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ABSTRACT

We consider deep deterministic policy gradient (DDPG) in the context of rein-
forcement learning with sparse rewards. To enhance exploration, we introduce
a search procedure, ϵt-greedy, which generates exploratory options for exploring
less-visited states. We prove that search using ϵt-greedy has polynomial sam-
ple complexity under mild MDP assumptions. To more efficiently use the infor-
mation provided by rewarded transitions, we develop a new dual experience re-
play buffer framework, GDRB, and implement longest n-step returns. The result-
ing algorithm, ETGL-DDPG, integrates all three techniques: ϵt-greedy, GDRB,
and Longest n-step, into DDPG. We evaluate ETGL-DDPG on standard bench-
marks and demonstrate that it outperforms DDPG, as well as other state-of-the-art
methods, across all tested sparse-reward continuous environments. Ablation stud-
ies further highlight how each strategy individually enhances the performance of
DDPG in this setting.

1 INTRODUCTION

Deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015) is one of the representative al-
gorithms for reinforcement learning (RL) (Sutton & Barto, 2018), alongside other prominent ap-
proaches (Haarnoja et al., 2018; Fujimoto et al., 2018; Andrychowicz et al., 2017). The method has
been extensively used for continuous control environments with dense reward signals (Duan et al.,
2016). However, its performance degrades significantly when the reward signals are sparse and are
only observed upon reaching the goal (Matheron et al., 2019).

In sparse-reward environments where success depends on reaching a goal state, DDPG’s deficiency
can be explained from three perspectives. The first one is its lack of directional exploration. Like
other off-policy RL algorithms, DDPG employs a behavior policy for exploring the environment.
The standard choices are either an ϵ-greedy behavior policy that samples a random action with prob-
ability ϵ (e.g., 0.1), or the main policy with artificial noise. As argued in (Dabney et al., 2020), these
one-step noise augmented greedy strategies are ineffective for exploring large sparse-reward state
spaces due to the lack of temporal abstraction. To improve ϵ-greedy, Dabney et al. (2020) propose a
temporally extended ϵz-greedy policy that expands exploration into multiple steps, controlled by a
distribution z. ϵz-greedy represents an advancement from the option framework for reinforcement
learning (Sutton et al., 1999). Theoretically, an option O is defined as a tuple O = ⟨I, π, β⟩, where I
is the set of states where an option can begin, π is the option policy that determines which actions to
take while executing the option, and β is the termination condition. In ϵz-greedy, each option repeats
a primitive action for a specific number of time steps which is sampled from a distribution z (e.g., a
uniform distribution). The option can begin at any state with probability ϵ and terminates whenever
their length reaches a limit that is decided by z. While ϵz-greedy improves over ϵ-greedy, it is also
directionless: for exploratory action, the agent does not use any information from its experience for
more informed exploration.

The second drawback of DDPG is its uniform treatment of zero and non-zero rewards in the re-
play buffer. For most off-policy RL algorithms, a replay buffer is used to store and sample transi-
tions of the agent’s interactions with the environment. By default, DDPG uses a uniform sampling
strategy that assigns an equal probability of being chosen to all transitions in the buffer. In sparse-
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tree searchgreedy

with ϵ probotherwise

(a) ϵt-greedy: greedy or tree search

with ϵ probotherwise

o

(b) GDRB and the longest n-step return

Figure 1: (a): ϵt-greedy exploration strategy. The agent creates a tree from the current state st with
ϵ probability. Otherwise, it uses its policy to determine the next action at ∼ π. The tree uses a hash
function ϕ to estimate the visit counts to states. If the newly added node sx to the tree is located in
an unvisited area n(ϕ(sx)) = 0, the path from the root to that node is returned as option O. The
tree helps in avoiding obstacles, discovering unexplored areas, and staying away from highly-visited
regions (middle red area). (b): GDRB and the longest n-step return for Q-value updates. τ1 reaches
the goal (a successful episode), and τ2 is truncated by time limit (an unsuccessful episode). The first
buffer Dβ stores both trajectories but De only stores successful trajectories. The target Q-value for
state st is shown for both trajectories below the figure. In successful episodes, the target Q-value is
the episode return. sT represents the last state in each episode, which is the goal state indicated by
a star in τ1.

reward environments, uniform sampling therefore rarely chooses rewarded transitions. In general,
RL algorithms can be improved by prioritizing transitions based on the associated rewards or TD
error (Schaul et al., 2015). For problems with well-defined goals, a replay buffer can be further
enhanced to exploit the strong correlation of rewards and goals. The third weakness of DDPG is
its slow information propagation when updating its learning policy. Since only the last transition in
a successful episode (i.e., goal reached) gets rewarded, in standard DDPG, the agent must achieve
the goal many times to make sure that the reward is eventually propagated backward to early states.
It is known that one way to achieve this is to provide intermediate rewards with reward shaping
methods (Laud, 2004). However, effective reward shaping is usually problem-specific and does not
generalize to a wide range of tasks.

In this paper, we enhance DDPG (Lillicrap et al., 2015) to address all three aforementioned prob-
lems. Our first contribution is ϵt-greedy, a new temporally version of ϵ-greedy that utilizes a light-
weight search procedure, similar to Laud (2004), to enable more directional exploration based on the
agent’s previous experience data. We show that similar to ϵz-greedy, ϵt-greedy has polynomial sam-
ple complexity in related parameters of the MDP. Our second contribution is a new goal-conditioned
dual replay buffer (GDRB), that uses two replay buffers along with an adaptive sampling strategy
to differentiate goal-reached and goal-not-reached experience data. These two buffers differ in re-
tention policy, size, and the transitions they store. Our third enhancement is to replace the one-step
update in DDPG with the longest n-step return for all transitions in an episode. Figure 1 illus-
trates the innovations of ETGL-DDPG. In Section 4, we evaluate the performance of ETGL-DDPG
through extensive experiments on 2D and 3D continuous control benchmarks. We show that each
of the three strategies individually improves the performance of DDPG. Furthermore, ETGL-DDPG
outperforms current state-of-the-art methods across all tested environments.

2 BACKGROUND

We consider a Markov decision process (MDP) defined by the tuple (S,A, T , r, γ, ρ). S is the set of
states, A is the set of actions, T (s′|s, a) is the transition distribution, r : S×A×S → R is the reward
function, γ ∈ [0, 1] is the discount factor, and ρ(s0, sg) is the distribution from which initial and goal
states are sampled for each episode. Every episode starts with sampling a new pair of initial and goal
states. At each time-step t, the agent chooses an action using its policy and considering the current
state and the goal state at = π(st, sg) resulting in reward rt = (st, at, sg). The next state is sampled
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from T (.|st, at). The episode ends when either the goal state or the maximum number of steps T is
reached. The return is the discounted sum of future rewards Rt =

∑T
i=t γ

i−tri. The Q-function and
value function associated with the agent’s policy are defined as Qπ(st, at, sg) = E[Rt|st, at, sg]
and V π(st, sg) = maxaQ

π(st, at, sg). The agent’s objective is to learn an optimal policy π∗ that
maximizes the expected return Es0 [R0|s0, sg].

2.1 DEEP DETERMINISTIC POLICY GRADIENT (DDPG)

To ease presentation, we adopt our notation with explicit reference to the goal state for both the
critic and the actor networks in DDPG. DDPG maintains an actor µ(s, sg) and a critic Q(s, a, sg).
The agent explores the environment through a stochastic policy a ∼ µ(s, sg) + w, where w is a
noise sampled from a normal distribution or an Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein,
1930). To update both actor and critic, transition tuples are sampled from a replay buffer to perform
a mini-batch gradient descent. The critic is updated by a loss L,

L = E[Q(st, at, sg)− yt]
2 (1)

where yt = rt + γQ′(st+1, µ
′(st+1, sg), sg). Q′ and µ′ are the target critic and actor, respectively;

their weights are soft-updated to the current weights of the main critic and actor, respectively. The
actor is updated by the deterministic policy gradient algorithm (Silver et al., 2014) to maximize the
estimated Q-values of the critic using loss −Es[Q(s, µ(s, sg), sg)].

2.2 LOCALITY-SENSITIVE HASHING

Our approach discretizes the state space with a hash function ϕ : S→M, that maps states to buckets
in M. When we encounter a state s, we increment the visit count for ϕ(s). We use n(ϕ(s)) as the visit
counts of all states that map to the same bucket ϕ(s). Clearly, the granularity of the discretization
significantly impacts our exploration method. The goal for the granularity is that “distant” states are
in separate buckets while “similar” states are grouped into one.

We use Locality-Sensitive Hashing (LSH) as our hashing function, a popular class of hash functions
for querying nearest neighbors based on a similarity metric (Bloom, 1970). SimHash (Charikar,
2002) is a computationally efficient LSH method that calculates similarity based on angular distance.
SimHash retrieves a binary code of state s ∈ S as

ϕ(s) = sgn(Af(s)) ∈ {−1, 1}k, (2)

where f : S → RD is a preprocessing function and A is a k × D matrix with i.i.d. entries drawn
from a standard Gaussian distribution N (0, 1). The parameter k determines the granularity of the
hash: larger values result in fewer collisions, thereby enhancing the ability to distinguish between
different states.

3 THE ETGL-DDPG METHOD

In this section, we describe three strategies in ETGL-DDPG for improving DDPG in sparse-reward
tasks. The full pseudocode for ETGL-DDPG is presented in Supplementary Algorithm 3.

3.1 ϵt-GREEDY: EXPLORATION WITH SEARCH

In principle, exploration should be highest at the beginning of training, as discovering rewarded
transitions during early steps is essential for escaping local optima (Matheron et al., 2019). Moti-
vated by the success of the fast exploration algorithms RRT (LaValle, 1998) and ϵz-greedy (Dabney
et al., 2020), we introduce ϵt-greedy, which combines ϵ-greedy with a tree search procedure. Like
ϵ-greedy, ϵt-greedy selects a greedy action with probability 1 − ϵ, and an exploratory action with
probability ϵ. However, instead of exploring uniformly at random, the exploratory action in ϵt-
greedy is the first step of an option generated via a search with time budget N .
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To execute the search process, the agent requires access to the environment’s transition function T
of the corresponding MDP. This is used to generate new nodes within the search tree. However,
since our exploration strategy is built on DDPG, the model-free algorithm, the transition function T
is not known. Instead, the agent utilizes its replay buffer to advance the search. We briefly discuss
the impact of having access to T on the exploration process in Supplementary Material A.2. We also
assume that the agent has a SimHash function ϕ, which discretizes the large continuous environment.
For each state s, n(ϕ(s)) serves as an estimate of the number of visits to a neighbourhood of s
throughout the entire learning process.

The replay buffer contains transitions observed during training. It can be used as a transition
model for observed transitions and an approximate one for transitions similar to those already
seen. For simplicity, we identify each bucket with its hash code ϕ(s). We use a buffer BM which
stores observed transitions based on the hash of their states ϕ(s). If the agent makes a transition
(st, at, rt, st+1) in the environment, the transition is stored in bucket b = ϕ(st). All transitions are
assigned to their buckets upon being added to the replay buffer. As training may take a long time,
we limit the number of transitions in each bucket, and randomly replace one of the old transitions in
a full bucket with the new transition.

The function next state from replay buffer in Algorithm 1 shows how new nodes can be
added to the search: assuming we are at node sx, we randomly select a transition (s′, a, r, s′′) in
bucket ϕ(sx) and create a new child sx′ for sx by using following approximation:

T (sx, a) ≈ T (s′, a) (3)

Algorithm 1 explains how the search generates an exploratory option. Initially, at state s, we create a
list of frontier nodes consisting of only the root node s. If bucket of state s in BM is empty: bϕ(s) =
∅, there is no transition to approximate T (s, a). In this case, ϵt-greedy as in ϵ-greedy generates a
random action at s. Otherwise, when bϕ(s) ̸= ∅, ϵt-greedy conducts a tree search iteratively, with
a maximum of N iterations. At each iteration, a node sx is sampled uniformly from the frontier
nodes, and a child for sx, noted as sx′ , is generated using next state from replay buffer
function. If n(ϕ(sx′)) = 0, we terminate and return the action sequence from the root to sx′ ;
otherwise, we repeat this process until we have added N nodes to the tree. We then return the action
sequence from the root to a least-visited node smin:

smin = min
s ∈ frontier nodes

n(ϕ(s)) (4)

To justify this exploration method, we adopt the conditions outlined in Liu & Brunskill (2018) to
validate the sample efficiency of ϵt-greedy. We begin by introducing the relevant terms and then
present the main theorem. Detailed definitions and proofs are provided in Appendix A.1. The key
idea is to define a measure that captures the concept of visiting all state-action pairs, as outlined in
Definition 1.
Definition 1 (Covering Length). The covering length (Even-Dar & Mansour, 2004) represents
the minimum number of steps an agent must take in an MDP, starting from any state-action pair
(s, a) ∈ S ×A, to visit all state-action pairs at least once with a probability of at least 0.5.

Our objective is to find a near-optimal policy, as defined in Definition 2.

Definition 2 (ϵ-optimal Policy). A policy π is called δ-optimal if it satisfies V π∗
(s)− V π(s) ≤ ϵ,

for all s ∈ S, where ϵ > 0.

Next, we define the concept of sample efficiency, which is captured through the notion of polynomial
sample complexity in Definition 3.
Definition 3 (PAC-MDP Algorithm). Given a state space S, action space A, suboptimality error
ϵ > 0 (from Definition 2) and 0 < δ < 1, an algorithmA is called PAC-MDP (Kakade, 2003), if the
number of time steps required to find a ϵ-optimal policy is less than some polynomial in the relevant
quantities (|S|, |A|, 1

ϵ ,
1

1−γ ,
1
δ ) with probability at least 1− δ.

For simplicity, when we say an algorithm A has polynomial sample complexity, we imply that A
is PAC-MDP. The work by Liu & Brunskill (2018) establishes polynomial sample complexity for

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Generating exploratory option with tree search
1: function generate option(state s, hash function ϕ, budget N)
2: frontier nodes← {}
3: Initialize root using s: root ← TreeNode(s)
4: frontier nodes← frontier nodes ∪ {root};
5: smin← root
6: i← 0
7: while i < N do
8: sx ∼ UniformRandom(frontier nodes)
9: sx′= next state from buffer(sx)

10: if n(ϕ(sx′))=0 then
11: Extract option o by actions root to sx′

12: return o
13: end if
14: if n(ϕ(sx′)) < n(ϕ(smin)) then
15: smin=sx′

16: end if
17: i← i+ 1
18: end while
19: Extract option o by actions root to smin

20: return o
21: end function
22:
23: function next state from buffer(sx, frontier nodes)
24: (s′, a, r, s′′) ∼ UnifromRandom(ϕ(sx))
25: sx′ ← s′′

26: sx.add child(sx′ )
27: frontier nodes← frontier nodes ∪ {sx′}
28: return sx′

29: end function

a uniformly random exploration by bounding the covering length defined in Definition 1. Using
this, and considering a limited tree budget N , we show that ϵt-greedy is PAC-MDP. Let’s denote
the search tree by X , and the distribution over the generated options in X as Pω . The following
Theorem provides a lower bound on option sampling in tree X under certain condition.
Theorem 1 (Worst-Case Sampling). Given a tree X with N nodes (s1 to sN ), for any ω ∈ ΩX ,
the sampling probability satisfies:

PX [ω] ≥ 1

N !(maxi∈[N ] |ϕ(si)|)N−1
≥ 1

Θ(|S||A|)
(5)

, if N ≤ log(|S||A|)
log log(|S||A|) . Here, S and A represent the state space and action space, respectively.

To prove Theorem 1, we examine the construction of the “hardest option”, ω̂ ∈ ΩX , which has the
lowest sampling probability in the tree X . Since PX is an unknown distribution, we cannot directly
exploit it. Instead, we construct a worst-case scenario to approximate the minimum option sampling
probability. Now, we present the following Theorem on the sample complexity of ϵt-greedy.
Theorem 2 (ϵt-greedy Sample Efficiency). Given a state space S, action space A, and a set
of options ΩX generated by ϵt-greedy for each tree X , if PX [ω] ≥ 1

Θ(|S||A|) , ϵt-greedy achieves
polynomial sample complexity or i.e. is PAC-MDP.

Theorem 1 asserts that the sampling bound condition from Theorem 2 is satisfied when N ≤
log(|S||A|)

log log(|S||A|) . Theorem 2 establishes the necessary lower bound on the sampling probability of an
option ω ∈ ΩX for any given exploration tree X , ensuring that the ϵt-greedy strategy is PAC-MDP
under this criterion.

3.2 GDRB: GOAL-CONDITIONED DUAL REPLAY BUFFER

The experience replay buffer is an indispensable part of deep off-policy RL algorithms. It is common
to use only one buffer to store all transitions and use FIFO as the retention policy, with the most
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recent data replacing the oldest data (Mnih et al., 2013). As an alternative, in the reservoir sampling
(Vitter, 1985) retention policy, each transition in the buffer has an equal chance of being overwritten.
This maintains coverage of some older data over training. RS-DRB (Zhang et al., 2019) uses two
replay buffers, one for exploitation and the other for exploration. The transitions made by the agent’s
policy are stored in the exploitation buffer, and the random exploratory transitions are stored in the
exploration buffer. For the retention policy, the exploration buffer uses reservoir sampling, while the
exploitation buffer uses FIFO.

Inspired by this dual replay buffer framework, we propose a Goal-conditioned Double Replay Buffer
(GDRB). The first buffer Dβ stores all transitions during training, and the second buffer De stores the
transitions that belong to successful episodes (i.e., goal reached). Dβ uses reservoir sampling, and
De uses FIFO. Since Dβ needs to cover transitions from the entire training process, it is larger than
De. We balance the number of samples taken from the two buffers with an adaptive sampling ratio.
Specifically, in a training process of E episodes, at current episode i, the sampling ratios τe and τβ
for De and Dβ are set as follows: τe = i

E , τβ = 1−τe. To select C mini-batches, max(⌊τβ ∗ C⌋ , 1)
mini-batches are chosen from Dβ and the rest from De. Later stages of training still sample from
Dβ to not forget previously acquired knowledge, as we assume the policy is more likely to reach the
goal as the training progresses. In case that De is empty, since there are no successful episodes yet,
we draw all mini-batches from Dβ .

3.3 USING LONGEST n-STEP RETURN

In standard DDPG, Q-values are updated using one-step TD. In goal-reaching tasks with sparse
rewards, only one rewarded transition per successful episode is added to the replay buffer. The
agent needs rewards provided by these transitions to update its policy toward reaching the goal.
With few rewarded transitions, the agent should exploit a successful path to the goal many times
so the reward is propagated backward quickly. Multi-step updates can accelerate this process by
looking ahead several steps, resulting in more rewarded transitions in the replay buffer (Meng et al.,
2021; Hessel et al., 2018). For example, Meng et al. (2021) utilize n-step updates in DDPG with n
ranging from 1 to 8. In our design, to share the reward from the last step of a successful episode for
all transitions in the episode, we use longest n-step return (Mnih et al., 2016), shown in Equation 6.

Q(st, at) =


∑T−t

k=0 γ
krt+k, sT is a goal state

∑T−t−1
k=0 γkrt+k + γT−tQ(sT , aT ), otherwise

(6)

Here, sT is the last state in the episode. Using the longest n-step return for each transition from a
successful episode, the reward is immediately propagated to all Q-value updates. In unsuccessful
episodes, using the longest n-step return reduces the overestimation bias in Q-values (Thrun &
Schwartz, 1993). Meng et al. (2021) empirically show that using multi-step updates can improve the
performance of DDPG on robotic tasks mostly by reducing overestimation bias — they demonstrate
that the larger the number of steps, the lower the estimated target Q-value and overestimation bias.

4 EXPERIMENTS

In this section, we show the details of how ETGL-DDPG improves DDPG for sparse-reward tasks
using its three strategies. We use experiments to answer the following questions: 1) Can ETGL-
DDPG outperform state-of-the-art methods in goal-reaching tasks with sparse rewards? 2) How
does each of these three innovations impact the performance of DDPG? 3) Can ϵt-greedy explore
more efficiently than ϵz-greedy and other common exploration strategies?

We consider two types of tasks: navigation and manipulation. We use three sparse-reward continu-
ous environments for navigation. The first environment is a 2D maze called Wall-maze (Trott et al.,
2019), where a reward of -1 is given at each step, and a reward of 10 is given if the goal is reached.
The start and goal states for each episode are randomly selected from the blue and green regions,
respectively, as shown in Figure 2a. The agent’s action (dx,dy) determines the amount of movement
along both axes. The environment contains a gradient cliff feature (Lehman et al., 2018), where the
fastest way to reach the goal results in a deadlock close to the goal. Our second and third 3D envi-
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Figure 2: The environments used in our experiments.
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Figure 3: The success rates across all environments, averaged over 5 runs with different random
seeds. Shaded areas represent one standard deviation. We trained all methods for 6 million frames
in the navigation environments and 2 million frames in the manipulation environments, with success
rates reported at every 105-step checkpoint. A moving average with a window size of 10 is applied
to all methods for better readability.

ronments are U-maze (Figure 2b) and Point-push (Figure 2c) (Kanagawa, 2021), designed using the
MuJoCo physics engine (Todorov et al., 2012). In both environments, a robot (orange ball) seeks to
reach the goal (red region). In Point-push, the robot must additionally push aside the two movable
red blocks that obstruct the path to the goal. A small negative reward of -0.001 is given at each step
unless the goal is reached, where the reward is 1. In each episode, the robot starts near the same
position with slight random variations, but the goal region remains fixed.

We also employ three manipulation tasks: window-open, soccer, and button-press (Figures 2d, e,
and f) (Yu et al., 2020). In window-open, the goal is to push the window open; in soccer, the goal
is to kick the ball into the goal; and in button-press, the aim is to press the top-down button. Each
episode begins with the robot’s gripper in a randomized starting position, while the positions of
other objects remain constant. The original versions of these tasks employ a uniquely shaped reward
function for each task. However, these versions offer limited challenges for exploration, as standard
baselines, such as SAC, demonstrate strong performance (Yu et al., 2020). We modified the original
reward function to be sparse, transforming these tasks into challenging exploration problems.

The maximum number of steps per episode is set to 100 for Wall-maze and 500 for all other environ-
ments. Across all methods, the neural network architecture consists of 3 hidden layers with 128 units
each, using ReLU activation functions. For standard baselines, we utilize the implementations from
OpenAI Gym (Dhariwal et al., 2017), and for other baselines, we rely on their publicly available
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Figure 4: The environment coverage for exploration strategies in navigation environments. On the
graph, the y-axis indicates the portion of the environment that has been covered, and the checkpoints
occur every 104 steps shown on the x-axis. The results are given for the average of 10 runs with
random seeds. The shaded region represents one standard deviation.

implementations. After testing various configurations, we found that ϵt-greedy and ϵz-greedy per-
form best with budgets of N = 40 and N = 15, respectively, across these environments. Additional
details about the environments and experimental setup are provided in Appendix A.3.

4.1 OVERALL PERFORMANCE OF ETGL-DDPG

We evaluate the performance of ETGL-DDPG compared to state-of-the-art methods. We compare
with SAC (Haarnoja et al., 2018), TD3 (Fujimoto et al., 2018), DDPG, and DOIE (Lobel et al.,
2022). DOIE demonstrates state-of-the-art performance in challenging sparse-reward continuous
control problems by drastically improving the exploration. While both DOIE and ϵt-greedy use a
similarity measure between new and observed states, DOIE applies this to compute an optimistic
value function rather than solely guiding the agent to unexplored areas. The results are shown
in Figure 3. In the navigation environments, ETGL-DDPG and DOIE demonstrate superior per-
formance compared to other methods, with ETGL-DDPG achieving a success rate of 1 faster than
DOIE. Notably, Wall-maze presents a more challenging task among navigation environments, where
only ETGL-DDPG and DOIE are able to achieve a success rate above zero. In manipulation tasks,
the press-button poses the hardest challenge as none of the methods achieve a success rate of 1.
ETGL-DDPG still outperforms all other approaches, while DOIE underperforms compared to SAC,
indicating its limitations in adapting to high dimensional environments.

4.2 ENVIRONMENT COVERAGE THROUGH EXPLORATION

We now examine how effective ϵt-greedy is in covering the environment. To do so, we discretize
the navigation environments into small cells. A cell is considered visited if the agent encounters
a sufficient number of distinct states within it, and the overall environment coverage is quantified
as the fraction of visited cells. Figure 4 presents a comparison of environment coverage across
different exploration strategies. All strategies except DOIE, which uses Radial Basis Function Deep
Q-Network (RBFDQN) (Asadi et al., 2021), use DDPG as their underlying algorithm. RBFDQN is
an enhanced DQN variant that incorporates Radial Basis Functions (RBF) to achieve more accurate
Q-value approximations in continuous environments. In Wall-maze, ϵt-greedy is the only method
capable of fully covering the environment, while DOIE achieves 90% coverage. ϵz-greedy covers
approximately half of the environment, whereas the remaining methods manage to explore only
around 30%. In U-maze, all strategies are successful, covering 80% or more of the environment.
Even so, both ϵt-greedy and DOIE reach full coverage faster than other methods. In Point-push,
none of the methods can fully cover the environment. However, ϵt-greedy still outperforms all
baselines, and among the baselines, DOIE explores more than the others. We also investigate the
distribution of final states reached in the episodes to determine the order in which the agent visits
different regions of the environment (see Appendix A.5).

The tree budget N upper bounds the option length of ϵt-greedy due to the fact that the longest path
between nodes in the tree is shorter or equal to the number of nodes in the tree. This is analogous to
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Table 1: Analysis of the impact of budget N on the environment coverage.

budget N
ϵz-greedy ϵt-greedy

Wall-maze U-maze Point-push Wall-maze U-maze Point-push

5 0.36 0.55 0.36 0.76 0.94 0.40
10 0.38 0.91 0.38 0.97 0.91 0.41
15 0.34 0.85 0.39 0.65 0.94 0.42
20 0.30 0.84 0.40 0.83 0.94 0.48
25 0.28 0.86 0.40 1 0.95 0.47
30 0.27 0.83 0.39 1 0.97 0.51
35 0.25 0.82 0.40 1 0.95 0.53
40 0.24 0.82 0.40 1 0.97 0.55
45 0.22 0.85 0.41 1 0.96 0.64
50 0.22 0.79 0.40 1 0.97 0.73

the role of N in ϵz-greedy, where a uniform distribution z(n) = 1n≤N/N is used. To evaluate both
methods, we assess environment coverage under varying budget sizes, calculating the coverage after
1 million training frames. Table 1 shows the results: ϵt-greedy consistently achieves greater cover-
age than ϵz-greedy across all environments and budget sizes. Additionally, ϵt-greedy demonstrates
improved the coverage as the budget increases. In contrast, increasing the budget for ϵz-greedy
does not consistently improve coverage and can even decrease it in some cases. This highlights the
advantages of directed exploration over undirected methods, particularly in complex environments
with numerous obstacles, such as Wall-maze.

4.3 EFFECTIVENESS OF EACH NEW COMPONENT IN ETGL-DDPG

We evaluated the performance of ETGL-DDPG, and now we assess the impact of each component
on DDPG separately. Figure 5 presents the results for all environments. ϵt-greedy demonstrates the
most improvement across all environments and is the only method that enhances the performance
of DDPG in the Wall-maze, highlighting the critical role of our exploration strategy. GDRB shows
a positive impact on DDPG performance in all environments, except for soccer, where DDPG alone
outperforms all baselines. Additionally, we replaced reservoir sampling with FIFO as the retention
policy in GDRB and observed similar results. The longest n-step return has a positive effect only in
U-maze and press-button tasks, while it negatively impacts performance in soccer and Point-push.
We attribute this to the inherently high variance of multi-step updates. A comparison of Figures 3
and 5 across all environments shows that ETGL-DDPG consistently outperforms the use of each
component individually, supporting the effectiveness of their combination.

5 RELATED WORK

Exploration. Intrinsic motivation methods (Burda et al., 2018; Pathak et al., 2017; Ostrovski et al.,
2017; Tang et al., 2017) provide a reward bonus for unexplored areas of the state space. These
methods make the reward function non-stationary, which breaks the Markov assumption of MDP.
Decoupled RL algorithms (Schäfer et al., 2021; Badia et al., 2019) resolve the non-stationarity of the
reward function by training two separate policies for exploration and exploitation. However, such
methods require double the computation cost. Colas et al. (2018) use a policy search process to gen-
erate diverse data for training of DDPG. Liu et al. (2018) introduce a competition-based exploration
method where two agents (A and B) compete with each other. Agent A is penalized for visiting
states visited by B, while B is rewarded for visiting states discovered by A. Plappert et al. (2018)
directly inject noise into the policy’s parameter space instead of the action space. Eysenbach et al.
(2019) build a graph using states in the replay buffer, allowing the agent to navigate distant regions
of the environment by applying Dijkstra’s algorithm. Lobel et al. (2022) present Deep Optimistic
Initialization for Exploration (DOIE), which improves exploration in continuous control tasks by
maintaining optimism in state-action value estimates. Lobel et al. (2023) demonstrate that DOIE
can estimate visit counts by averaging samples from the Rademacher distribution instead of using
density models. Dey et al. (2024) present COIN, a continual optimistic initialization strategy that
extends DOIE to stochastic and non-stationary environments.
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Figure 5: Analyzing the individual impact of three components on DDPG: ϵt-greedy, GDRB, and
longest n-step return.

Experience Replay Buffer and Reward Propagation. Rather than uniformly sampling from the
buffer, Prioritized Experience Replay (PER) (Schaul et al., 2015) prioritizes transitions in the buffer
based on reward, recency, or TD error at the expense of O(logN) per sample, where N is the buffer
size. CER (Zhang & Sutton, 2017) includes the last transition from the buffer to each sampled
batch with O(1) complexity. Zhang et al. (2022) learn a conservative value regularizer only from
the observed transitions in the replay buffer to improve the sample efficiency of DQN. Pan et al.
(2022) theoretically show why PER has a better convergence rate than uniform sampling policy
when minimizing mean squared error. Furthermore, Pan et al. (2022) identify two limitations of
PER: outdated priorities and insufficient coverage of the state space. Reward shaping (Laud, 2004;
Hu et al., 2020) creates artificial intermediate rewards to facilitate reward propagation. However,
designing appropriate intermediate rewards is hard and often problem-specific. Trott et al. (2019)
address this issue by introducing self-balancing reward shaping in the context of on-policy learning.
To extract more information from an unsuccessful episode, Andrychowicz et al. (2017) introduce
imaginary goals. An imaginary goal for state s is a state that is encountered later in the episode.
Devidze et al. (2024) introduce a novel reward informativeness criterion that adaptively designs
interpretable reward functions based on an agent’s current policy in sparse-reward tasks.

6 CONCLUSIONS AND FUTURE WORK

We have introduced the ETGL-DDPG algorithm with three components that improve the perfor-
mance of DDPG for sparse-reward goal-conditioned environments. ϵt-greedy is a temporally-
extended version of ϵ-greedy using options generated by search. We prove that ϵt-greedy achieves
a polynomial sample complexity under specific MDP structural assumptions. GDRB employs an
extra buffer to separate successful episodes. The longest n-step return bootstraps from the Q-value
of the final state in unsuccessful episodes and becomes a Monte Carlo update in successful episodes.
ETGL-DDPG uses these components with DDPG and outperforms state-of-the-art methods, at the
expense of about 1.5x wall-clock time w.r.t DDPG. The current limitation of our work is that we
approximate visit counts through static hashing. For image-based problems such as real-world navi-
gation, the future direction is to leverage dynamic hashing techniques such as normalizing flows (Pa-
pamakarios et al., 2021) as these tasks demand more intricate representation learning.
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neural density models. In International Conference on Machine Learning, pp. 2721–2730. PMLR,
2017.

Yangchen Pan, Jincheng Mei, Amir-massoud Farahmand, Martha White, Hengshuai Yao, Mohsen
Rohani, and Jun Luo. Understanding and mitigating the limitations of prioritized experience
replay. In Uncertainty in Artificial Intelligence, pp. 1561–1571. PMLR, 2022.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. The Journal of
Machine Learning Research, 22(1):2617–2680, 2021.

12

https://api.semanticscholar.org/CorpusID:260534783
https://api.semanticscholar.org/CorpusID:260534783
https://github.com/kngwyu/mujoco-maze


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning, pp. 2778–2787.
PMLR, 2017.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In International Conference on Learning Representations, 2018.
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A APPENDIX

A.1 ϵt-GREEDY SAMPLE EFFICIENCY : PROOFS

In this section, we first provide an overview of the proof, presenting the key ideas at a high level.
Then, we present the detailed formal proof of Theorem 1 and Theorem 2.

Proof Overview. We aim to show that the ϵt-greedy algorithm falls into the PAC-MDP category.
According to Liu & Brunskill (2018), an algorithm A is PAC-MDP if the covering time induced
by A is polynomially bounded. In Liu & Brunskill (2018), the authors further demonstrate that
bounding the covering time requires bounding both the Laplacian eigenvalues and the stationary
distribution over the states induced by the random walk policy. This is presented as Proposition A.1.
According to Theorem 2, two conditions are satisfied: N ≤ Θ(|S||A|) and a lower bound on the
probability of the sampled option, PX ≥ 1

Θ(|S||A|) . These two conditions are necessary and are met
by our problem setting and the exploration algorithm (Algorithm 1). To prove that PX ≥ 1

Θ(|S||A|) ,
we construct a worst-case tree structure X , where we aim to identify the option induced by the tree
X with the lowest probability, referred to informally as the “hardest option”. We then show that this
lower bound satisfies the condition specified in Theorem 1.

We now proceed with the proof of Theorem 1, as demonstrated below.

Theorem 1 (Worst-Case Sampling). Given a tree X with N nodes (s1 to sN ), for any ω ∈ ΩX ,
the sampling probability satisfies:

PX [ω] ≥ 1

N !(maxi∈[N ] |ϕ(si)|)N−1
≥ 1

Θ(|S||A|)
(7)

where N ≤ log(|S||A|)
log log(|S||A|) Here, S and A represent the state space and action space, respectively.

Proof. As outlined in the proof overview, we need to construct an option with the lowest sampling
probability. Given a tree X , we define Xi (for 1 ≤ i ≤ N ) as the tree constructed up to the i-th time
step. At each stepXi, we track the tuple of added states, denoted by SXi , the uniformly sampled state
sx from SXi , and the state with the fewest visits, smin. The notation sx and smin follows Algorithm
1. Without loss of generality, we assume that each next state sx′ in line 9 of Algorithm 1 satisfies
n(ϕ(sx′)) ̸= 0. Specifically, we consider a worst-case tree X fully populated with states from s1 to
sN . Therefore, at time step N , SXN = (s1, s2, . . . , sN ), and we have the following relation:

n(ϕ(s1)) ≥ n(ϕ(s2)) ≥ n(ϕ(s3)) · · · ≥ n(ϕ(sN )). (8)

Equation 8 provides a decreasing sequence of visitations for newly added nodes in tree X , empha-
sizing line 15 of Algorithm 1, which causes the state smin to change over N iterations. We assume
a specific structure for each ϕ(si), where for all i ∈ [N ], at each bucket ϕ(si), there exists only one
state denoted by si+1, such that n(ϕ(si+1)) ≤ n(ϕ(si)). Additionally, we assume that at each time
step in Xt, the newly added node connects only to the most recently added node in the tree. The two
key stochastic events are summarized as follows:

• E1: The event in which nodes are sampled in Line 24 from buckets satisfying the increasing
sequence above.

• E2: The event in which nodes are selected in Line 8.

We now define the probability of interest, which we aim to bound:

P[option returned from sroot to sN |E1 and E2]. (9)
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We expand this probability as follows:

P[option returned from sroot to sN | E1 and E2] =
N∏
i=2

P[(State si added to tree X ) ∧ (si = smin) ∧ (sx = si−1 in Line 8)]

=

N∏
i=2

1

(i− 1)|ϕ(si−1)|

=
1

(N − 1)!
× 1

|ϕ(s1)||ϕ(s2)| . . . |ϕ(sN )|

>
1

N !
× 1

(maxi∈[N ] |ϕ(si)|)N−1

>
1

|S||A|
.

To prove the final inequality, note that N ≤ log(|S||A|)
log log(|S||A|) . Since the size of the sets S and A is

large and N is sub-logarithmic in |S||A|, i.e., N ≪ log(|S||A|), we can say N ≤ log(|S||A|)
log(N) . Let

us denote log(maxi∈[N ] |ϕ(si)|) as a constant c0.

Now by the series of following inequalities we prove that 1
N ! ×

1
(maxi∈[N] |ϕ(si)|)N−1 > 1

|S||A| .

N ≤ log(|S||A|)
log(N)

⇒ N log(N) ≤ log(|S||A|) (10)

⇒ N log(N) + (N − 1)c0 −N ≤ log(|S||A|) (since |S||A| ≫ N, c0) (11)
⇒ log(N !) + (N − 1)c0 ≤ log(|S||A|) (Based on the Moivre–Stirling approximation)

(12)
⇒ log(N !) + (N − 1)c0 ≤ log(|S||A|) (13)

⇒ log(N !) + log

(
(max
i∈[N ]

|ϕ(si)|)N−1

)
≤ log(|S||A|) (14)

⇒ log

(
N ! · (max

i∈[N ]
|ϕ(si)|)N−1

)
≤ log(|S||A|) (15)

⇒ 1

N ! · (maxi∈[N ] |ϕ(si)|)N−1
≥ 1

|S||A|
(16)

Now we provide the main proof which demonstrates polynomial sample complexity under certain
criteria.

Theorem 2 (ϵt-greedy Sample Efficiency). Given a state space S, action space A, and a set
of options ΩX generated by ϵt-greedy for each tree X , if PX [ω] ≥ 1

Θ(|S||A|) , ϵt-greedy achieves
polynomial sample complexity or i.e. is PAC-MDP.

Proof. First note that if PX [ω] ≥ 1
Θ(|S||A|) then based on Theorem 1 we need to have N ≤

log(|S||A|)
log log(|S||A|) , and this implies that N ≤ Θ(|S||A|). Based on the paper by (Liu & Brunskill, 2018),
and the analysis of the covering length when following a random policy, we have the following
preposition:

Preposition A.1 (Liu & Brunskill (2018)). : For any irreducable MDP M, we define PπRW
as

a transition matrix induced by random walk policy πRW over M and L(PπRW
) is denoted as the

Laplacian of this transition matrix. Suppose λ is the smallest non-zero eigenvalue of L and Ψ(s)
is the stationary distribution over states which is induced by random walk policy, then Q-learning
with random walk exploration is a PAC RL algorithm if: 1

λ , 1
mins Ψ(s) are Poly(|S||A|).
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Note that Preposition A.1 is not limited to an MDP with primitive actions. Therefore, we can broaden
its scope by incorporating options into this proposition and demonstrate that both 1

λ and 1
mins Ψ(s)

can be polynomially bounded in terms of MDP parameters—in this case, states and actions in our
approach.

Let’s begin by examining the upper-bound for 1
mins Ψ(s) . Suppose we are at exploration tree X .

Without a loss of generality, we consider that capacity of tree X is full, and we have N states. In
this tree, let’s designate sroot as the state assigned as the root of the tree during the exploration
phase. Now, consider another random state (excluding sroot) within this tree structure, denoted as
srand. We acknowledge that, when considering the entire state space, there can be multiple options
constructed from sroot to srand. Each tree X provides one of these options. Ψ(s) is defined over all
states, and ω is the option with a limited size because of the constrained tree budget.

we can calculate the upper-bound for 1
mins Ψ(s) as follows:

Ψ(srand) =
∑

ω∈ΩX

PX [ω]Ψ(sroot)⇒ Ψ(srand) ≥ P[ω]Ψ(sroot),

1

Ψ(srand)
≤ 1

P[ω]
1

Ψ(sroot)
⇒ 1

Ψ(srand)
≤ Θ(|S||A|)

Ψ(sroot)

(17)

Since srand can represent any of the states encountered in the tree, we can regard it as the state
assigned the least probability in the stationary distribution. Therefore, we have:

1

Ψ(srand)
≤ Θ(|S||A|)

Ψ(sroot)
⇒ 1

mins Ψ(s)
≤ Θ(|S||A|)

Ψ(sroot)
(18)

So, 1
mins Ψ(s) is polynomially bounded. Now, we need to demonstrate that 1

λ is also polynomially
bounded. To bound λ, we first need to recall the definition of the Cheeger constant, h. Drawing
from graph theory, if we denote V (G) and E(G) as the set of vertices and edges of an undirected
graph G, respectively, and considering the subset of vertices denoted by Vs, we can define σVs as
follows:

σVs := {(n1, n2) ∈ E(G) : n1 ∈ Vs, n2 ∈ V (G) \ Vs} (19)

So, σVs can be regarded as a collection of all edges going from Vs to the vertex set outside of Vs. In
the above definition, (n1, n2) is considered as a graph edge. Now, we can define a Cheeger constant:

h(G) := min{ |σVs|
|Vs|

: Vs ⊆ V (G), 0 < Vs ≤
1

2
|V (G)|} (20)

We are aware that h ≥ λ ≥ h2

2 , and by polynomially bounding h, we can ensure that λ is also
bounded. In a related work (Liu & Brunskill, 2018), an alternative variation of the Cheeger constant
is utilized, which is based on the flow F induced by the stationary distribution Ψ of a random walk
on the graph. Suppose for nodes n1, n2 and subset of nodes N1 in the graph, we have:

F (n1, n2) = Ψ(n1)P (n1, n2), (21)

F (σN1) =
∑

n1∈N1,n2 /∈N1

F (n1, n2), (22)

F (N1) =
∑

n1∈N1

Ψ(n1) (23)

Building upon the aforementioned definition, the Cheeger constant is defined as:

h := inf
N1

F (σN1)

min{F (N1), F (N̄1)}
(24)
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Suppose Nrand = {sroot}; we will now demonstrate that 1
h can be polynomially bounded :

h = inf
N1

F (σN1)

min{F (N1), F (N̄1)}
≥ F (σNrand)

min{F (Nrand), F (Nrand)}
≥

∑
s̸=sroot

Ψ(sroot)PπRW
(sroot, s)

Ψ(sroot)
,

=
∑

s̸=Sroot

PπRW
(sroot, s) ≥ PX [ω]⇒ 1

h
≤ Θ(|S||A|)

We demonstrate that both terms stated in Preposition A.1 are polynomially bounded, and thus, the
proof is complete.

Algorithm 2 Generating exploratory option with tree search using a perfect model
1: function generate option(state s, hash function ϕ, budget N)
2: frontier nodes← {}
3: Initialize root using s: root ← TreeNode(s)
4: frontier nodes← frontier nodes ∪ {root};
5: smin← root
6: i← 0
7: while i < N do
8: sx ∼ UniformRandom(frontier nodes)
9: sx′= next state from env(sx)

10: if ϕ(n(sx′))=0 then
11: Extract option o by actions root to sx′

12: return o
13: end if
14: if n(ϕ(sx′)) < n(ϕ(smin)) then
15: smin=sx′

16: end if
17: i← i+ 1
18: end while
19: Extract option o by actions root to smin

20: return o
21: end function
22:
23: function next state from env(sx, frontier nodes)
24: a ∼ UniformRandom(A(sx))
25: sx′ ← T (sx, a)
26: sx.add child (sx′ )
27: frontier nodes← frontier nodes ∪ {sx′}
28: return sx′

29: end function

A.2 EXPLORATION WITH A PERFECT MODEL

Since the DDPG algorithm is model-free, we utilize the replay buffer to construct the tree for
ϵt-greedy. However, ϵt-greedy can also take advantage of a perfect model when available. The
pseudocode for option generation using a perfect model is provided in Algorithm 2. The key
difference from Algorithm 1 is the use of the next state from env function instead of
next state from replay buffer to generate child nodes. In this case, an action is uni-
formly sampled from the action space, and the environment’s transition function T is directly used
to determine the next state (line 25). Figure 6 compares the performance of ETGL-DDPG in naviga-
tion environments using a perfect model versus a replay buffer. The results show a clear advantage
when using a perfect model, as the agent reaches a success rate of 1 more quickly and with less
deviation.

A.3 IMPLEMENTATION DETAILS AND EXPERIMENTAL HYPERPARAMETERS

Here, we describe the implementation details and hyperparameters for all methods used in this
paper. All experiments were run on a system with 5 vCPU on a cluster of Intel Xeon E5-2650 v4
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Figure 6: Comparison of ETGL-DDPG performance in navigation environments using a perfect
model vs. replay buffer.

2.2GHz CPUs and one 2080Ti GPU. Table 3 displays the details for environments. Tables 2, 4, and
5 showcase the hyperparameters utilized in ETGL-DDPG and the baselines.

Table 2: Implementation details for ETGL-DDPG.

Hyperparameter wall-maze U-maze Point-push window-open soccer button-press
batch size 128 512

number of updates per episode 20 200
epsilon decay rate 0.9999988 0.9999992

exploration budget N 20 40 60
SimHash dimension k = 9 k = 16
soft target updates τ 10−2

discount factor γ 0.99
warmup period 2 ∗ 105 steps

exploration buffer size 106

exploitation buffer size 5 ∗ 104
actor learning rate 10−4

critic learning rate 10−3

Table 3: Environment details.

environment S ∈ G ∈ A ∈ Max steps per episode
Wall-maze R2 R2 [−0.95, 0.95]2 100
U-maze R6 R2 [−1, 1] ∗ [−0.25, 0.25] 500
Point-push R11 R2 [−1, 1] ∗ [−0.25, 0.25] 500
window-open R39 R3 [−1, 1]4 500
soccer R39 R3 [−1, 1]4 500
button-press R39 R3 [−1, 1]4 500

18
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Table 4: Implementation details for SAC, TD3, and DDPG.

Hyperparameter wall-maze U-maze Point-push window-open soccer button-press
batch size 128 512

update frequency per step 12 2
action noise ∼ N(0, 0.2) ∼ N(0, (0.3, 0.05)) ∼ N(0, (0.15))

warmup period 2 ∗ 105 steps
replay buffer size 106

learning rate 3 ∗ 10−4

soft target updates τ 5 ∗ 10−3

discount factor γ 0.99

Table 5: Implementation details for DOIE.

Hyperparameter wall-maze U-maze Point-push window-open soccer button-press
batch size 256

number of updates per episode 100
replay buffer size 5 ∗ 105
actor learning rate 10−4

critic learning rate 5 ∗ 10−3

discount factor γ 0.99
action scaling 0.01

environment scaling 0.1 for each dimension
knownness mapping type polynomial

A.4 ETGL-DDPG ALGORITHM

In this section, we introduce ETGL-DDPG, as detailed in Algorithm 3, which is organized into three
primary functions: train, run episode, and update. The train function is called once at
the start of the training process. For each training episode, the run episode function is invoked
to perform a training episode within the environment, followed by the update function to adjust
the networks based on the experience gained from the episode.

A.5 TERMINAL STATES DISTRIBUTION

We analyze the order in which the agent visits different parts of the environment by examining
the distribution of the last states in the episodes. To make it more visually appealing and easy to
interpret, we only sample some of the episodes. The results for Wall-maze, U-maze, and Point-
push can be found in Figures 7, 8, and 9, respectively. In Wall-maze, only ϵt-greedy and DOIE
can effectively navigate to different regions of the environment and ultimately reach the goal area.
Other methods often get trapped in one of the local optima and are unable to reach the goal. The
reason some methods, such as TD3, have fewer points is that the agent spends a lot of time revisiting
congested areas instead of exploring new ones. In U-maze, most methods can explore the majority
of the environment. However, during the final stages of training, methods such as DDPG, SAC,
and DDPG + intrinsic motivation have lower success rates and may end up in locations other than
the goal areas. In Point-push, ϵt-greedy, ϵz-greedy, and DOIE first visit the lower section of the
environment in the early stages. After that, they push aside the movable box and proceed to the
upper section to visit the goal area. For the other methods, the pattern is almost the same, with
occasional visits to the lower section.
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Algorithm 3 ETGL-DDPG

Randomly initialize critic network Q(s, a, g|θQ) and actor µ(s, g|θµ) with weights θQ and θµ

Initialize target networks Q′ and µ′ with weights θQ
′ ← θQ, θµ

′ ← θµ

Initialize replay buffers Dβ , De, hash function ϕ, exploration budget N

function train(Q, µ, ϕ)
for episodes=1,M do

Receive initial observation state s1 and goal g
run episode(s1, g)
update(success)

end for
end function

function run episode(s, g)
success← false, l← 0
while t ≤ T and not(success) do

if l==0 then
if random()< ϵ then

Exploratory option w ← generate option(s, ϕ, N )
Assign action : at ← w
l← length(w)

else
Greedy action : at ← µ(st, g|θµ)

end if
else

Assign action : at ← w
l← l − 1

end if
Execute action at and observe reward rt and next state st+1

if is goal(st+1) then
success← true

end if
end while

end function

function update(success)

R =

{
rt success
0 o.w

bootstrap =

{
0 success
1 o.w

for i ∈ {t− 1, ..., tstart} do
R← ri + γR
if success then

store transition (si, g, ai, R, st, bootstrap) in Dβ , De

else
store transition (si, g, ai, R, st, bootstrap) in Dβ

end if
end for
Sample C random mini-batches of k transitions (sj , gj , aj , rj , sj+1, bootstrapj) by τβ and

τe ratios from Dβ and De

set yj = rj + bootstrapj ∗ γQ′(sj+1, gj , µ
′(sj+1, gj |θµ

′
)|θQ′

)
update critic by minimizing the loss: L = 1

k

∑
j(yj −Q(sj , gj , aj |θQ))

update the actor: ∇θµJ ≈ 1
k

∑
j ∇aQ(s, g, a|θQ)|s=sj ,g=gj ,a=µ(sj ,gj)∇θµµ(s, g|θµ)|sj

update the target networks: θQ
′ ← τθQ + (1− τ)θQ

′
, θµ′ ← τθµ + (1− τ)θµ

′

end function
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Figure 7: The agent’s location at the end of episodes throughout the training in Wall-maze.
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Figure 8: The agent’s location at the end of episodes throughout the training in U-maze.
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Figure 9: The agent’s location at the end of episodes throughout the training in Point-push.
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