize label bias.175

Following the Law of Non-Contradiction [21], the propositions "If X, then Y" and "If X, then not176

Y" are mutually exclusive that cannot both be true at the same time. To enhance the reliability177

of our probing, we flip each rule by negating its conclusion, and simultaneously probe both the178

original rule and its flipped version. A rule is accurately classified only if the original rule is affirmed179

(True/Right/Yes) and its flipped counterpart is negated (False/Wrong/No), as shown below. A specific180

example is in Appendix B.2. This dual-sided probing is applied to both human and LLMs.

If Premise, then Conclusion_original. True/Right/Yes
If Premise, then Conclusion_flipped. False/Wrong/No

181

3.2 Empirical Analysis182

We conduct analysis on GPT-series LLMs, including GPT-4, GPT-3.5-Turbo and GPT-3.5-Turbo-183

Instruct, aiming to investigate LLMs’ proficiency of inferential rules against human performance by184

exploring the following questions. The human performance is obtained by asking AMT annotators185

whether the input rule is logical correct with high probability. Each performance presented in186

following bar charts is calculated based on 150 instances randomly sampled from our probing subset.187
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Figure 6: Probing results across varied lengths.
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Figure 7: Result of varied struc-
tures.

188

(1) How does model performance vary with increasing compositional complexity? We conduct189

rule probing in terms of different compostional lengths, as illustrated in Figure 6a. “Length=1,2,3,4”190
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respectively denote rules with 1∼4 facts in their premises. The analysis of different compostional191

depths is also provided in Appendix B.3. They both reveal that as compositional complexity increases,192

the performance of both human and all models drops. The primary reason is that compositional193

complex rules typically necessitate the aggregation of multi-step reasoning, which escalates higher-194

order relationships understanding and exponential error accumulation with each additional step [7].195

Besides, there is a persistent performance gap between all models and human, particularly pronounced196

with compositional complex rules, suggesting significant potential for enhancement in this area.197

(2) Are LLMs proficient in capturing both symbolic and verbalized rules? We further analyze198

LLM performance on symbolic rules (see Figure 6b) compared to on verbalized rules in Figure 13.199

GPT-4 achieves consistent performance on verbalized and symbolic rules, whereas GPT-3.5-Turbo200

and GPT-3.5-Instruct sharply degrade on symbolic rules. This suggests that the GPT-3.5 series may201

have limitations in generalizing across varied types of linguistic structures beyond natural language,202

whereas GPT-4 likely have undergone specific optimizations for symbolic interpretations.203

(3) Are there performance disparities among models concerning different rule structures?204

Our generated multi-fact rules (Length > 1) have three intrinsic structures: Transitive, Disjunctive205

and Disjunctive-Transitive. Specific illustrations and examples of each structure are detailed in206

Appendix B.4. Figure 7 shows that Disjunctive-Transitive rules pose greater challenges compared to207

Transitive and Disjunctive ones, especially for GPT-3.5-Turbo and GPT-3.5-Instruct. We hypothesize208

that this discrepancy stems from increased compositional complexity and LLMs’ insufficient learning209

of logical structures in natural language.210

(4) Do LLMs exhibit a polarity bias over inferential rules? Our inferential rules contain both211

positive and negative conclusions. As shown in Figure 8a, GPT-4 and GPT-3.5-Instruct exhibit212

a pronounced positive bias, performing better on rules with positive conclusions. This bias may213

originate from the imbalanced distribution of LLMs’ training data [9], with a higher proportion of214

positive statements. We further explore different CoT strategies with GPT-4: (1) first answer then215

explain (Answer-Explain), (2) first think then answer (Think-Answer), (3) self-consistently think216

then answer (Self-Consistency) [37]. Various CoT prompts are listed in Appendix B.5. Figure 8b217

shows that although advanced CoT strategies can mitigate the positive bias, they adversely impact the218

performance on rules with both positive and negative conclusions.219
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(a) Answer-Explain strategy.
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Figure 8: Rule Polarity Comparison.

(5) Why does GPT-4 significantly underperform GPT-3.5-Turbo on transitive rules? While220

GPT-4 generally outperforms or matches other models, this superiority disappears on transitive rules,221

as evidenced in Figure 7. We investigate this question in Appendix B.6, which reveals that GPT-4222

exhibits a “necessary bias” that tend to consider all necessary conditions reaching a conclusion,223

avoiding definite judgement. This conservative style may come from LLMs’ preference alignment224

during Reinforcement Learning with Human Feedback [19].225

Overall, GPT-4 performs best in grasping inferential rules. But compared to human performance, there226

still remains substantial room for improvement across all models, especially in highly compositional,227

symbolic and structural complex rules. Besides, all models tend to exhibit a polarity bias towards228

rules with positive conclusions with GPT-4 also showing a necessary bias. These findings suggest229

potential areas for future enhancements.230
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4 Rule Distillation as Inference Engine231

4.1 Instruction Dataset & Model Tuning232

For flexible rule generation and benefiting downstream reasoning, we distill our crafted rules into233

a smaller-scale inference engine as illustrated in Appendix C.1. We tailor three tasks: conclusion234

generation, premise completion and premise generation, to construct an instruction-tuning dataset for235

inferential rule distillation. The detailed definitions of these tasks are also described in Appendix C.1.236

We gather all primitive rules and partial compositional rules to formulate the instruction-tuning237

dataset, as compositional rules are constructed from primitive ones. We take 10,703 rules for training238

and 943 for testing. Altogether, we create 39,887 instances for instruction tuning, including 10,703,239

18,500 and 10,684 for conclusion generation, premise completion and premise generation. We have240

3,500 testing instances, divided as 943, 1,614 and 943 for these three tasks. We use Mistral-7b [13] as241

the backbone model and fine-tune it with our constructed instruction dataset as our inference engine.242

The training details and demo page can be found in Appendix C.2.243

4.2 Rule Generation Evaluation244

We compare our inference engine against GPT-4 and GPT-3.5-Turbo across three tasks to assess rule245

generation. For a fair comparison, we prompt GPT-4 and GPT-3.5-Turbo to simultaneously generate246

symbolic and verbalized responses, using similar prompts as in Step-2 of Sec. 2.2. Detailed prompts247

are in Appendix C.3. We introduce a multi-judger evaluation mechanism, incorporating automatic248

metrics, LLM evaluator and human preference to evaluate logical accuracy in conclusion generation249

and premise completion. For premise generation task with a specified number of facts, we generate250

three potential premises for each conclusion, and evaluate them on accuracy, diversity, complexity251

and abstractness (see Appendix C.4 for detailed metric definitions).252

Automatic Evaluation For automatic accuracy evaluation of three tasks, we calculate BLEU253

score [20] against reference responses. For complexity of premise generation, we assess the average254

fact number of three generated premises. For diversity, we compute average Self-BLEU [28, 32]255

between three generated premises. Specifically, Self-BLEU measures the BLEU score of a generated256

premise against another, and a high average Self-BLEU indicates low diversity. Abstractness is not257

easy to evaluate automatically, so we leave it to LLM evaluation. The results are shown in Table 1.

Table 1: Automatic evaluation results.

Task Conclusion Generation Premise Completion Premise Generation

Metrics BLEU BLEU BLEU Self-BLEU Fact Num.

Engine 0.739 0.527 0.411 0.687 3.42
GPT-4 0.414 0.179 0.149 0.805 2.58

GPT-3.5 0.338 0.248 0.084 0.739 1.72

258

LLM Evaluation We adopt GPT-4 as an evaluator to rate the generated responses on a scale from259

1 to 3. The criteria of each rating along with examples are provided to the evaluator. Please see260

Appendix C.5 for detailed prompts. For each task, we select 100 instances for LLM evaluation,261

ensuring a balance across all domains and all types. The rating results are presented in Table 2.

Table 2: LLM evaluation results.

Task Conclusion Generation Premise Completion Premise Generation

Metrics Accuracy Accuracy Accuracy Diversity Complexity Abstractness

Engine 2.44 2.78 2.34 1.89 1.62 2.43
GPT-4 2.53 2.72 2.77 2.64 1.40 2.32

GPT-3.5 2.38 1.57 1.91 1.72 1.06 2.30

262

Human Evaluation To better assess premise generation in line with human value, we further recruit263

two annotators for each instance to compare their accuracy. We implement a pairwise comparison264

setting, asking annotators to determine which group of generated premise is more accurate in terms265

of logical consistency with the given conclusion, commonsense alignment and correctness of fact266

numbers. The results are shown in Fiure 9. From all evaluation, we can see that our inference engine267

enables the smaller-scale LLM with the capability for conclusion generation, premise completion and268
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premise generation. It performs better than GPT-3.5-Turbo across all metrics in three tasks, and even269

outperforms GPT-4 to generate more complex and abstract rules.

19%

54%

27%

Ours v.s. GPT-4

Ours GPT-4 Tie

76%

9%

15%

Ours v.s. GPT-3.5-turbo

Ours GPT-3.5-turbo Tie

Figure 9: Human comparison results.

Figure 10: Downstream reasoning performance.

Dataset Mistral Mistral+rules LLama LLama+rules
(Mistral-7b) (LLama2-7b)

StrategyQA 54.50 56.75 58.00 60.48
SOCIAL IQA 64.00 68.50 53.50 60.50

LINK head 53.68 68.38 58.09 70.59
LINK longtail 53.33 67.50 55.83 65.00

PIQA 65.00 65.00 58.5 62.0
CSQA2.0 59.00 62.50 64.00 60.00

270

4.3 Downstream Reasoning Evaluation271

We further analyze the effectiveness of our inference engine in generating logical rules or explanations272

to enhance downstream reasoning tasks. We evaluate on following commonsense reasoning datasets:273

StrategyQA [10], SOCIAL IQA [25], LINK [14], PIQA [4] and CSQA2.0 [31]. We use a zero-shot274

CoT strategy to prompt two baseline models, Mistral-7B-Instruct-v0.1 and Llama-2-7b-chat [33],275

to answer questions with following explanations. We then utilize our inference engine to generate276

logical rules or explanations relevant to answer questions, and supplement these generated rationals277

to baseline models as input to enhance their performance. We compare the prediction accuracy of our278

inference engine augmented models against baselines. The comparative results are shown in Tabel 10.279

Our inference engine can generate logical rules or explanations that benefit multiple downstream280

commonsense reasoning tasks on top of different backbone models. For the lack of clear advantage281

on PIQA and performance decline on CSQA2.0, we speculate that PIQA may be contaminated during282

Mistral’s training process, and CSQA2.0’s focus is mainly on longtail commonsense knowledge283

rather than requiring logical rules inference, like "Is cotton candy sometimes made out of cotton?"284

5 Related Work285

Logical Rule Generation Logical inferential rules are crucial for everyday reasoning [10, 31],286

and collecting these inferential rules is challenging. Prior work mainly adopts inductive logic287

programming (ILP) [41, 22, 26] for rule generation. However, they can only generate rules from288

existing knowledge graphs and the generated rules has potential inaccuracies. Alternatively, [29]289

manually create a set of inferential rules for inductive reasoning, but their scope is limited to kinship.290

[24] construct a commonsense inferential rule base through crowdsourcing, but these rules tend to291

be overly simple and specific, struggling to move beyond basic intuition and generalize to varied292

situations. Abstract and complex rules are essential in tackling diverse complex questions, paving293

the way for complex reasoning and decision-making. Although LLMs have opened new avenues for294

generating inferential rules [42], they still struggle to automatically craft abstract and complex rules.295

Integration of Logical Rules and LLMs The integration of inferential rules with LLMs has gained296

significant attention. This approach combines the logical interpretability of symbolic reasoning and297

adaptive power of neural computing, improving LLMs’ logical reasoning ability. [36, 17] transform298

textual statements into logical expressions and conduct symbolic reasoning following logical rules.299

[40] train neural models using a set of inferential rules for dynamic application. This direction300

broadens LLMs’ ability with flexible rule generation and application for complex reasoning.301

6 Conclusion302

This paper examines GPT-series LLMs’ proficiency in capturing logical inferential rules and probes303

their challenging reasoning space. We introduce a logic scaffolding inferential rule generation304

(LOIRE) framework to create an inferential rule base ULogic, including nearly 8,000 primitive and305

6,000 compositional rules across five domains. Our evaluations show that even advanced models306

like GPT-4 struggle with compositional and structural complex rules and exhibit certain biases.307

Furthermore, we distill ULogic into a smaller inference engine that performs well in generating308

inferential rules and benefit downstream reasoning tasks. Our work points out where LLMs need to309

improve in logical reasoning and offers a pathway to enhance their reasoning capabilities.310
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Limitations410

Limitation on inferential rule coverage. Commonsense inferential rules may exist in diverse411

formats and span various domains. Our work mainly focuses on rules formatted as if-then statements,412

covering five domains: object affordance, accessibility, interaction, location and person’s need. In413

future work, we will expand our scope to include inferential rules of other formats and explore414

additional domains for broader coverage.415

Limitation on probing open-source models. Our work does not probe and analyze open-source416

models. While GPT-4 and GPT-3.5-turbo are considered as the most advanced models, open-source417

counterparts may exhibit different behaviors or patterns in understanding inferential rules with varying418

complexities. These aspects will be the subject of future exploration.419

Risk of environmental impact A significant risk associated with our framework and analysis is420

the potential increase in environmental burdens due to the extensive use of OpenAI’s APIs for LLMs.421

This impact can be mitigated by replacing GPT-4 with future smaller-scale open-source models that422

are more efficient with less environmental impact.423

Potential error in rule generation. Generating inferential rules with specific requirements poses a424

significant challenge. As the majority of our framework’s pipeline are powered by GPT-4, it may425

inevitably generate inferential rules with logical inaccuracies even incorporating human verification.426

This might result in less accurate probing of LLMs.427

Ethical Consideration428

All rules we collected through LLMs are released publicly for usage and its probing subset for429

proficiency analysis have been subjected to a thorough review by the authors. The code of our430

generation pipeline and probing experiments will also be publicly released. This setting guarantees431

transparency and reproducibility in our experiments, allowing other researchers to evaluate and432

expand upon our work. Our logic scaffolding framework is strictly limited to be used for rule433

generation that follow the ethical guidelines of the community. The authors emphatically denounce434

the use of our framework for generating inaccurate or harmful rules.435

A Primitive Rule Generation Pipeline436

A.1 Abstract Objects and Common Properties437

Table 3 list 32 most common abstract objects and 18 common properties for primitive rule generation.438

Table 3: List of pre-defined abstract objects and common properties.

Type Words

Abstract Objects

“Person”, “Animal”, “Plant”, “Food”, “Alcohol”, “Disease”, “Drug”, “Natural Phenomenon”,
“Condition”, “Material”, “Substance”, “Furniture”, “Publication”, “Organization”, “Authoriza-
tion”, “Facility”, “Natural Place”, “Event”, “Show”, “Artwork”, “Job”, “Game”, “Vehicle”,
“Tool”, “Technology”, “Electronic Device”, “Platform”, “Financial Product”, “Skill”, “Legisla-
tion”, “Region”, “Time Period”

Common Properties
“Age”, “Price”, “Money”, “Height”, “Length”, “Weight”, “Strength”, “Size”, “Density”,
“Volume”, “Temperature”, “Hardness”, “Speed”, “BoilingPoint”, “MeltingPoint”, “Frequency”,
“Decibel”, “Space”

439

A.2 Rule Domains440

Table 4 illustrates the detailed explanations, example predicates and rules across five domains.441
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Table 4: The explanations, example predicates and rules of five different domains.

Domain Explanation Predicates Examples

Object
Affordance

Whether a person can take an
action over an object based on
its property and requirement

CanDrive(Person X, Vehicle Y);
CanCreate(Person X, Artwork Y);
CanAttend(Person X, Event Y);

CanDrive(Person X, Vehicle Y):- Have(Person
X, Age Z1), RequireMinimumAge(Vehicle Y,
Age Z2), BiggerThan(Age Z1, Age Z2);

Object
Accessibility

Whether an object can ac-
cess the other object based on
its physical condition, spatial
and temporal restriction

CanAccess(Person X, Show Y);
CanAccess(Animal X, Tool Y);
CanAccess(Animal X, Animal Y);

CanAccess(Person X, Show Y):- Locate-
dIn(Person X, Region Z), BroadcastIn(Show
Y, Region Z); CanNotAccess(Person X,
Tool Y):- AllergicTo(Person X, Material Z),
MadeOf(Tool Y, Material Z);

Object
Interaction

How an object can interact
with the other object based on
their physical, spatial or tem-
poral properties

CanSubmergeIn(Substance X,
Substance Y); CanAdapted-
From(Show X, Artwork Y);
CanFitIn(Tool X, Tool Y);

CanSubmergeIn(Substance X, Substance
Y):- DensityOf(Substance X, Density Z1),
DensityOf(Substance Y, Density Z2), Big-
gerThan(Density Z1, Density Z2);

Object
Location

The location description of an
object

OriginatedFrom(Food X, Region
Y); BannedIn(Drug X, Region Y);
BornIn(Person X, Region Y);

OriginatedFrom(Food X, Region Y):- Pro-
cessedIn(Food X, Facility Z), LocatedIn(Facility
Z, Region Y);

Person’s
Need

Person need to take an action
over objects under a specific
circumstance

NeedToConsume(Person X, Drug
Y);
NeedToWater(Person X, Plant Y);

NeedToConsume(Person X, Drug Y):-
Has(Person X, Disease Z), CanTreat(Drug Y,
Disease Z);

A.3 Prompt for Conclusion Preparation442

An example of the prompt for conclusion preparation about affordance is below.443

Prompt for Conclusion Preparation

According to commonsense knowledge in reality, please list 5 predicates between the given two
objects to describe the {object affordance}.
Examples:
Object: Show, Artwork
Predicate: CanBeAdaptedFrom(Show X, Artwork Y)

Object: {object1}, {object2}
Predicate:

444

A.4 Prompts for Premise Generation445

For premise generation in each domain, we design an instruction followed by two demonstrations to446

iteratively prompt GPT-4, and the underlined sentence is the rule description which varies according447

to the specific domain, as shown in Table 5.448

A.5 Grammatical Validity for Rule Filtering449

As Figure 11, we check whether the variables in premises form a connected graph from node “X” to450

node “Y” to filter grammatically invalid rules.

X

Y

A

B

X

Y
Z

X

Y

A

B

Figure 11: Grammatically valid and invalid rule graphs.
451

A.6 Prompts for Rule Filtering452

Table 6 is an example prompt for rule filtering in object affordance domain.453
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Instruction for Premise Generation (Object Affordance)

According to commonsense knowledge in realistic scenarios, please generate 2 logical rules in both
Prolog and natural langauge to describe the premises of the given conclusion. The rules in Prolog
should have the same meaning with the rules in natural language.
Each rule should contain multiple premises and each premise should contain two variables in (X, Y,
Z, Z1, Z2).
The rules should describe object affordance based on its property (such as height, age, price) and
requirement (such as required skill, source, tool).
The premises should not contain negative words such as ’not’, ’no’, ’never’ and ’un-’

Conclusion: {conclusion}
Rules:

Demonstrations for Premise Generation (Object Affordance)

Conclusion: CanCook(Person X, Food Y)
Rules:
1. CanCook(Person X, Food Y):- CanUse(Person X, Tool Z), UsedForCook(Tool Z, Food Y);
If Person X can use Tool Z which is used for cooking Food Y, then Person X can cook Food Y.
2. CanCook(Person X, Food Y):- Master(Person X, Skill Z), RequiredForCooking(Skill Z, Food Y);
If Person X has mastered Skill Z which is required for cooking Food Y, then Person X can cook Food Y.

Conclusion: CanDrive(Person X, Vehicle Y)
Rules:
1. CanDrive(Person X, Vehicle Y):- Have(Person X, Age Z1), RequireMinimumAge(Vehicle Y, Age
Z2), BiggerThan(Age Z1, Age Z2);
If Person X has Age Z1 and the minimum age requirement for driving Vehicle Y is Age Z2, Age Z1
is bigger than Age Z2, then Person X can drive Vehicle Y.
2. CanDrive(Person X, Vehicle Y):- Obtain(Person X, Authorization Z), RequiredForDriv-
ing(Authorization Z, Vehicle Y);
If Person X have obtained a specific Authorization Z and Authorization Z is required for driving
Vehicle Y, then Person X can drive Vehicle Y.

Table 5: Prompts for rule generation in different domains.

Domain Rule Description

Object Affordance The rules should describe object affordance based on its property (such as height, age,
price) and requirement (such as required skill, source, tool).

Object Accessibility The rules should describe object accessibility based on its physical condition, spatial and
temporal restriction.

Object Interaction The rules should describe object interaction based on its physical, spatial or temporal
properties (such as speed, hardness, density, height, time period).

Object Location The rules should describe the location information of an object.
Person’s Need The rules should describe person’s need to take an action over the object.

A.7 Human Verification Templates and Rates454

Before human verification, we first craft a qualification task to select AMT annotators from all455

English-speaking countries (US, UK, New Zealand, Australia, Canada). The prospective workers are456

presented with three representative test cases and need to predict whether the premise and conclusion457

are clearly readable, and if the premise logically entails the conclusion. Only those workers correctly458

passing all the test cases are recruited. The detailed template for human verification is shown as459

Figure 12. This template is also used for getting human performance in rule probing analysis, wherein460

a separate cohort of workers is qualified for manual rule probing. Besides, the overall rates of rule461

acceptance in different domains during human verification are listed Table 7.462
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Prompt for Rule Filtering

True or False? Please predict whether the input rule is accurate or not according to commonsense
knowledge in realistic scenarios, and also explain why.
Examples:
Input: If Person X has an Age Z1 and Vehicle Y requires an Age above Z2 for driving, with ...
Output: True. Because Person X has achieved the ...
Input: If Person X was born in Season Z and Plant Y blooms in the same Season Z, then Person X
can access Plant Y.
Output: False. Because a person’s birth season and a plant’s blooming season has no logical
connection.

Input: {candidate rule}
Output:

Table 6: A prompt for rule filtering in object affordance.

Figure 12: AMT template for human verification of primitive rules.

Table 7: The rule yield rates (%) of human verification.

Affordance Accessibility Interaction Location Person’s Need

Yield Rate 48.09 37.28 52.81 53.74 49.45

A.8 Statistics of ULogic463

We construct an inferential rule base ULogic comprising 14, 647 rules, with 7, 967 primitive and464

6, 680 compositional ones. These rules span five key domains: object affordance, accessibility,465

interaction, location and person’s need. They vary in compositional depth from 0 to 3, with rule466

lengths ranging from 1 to 6. Detailed statistics are in Table 8.467
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Table 8: Statistics of constructed rule base.

Domain Affordance Accessibility Interaction Location Need Total

Primitive rules 7,967

Single-fact 328 513 440 194 87 1,562
Multi-fact 387 638 2,527 166 128 3,846

Intermediate 417 590 1,286 165 101 2,559

Compositional rules 6,680

Compositionality=1 322 675 936 111 91 2,135
Compositionality=2 199 773 744 100 136 1,952
Compositionality=3 229 1052 896 217 199 2,593

B Rule Probing468

B.1 Rule Probing Templates469

Table 9 lists five different templates for unbiased rule probing.

Table 9: Five templates for rule probing.

Template Label
1 True or False? Please predict whether the input rule is very likely to be true. True/False
2 Right or Wrong? Please predict whether the input rule is valid and correct. Right/Wrong
3 Yes or No? Please predict whether the premise entails the conclusion. Yes/No
4 Premise:..., Conclusion:... Does premise entail conclusion? Please answer Yes or No. Yes/No
5 Given the observations ..., can we draw the conclusion ...? Please answer Yes or No. Yes/No

470

B.2 Dual-side Rule Probing Setting471

Table 10 illustrate a concrete example of dual-side rule probing.

Table 10: A specific example of dual-side rule probing.

If Premise, then Conclusion_original. True/Right/Yes
If Premise, then Conclusion_flipped. False/Wrong/No

Example
If Person X is allergic to Substance Z and Food Y contains Substance Z, then Person X
cannot eat Food Y. True/Right/Yes

If Person X is allergic to Substance Z and Food Y contains Substance Z, then Person X
can eat Food Y. False/Wrong/No

472

B.3 Rule Depths Probing473

The analysis of GPT-series LLMs and human on different compostional depths is presented as474

Figure 13. “Depth=0” represents primitive rules and “Depth=1,2,3” denote compositional rules475

involving 1 to 3 backward chaining steps.476

B.4 Illustrations of Rule Structures477

Figure 14 displays several examples showcasing both symbolic and verbalized rules across different478

structure types.479

B.5 Different CoT Prompts480

Table 11 lists different prompts of three CoT strategies for rule probing.481
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Figure 13: Probing results of varied depths.

Disjunctive

Transitive

Disjunctive-
Transitive

CanBuy(Person X, Game Y):- Age(Person X, Age A), RecommendedAge(Game Y, Age B), 
BiggerThan(Age A, Age B);
If Person X is of Age A and the recommended age for Game Y is Age B, and Age A is bigger than 
Age B, then Person X can buy Game Y.
CanNotEat(Person X, Food Y):- Inherit(Person X, Disease Z), Avoid(Food Y, Disease Z);
If Person X has inherited Disease Z and Food Y should be avoided by those with Disease Z, then 
Person X cannot eat Food Y.

CanPlay(Person X, Game Y):- Buy(Person X, Electronic Device Z), RequiredForGame(Electronic 
Device Z, Game Y);
If Person X has bought Electronic Device Z and Electronic Device Z is required for playing Game Y, 
then Person X can play Game Y.

CanPurchase(Person X, Material Y):- WorkAt(Person X, Job C), Pay(Job C, Money A), 
Sell(Material Y, Money B), BiggerThan(Money A, Money B);
If Person X works at Job C and Job C pays Money A, and Material Y is sold for Money B, and 
Money A is bigger than Money B, then Person X can purchase Material Y
CanAccess(Animal X, Substance Y):- LiveIn(Animal X, Natural Place C), LocatedIn(Natural Place 
C, Region Z), GrowsIn(Plant D, Region Z), DerivedFrom(Substance Y, Plant D);
If Animal X lives in Natural Place C, and Natural Place C is located in Region Z, and Plant D 
grows in Region Z, and Substance Y is derived from Plant D, then Animal X can access Substance Y.
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Figure 14: Example rules of different structures.

Table 11: Three CoT prompts for rule probing.

CoT strategy Prompt

Answer-Explain True or False? Please predict whether the input rule is very likely to be true,
and also explain why.

Answer-Explain
True or False? Please predict whether the input rule is very likely to be true.
Please first briefly explain your thought process in one sentence, and then give
your answer.

Self-Consistency

True or False? Please predict whether the input rule is very likely to be true.
Please first generate three different sentences to respectively explain your three
thought processes briefly, and then based on the corresponding thought to give
your answer. Finally, output the final answer according to majority voting.

B.6 Necessary Bias482

As mentioned in Section 3.2, We investigate why GPT-4 significantly underperforms GPT-3.5-Turbo483

on transitive rules. Transitive rules typically describe a straightforward logical chain from variable X484

to Y, where GPT-3.5-Turbo and GPT-3.5-Instruct manage with greater ease. In contrast, we find that485
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GPT-4 exhibits a “necessary bias” that tend to consider all necessary conditions reaching a conclusion,486

which avoids drawing a definite judgement. This conservative response is more pronounced in487

transitive rules, where GPT-4 more frequently responds with hesitations like "it does not necessarily488

mean" in its explanations. We present a probing example of a transitive rule by GPT-4 in Table 12,489

including its generated prediction, explanation and the corresponding label. We hypothesize that this490

conservative style may come from LLMs’ preference alignment during Reinforcement Learning with491

Human Feedback [19].492

Table 12: An example probing result of a transitive rules by GPT-4.

Input

True or False? Please predict whether the input rule is very likely to be true, and also explain
why.
Rule: If Person X has a job A that requires Skill Z, and Skill Z is required to cook Food Y,
then Person X can cook Food Y.

Prediction False

Explanation
Just because Person X has a job that requires Skill Z, it does not necessarily mean they can
cook Food Y. They may have the skill, but cooking also requires other knowledge of recipes,
techniques.

Label True

Prompt for Conclusion Generation

Given the premise, please generate its conclusion between X and Y in both Prolog and natural language.
The conclusion in Prolog should have the same meaning with the conclusion in natural language.
Each conclusion should contain only two variables X and Y without mentioning other variables, like A,
B, C, Z.

### Examples:
Premise: If Person X is allergic to Material Z and Furniture Y is made from Material Z.
Conclusion:
[Prolog]: CanNotHold(Person X, Furniture Y);
[Natural Language]: Person X cannot hold Furniture Y.

Premise: If Substance X has a Density Z1, the density of Substance Y is Density Z2, and Density Z1 is
bigger than Density Z2.
Conclusion:
[Prolog]: CanSubmerge(Substance X, Substance Y);
[Natural Language]: Substance X can submerge in Substance Y.

Premise: {premise}
Conclusion:

Table 13: Prompt ChatGPT and GPT-4 for conclusion generation.

C Inference Engine493

C.1 Illustration of Instruction Tuning494

Figure 15 illustrate the pipeline of instruction tuning for rule distillation as an inference engine. Our495

inference engine is trained for three tasks: conclusion generation, premise completion and premise496

generation. The conclusion generation focuses on creating a conclusion from a provided premise. For497

premise completion, given a conclusion and its partial premise, the inference engine must complete498

the remaining premise part to support the conclusion. In premise generation, the engine is tasked499

with creating premises of varying complexity based on a given conclusion, specifically generating500

premises with one, two or even more facts. We also provide an inference engine demo for flexible501

rule generation as shown in Figure 16.502
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Figure 15: Rule distillation for inference engine.

C.2 Implementation Details503

We fine-tune Mistral-7b with our constructed instruction dataset with Quantization LoRA (QLoRA)504

method [12, 6] as our inference engine. We set the learning rate to 7× 10−5, batch size to 8, gradient505

accumulation step to 16, and train the model 2 epochs. We apply QLoRA to all the linear layers of506

the model, including q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, and lm_head.507

The α and r of the QLoRA method are both set to 16.508

C.3 Prompting ChatGPT and GPT-4 for Three Tasks509

As Step-2 of Sec. 2.2, we utilize two-shot prompts to instruct ChatGPT and GPT-4 in simultaneously510

generating symbolic and verbalized responses for three tasks, as shown in Table 13, 14, 15.511

C.4 Evaluation Metrics512

We detailed describe the metrics for evaluating our inference engine against ChatGPT and GPT-4 for513

the premise generation task.514

• Accuracy: The premise is logically correct to infer the conclusion and follow the instruction515

regarding the specific number of facts.516

• Diversity: The degree of variation among the three generated rules.517

• Complexity: Assessed only for premise generation with more than 2 facts, measuring the fact518

number and the semantic difficulty.519

• Abstractness: The variable types in premises are abstract to generalize to diverse instances. For520

example, the variable types “ Region” and “Event” are abstrct while “New York” and “The FIFA521

World Cup” are specific entities with low abstractness.522

C.5 LLM Evaluation Prompts523

We prompt GPT-4 as the evaluator for rating the accuracy of conclusion generation and premise524

completion tasks, and the accuracy, diversity, complexity and abstractness of the premise generation525

task. We adopt one-shot prompts which are shown as Table 16 and Table 17 (with demonstrations526

omitted).527

C.6 Human Evaluation Templates528

For the human evaluation of premise generation accuracy, we qualify a new cohort of AMT annotators529

to pairwise compare two sets of generated premises in terms of logical consistency with the provided530
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Figure 16: Inference Engine Demo.

conclusion, alignment with common sense and the inclusion of an accurate number of facts. The531

detailed template for human evaluation is shown as Figure 17.532

C.7 Downstream Reasoning Datasets533

StrategyQA and SOCIAL IQA consist of crowd-sourced questions involving reasoning of implicit534

logic. LINK comprises GPT-4 generated statements instantiated from abstract rules, including two535

subsets: head distribution statements and long-tail knowledge statements. PIQA examines operational536

commonsense for achieving physical goals and CSQA2.0 features adversarial commonsense examples537

designed to mislead AI systems.538

20



Prompt for Premise Completion

Given the conclusion and a part of its premise, please complete the remaining portion of the premise in
both Prolog and natural language.
The remaining premise in Prolog should have the same meaning with the remaining premise in natural
language.
Each fact in the remaining premise should contain two variables, like X, Y, Z, Z1, Z2, A, B.

### Examples:
Conclusion: Person X cannot use Furniture Y.
Partial Premise: If Person X is allergic to Material Z,
Remaining Premise:
[Prolog]: MadeFrom(Furniture Y, Material Z);
[Natural Language]: Furniture Y is made from Material Z.

Conclusion: Substance X can submerge in Substance Y.
Partial Premise: If Substance X has a Density Z1, the density of Substance Y is Density Z2,
Remaining Premise:
[Prolog]: BiggerThan(Density Z1, Density Z2);
[Natural Language]: Density Z1 is bigger than Density Z2.

Conclusion: {conclusion}
Partial Premise: {partial premise}
Remaining Premise:

Table 14: Prompt ChatGPT and GPT-4 for premise completion.

Figure 17: AMT template for human evaluation for premise generation accuracy.
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Prompt for Premise Generation

Given the conclusion, please generate three different premises in both Prolog and natural language,
ensuring that each Prolog premise conveys the same meaning as its natural language counterpart.
Each premise should contain a specified number of facts, with each fact comprising only two variables,
such as X, Y, Z, Z1, Z2, A, B.

### Examples:
Fact number: 1 fact
Conclusion: Person X has Skill Y.
Three Premises:
1. [Prolog] Learned(Person X, Skill Y); [Natural Language] If Person X learned Skill Y.
2. [Prolog] Inherit(Person X, Skill Y); [Natural Language] If Person X inherits Skill Y.
3. [Prolog] Acquire(Person X, Skill Y); [Natural Language] If Person X acquires Skill Y.

Fact number: more than 2 facts
Conclusion: Person X cannot attend Event Y.
Three Premises:
1. [Prolog] Have(Person X, Age Z1), RequireMinimumAge(Event Y, Age Z2), BiggerThan(Age Z2,
Age Z1); [Natural Language] If Person X has Age Z1 and the minimum age requirement for attending
Event Y is Age Z2, Age Z2 is bigger than Age Z1.
2. [Prolog] Have(Person X, Height Z1), RequireAbove(Event Y, Height Z2), SmallerThan(Height Z1,
Height Z2); [Natural Language] If Person X has a Height Z1, and Event Y requires a Height above Z2,
and Height Z1 is smaller than Height Z2.
3. [Prolog] HaveCriminalRecord(Person X, Event Z), ProhibitedBy(Event Z, Legislation A),
EnforcedIn(Legislation A, Region B), HeldIn(Event Y, Region B); [Natural Language] If Person X has
a criminal record for Event Z and Event Z is prohibited by Legislation A, which is enforced in Region
B, and Event Y is held in Region B.

Fact number: {fact num}
Conclusion: {conclusion}
Three Premises:

Table 15: Prompt ChatGPT and GPT-4 for premise generation.
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Prompt for Rating the Accuracy of Conclusion Generation

You are a helpful scoring assistant.
Please read the provided premise carefully, and rate the accuracy of the candidate conclusion on a scale
of 1 to 3:
- 1 (not accurate): The conclusion is clearly unsupported, irrelevant or contradictory to the provided
premise.
- 2 (somewhat accurate): The conclusion, despite being supported by the premise, fails to state the
definitive link between X and Y, or contradicts common sense, or lacks clarity.
- 3 (highly accurate): The conclusion correctly states the definitive link between X and Y, and is
well-supported by the premise aligning with both established facts and common sense.
Please first output your rating based on your general knowledge and logical reasoning, and then provide
a brief explaination with no more than 100 words.

[Provided Premise]: {premise}
[Candidate Conclusion]: {conclusion}
[Output]:

Prompt for Rating the Accuracy of Premise Completion

You are a helpful scoring assistant.
Please read the provided conclusion and its partial premise carefully, and rate the accuracy of its
remaining premise in completing the provided premise to reach the conclusion, using a scale from 1 to
3:
- 1 (not accurate): The remaining premise fails to complete the provided premise for deducing the
conclusion. It may be irrelevant or inconsistent with the provided premise or conclusion, or both.
- 2 (somewhat accurate): The remaining premise can somewhat supplement the provided premise
but is not entirely sufficient for a conclusion inference. It may require additional information for
comprehensive completion, or contradicts common sense, or lacks clarity.
- 3 (highly accurate): The remaining premise, combined with the provided partial premise, can correctly
lead to the given conclusion, and also aligns well with common sense.
Please first output your rating based on your general knowledge and logical reasoning, and then provide
a brief explaination with no more than 100 words.

[Conclusion]: {conclusion}
[Partial Premise]: {partial premise}
[Remaining Premise]: {rest premise}
[Output]:

Prompt for Rating the Accuracy of Premise Generation

You are a helpful scoring assistant.
Please carefully read the provided conclusion along with the specified number of facts, and rate the
accuracy of candidate premise in both reaching the conclusion and containing the correct number of
facts, using a scale from 1 to 3:
- 1 (not accurate): The premise is logically incorrect, irrelevant or contradictory for deducing the
conclusion, or it contains an incorrect number of facts.
- 2 (somewhat accurate): The premise can partially infer the conclusion but is not entirely sufficient. It
may require additional information, or contradicts common sense, or lacks clarity.
- 3 (highly accurate): The premise can correctly lead to the given conclusion and aligns well with
common sense, and precisely contains the specified number of facts.
Please first output your rating based on your general knowledge and logical reasoning, and then provide
a brief explaination with no more than 100 words.

[Fact Number]: {fact num}
[Conclusion]: {conclusion}
[Premise]: {premise}
[Output]:

Table 16: Prompts for rating the accuracy of three tasks.

23



Prompt for Rating the Diversity of Premise Generation

You are a helpful scoring assistant.
Please read the provided conclusion and multiple generated premises carefully, and rate the diversity of
these premises using a scale from 1 to 3:
- 1 (low diversity): The premises show minimal variation, where all three premises largely repeat same
perspectives with slight lexical changes.
- 2 (moderate diversity): The premises exhibit some degree of variation, with two out of the three
premises sharing similar perspectives, expressions and fact numbers while the third presents different
content.
- 3 (high diversity): The premises display a high level of diversity, where each premise presents distinct
perspective from the others, or contains different fact numbers.
Please first output your rating, and then provide a brief explaination with no more than 50 words.

[Conclusion]: {conclusion}
[Premise]: {premise1}, {premise2}, {premise3}
[Output]:

Prompt for Rating the Complexity of Premise Generation

You are a helpful scoring assistant.
Please carefully read the provided conclusion, and rate the complexity of candidate premise considering
both the number of facts it comprises and its semantic difficulty, using a scale from 1 to 3:
- 1 (low complexity): The premise is straightforward, incorporating no more than 3 facts with clear and
easy-to-understand semantics and a simple logical structure.
- 2 (moderate complexity): The premise exhibits moderate complexity, which involves 4 facts and
somewhat intricate semantics and a logical structure that require some thought to understand.
- 3 (high complexity): The premise is highly complex with more than 4 facts, which also includes
complex semantics and an abstract logical structure, demanding a high level of understanding.
Please first output your rating based on your general knowledge and logical reasoning, and then provide
a brief explaination with no more than 50 words.

[Conclusion]: {conclusion}
[Premise]: {premise}
[Output]:

Prompt for Rating the Abstractness of Premise Generation

You are a helpful scoring assistant.
Please carefully read the provided conclusion, and rate the abstractness of objects in the candidate
premise considering how broadly they can generalize to various specific instances, using a scale from 1
to 3:
- 1 (low abstractness): The objects in the premise are concrete and specific, making direct and clear
reference to particular instances or examples, which focus on specific people, places, or tangible
entities, such as Swimmer, New York, or SUV.
- 2 (moderate abstractness): The objects in the premise are somewhat abstract, representing a balance
between specific instances and general concepts. They may pertain to fine-grained categories of people,
places, or things, such as Professionals, City, or Car.
- 3 (high abstractness): The objects in the premise are highly abstract, focusing on coarse-grained
people, places or things that are far removed from concrete instances, such as Person, Region, or Event,
or general properties like Age and Height.
Please first output your rating based on your general knowledge and logical reasoning, and then provide
a brief explaination with no more than 50 words.

[Conclusion]: {conclusion}
[Premise]: {premise}
[Output]:

Table 17: Prompts for rating the diversity, complexity and abstractness of premise generation.
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