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Abstract
We introduce Lifelong ICL, a problem setting that
challenges long-context language models (LMs)
to learn from a sequence of tasks through in-
context learning (ICL). We further introduce Task
Haystack, an evaluation suite designed for assess-
ing and diagnosing how long-context LMs uti-
lize long contexts in the Lifelong ICL setting.
When given a task instruction and test inputs,
long-context LMs are expected to leverage the
same-task demonstrations in the Lifelong ICL
prompt, avoid distraction from other tasks, and
achieve a test accuracy no worse than the single-
task ICL baseline.

Task Haystack draws inspiration from the widely-
adopted “needle-in-a-haystack” (NIAH) evalua-
tion, but presents new and unique challenges. It
demands that models (1) utilize the context with
deeper understanding, rather than resorting to sim-
ple copying and pasting; (2) navigate through
long streams of evolving topics and tasks, which
closely approximates the complexities of real-
world scenarios faced by long-context LMs. Addi-
tionally, Task Haystack inherits the controllability
aspect of NIAH, providing model developers with
tools to identify model vulnerabilities effectively.

We benchmark ten long-context LMs using Task
Haystack. We find that state-of-the-art closed
models such as GPT-4o still struggle in this set-
ting, failing 15% of the cases on average, while all
open models we evaluate further lack behind by a
large margin. Further, we design controlled anal-
ysis and find that current long-context models are
prone to distractibility and recency bias, as well
as other limitations in robustness and instruction
understanding.
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1. Introduction
Recent advances in model architecture (Su et al., 2024; Liu
et al., 2023), training procedure (Tworkowski et al., 2023),
and data engineering (Fu et al., 2024; An et al., 2024) have
empowered large language models (LLMs) to handle very
long contexts, reaching up to 32k or even millions of tokens
(Reid et al., 2024; Anthropic, 2024) as their input. However,
while long-context LM development strides forward, suit-
able evaluation methods haven’t kept pace. Systematically
evaluating long-context models’ ability to leverage such
long contexts remains an open challenge.

Current evaluation approaches fall into two categories. The
first involves constructing benchmarks with real-world long-
context tasks (Shaham et al., 2022; 2023). While valu-
able, creating these benchmarks is time-consuming and dif-
ficult to scale, especially for tasks requiring million-token
contexts. The second approach employs synthetic evalua-
tions like the ”needle-in-a-haystack” (NIAH) test (Kamradt,
2023) or key-value retrieval tests (Liu et al., 2024b). For
example, in the NIAH test, a piece of information (“The
special magic number is 12345”) is planted in a haystack
of irrelevant contexts (Paul Graham essays) and the model
is tested on answering a question about the information
(“What’s the special magic number?”). Although useful
for initial assessment, these tests primarily measure simple
copying and pasting abilities, and fail to capture how models
utilize contexts when deeper understanding is required.

In this work, we offer new perspectives to long-context LM
evaluation by introducing Lifelong ICL, a new problem
setting that challenges these models to learn a sequence of
tasks via in-context learning (ICL). Further, we introduce
Task Haystack, an accompanying evaluation suite designed
for systematic diagnosis of context utilization (Fig. 1). In
Task Haystack, a long-context LM will be evaluated on a
collection of up to 64 language tasks, prefixed with either
Lifelong ICL or single-task ICL contexts. A model “passes”
the test if its accuracies with Lifelong ICL prefixes are not
significantly lower than using single-task ICL prefixes. The
overall pass rate, averaged across tasks and different lifelong
stream permutations, serves as the key metric.

Task Haystack challenges long-context LMs with unique as-
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Determine if the sms 
message is ham or spam.

Message: No messages on 
her phone. I'm holding it now.
Label: ham

Message: U have a secret 
admirer. Call 09058094594.
Label: spam

Given a text, classify if it 
was humorous or not 
humorous.

Text: Why do elephants 
drink? To forget.
Label: humorous

Text: People just oughta stop 
being so awful to each other.
Label: not humorous

Categorize a tweet into six 
basic emotions: anger, fear, 
joy, love, sadness, and 
surprise.

Tweet: i feel bashful under 
his teasing scrutiny
Emotion: fear

Tweet: i only feel irritated by it
Emotion: anger

Given a text, classify if it 
was humorous or not 
humorous.

Text: What?s Forrest Gump?s 
password? 1forrest1.
Label: ?

Task Haystack

...

Task 1 Train Task 2 Train Task 3 Train Task 2 Test...

Figure 1. Lifelong ICL and Task Haystack. Lifelong ICL presents long-context LMs with a sequence of tasks, each containing a
task instruction and few demonstrations. At test time, the model is given the one task instruction seen before and is expected to make
predictions on the test input directly. A long-context LM “passes” the Task Haystack test when its accuracy using the lifelong ICL prefix
(Task 1+2+3) is not significantly worse than its accuracy with the single-task ICL prefix (Task 2 only).

pects not fully covered by existing benchmarks. Firstly, Task
Haystack demands a deeper comprehension of the relevant
context for accurate predictions. This goes beyond sim-
ple retrieval capabilities tested by NIAH-style benchmarks,
which often rely on basic copying and pasting. Secondly,
Task Haystack features high information density. Every
piece of information within the context might be crucial for
successful prediction at test time. This differs from evalua-
tion suites in which the important information (“needle”) is
positioned conspicuously, allowing models to exploit short-
cuts (Anthropic, 2024). Thirdly, the lifelong task stream
closely mirrors real-world applications of long-context mod-
els, such as a 24/7 personal assistant, where models en-
counter shifting topics (Zhao et al., 2024) and may need to
resume from earlier threads in the context.

We extensively evaluate ten long-context models on Task
Haystack. While all models achieve near-perfect scores on
the original NIAH test, none reaches satisfactory perfor-
mance on our proposed evaluation. GPT-4o emerged as the
top performer among compared models, averaging an 85%
pass rate and surpassing open models by a large margin. To
understand the reasons behind these failures, we conduct
controlled experiments that isolate factors like recency bias
(models favoring information at the context’s end) and dis-
tractability (models getting distracted by irrelevant informa-
tion). The results confirm that both factors contribute to the
performance degradation on Task Haystack. Additionally,
model performance dropped when instructions were para-
phrased at test time and when few-shot ICL demonstrations
of a single task were repeated multiple times. These ob-
servations highlight the limitations of current long-context
models in terms of their robustness and instruction under-
standing.

We hope that Lifelong ICL and Task Haystack serve as
useful resources and testbeds for evaluating, diagnosing, and
understanding long-context models. Further, we anticipate

that the limitations and vulnerabilities exposed in this paper
will inspire innovations in long-context model development.

2. Problem Setting
2.1. Lifelong ICL

Single-task ICL. Formally, we define a language task T
as a tuple of (Dtrain, Dtest, d), where Dtrain is the training
set, Dtest is the test set, d is a textual task description (i.e.,
instruction). We first create a task-specific prompt p by
concatenating the task description and the k-shot examples
in Dtrain, i.e., p = d⊕xtrain

1 ⊕ytrain1 ⊕· · ·⊕xtrain
k ⊕ytraink .

In single-task ICL setting, to make a prediction on the test
input xtest, we concatenate the task-specific prompt and the
test input, and query the language model LM to generate the
prediction ŷ. We denote this process as ŷ = LM(xtest|p) to
highlight that the prediction is made by conditioning on the
task-specific prompt p.

Task Collection and Task Streams. The definition above
introduces how ICL is performed with one single task T .
In Lifelong ICL, our new problem setting, an LM is ex-
pected to learn from a collection of n tasks, denoted as
T = {Ti}ni=1. To enable this, we first create a random per-
mutation a = (a1, a2, . . . , an), thus the tasks in T will be
ordered as (Ta1

, Ta2
, . . . , Tan

). For example, when n = 3,
one possible permuatation a is (3, 1, 2), and the tasks are
ordered as (T3, T1, T2).

Lifelong ICL. Given a permutation a, we first create the
single-task ICL prompt pai for each task Tai , and then
create the lifelong ICL prompt with concatenation, i.e., pl =
pa1

⊕pa2
⊕· · ·⊕pan

. For each task Tai
in T , the model will

be be guided with the task instruction dai
at test time, and

then tested on making a prediction for the test input xtest,
i.e., ŷ = LM(xtest|pl ⊕ dai). See Fig. 1 for the illustration
of the Lifelong ICL setting.
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2.2. Task Haystack

Evaluation Principle. For a test task Tai , we anticipate
that a long-context LM can effectively utilize the in-context
examples of that task, i.e., pai

, which is a substring of the
lifelong ICL prompt pl ⊕ dai

. To evaluate this, we compare
the model performance on task Tai

when conditioning on
pl ⊕ dai and pai , and expect the former to be no worse than
the latter. In other words, the single-task ICL prompt pai is
the “needle” in the lifelong ICL prompt pl ⊕ dai

(i.e., the
“task haystack”).

Multiple Samples to Address ICL instability. One chal-
lenge for evaluation is the notorious instability of ICL. To
account for this, our experiments will be carried out with 5
random permutations a and 5 randomly-sampled few-shot
training set Dtrain for each task. This allows us to obtain
a performance matrix of (t, p, r) for Lifelong ICL, where
t is the task index, p is the permutation index, and r is the
few-shot sample index. We will also obtain a matrix of (t, r)
for Single-task ICL as the baseline performance.

For an overall measurement, we introduce an average pass
rate. For each permutation a and each task Tai

, we will get
two groups of 5 performance metrics, when using Single-
task ICL and Lifelong ICL respectively. The model scores 1
when the the Lifelong ICL performance is not significantly
worse than the Single-task ICL performance (captured by
a two-sided t-test), and scores 0 otherwise. The average
pass rate is then computed by averaging over the different
permutations and tasks. See Fig. 6 for an illustration.

For a fine-grained analysis, our experiment results allow
us to visualize the pass rates grouped by position in the
task stream, by the task, or by the sampled permuta-
tions. This enables straight-forward visualizations as done
in the needle-in-a-haystack test, providing an easy tooling to
analyze questions such as which positions in the context are
more vulnerable, or which tasks are more easily forgotten.

3. Experiment Details
Task Selection. While the problem setting in §2 is generic
and admits any language task, in this work we instantiate
the setting with a narrower task distribution for initial ex-
ploration. After careful manual selection1, we obtain a
collection of 64 classification tasks, covering a wide range
of domains and label spaces. We provide detailed descrip-
tions of all 64 tasks, including their references and license
information in Table 4.

Models. We evaluate 8 open-weight long-context LMs
on the proposed Task Haystack evaluation: Mistral-7B

1We discuss our key considerations when selecting tasks in §D
and discuss the limitations in §E.

(32k) (Jiang et al., 2023), FILM-7B (32k) (An et al., 2024),
Llama2-7B (32k) (TogetherAI, 2024), Llama2-7B (80k)
(Fu et al., 2024), Llama3-8B (1048k) (GradientAI, 2024),
Yi-6B/9B/34B (200k) (01.AI et al., 2024). These models
represent various long-context modeling techniques, model
scale, and base pre-trained models. We provide more details
of these models in Table 2. For closed models, we evaluate
gpt-3.5-turbo and gpt-4o from OpenAI.

Controlling the Context Length. We consider creating
long contexts controllably with two strategies, Scale-Task
and Scale-Shot. In the first setting, we fix nshot = 2 and
experiment with ntask ∈ {8, 16, 24, 32, 40, 48, 56, 64}. In
the second setting, we fix ntask = 16 and experiment with
nshot ∈ {1, 2, 3, 4, 5, 6, 7, 8}. With these strategies, we
effectively create contexts of sizes ranging from 4k to 32k
tokens. We defer more implementation and engineering
details in Appendix A.3.

4. Results and Analysis
Long-context LMs struggle in Task Haystack. We
present the results of the Scale-Shot setting in Table 1 and
the results of the Scale-Task setting in Table 7. Along with
the average pass rate introduced in §2.2, we also report the
average accuracies over all tasks in both Single-task and
Lifelong ICL settings. The overall pass rates fall below 90%
in 34 out of 38 cases reported in Table 1 and in 29 out of
32 cases in Table 7. When scaling to 32k context in the
16-shot 8-shot setting (rightmost column in Table 1), 6 out
of 7 open-weight models exhibit a pass rate of less than
60%, suggesting that these models are still far from passing
the Task Haystack evaluation. In the most extreme case,
Yi-6B (200k) achieves a pass rate of merely 38.8% in this
setting.

A Holistic View of Accuracies and Pass Rates. One
advantage of the pass rate metric is that it isolates the long-
context modeling capabilities from models’ core capabilities.
However, using pass rate as the only metric may inadver-
tently create a shortcut where a model can achieve perfect
pass rates by simply performing poorly in both the Single-
task ICL and the Lifelong ICL setting.

To have a holistic view on this, we visualize the results from
our Scale-Shot experiments by plotting the Lifelong ICL
accuracy and Pass Rate as a function of Single-task ICL
accuracy in Fig. 3. We observe that GPT-4o outperforms
all other models significantly, in terms of both the ICL
accuracy and the pass rate. Mistral-7B and FILM-7B (fine-
tuned from Mistral-7B) achieves the strongest performance
among open-weight models evaluated.

One outlier that we notice is the Llama2-7B (80k) model,
which achieves low ICL accuracies but high pass rates. Note
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Table 1. Main Results: Fixing 16 Tasks, Scaling the Number of Shots. “s-acc” stands for single-task ICL accuracy averaged over all 16
tasks, and “l-acc” stands for lifelong ICL accuracy. “pass” represents the average pass rate defined in §2.2, i.e., percentage of cases that
lifelong ICL is not significantly worse than single-task ICL among 5 random samples of few-shot training sets. l-acc is expected to be not
worse than s-acc, and the pass rate is expected to be close to 100%.

Model 0-shot 1-shot (4k) 2-shot (8k) 4-shot (16k) 8-shot (32k)
s-acc s-acc l-acc pass s-acc l-acc pass s-acc l-acc pass s-acc l-acc pass

Mistral-7B (32k) 68.1 73.9 74.6 91.2 77.6 74.6 73.8 78.6 74.8 67.5 80.3 74.2 47.5
FILM-7B (32k) 71.1 76.7 74.7 77.5 79.1 75.1 77.5 79.6 75.4 72.5 80.8 74.9 55.0
Llama2-7B (32k) 61.9 69.8 63.3 77.5 72.8 64.5 53.8 75.6 63.0 41.2 78.0 - -
Llama2-7B (80k) 38.4 47.6 60.0 100.0 49.8 60.2 100.0 56.3 62.3 96.3 59.8 61.5 76.3
Llama3-8B (1048k) 51.2 65.5 68.1 78.8 70.0 69.1 76.2 71.5 70.1 71.3 73.6 70.1 57.5
Yi-6B (200k) 51.3 70.1 57.9 61.3 73.0 58.6 51.2 75.0 58.4 43.8 75.5 57.7 38.8
Yi-9B (200k) 57.0 74.5 71.5 71.2 77.7 72.9 71.2 78.0 72.9 63.7 80.0 72.9 47.5
Yi-34B (200k) 63.1 74.1 71.7 62.5 74.1 72.4 60.0 76.1 72.9 63.8 78.2 72.6 53.8

GPT-3.5-Turbo (16k) 78.3 81.6 76.3 73.8 82.6 79.6 71.3 83.2 79.5 62.5 81.8 - -
GPT-4o (128k) 70.7 85.8 87.4 86.3 87.0 87.8 81.3 87.0 88.4 83.8 87.5 89.1 88.8
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Figure 2. Task Haystack Results
with FILM-7B (32k) (N-task=16,
N-shot=1,2,...,8) visualized in the
needle-in-a-haystack style heatmap.
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Figure 3. Visualizing Lifelong ICL accuracy (l-acc) and pass rate as a function of single-
task ICL accuracy (s-acc). Each line is constructed by varying the number of shots in
{1,2,4,8} while fixing 16 tasks. Most models fall into the undesired area (light red). GPT-4o
shows the strongest overall performance in our evaluation.

that this model is trained solely on language modeling objec-
tives without further instruction tuning or RLHF, which may
be the reason behind this trend. This observation also sug-
gests that the pass rate should always be considered together
with other metrics that access the model’s core capabilities.

Visualization and Diagnostic Tool for Task Haystack.
Our Task Haystack evaluation enables straightforward vi-
sualization for diagnosing model vulnerabilities. In Fig. 2
we present the results of Task Haystack (Scale-Shot Setting)
in a way similar to the original needle-in-a-haystack eval.
While FILM-7B achieves near-perfect results in the original
NIAH evaluation, Fig. 2 suggests that it’s vulnerable when
the context length exceeds 12k, particularly for content that
appears in the first 75% of the context window. We report
the visualization for all compared models in Fig. 9-16. In
addition to the NIAH-style visualization, we provide an ex-
ample of aggregating results by permutations, by depth in
the context, and by task in Figure 19.

Controlled Analysis. In Appendix §B, we investigate the
reasons behind the model’s failures on Task Haystack with

various controlled settings, such as repeating the single-task
ICL prompt multiple times, or replaying the test task at the
end of the prompt. The results suggest that current long-
context models are easily distracted by irrelevant contexts
and affected by recency bias, and exhibit other vulnerabili-
ties in robustness and instruction understanding.

5. Conclusion
In this paper, we introduced the Lifelong ICL problem set-
ting, developed the Task Haystack evaluation suite, and
focused on evaluating and diagnosing current long-context
LMs on Task Haystack. Our experiments on ten recent long-
context LMs revealed that while they excel at retrieving
and pasting information within long contexts, their ability
to fully exploit the contextual information remains limited.
We hope Lifelong ICL and Task Haystack serve as valu-
able tools for diagnosing and advancing the development of
future long-context LMs. We also hope that Lifelong ICL
serves as an initial but meaningful step towards gradient-free
algorithms in lifelong learning settings.
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A. Experiment Details
A.1. Models

We list the details of open models evaluated in our experiments in Table 2.

Table 2. Open-weight models evaluated in this work.

Model Max L Reference Huggingface Identifier

Mistral-7B 32k Jiang et al. (2023) mistralai/Mistral-7B-Instruct-v0.2
FILM-7B 32k An et al. (2024) In2Training/FILM-7B
Llama2-7B 32k TogetherAI (2024) togethercomputer/LLaMA-2-7B-32K
Llama2-7B 80k Fu et al. (2024) yaofu/llama-2-7b-80k
Llama3-8B 1048k GradientAI (2024) gradientai/Llama-3-8B-Instruct-Gradient-1048k
Yi-6B 200k 01.AI et al. (2024) 01-ai/Yi-6B-200K
Yi-9B 200k 01.AI et al. (2024) 01-ai/Yi-9B-200K
Yi-34B 200k 01.AI et al. (2024) 01-ai/Yi-34B-200K

A.2. Tasks

Table 3. A Snippet of 16 tasks used in our experiments. See Table 4 for the full list of 64 tasks. Tasks in this table are used for the
Scale-Shot experiments in Table 1.

emo covid fake news logical fallacy detection dbpedia 14
amazon massive scenario news data semeval absa restaurant amazon counterfactual en
brag action boolq this is not a dataset insincere questions
clickbait yahoo answers topics pun detection wiki qa

We utilize publicly available datasets in our evaluations, with access details for both reference and huggingface identifier
provided in Table 4. For further usage, readers should refer to the licenses of the original datasets.

A.3. Implementation and Engineering Details

Data Preprocessing. For each task, we manually crafted two semantically identical instructions. We then randomly
sampled five subsets from the original training dataset for in-context learning, ensuring each subset containing at least 16
instances, and 100 instances from the original test set to form our test set. To facilitate rank classification, we ensured that
the options for all tasks have distinct start tokens. For in-context learning, we sample one instance per label for each shot.

LLM Inference. We apply rank classification in all our experiments: given a set of task options, we evaluate the first token
of the output and take the option with the highest log probability as model’s response. We use the vLLM (Kwon et al., 2023)
framework for open models to enhance inference speed. Running a 16-task, 8-shot experiment with a 7B model on two
A6000 GPUs takes around 18 hours. The specific OpenAI APIs employed are gpt-4o-2024-05-13 and gpt-3.5-turbo-0125.

B. Controlled Analysis
Our results in §4 suggest that long-context LMs struggle in the Task Haystack evaluation. In the following section, we try to
investigate the reasons attributing to their failures with various controlled settings. We hypothesize that the model failure at
Lifelong ICL may be associated with the following factors: (a) Long-context inputs: the model may tend to break because
the input text is long; (b) Distraction: the model may be confused by irrelevant context; (c) Recency: the model mainly
relys on recent context and performs worse when the relevant context is distant. Based on these hypotheses, we design
controlled setting and summarize them in Table 5. We then conduct controlled experiments in the 16-task 4-shot setting with
Mistral-7B (32k) and FILM-7B (32k). Results are presented in Fig. 4.

Recency. We investigate the effect of recency by comparing the results of Recall and Replay. By replaying in-context
learning demonstrations before testing, model performances improve (+1.6% for Mistral-7B, and +2.9% for FILM-7B). This
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Figure 4. Controlled Experiments. Results suggest that long-context
LMs are subject to various robustness problems. See §B for discussion.
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Figure 5. Single-task “Multi-epoch” ICL. Model perfor-
mance improves then degrades after repeating ICL examples.

can be also considered as an oracle setting that approximates potential mitigating strategies such as prompting the model to
recall relevant information or examples. However, the improvements only close about half the gap between Baseline and
Recall, suggesting that recency does not fully explain the performance disparity.

Distraction. We examine the effect of irrelevant context, by contrasting Baseline with Random. The results indicate
that prepending an irrelevant long text will influence the performance negatively, which corroborates with recent work
investigating the robustness of large language models (Levy et al., 2024). Further, Replay can be seen as prepending a long
prefix of mostly irrelevant tasks, and thus the gap between Replay and Baseline may also stem from distractions caused by
extraneous context.

Long-Context Input. We further compare Baseline with Random and Repeat setups, where Random introduces irrelevant
context and Repeat includes only relevant context. Surprisingly, performance drops in both cases, even in the Repeat setting
where distractions or recency issues are absent. While we cannot definitively conclude that language models are inherently
less capable when presented with lengthy contexts, we suggest that longer contexts – whether repetitive or irrelevant – give
rises to undesirable failure modes. This suggest that LM users should be cautious about what to put in the context, and
highlights the value of external filtering mechanisms like retrieval augmentation given the limitations of current long-context
LMs.

Robustness to task instructions. Our Paraphrase setting allows us to explore whether models rely primarily on pattern
matching of instructions when performing Lifelong ICL. We observe a decline in performance in the Paraphrase setting
compared to Recall, suggesting that the model is indeed locating identical instructions and leveraging relevant task examples
at test time. However, this in-robustness to varying instruction expressions indicates that models rely on pattern matching
rather than true understanding, which might limit their broader utility in practical applications.

Repeated ICL as “Multi-epoch” ICL. We conduct further investigation with the Random, Repeat, Repeat+Shuffle setting,
by varying the number of repetitions. Results are reported in Fig. 5 and Fig. 8. Interestingly, we see model performance
increases and then dips when running in-context learning for multiple “epochs”. One direct takeaway is that repeating the
ICL examples multiple times can potentially improve performance, which may have practical utilities in certain low-data
high-inference-budget regimes. However, model performance start to degrade after repeating more than 8 times. This
phenomenon can be interpreted in two ways: (1) it is a known issue that repetition may lead to model degeneration (Nasr
et al., 2023); Repeat+Shuffle can possibly alleviate this issue by introducing slight variations in each repeat, which explains
that in general Repeat+Shuffle outperforms Repeat. (2) it is also possible that the model “overfits” to the few-shot training
data after multiple “epochs”, analogous to the common observations in gradient-based fine-tuning. Future work could
further investigate the working mechanism of ICL in this multi-epoch setting.

B.1. Additional Observations and Analysis

Tasked learned via ICL are more easily forgotten. While examining Task Haystack results, we found that the pass
rates are highly task-specific. For example, in Fig. 19, news data and insincere questions are forgotten in all permutations,
whereas more popular tasks like boolq and yahoo answer topics pass all tests. We hypothesize that the model may have
memorized some of the tasks during pre-training or post-training, making these tasks less subjective to performance drop
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Task 1 Train Task 2 Train Task 3 Train Task 2 Test

Task 2 Train Task 2 Test

Lifelong ICL

Single-task ICL

Two-sided paired t-test 
on accuracy 
(5 random samples of 
few-shot training set)

Figure 6. Definition of Pass Rate in Task Haystack. The model “passes” when the performance of Lifelong ICL is not significantly
worse than the Single-task ICL baseline.
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Figure 7. Controlled Experiments. We repeat the experiments in Fig. 4
with N-task=64 and N-shot=2. The trends are consistent with Fig. 4.
However, the gaps are smaller due to a smaller value of N-shot.
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Figure 8. “Multi-epoch” ICL. We repeat the experiments
in Fig. 5 with N-task=64 and N-shot=2. The increase-then-
decrease phenomenon is more evident in this scenario.

in Lifelong ICL. Alternatively, a task may be too challenging for the model to learn through ICL, and thus it passes the
Task Haystack Eval through the previously mentioned short-cut. To account for these situations, we split all tasks into 2
groups. Tasks of which 4-shot performance is significantly better than 1-shot performance as classified as ICL-effective
tasks, and the remaining tasks are considered to be ICL-ineffective tasks. We report the pass rates for each model on these
two groups in Table 6. For 8 out of 10 models, pass rates on ICL-effective tasks are lower than pass rate on ICL-ineffective
tasks. We encourage users of Task Haystack to responsibly report data contamination analysis and report pass rates on these
two groups when developing new long-context models.

C. Additional Results
Figure 9 to Figure 16 present detailed results for eight open models. On the left side of each figure, we illustrate the
standard needle-in-a-haystack performance, measured by the recall score of the model’s response, where nearly all models
demonstrate near-perfect results. In the middle and right sections, the figures show the results from experiments involving the
two scaling setting described in Controlling the Context Length.. Each block of depth di represents the mean performance
across the tasks within the specified depth range. Our experiments conducted on GPT-4o and GPT-3.5 Turbo incurred a total
cost of approximately $8,000.

D. Task Selection Considerations
Our key considerations when selecting tasks in Task Haystack include:

• We focus on classification tasks, as they allow standardized evaluation. Additionally various past work investigates ICL
empirically or mechanistically on classification tasks.

• We select classification tasks with fewer than 20 categories and input text shorter than 1000 words, to avoid excessively
long ICL prefixes that dominates the context window.

• We focus on English tasks, as some of the evaluated models are not trained for multilingual usage.
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E. Discussion
Intended Use. We anticipate Lifelong ICL and Task Haystack to be used for evaluating and diagnosing newly released
long-context LMs. However, as our findings in Sections 4 and B.1 suggest, the ICL accuracy and pass rate might be affected
if the model has already been exposed to the tasks used in our evaluation. To ensure responsible use, we encourage users to
investigate and report any potential data contamination. Additionally, targeted data engineering for Lifelong ICL and Task
Haystack is feasible. For fair comparisons, we recommend that users of the proposed evaluation method disclose whether
their training data contains sequences similar to the Lifelong ICL setting.

Limitations. (1) Our current evaluation primarily focuses on English-only text classification tasks, potentially limiting a
comprehensive assessment of model capabilities across various linguistic challenges. We view this work as a valuable initial
exploration in the Lifelong ICL setting. We encourage future research to build upon our foundation and incorporate a wider
variety of tasks, including variations in task format, modality (e.g., vision, speech), and language diversity. (2) Additionally,
this work simplifies the lifelong learning stream by assuming a sequential order and consistent number of examples per class
for each task. Real-world scenarios likely involve a different distribution of training examples, without clear task boundaries
or labels within the learning stream. Future work should explore more realistic training scenarios that reflect this complexity.
(3) Finally, due to computational constraints, our evaluation utilizes only 5 random permutations of tasks. Experimenting
with a larger number of permutations could potentially reduce the randomness inherent in the results and provide more
robust findings.

Ethics Statement. This research leverages openly available datasets that were carefully reviewed to mitigate potential
data privacy and security concerns. We emphasize that these datasets are used solely for evaluation purposes and do not
directly influence model weights. Thus the risk of amplifying biases present in the data is avoided.

F. Related Works
Long-Context LM Benchmarks. Existing benchmarks for evaluating long-context models can be categorized into
realistic and synthetic ones. Realistic benchmarks, exemplified by SCROLLS (Shaham et al., 2022) and ZeroSCROLLS
(Shaham et al., 2023), comprise tasks that require processing long inputs with long-range dependencies. These tasks are
typically sourced from established datasets and include various task types such as summarization and question answering.
In the category of synthetic benchmarks, the needle-in-a-haystack (NIAH) (Kamradt, 2023) evaluation is widely adopted for
evaluating context utilization (Reid et al., 2024; Anthropic, 2024; Liu et al., 2024a; Fu et al., 2024). Ruler (Hsieh et al.,
2024) expands on the NIAH test with multi-key and multi-value retrieval, and adds two new tasks that involve multi-hop
tracing and aggregation. Hybrid benchmarks, is a third category that incorporate both realistic and synthetic elements. An
example is LongBench (Bai et al., 2023), which includes synthetic tasks based on realistic text, such as counting unique
passages appearing in the context. Our proposed Task Haystack can be considered as a hybrid benchmark.

Evaluating Long-Context LMs with Many-Shot ICL. Several recent works have explored in-context learning with
long-context LMs by scaling the number of training examples (i.e., shots). Bertsch et al. (2024) conducted a systematic study
of long-context ICL with up to 2000 shots, demonstrating many-shot ICL as a competitive alternative to retrieval-based ICL
and fine-tuning. Additionally, it offers the advantage of caching demonstrations at inference time, unlike instance-level
retrieval methods. While Bertsch et al. (2024) focus on classification tasks, Agarwal et al. (2024) showed the effectiveness
of many-shot ICL on generative and reasoning tasks, and established new state-of-the-art results on practical applications
such as low-resource translation with the Gemini 1.5 Pro model. However, there are still limitations to many-shot ICL.
Li et al. (2024) introduce LongICLBench, a suite of 6 classification tasks with many (20+) classes, and find that current
long-context LMs still struggle with these tasks. Orthogonal to this line of work on scaling number of examples for one
single task, we focus on scaling the number of tasks in our Lifelong ICL setting.

Lifelong Learning in NLP. Continual learning, or lifelong learning, focuses on developing machine learning algorithms
that learn continuously and adaptively from data streams. Unlike traditional gradient-based fine-tuning, which modifies
model weights, Lifelong ICL uses in-context learning as the underlying “learning” algorithm. A primary challenge in
lifelong learning is catastrophic forgetting, the tendency of a model to forget previously acquired knowledge upon learning
new information. Our proposed Task Haystack evaluation setting resembles the catastrophic forgetting phenomenon. The
model may struggle to recall tasks learned earlier in a lengthy learning sequence, leading to a performance decline. We refer
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readers to (Shi et al., 2024) and (Biesialska et al., 2020) for comprehensive surveys on lifelong learning in NLP.
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Table 4. Text classification tasks included in Task Haystack Eval.
Name Reference Huggingface Identifier License

acl-arc Bird et al. (2008) hrithikpiyush/acl-arc Apache 2.0
ag-news Zhang et al. (2016) fancyzhx/ag news Unspecified
amazon-counterfactual-en O’Neill et al. (2021) SetFit/amazon counterfactual en CC BY-NC 4.0
amazon-massive-scenario FitzGerald et al. (2022) SetFit/amazon massive scenario en-US Apache 2.0
app-reviews Grano et al. (2017) sealuzh/app reviews Unspecified
babi-nli Weston et al. (2015) tasksource/babi nli BSD
beaver-tails Ji et al. (2023) PKU-Alignment/BeaverTails CC BY-NC 4.0
boolq Clark et al. (2019) google/boolq CC BY-SA 3.0
brag-action Choi et al. (2023) Blablablab/SOCKET CC BY 4.0
cb De Marneffe et al. (2019) aps/super glue Unspecified
circa Louis et al. (2020) google-research-datasets/circa CC BY 4.0
clickbait Chakraborty et al. (2016) marksverdhei/clickbait title classification MIT
climate-commitments-actions Bingler et al. (2023) climatebert/climate commitments actions CC-BY-NC-SA 4.0
climate-fever Diggelmann et al. (2020) tdiggelm/climate fever Unspecified
climate-sentiment Bingler et al. (2023) climatebert/climate sentiment CC BY-NC-SA 4.0
cola Warstadt et al. (2018) nyu-mll/glue Other
copa Roemmele et al. (2011) aps/super glue BSD 2-Clause
covid-fake-news Patwa et al. (2021) nanyy1025/covid fake news Unspecified
dbpedia14 Zhang et al. (2015) fancyzhx/dbpedia 14 CC BY-SA 3.0
disaster-repsonse-message community-datasets/disaster response messages Unspecified
emo Chatterjee et al. (2019) SemEvalWorkshop/emo Unspecified
emotion Saravia et al. (2018) dair-ai/emotion Unspecified
environmental-claims Webersinke et al. (2022) climatebert/environmental claims CC BY-NC-SA 4.0
ethos Mollas et al. (2020) iamollas/ethos AGPL 3.0
fever Thorne et al. (2018) fever/fever CC BY-SA 3.0, GPL 3.0
financial-phrasebank Malo et al. (2014) takala/financial phrasebank CC BY-NC-SA 3.0
function-of-decision-section Guha et al. (2024) nguha/legalbench CC BY 4.0
hate-speech18 De Gibert et al. (2018) odegiber/hate speech18 CC BY-SA 3.0
health-fact Kotonya & Toni (2020) ImperialCollegeLondon/health fact MIT
i2d2 Bhagavatula et al. (2022) tasksource/I2D2 Apache 2.0
imdb Maas et al. (2011) stanfordnlp/imdb Unspecified
insincere-questions Alex Ellis (2018) SetFit/insincere-questions Unspecified
is-humor Meaney et al. (2021) Blablablab/SOCKET CC BY 4.0
jailbreak-classification jackhhao/jailbreak-classification Apache 2.0
lexical-rc-cogalexv Santus et al. (2016a) relbert/lexical relation classification Unspecified
lexical-rc-root09 Santus et al. (2016b) relbert/lexical relation classification Unspecified
liar Wang (2017) ucsbnlp/liar Unspecified
limit Manotas et al. (2020) IBM/limit CC BY-SA 4.0
logical-fallacy-detection Srivastava et al. (2022) tasksource/bigbench Apache 2.0
medical-question-pairs McCreery et al. (2020) curaihealth/medical questions pairs Unspecified
metaphor-boolean Bizzoni & Lappin (2018) tasksource/bigbench Apache 2.0
mnli Williams et al. (2018) nyu-mll/multi nli CC BY 3.0, CC BY-SA 3.0, MIT, Other
mrpc Dolan & Brockett (2005) nyu-mll/glue Unspecified
news-data okite97/news-data AFL 3.0
poem-sentiment Sheng & Uthus (2020) google-research-datasets/poem sentiment CC BY 4.0
pragmeval-emergent Ferreira & Vlachos (2016) sileod/pragmeval Unspecified
pragmeval-sarcasm Oraby et al. (2016) sileod/pragmeval Unspecified
pragmeval-verifiability Park & Cardie (2014) sileod/pragmeval Unspecified
prosocial-dialog Kim et al. (2022) allenai/prosocial-dialog CC BY 4.0
pun-detection Miller et al. (2017) frostymelonade/SemEval2017-task7-pun-detection CC BY NC
qnli Rajpurkar et al. (2016) nyu-mll/glue CC BY-SA 4.0
qqp Shankar Iyer & Csernai (2016) nyu-mll/glue Others
rct20k Dernoncourt & Lee (2017) armanc/pubmed-rct20k Unspecified
rotten-tomatoes Pang & Lee (2005) cornell-movie-review-data/rotten tomatoes Unspecified
rte Wang et al. (2018) nyu-mll/glue Unspecified
sara-entailment Holzenberger et al. (2020) nguha/legalbench MIT
scierc Luan et al. (2018) hrithikpiyush/scierc Unspecified
semeval-absa-laptop Pontiki et al. (2015) jakartaresearch/semeval-absa CC BY 4.0
semeval-absa-restaurant Pontiki et al. (2015) jakartaresearch/semeval-absa CC BY 4.0
senteval-cr Hu & Liu (2004) SetFit/SentEval-CR BSD
senteval-subj Pang & Lee (2004) SetFit/subj BSD
sick Marelli et al. (2014) RobZamp/sick CC BY-NC-SA 3.0
silicon-dyda-da Chapuis et al. (2020) eusip/silicone CC BY-SA 4.0
sms-spam Almeida et al. (2011) ucirvine/sms spam Unspecified
sst2 Socher et al. (2013) stanfordnlp/sst2 Unspecified
sst5 Socher et al. (2013) SetFit/sst5 Unspecified
stance-abortion Mohammad et al. (2016) cardiffnlp/tweet eval Unspecified
stance-feminist Mohammad et al. (2016) cardiffnlp/tweet eval Unspecified
student-question-categories Biswal (2020) SetFit/student-question-categories CC0
tcfd-recommendations Bingler et al. (2023) climatebert/tcfd recommendations CC BY-NC-SA 4.0
this-is-not-a-dataset Garcı́a-Ferrero et al. (2023) HiTZ/This-is-not-a-dataset Apache 2.0
toxic-conversations cjadams (2019) SetFit/toxic conversations CC0
trec Li & Roth (2002) CogComp/trec Unspecified
vitaminc Schuster et al. (2021) tals/vitaminc CC BY-SA 3.0
wic Pilehvar & Camacho-Collados (2019) aps/super glue CC BY-NC 4.0
wiki-hades Liu et al. (2021) tasksource/wiki-hades MIT
wiki-qa Yang et al. (2015) microsoft/wiki qa Other
wnli Levesque et al. (2011) nyu-mll/glue Unspecified
wsc Kocijan et al. (2019) aps/super glue CC BY 4.0
yahoo-answers-topics Zhang et al. (2015) community-datasets/yahooanswers topics Unspecified
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Table 5. Summary of Controlled Settings. “T1 Train” contains the task instruction and few demonstrations of Task 1. “T1 Test” contains
the same task instruction and the test input. ¶ = shuffling the few-shot examples; º = using a paraphrased instruction d′ at test time.

Setting Input Prompt Example Controlled Factors
Long Ctx. Distraction Recency

Baseline T1 Train T1 Test % % !

Random Random Text T1 Train T1 Test ! ! !

Repeat T1 Train T1 Train T1 Train T1 Test ! % !

Repeat+Shuffle T1 Train ¶ T1 Train ¶ T1 Train T1 Test ! % !

Recall T1 Train T2 Train T3 Train T1 Test ! ! %

Replay T1 Train T2 Train T3 Train T1 Train T1 Test ! ! !

Paraphrase T1 Train T2 Train T3 Train º T1 Test ! ! %

Table 6. Pass Rates on ICL-effective Tasks and ICL-ineffective Tasks. Results are computed in the 16-task 4-shot Setting. We define
ICL-effective tasks as tasks whose 4-shot performance is significantly better than its 1-shot performance. In general, ICL-effective tasks
achieve lower pass rates, suggesting they are more likely to suffer from performance drop.

Model ICL-eff. ICL-ineff. All Model ICL-eff. ICL-ineff. All
N pass N pass pass N pass N pass pass

Mistral-7B (32k) 5 36.0 11 81.8 67.5 Yi-6B (200k) 6 46.6 10 42.0 43.8
FILM-7B (32k) 2 40.0 14 77.1 72.5 Yi-9B (200k) 6 50.0 10 72.0 63.7
Llama2-7B (32k) 6 33.3 10 46.0 41.2 Yi-34B (200k) 3 46.7 13 67.7 63.8
Llama2-7B (80k) 3 80.0 13 100.0 96.3 GPT-3.5-Turbo (16k) 5 48.0 11 70.9 63.8
Llama3-8B (1048k) 6 40.0 10 90.0 71.3 GPT-4o (128k) 6 96.7 10 84.0 88.8

Table 7. Main Results: Fixing 2 Shots, Scaling the Number of Tasks. See the caption of Table 1 for the explanations of the table
headers.

Model 8 tasks (4k) 16 tasks (8k) 32 tasks (15k) 64 tasks (25k)
s-acc l-acc pass s-acc l-acc pass s-acc l-acc pass s-acc l-acc pass

Mistral-7B (32k) 76.4 78.9 80.0 77.6 74.6 73.8 72.7 71.1 72.5 70.6 69.3 75.6
FILM-7B (32k) 79.1 77.1 87.5 79.1 75.1 77.5 73.3 72.0 88.1 70.6 69.7 75.3
Llama2-7B (32k) 70.1 60.7 65.0 72.8 64.5 53.8 70.6 64.5 59.4 67.1 61.2 63.1
Llama2-7B (80k) 49.9 58.5 97.5 49.8 60.2 100.0 49.5 58.3 91.2 48.6 52.0 89.7
Llama3-8B (1048k) 68.3 65.4 75.0 70.0 69.1 76.2 67.4 65.1 75.6 66.4 65.7 81.2
Yi-6B (200k) 72.0 54.4 50.0 73.0 58.6 51.2 68.4 59.2 63.7 63.7 55.7 65.6
Yi-9B (200k) 78.6 73.4 62.5 77.7 72.9 71.2 75.5 70.3 61.3 70.2 66.8 61.3
Yi-34B (200k) 66.1 70.7 87.5 74.1 72.4 60.0 74.0 69.7 63.1 71.5 68.2 59.4
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(a) Original Needle-in-a-Haystack
Model: Mistral-7B (32k)
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(b) Task Haystack (Scale-Shot)
N_task=16, N_shot=(1,2,3,4,5,6,7,8)

4k 8k 12k 15k 18k 21k 23k 25k
Context Length

6

17

31

44

56

69

83

95

De
pt

h 
in

 th
e 

Ha
ys

ta
ck

 (%
)

(c) Task Haystack (Scale-Task)
N_shot=2, N_task=(8,16,18,32,40,48,56,64)
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Figure 9. Task Haystack Results on Mistral-7B (32k).
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(a) Original Needle-in-a-Haystack
Model: FILM-7B (32k)
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(b) Task Haystack (Scale-Shot)
N_task=16, N_shot=(1,2,3,4,5,6,7,8)
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Figure 10. Task Haystack Results on FILM-7B (32k).
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(a) Original Needle-in-a-Haystack
Model: Llama2-7B (32k)
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(b) Task Haystack (Scale-Shot)
N_task=16, N_shot=(1,2,3,4,5,6,7,8)
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Figure 11. Task Haystack Results on Llama2-7B (32k).
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(a) Original Needle-in-a-Haystack
Model: Llama2-7B (80k)
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(b) Task Haystack (Scale-Shot)
N_task=16, N_shot=(1,2,3,4,5,6,7,8)
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Figure 12. Task Haystack Results on Llama2-7B (80k).
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(a) Original Needle-in-a-Haystack
Model: Llama3-8B (1048k)
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(b) Task Haystack (Scale-Shot)
N_task=16, N_shot=(1,2,3,4,5,6,7,8)
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Figure 13. Task Haystack Results on Llama3-8B (1048k).
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(a) Original Needle-in-a-Haystack
Model: Yi-6B (200k)
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(b) Task Haystack (Scale-Shot)
N_task=16, N_shot=(1,2,3,4,5,6,7,8)
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Figure 14. Task Haystack Results on Yi-6B (200k).
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(b) Task Haystack (Scale-Shot)
N_task=16, N_shot=(1,2,3,4,5,6,7,8)
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Figure 15. Task Haystack Results on Yi-9B (200k).
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(b) Task Haystack (Scale-Shot)
N_task=16, N_shot=(1,2,3,4,5,6,7,8)
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(c) Task Haystack (Scale-Task)
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Figure 16. Task Haystack Results on Yi-34B (200k).
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Figure 17. Task Haystack Results on GPT-3.5-Turbo
(16k). Due to budget limits we only experiment with
the Scale-Shot setting.
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Figure 18. Task Haystack Results on GPT-4o (128k).
Due to budget limits we only experiment with the Scale-
Shot setting and skipped N-shot=5,6,7.
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Figure 19. Example Diagnostic Report on Mistral-7B, N-task=16, N-shot=8. Grey cells indicate that the task does not appear at a given
index in the 5 sampled permutations.
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