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Abstract

Attention mechanisms have become a crucial001
aspect of deep learning, particularly in natural002
language processing (NLP) tasks. However, in003
tasks such as constituency parsing, attention004
mechanisms can lack the directional informa-005
tion needed to form sentence spans. To ad-006
dress this issue, we propose a Bidirectional007
masked and N-gram span Attention (BNA)008
model, which is designed by modifying the009
attention mechanisms to capture the explicit010
dependencies between each word and enhance011
the representation of the output span vectors.012
The proposed model achieves state-of-the-art013
performance on the Penn Treebank and Chi-014
nese Treebank datasets, with F1 scores of 96.47015
and 94.15, respectively. Ablation studies and016
analysis show that our proposed BNA model017
effectively captures sentence structure by con-018
textualizing each word in a sentence through019
bidirectional dependencies and enhancing span020
representation.1021

1 Introduction022

The concept of attention has become a major as-023

pect of deep learning, and improving attention is024

essential to enhance the model efficacy. In natu-025

ral language processing (NLP), numerous studies026

that utilize the sequence-to-sequence model have027

achieved significant performance improvements by028

modifying the attention mechanisms to specific029

tasks. Tasks such as summarization (Duan et al.,030

2019; Wang et al., 2018), translation (Zeng et al.,031

2021; Lu et al., 2021), question answering (Wang032

et al., 2021; Chen et al., 2019), and multi-modal033

learning (Nishihara et al., 2020; Liu et al., 2022)034

are examples of the efficacy of such mechanisms035

in improving model performance.036

In the constituency parsing task, which involves037

identifying constituent phrases and their relation-038

ships in a sentence, attention mechanisms, espe-039

1Our code is available at
https://anonymous.4open.science/r/BNA-DA88.

Figure 1: Comparison of the process of capturing di-
rectional information from words using BiMSA (a) and
BiLSTM (b) methods in a matrix representation. In
BiMSA (a), the gray area in the attention score refers to
the region where directional masking has been applied.

cially self-attention, improves the performance of a 040

parser. Many studies on constituency parsing have 041

emphasized the importance of comprehending sen- 042

tence spans to improve parser performance (Cross 043

and Huang, 2016; Stern et al., 2017; Gaddy et al., 044

2018). Recent studies that incorporate attention 045

mechanisms train parsers to comprehend sentence 046

spans by referring to the n-grams of a sentence as 047

the span (Tian et al., 2020) or by considering the di- 048

rectional and positional dependencies from splited 049

word representation (Kitaev and Klein, 2018; Mrini 050

et al., 2020). 051

However, because attention mechanisms com- 052

pute the dependency of each element simultane- 053
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ously, there can be a lack of the directional infor-054

mation that is needed to form sentence spans. This055

contrasts with long short-term memory (LSTM)056

models that consider directional information. In057

attention mechanisms that use attention weights058

between the query and key vectors as relational059

information between each element, the weights are060

computed regardless of the element’s relative po-061

sition. Previous studies (Kitaev and Klein, 2018;062

Mrini et al., 2020) acknowledged that this method063

could be problematic and made efforts to address it.064

However, such attempts were conducted under the065

assumption of ideal learning conditions, and the066

problem in the calculation process has persisted.067

The purpose of this paper is to modify the at-068

tention mechanism into two types of capability.069

The first one obtains explicit directional informa-070

tion for each word, similar to the approach used071

by bidirectional LSTM (Figure 1(b)). The second072

one enhances the representation of each word by073

incorporating information from spans, which are074

suitable for constituency parsing.075

In this work, we propose a novel model called076

BNA (Bidirectional masked and Ngram span077

Attention). BNA employs a variant of masked078

self-attention (MSA) in which each element in a079

sequence is considered sequentially by its attention080

weights bidirectionally, rather than simultaneously.081

Moreover, BNA incorporates a novel span atten-082

tion mechanism that represents a key-value matrix083

by subtracting the hidden states at the span bound-084

aries. This approach enables the query (i.e., word085

sequence) to access the contextual information of086

n spans in a sentence.087

Our parser achieves state-of-the-art performance088

with F1 scores of 96.47 and 94.15 for the Penn Tree-089

bank and Chinese Treebank datasets, respectively.090

In addition, through ablation study and analysis,091

we demonstrate that our proposed BNA model ef-092

fectively captures sentence structure by contextual-093

izing each word in a sentence through bidirectional094

dependencies and enhancing span representation.095

2 Related Work096

In the field of constituency parsing, since the in-097

troduction of the span-based approach by Stern098

et al. (2017), chart-based neural parsers have out-099

performed transition-based ones (Zhang, 2020).100

The span-based approach involves labeling specific101

text spans instead of individual tokens or words,102

enabling the parsers to consider the context and re-103

lationships between different spans of the sentence. 104

With the rise of the Transformer model (Vaswani 105

et al., 2017) in NLP, attention mechanisms have be- 106

come an attractive alternative to LSTM networks. 107

In constituency parsing, attention mechanisms have 108

shown promising results, as demonstrated by Ki- 109

taev and Klein (2018), who used a self-attentive 110

network applied to the span-based parser to im- 111

prove performance. They split the input vector 112

into content and position representations and per- 113

formed self-attention on each component sepa- 114

rately. Building on this work, Mrini et al. (2020) 115

introduced label attention layers, a modified form 116

of self-attention that enables the model to learn 117

label-specific views of the input sentence. In this 118

mechanism, the attention heads are split into half, 119

forward and backward representations, which are 120

then used to construct span vectors of the input sen- 121

tence. More recently, Tian et al. (2020) proposed 122

span attention, which assumes no strong depen- 123

dency between each hidden vector in a transformer- 124

based encoder. Their method involves enhancing 125

the span representation by summing the attention 126

vector of n-grams consisting of embedded word 127

vectors with the span vector, without using direc- 128

tional vectors. 129

However, conventional attention mechanisms 130

treat all elements simultaneously without consider- 131

ing directional dependencies, making it challenging 132

to construct span vectors using an encoder based on 133

the attention mechanism. Furthermore, construct- 134

ing arbitrary span vectors from embedded words 135

that lack contextual information of the sentence 136

could be improved. 137

In this paper, we introduce two types of attention 138

mechanisms that address the issue of directional 139

dependencies and that strengthen span representa- 140

tion. 141

3 Background 142

Self-attention is a powerful mechanism that enables 143

neural networks to capture dependencies between 144

different parts of a sequence. The basic idea behind 145

self-attention is to compute a representation of the 146

entire sequence by weighting the importance of 147

different elements in the sequence based on their 148

similarity to each other. 149

In a typical self-attention sub-layer, the sequence 150

of input vectors X = [x1, ..., xn] is transformed 151

into three sequences of vectors: queries Q = 152

[q1, ..., qn], keys K = [k1, ..., kn], and values 153
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V = [v1, ..., vn]. These sequences are computed154

using learned linear projections:155

qi = WQxi,

ki = WKxi,

vi = W V xi,

(1)156

where WQ, WK , and W V are learned weight ma-157

trices.158

Attention weights αi,j are computed as the dot159

product of the query vector q at position i and the160

key vector k at position j, which is subsequently161

normalized using the softmax function as follows:162

αi,j = Softmax(
qi · k⊺

j√
d

), (2)163

where d is the dimensionality of the key vectors.164

The
√
d is used to prevent numerical instability.165

Finally, the weighted sum of the value vectors is166

computed using the attention weights:167

hi =

n∑
j

αi,jvj . (3)168

This weighted sum hi can be seen as a hidden169

representation of the i-th vector that considers the170

importance of each of the other vectors in the se-171

quence.172

4 Approach173

Our approach is motivated by the problem that174

self-attention mechanisms struggle to encode the175

relative positions and sequential order of elements176

within the context of a sequence (Ambartsoumian177

and Popowich, 2018; Hahn, 2020). Studies have178

been conducted to resolve this issue in tasks that179

require bidirectional information, such as relation180

extraction (Du et al., 2018) and machine translation181

(Bugliarello and Okazaki, 2020). To address this182

issue, we propose the Bidirectional Masked Self-183

Attention (BiMSA) and N-gram Span Attention184

(NSA) mechanisms. Together, these two attention185

mechanisms comprise our Bidirectional masked186

and N-gram span Attention (BNA) model.187

Section 4.1 provides a brief overview of the con-188

stituency parsing process. Section 4.2 provides a189

more detailed explanation of BiMSA and NSA and190

how they are integrated into the BNA model.191

4.1 Constituency Parsing 192

Constituency parsing is the process of analyzing the 193

grammatical structure of a sentence by separating it 194

down into a set of labeled spans represented by the 195

parse tree T . The tree T of a sentence is expressed 196

as a set of labeled spans, 197

T = {(it, jt, lt) : t = 1, ..., |T |}, (4) 198

where the fencepost position of the t-th span is 199

indicated by it and jt, and the span has the label lt. 200

The parser assigns a score s(T ) to each parse tree 201

T , which decomposes as 202

s(T ) =
∑

(i,j,l)∈T

s(i, j, l). (5) 203

To generate the parse tree T for a given sentence 204

X = [x1, x2, ..., xn], the encoder first transforms 205

the input sequence into a set of hidden representa- 206

tions H = [h1, h2, ..., hn]. Hidden vector Vi,j for 207

a span (i, j) is calculated as the difference between 208

the start and end hidden vectors of that span, fol- 209

lowing the definition of Gaddy et al. (2018) and 210

Kitaev and Klein (2018): 211

Vi,j = [hfj − hfi ;h
b
i − hbj ], (6) 212

where hk represents the hidden vector at position k 213

and is constructed from two vectors from different 214

directions, forward with hfk and backward with hbk. 215

The multi-layer perceptron (MLP) classifier, 216

which serves as a decoder, takes the hidden vector 217

Vi,j as the input and assigns a label score to each 218

span. The optimal parse tree 219

T̂ = argmax
T

s(T ) (7) 220

with the highest score can be identified efficiently 221

through a variant of the CKY algorithm.2 222

To find the correct tree T ∗, the model is trained 223

to meet the margin constraints 224

s(T ∗) ≥ s(T ) + ∆(T, T ∗) (8) 225

for all trees T through the process of minimizing 226

the hinge loss 227

max(0,max
T

[s(T ) + ∆(T, T ∗)]− s(T ∗)) (9) 228

where ∆ denotes the Hamming loss. 229

2We follow the parsing strategy proposed by Stern et al.
(2017) and modified by Gaddy et al. (2018). For more details,
see Gaddy et al. (2018)

3



Figure 2: Our parser combines a chart decoder with an encoder, the proposed BNA model. The right side of
the figure illustrates the procedure of each attention mechanism when the input sentence X is provided. The
multiplication symbol denotes the matrix multiplication, and the summation and subtraction symbols represent the
element-wise summation and subtraction, respectively.

4.2 BNA230

The proposed BNA encoder is composed of two231

variants of the transformer encoder layers: a232

BiMSA layer and an NSA layer. The overall archi-233

tecture of the parser is illustrated in Figure 2.234

The BiMSA layer is composed of BiMSA and235

the position-wise feed-forward network (FFN) with236

the residual connection. The BiMSA layer is com-237

puted as follows:238

Ĥ l = LN(H l−1 + BiMSA(H l−1)),

H l = LN(Ĥ l + FFN(Ĥ l)),
(10)239

where H l−1 is the hidden state of the previous240

encoder layer and LN(·) is the layer normalization.241

The NSA layer has the same structure as the242

BiMSA layer, but uses NSA instead of BiMSA:243

Ĥ l+1 = LN(H l + NSA(H l)),

H l+1 = LN(H l+1 + FFN(Ĥ l+1)).
(11)244

Overall, BNA is composed of a sequential struc-245

ture that contextualizes each word by leveraging246

both the sequential and directional dependencies247

using the BiMSA layer first and then enhances the248

span representation using the NSA layer.249

4.2.1 Bidirectional Masked Self-Attention250

BiLSTM uses forward and backward recurrent251

operations to produce an output vector with se-252

quence information as the inductive bias. However,253

attention-based models compute attention weights 254

solely based on the similarity between the query 255

and key vectors and do not consider the order of 256

elements in the sequence, making it challenging to 257

incorporate sequence directionality. 258

To overcome this constraint, we introduce 259

BiMSA to capture the directional dependency of 260

the context, which is crucial for constructing a span 261

vector by adding hard mask M to the scaled dot 262

product of the query and key (Figure 1(a)). In this 263

way, Eq. (2) is redefined as follows: 264

αi,j = Softmax(
qi · k⊺

j√
d

+Mi,j). (12) 265

When Mi,j is equal to negative infinity, the qi word 266

does not affect the kj word. Conversely, when Mi,j 267

is equal to 0, it does not influence the attention 268

weights. 269

The mask is divided into two distinct directional 270

segments, namely the forward mask MF and back- 271

ward mask MB: 272

MF
i,j =

{
0, i ≤ j

−∞, else

MB
i,j =

{
0, i ≥ j

−∞, else

(13) 273

We apply a forward and backward mask separately 274

to split the directional representation of each word 275
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into its respective forward and backward compo-276

nents. Eq. (3) is redefined as follows:277

ĥF
i =

n∑
j

αF
i,jvj ,

ĥB
i =

n∑
j

αB
i,jvj .

(14)278

The output of BiMSA is produced by concatenating279

two directional hidden states into a single output280

representation.3281

By using directional masks, words are con-282

strained to attend solely to the preceding or sub-283

sequent words, enabling the model to more effec-284

tively capture the temporal dependencies. We adopt285

an approach of intentionally separating the bidi-286

rectional representations to construct spans from287

the hidden states of words. Further details are de-288

scribed in the following section.289

4.2.2 N-gram Span Attention290

The key aspect of constituency parsing is to ac-291

curately predict the contextual features of a span,292

represented by Vi,j . Achieving this goal requires a293

more fine-grained approach to modeling the con-294

textual features.295

Previous studies in constituency parsing have296

empirically shown that encoding spans through the297

subtraction of hidden states can be effective (Stern298

et al., 2017; Kitaev and Klein, 2018; Kitaev et al.,299

2019; Zhou and Zhao, 2019; Mrini et al., 2020). In300

addition, Tian et al. (2020) recently showed that301

span attention can be effective for enhancing span302

representation. Inspired by these empirical assump-303

tions, our novel approach NSA enables each word304

to reference information from various sizes of n-305

gram spans created from contextualized hidden306

states.307

NSA begins by constructing an n-gram span ma-308

trix. First, the hidden states H from the previous309

layer are split into the forward and backward rep-310

resentations HF and HB , respectively. Arbitrary311

span vectors are constructed by applying element-312

wise subtraction to the separated bidirectional hid-313

den states, which is the same as Eq. (6):314

Hngram = [hfj − hfi ;h
b
i − hbj ]. (15)315

The n-gram of the arbitrary span is adjusted by316

varying i and j.317

3To ensure that the output of BiMSA matches the size of
the input, the dimension size of the value is set to half that of
the query and key dimensions.

The n-gram span matrix is constructed by con- 318

catenating the hidden states of all 1- to n-gram 319

sequences, as follows: 320

SpanN = [H1gram,H2gram, ...,Hngram].
(16) 321

A detailed computational process for constructing 322

the n-gram span matrix is provided in Appendix 323

A.2. 324

In NSA, the query is projected from the word 325

representation, while the key and value are pro- 326

jected from the span representations. The attention 327

process enables each word to reference the contex- 328

tual features from its corresponding span. Eq. (1) 329

is redefined as: 330

Q = WQH,

K = WKSpanN ,

V = W V SpanN .

(17) 331

The subsequent computations are carried out in the 332

same manner as the self-attention process described 333

in Section 3. 334

NSA allows each word to reference the contex- 335

tual information from its corresponding span. It 336

can also handle the diverse tree structures of sen- 337

tences by incorporating relational information with 338

other spans within the sentence. 339

5 Experiments 340

5.1 Datasets 341

To evaluate the performance of our constituency 342

parsing model on different languages, we conduct 343

experiments on the Penn Treebank 3 (PTB) (Mar- 344

cus et al., 1993) dataset for English and the Penn 345

Chinese Treebank 5.1 (CTB5.1) (Xue et al., 2005) 346

dataset for Chinese.4 We use the standard data 347

splits for both PTB and CTB5.1. 348

5.2 Implementation details 349

To ensure a fair comparison with previous studies, 350

we construct our model with and without the use 351

of pre-trained models as the basic encoder. For 352

the experiment on PTB, we utilize BERT (Devlin 353

et al., 2019) and XLNet (Yang et al., 2019) pre- 354

trained large models in the cased version, while 355

for CTB5.1, we use BERT and XLNet (Cui et al., 356

4The PTB and CTB5.1 datasets used in our experiment
were officially released by the Linguistic Data Consortium.
The catalog number for PTB is LDC99T42, while the catalog
number for CTB5.1 is LDC2005T01.
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Models PTB CTB5.1

LR LP F1 LR LP F1

Shen et al. (2018) 92.00 91.70 91.80 86.60 86.40 86.50
Teng and Zhang (2018) 92.20 92.50 92.40 86.60 88.00 87.30
Liu and Zhang (2017) - - 94.20 - - 86.10
Suzuki et al. (2018) - - 94.32 - - -
Takase et al. (2018) - - 94.47 - - -
Fried et al. (2017) - - 94.66 - - -
Fried et al. (2019) - - 95.71 - - 92.14
Kitaev and Klein (2018) ELMo 94.85 95.40 95.13 - - -
Kitaev et al. (2019) BERT 95.46 95.73 95.59 - - -
Kitaev et al. (2019) Ensemble 95.51 96.03 95.77 91.55 91.96 91.75
Zhou and Zhao (2019) BERT 95.70 95.98 95.84 92.03 92.33 92.18
Zhou and Zhao (2019) XLNet 96.21 96.46 96.33 - - -
Mrini et al. (2020) BERT/XLNet + POS 96.24 96.53 96.38 91.85 93.45 92.64
Yang and Deng (2020) BERT 95.55 96.04 95.79 93.40 93.80 93.59
Yang and Deng (2020) XLNet 96.13 96.55 96.34 - - -
Tian et al. (2020) BERT + POS 95.62 96.09 95.86 92.50 92.83 92.66
Tian et al. (2020) ZEN/XLNet + POS 96.19 96.61 96.40 92.42 92.61 92.52

Ours BERT 95.57 96.03 95.80 92.55 92.59 92.57
Ours BERT + POS 95.57 96.14 95.86 94.05 94.24 94.15
Ours XLNet 96.25 96.69 96.47 91.65 91.63 91.64
Ours XLNet + POS 96.16 96.52 96.34 94.09 93.83 93.96

Table 1: Comparison of labeled recall (LR), labeled precision (LP), and F1 scores of our models with those of
previous studies on the test dataset. Our approach achieves state-of-the-art performance in all metrics.

2020) pre-trained base models. Following Tian357

et al. (2020), we use the default settings of the358

hyperparameters in the pre-trained models.359

Kitaev and Klein (2018) experimentally demon-360

strated that using a character-LSTM (CharLSTM)361

instead of word embeddings can enhance the pars-362

ing accuracy. Therefore, to provide a fair compari-363

son, we compare the test performance of a model364

that incorporates CharLSTM when a pre-trained365

model is not used.366

In line with Kitaev and Klein (2018), Mrini et al.367

(2020), and Tian et al. (2020), we compare the368

performance of our models with and without Part-369

Of-Speech (POS) tagging. The POS tags are prede-370

termined for the input sentences using the Stanford371

tagger (Toutanova et al., 2003). The POS tags of a372

given sentence are passed through the embedding373

layer and added element-wise to the hidden word374

vectors of the sentence to form the input of the375

model.376

In our proposed NSA approach, the length of377

the n-gram sequence, n, should be designated as378

a hyperparameter. We test the performance of our379

model by setting n to 2, 3, 4, and 5, respectively,380

and select the model with the highest performance381

to compare it with those of previous studies. The382

experimental results when n is modified under the383

same parameter setting can be found in Section384

5.5.3.385

Further details on the setting of the hyperparame- 386

ters for our models in all experiments are provided 387

in Appendix A.1. 388

5.3 Performance comparison 389

The experimental results of our models and those 390

of previous studies on the test sets are presented in 391

Table 1. Our models outperform the previous state- 392

of-the-art results on both datasets. Specifically, 393

our BNA model, which does not use POS tags 394

but employs a pre-trained XLNet model, achieves 395

state-of-the-art performance with an F1 score 0.07 396

higher than the previous best score. Furthermore, 397

the recall and precision scores show uniform im- 398

provement without bias, resulting in the highest 399

scores among all the methods. 400

In the CTB5.1 dataset experiments, our models 401

outperform the previous results by a larger margin 402

than in the PTB experiments. Both models that use 403

POS tags exceed the previous best performance, 404

and the model that utilizes BERT achieves state-of- 405

the-art performance with an F1 score improvement 406

of 0.56. 407

These improved results demonstrate the effec- 408

tiveness of our BNA model in resolving the critical 409

problem of constructing span representations from 410

the hidden states of words, which is due to the 411

lack of dependencies between elements in attention 412

mechanisms. 413
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LR LP F1

PTB
Self-Attention 91.37 92.25 91.81
BiMSA 91.33 92.28 91.80
+ NSA 91.36 92.48 91.92
+ XLNet 96.25 96.69 96.47
+ POS 96.16 96.52 96.34

CTB5.1
Self-Attention 83.65 85.00 84.32
BiMSA 82.44 84.67 83.54
+ NSA 83.76 85.53 84.63
+ BERT 92.55 92.59 92.57
+ POS 94.05 94.24 94.15

Table 2: Ablation study of the effectiveness of each
approach on the test split.

5.4 Ablation study414

To evaluate the effectiveness of the BiMSA and415

NSA modules in the BNA model, we conduct an416

ablation study. We compare our models with a sin-417

gle model of the self-attention layer, which serves418

as the baseline, as it is the same self-attention mech-419

anism as the transformer encoder. For the ablation420

study, we start with a single model of BiMSA lay-421

ers and sequentially incorporate the NSA layer, a422

pre-trained model, and POS tags. The hyperparam-423

eters of each model in the ablation study follow the424

best-performing model in Table 1.425

The results presented in Table 2 demonstrate a426

consistent improvement in performance. Specifi-427

cally, while the performance of the single model428

of BiMSA is comparable or inferior to that of self-429

attention, the inclusion of NSA leads to a perfor-430

mance improvement that surpasses that of the sin-431

gle model of self-attention. Using a pre-trained432

model and POS tags has been observed to be ben-433

eficial in improving performance. this finding is434

consistent with the results of previous studies. In435

particular, POS tags lead to a greater performance436

improvement in Chinese than in English.437

Overall, it can be observed that the BiMSA and438

NSA models complement each other while contin-439

uously improving performance on both datasets.440

5.5 Analysis441

5.5.1 Directional feature for Parsing442

In this section, we investigate whether the BiMSA443

can address the lack of directional and relative po-444

sitional dependencies between words. We conduct445

a performance comparison between the BiMSA446

single model and the self-attention model, incre-447

BiMSA Self-Attn ∆

PTB
single model 91.80 91.81 -0.01

(+ XLNet) 96.35 96.40 -0.05
+ NSA 91.92 91.60 0.32
+ XLNet 96.47 96.23 0.24
+ POS 96.34 96.31 0.03

CTB5.1
single model 83.54 84.32 -0.78

(+ BERT) 93.75 93.65 0.10
+ NSA 84.63 83.96 0.67
+ BERT 92.57 92.20 0.37
+ POS 94.15 94.00 0.15

Table 3: Comparison between the BiMSA and self-
attention approaches on the test split. The row denoted
by a pre-trained model in parentheses represents a case
where a pre-trained model is applied to a single attention
model, while ∆ indicates the difference between the
model performances.

mentally expanding the models using NSA, XLNet, 448

and POS tags. We evaluate their performances on 449

the test dataset using the F1 score metric. The 450

results are presented in Table 3. 451

Similar to the previous ablation study results, the 452

single BiMSA model exhibits comparable or lower 453

performance than the single self-attention model. 454

However, the addition of NSA significantly im- 455

proves performance. This suggests that combining 456

a model with insufficient temporal dependency and 457

NSA may lead to a decrease in performance, but 458

the performance enhancement in BiMSA can be 459

attributed to the synergistic effect between BiMSA 460

and NSA layers. 461

The directional and relative positional depen- 462

dencies captured by the BiMSA module enable 463

the BNA model to better handle complex syntactic 464

structures, which is demonstrated by the higher F1 465

score on both the CTB5.1 and PTB datasets. This 466

finding indicates that directional features are es- 467

sential for improving parsing model performance, 468

particularly for tasks with complex sentence struc- 469

tures. Moreover, the advantage of using the BNA 470

model is even more significant for Chinese datasets, 471

which are known for having more complex sen- 472

tence structures than English. 473

5.5.2 Span Attention 474

In this section, we explore the impact of the number 475

of NSA layers in the BNA model. Specifically, we 476

train and evaluate models with 1, 3, 5, and 8 NSA 477

layers, including a variant in which the order of the 478

layers alternates between the BiMSA and NSA lay- 479
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Figure 3: Comparison of the variants in NSA layers of
our best-performing model and their corresponding test
set F1 scores.

ers. We maintain the total number of layers in the480

model as 8, and we use the same hyperparameters481

as those of the single model. Figure 3 illustrates482

the experimental results, where "Alt" refers to the483

alternatively applied model.484

The results demonstrate that a reduced num-485

ber of NSA layers leads to superior performance.486

This finding suggests that conducting span atten-487

tion with a lack of dependency between each word488

in the given sentence may result in a degradation489

of performance. In particular, a model structure490

that alternates between the BiMSA and NSA layers491

shows no significant difference from the one that492

entirely consists of the NSA layer.493

Overall, our experiments suggest that the selec-494

tion of the number of NSA layers in the BNA model495

should be carefully considered, and a reduced num-496

ber of layers may prove to be more effective.497

5.5.3 Variations of the N-gram498

To determine the optimal n-gram length for each499

language used in the NSA module, we conduct500

experiments using the best-performing BNA mod-501

els in both English and Chinese. To compare the502

results, we vary n from 2 to 5 while keeping all503

hyperparameters as constant.504

As shown in Figure 4, the results indicate that505

an n-gram length of 4 achieves the highest perfor-506

mance for PTB, while a 3-gram does for CTB5.1.507

However, extending the n-gram length beyond a508

certain point can lead to a decrease in model per-509

formance. As the n-gram increases, the arbitrary510

span becomes more similar to the given sentence.511

As a result, referring to a broader range of spans512

can dilute the span information that corresponds to513

each word.514

Figure 4: Comparison of the variants in the n-grams of
our best-performing model and their corresponding test
set F1 scores. Red stars represent our best-performing
result.

However, since constituents are hierarchically 515

composed of 2-3 words or constituents, the NSA 516

layer allows words to refer to arbitrary spans of 517

various positions, enabling the representation of 518

longer spans even with a shorter span length. While 519

it may be necessary to adjust the arbitrary span 520

length that each word refers to depending on the 521

language, constructing a wide range of arbitrary 522

spans is not essential for representing sentences as 523

constituent trees. 524

6 Conclusions 525

The primary goal of this study was to design at- 526

tention mechanisms to capture the explicit depen- 527

dencies between each word and enhance the repre- 528

sentation of the output span vectors. Through our 529

experiments, we demonstrated that our proposed 530

BiMSA more effectively contextualizes each word 531

in a sentence by considering the bidirectional de- 532

pendencies, while NSA improves the span represen- 533

tation by attending to arbitrary n-gram spans. Our 534

findings have major implications for span-based 535

approaches in constituency parsing tasks. Specifi- 536

cally, applying the span representation method to 537

the attention mechanism leads to a significant per- 538

formance improvement. 539

In conclusion, constructing a span representa- 540

tion from words contextualized within a given sen- 541

tence can lead to additional improvement in parsing. 542

Overall, our study contributes to the advancement 543

of attention mechanisms in NLP. We hope that our 544

findings will inspire further research in this area. 545
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Limitations546

However, the weight of the model remains a signif-547

icant issue for high-performance inference, espe-548

cially for preprocessors that deconstruct and ana-549

lyze the sentence structure before understanding it.550

Using a costly parser in real-time machine learn-551

ing tasks can present limitations as rapid data pro-552

cessing is a crucial objective in this current area553

of research. To address this concern, future stud-554

ies should focus on developing a lightweight span555

attention module that considers the bidirectional556

dependencies.557

Although the n-gram span attention operation558

can be robust for trees of various sizes and struc-559

tures, it involves concatenating n-grams from 1560

to n to create an n-gram span matrix, making it561

a heavy operation. This limitation becomes in-562

creasingly evident as sentences become longer, re-563

sulting in a discrepancy in learning speed when564

compared to existing parsers during comparative565

experiments. Tian et al. (2020) suggested catego-566

rizing extracted n-grams in a span (i, j) by their567

length so that n-grams in different categories are568

weighted separately instead of using all n-grams.569

It may be helpful to modify the attention to focus570

only on a limited range of spans to improve the571

speed of the n-gram span attention module. This572

modification remains as future work.573
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A Appendix772

A.1 Further implementation details773

We employ a grid search to identify the optimal pa-774

rameter settings for our model with a random seed775

fixed at 42. The parameter tuning was conducted776

across various ranges, including learning rates of777

1e-5, 2e-5, and 3e-5, batch sizes of 50, 100, and778

200, n-gram values of 1, 2, 3, and 4, and dropout779

ratios of 0.1 and 0.2 on the development set.780

In the PTB dataset experiments, the optimal781

model achieves the highest performance with a782

learning rate of 2e-5, a batch size of 200, and an783

n-gram value of 4 for the NSA layer. The dropout784

ratios for the residual connections, feed-forward785

layer, attention, and CharLSTM morphological rep-786

resentations were 0.2, 0.2, 0.2, and 0.1, respec-787

tively.788

In the CTB5.1 dataset experiments, the most789

successful model uses a learning rate of 3e-5, a790

batch size of 50, and an n-gram value of 3 for the791

NSA layer. The dropout ratios for the residual con-792

nections, feed-forward layer, attention, and CharL-793

STM morphological representations were 0.1, 0.1,794

0.1, and 0.2, respectively.795

Both experiments employed identical model796

sizes, with a model dimensionality of 512797

and a feed-forward layer size of 1024. The798

query/key/value sizes were set to 64, except in the799

BiMSA layer, where the value size was halved to800

32 for split forward and backward computations.801

When the parser utilizes a pre-trained model, the802

number of layers is set to 2. In contrast, when a sin-803

gle model is employed without a pre-trained model,804

the architecture employs 8 layers. Additionally, to805

enhance the training speed and performance of the806

single model, a batch size of 250 and a learning807

rate of 0.0008 are employed.808

All parsers, including those utilizing pre-trained809

models, were trained within a 12 hour. Training810

was conducted using a single NVIDIA RTX A5000811

GPU for each parser. The parser without a pre-812

trained model has 15.9 million parameters, while813

the parser with a pre-trained model, which has 2 814

layers, has 4.7 million parameters. 815

A.2 Procedure of constructing arbitrary span 816

matrix 817

The separated bidirectional word representations, 818

namely HF and HB , construct span matrices rang- 819

ing from 1-gram to n-gram. These completed span 820

matrices, SpanF
N and SpanB

N , are concatenated 821

to form a single SpanN . The specific computa- 822

tion procedure for constructing an arbitrary n-gram 823

span matrix with bidirectional word features is pre- 824

sented in Figure 5. 825
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Figure 5: Detailed procedure of constructing arbitrary n-gram span matrix in NSA module.
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