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ABSTRACT 

Our long-term interest is in machines that contain large amounts 

of general and scientific knowledge, stored in a "computable" 

form that supports reasoning and explanation. As a medium-term 

focus for this, our goal is to have the computer pass a fourth-grade 

science test, anticipating that much of the required knowledge will 

need to be acquired semi-automatically. This paper presents the 

first step towards this goal, namely a blueprint of the knowledge 

requirements for an early science exam, and a brief description of 

the resources, methods, and challenges involved in the semi-

automatic acquisition of that knowledge. The result of our 

analysis suggests that as well as fact extraction from text and 

statistically driven rule extraction, three other styles of AKBC 

would be useful: acquiring definitional knowledge, direct 

“reading” of rules from texts that state them, and, given a 

particular representational framework (e.g., qualitative reasoning), 

acquisition of specific instances of those models from text (e..g, 

specific qualitative models). 

1. INTRODUCTION 
There has been substantial advances in knowledge extraction 

technology in recent years, e.g., ontology learning (Buitellar et al.,  

2008), fact extraction (Mayfield et al., 2012; Carlson et al., 2010), 

and the creation of proposition stores (Schubert and Tong, 2003). 

Our interest is in pulling these various techniques and resources 

together, and extending them where necessary, in order to perform 

a specific task, namely passing a fourth grade science test. The 

test provides a clear and easily measurable performance task to 

ensure that the acquired knowledge is useful, i.e., to connect the 

techniques of knowledge extraction with a particular use case. In 

addition, fourth grade science poses a variety of challenges in 

simple, commonsense knowledge and reasoning, challenges that 

any intelligent system would be expected to overcome; thus we 

are also interested in whether existing AKBC techniques are 

adequate for this challenge, and if not, where the gaps are.  

This project is only in its preliminary stages, and so this 

paper presents just the first step of this endeavor, namely an 

analysis of a particular fourth grade test (the New York Regents 

Science Test) and its knowledge requirements, and an analysis of 

how well current AKBC methods can meet those requirements. 

2. Overall Architecture 
Before describing the analysis, we briefly describe the system 

that we are building, currently existing as a partial prototype. As 

shown in Figure 1, there are three main components: question 

interpretation, reasoning, and a library of knowledge resources: 

 Question interpretation: As we will describe, there are a 

variety of question types, requiring a variety of solution 

strategies (problem-solving methods, PSMs). The role of the 

question interpretation component is to identify and 

instantiate the appropriate PSM to use, using evidence from a 

combination of NLP techniques (syntactic parsing, matching 

with question patterns, and keywords). Currently we have a 

small catalog of 12 PSMs for different question types (e.g., 

what-is-a-x, find-a-value, how-many, similarity/differences, 

how/why, etc.). 

 Reasoning: Rather than a universal reasoning engine, the 

architecture contains several reasoning modules, each 

capable of answering certain classes of questions with 

varying degrees of reliability. During question-answering, 

the selected PSM calls the appropriate module(s) to answer 

its various subgoals. In cases where more than one module 

can answer a subgoal, an overall confidence to an answer is 

computed as a weighted combination of evidence from the 

different modules, the weights learned using machine 

learning (simulated annealing) trained with gold-standard 

question-answer pairs. 

 Knowledge Resources: The knowledge resources provide 

the information required by the various reasoning modules, 

and include both off-the-shelf resources and custom-built 

resources constructed from various text sources. We 

currently use: a parse-derived logical form database; an 

OpenIE triple (proposition) store (Etzioni et al., 2011); The 

Bio101 ontology (Chaudhri et al, 2013); WordNet 

(Fellbaum, 1998); the PPDB paraphrase database (Chan et 

al, 2011), derived from a large corpus of parallel texts using 

bilingual pivoting; and the DIRT paraphrase database (Lin 

and Pantel, 2001). 

 

Figure 1: Overall architecture of the system 



This architecture was originally developed to answer simple 

questions about the narrower domain of cell biology. We are now 

retargeting it towards the more commonsense-level fourth grade 

science test, expanding all three of the main components, but with 

particular emphasis on automatically constructing the required 

knowledge resources, as we now describe. 

3. AKBC for a Fourth Grade Science Exam 
Elementary grade science tests are interesting as they test a 

wide variety of commonsense knowledge and skills that adults 

largely take for granted, although to an elementary student are 

challenging. The particular test we are now targeting is the New 

York Regents' Exam (Regents 2012), for which a relatively large 

number of tests (10 years worth) are publically available. The 

Regents exam is mainly multiple choice, but also includes a direct 

answer section (that frequently involving diagrams and other 

graphical components - something we are not currently tackling). 

For the multiple choice, we are interested in generating answers 

that are also explainable, rather than just performing "smart 

guessing" based on statistical word correlations.  

Based on an analysis of the 2004, 2005, and 2006 exams 

(multiple choice parts), it is clear that question-answering in this 

domain is not a uniform task. Rather, there is a significant 

variation in the types of questions asked, and the types of 

knowledge required to answer them, ranging from simple "isa" 

questions to those requiring more structured models of the world. 

The questions can be loosely gathered into six groups, based on 

the types of knowledge and reasoning required to (explainably) 

answer them. This helps provide a blueprint for the AKBC tasks 

required to address the challenge. Figure 2 shows a pie chart of 

these groups and their relative frequency. Although these groups 

are loosely defined and overlap to some degree, they nevertheless 

are useful to provide some structure to the challenge. We now 

describe these categories and discuss how the required knowledge 

may be acquired. For our purposes here, we focus on the  

knowledge requirements and AKBC tasks, rather than details of 

question interpretation and reasoning. 

Figure 2: Relative frequency of different question types (pie 

chart), plus knowledge and reasoning requirements (rings). 

3.1 Taxonomic Knowledge 
The simplest questions involve simple application of 

taxonomic ("isa") knowledge, for example: 

2004-2: Sleet, rain, snow, and hail are forms of: 

        (A) erosion 

(B) evaporation 

(C) groundwater 

(D) precipitation 

 

Various taxonomies already exist to help answer such 

questions, e.g., WordNet, YAGO, the Wikipedia topic hierarchy, 

and "isa" information extractable from dictionaries using sentence 

patterns. 

3.2 Definitions 
A second class of questions tests a students' knowledge of 

terminology, and his/her ability to map definitions to a provided 

description. For example: 

2006-4: The movement of soil by wind or water is called 

        (A) condensation  

(B) evaporation 

(C) erosion 

(D) friction 

  

Dictionary resources (e.g., Collins, available from LDC; 

Wiktionary; the WordNet glosses) provide definitions, which can 

be used for this, reducing these questions to a task of textual 

entailment, namely determining which definition most plausibly 

entails the question phrase. (e.g., to what degree does the 

definition "erosion: the gradual wearing away of land surface 

material by the action of water or wind" entail the question phrase 

"The movement of soil by wind or water"?). Although less 

explored in recent years, there is a wealth of work in extracting 

semantics from machine-readable dictionaries from earlier years 

that can be drawn on, e.g., MindNet (Richardson et al., 1998), 

Extended WordNet (Harabagiu et al, 1999), and more recently by 

Allen (2011). 

3.3 Property Databases 
Some questions ask about "basic" properties of an object, 

e.g., the parts of an object, or the function of an artifact, or the 

steps in a process. For example: 

2004-24: Which part of a plant produces the seeds? 

 (A) flower  

(B) leaves  

(C) stem 

(D) roots 

 

While there is some subjectivity about which properties are 

"basic", the intention here is that there are some properties that are 

repeatedly used in question-answering, and thus it is worth 

investing extra effort in creating and curating databases of those 

properties. The properties that we are currently targeting is the 

parts of an object, being constructed using supervised learning, 

specifically using MultiR (Hoffmann et al., 2011) run over 

Wikipedia text. 



3.4 Inference Rules 
While the first three question types can be considered as 

"lookup" questions, a large number of the science questions 

appeal to simple, general rules and principles about the world, 

including reasoning about particular situations (scenarios), e.g.,: 

2006-9: Which object is the best conductor of electricity?  

 (A) metal fork  

 (B) rubber boot  

 (C) plastic spoon  

 (D) wooden bat 

 

2005-1: Which example describes an organism taking in 

nutrients?  

 (A) A dog burying a bone  

 (B) A girl eating an apple  

 (C) An insect crawling on a leaf  

 (D) A boy planting tomatoes in the garden 

causality, e.g.,: 

2005-20: What is one way to change water from a liquid to a 

solid? 

 (A) decrease the temperature  

 (B) increase the temperature  

 (C) decrease the mass  

 (D) increase the mass  

 

and (simple) processes, e.g.,: 

 

06-21. One way animals usually respond to a sudden drop in 

temperature is by 

 (A) sweating  

 (B) shivering  

 (C) blinking  

 (D) salivating 

 

For explainable answers, the first example appeals to the 

knowledge that metal objects conduct electricity, and the second 

example appeals to the general knowledge that if an animal eats 

then it takes in nutrients (along with other taxonomic knowledge, 

described earlier). Such knowledge might be encoded and 

reasoned with using a variety of forms and degrees of formality; 

our architecture allows for multiple approaches, with the 

question-answering method learning the best weighted 

combination of answers. 

We can loosely characterize these questions as requiring 

short (eg., 1 step) inferences from the explicit facts, and thus need 

to acquire rules encoding the inference knowledge. One approach 

to acquiring such rules is to induce them from examples, e.g., 

NELL’s earlier use of N-FOIL to induce Horn clauses (Lao et al., 

2011), or DIRT’s use of distributional similarity (Lin and Pantel, 

2001). However, another somewhat less explored approach is to 

directly “read” them (using NLP) from texts that state them 

explicitly. One genre of texts we have found useful for this are 

course study guides (rather than textbooks), which tend to 

summarize just the key knowledge in a rather dry way, without the 

prose typically used in textbooks to hold a reader's attention - 

boring for people but ideal for machines. An example paragraph 

from the Barron's Study Guide (for the Regence exam) along with 

some plausible extractions is shown in Figure 3. Even though the 

language is simple, the challenges are still formidable, but at least 

plausibly addressable from this style of writing. 

Figure 3: A paragraph from the Barrons Study Guide for the 

Regents Exam, and some plausibly achievable extractions from 

the text. 

We are using two forms of acquisition techniques for this 

knowledge: parse-based triple/proposition stores, using Open IE 

technology (Etzioni et al, 2011), and pattern-based extraction. 

Proposition stores contain large numbers of generic statements, 

e.g.,  

   ["metal objects"] ["conduct"] ["electricity"] 

extracted from natural language text. In many cases, such 

propositions express "forall-exists" rules (universal quantification 

over the first argument). Such rules can in principle be used for 

reasoning, using alignment/entailment technology to match 

arguments (e.g., Yao et al., 2013). There are many open research 

questions still to address, including extracting reliable 

propositions, filling in unstated context, and identifying the 

appropriate quantification pattern and degree of reliability of the 

rules. 

In addition, we are using simple pattern-based acquisition 

techniques to identify and extract rules from text. Some common 

types of knowledge are expressed using common syntactic forms, 

and so identifying those forms enables that knowledge to be 

acquired. For example, in Figure 3, the pattern "X does Y by Z" is 

often used to mean "IF X does Z THEN X does Y". Similarly, "X 

does Y to get Z" can mean "IF X does Y THEN X gets Z". This 

latter pattern allows us to extract that "IF X eats THEN X gets 

nutrients" from the Barron’s text, allowing us to answer the 

second example question in this subsection. 

3.5 Domain Models  
Some questions require a specific “modeling paradigm” (i.e., 

“way of thinking about the world”) to answer, beyond just a "sea 

of rules". One of the roles of teachers is to teach students such 

modeling techniques. In other words, certain classes of question 

are answerable by a computation over a certain style of 

representation - for example, questions about qualitative influence 

(does X go up when Y does down?) are answerable by a 

computation over a qualitative model. Although such 

representational paradigms, and the question-answering 

algorithms that operate on them, need to be designed and 

implemented by hand, the domain-specific models themselves 

may be semi-automatically acquirable from text. For example, 

although a qualitative reasoning engine may need to be 

implemented by hand, specific qualitative models themselves may 



be semi-automatically extractable from statements about 

qualitative influences in text. 

An example of a modeling paradigm from the Regents exam 

is energy conversion, for questions such as: 

2005-28: When a baby shakes a rattle, it makes a noise. 

Which form of energy was changed to sound energy? 

 (A) electrical  

(B) light  

(C) mechanical  

(D) heat 

 

The underlying modeling technique here is to (a) identify a 

sequence of events then (b) tag each event with an energy type 

(heat, light, etc.). The model can then support answers to certain 

question classes, e.g., What is the initial form of energy? What is 

the final form of energy? What form of energy produced X? What 

form of energy does X turn into? Although such general 

techniques require hand construction (for the foreseeable future), 

the specific models that they operate on - here a sequence of 

events in the question itself - may be plausibly extracted 

automatically. 

A second example of a common modeling paradigm is 

modeling processes as a sequence of events with various actors 

playing various roles. Computations over such representations can 

answer questions such as: What is the role of Entity in Process? 

What Entity performs Role in Event? During X, what happens 

after Y? etc.. The AKBC task is to then acquire representations of 

specific processes. Again, the modeling paradigm is implemented 

by hand, but the specific models it operates over are to be 

acquired semi-automatically. We are working with Stanford 

University on techniques to extract such process models from text 

using supervised learning (Berant et al., 2013). 

3.6 Diagrams 
Finally, a number of questions involve non-textual 

information (tables, diagrams, graphs, etc.). While there are 

emerging techniques for diagrammatic representation and 

reasoning (e.g., Goel et al., 2010), this remains a challenging area 

for reasoning and explanation. 

4. Discussion 
Why construct knowledge resources such as these ahead of 

time, rather than just extract the required knowledge on-demand 

at run-time? In practice, both "pre-caching" of knowledge and 

run-time extraction are needed. Materializing implicit knowledge 

allows for its correction and refinement, to reduce errors and 

noise, e.g., by applying global constraints to the knowledge, by 

searching for and removing inconsistencies, and by manual 

filtering of the knowledge ("crowd-correcting"). In the end, this 

aspect of AKBC is the most important as individual extractions 

will always be noisy; it is only by refining the aggregated 

extractions into a more accurate ("purer") form that we can hope 

to obtain the quality needed for the task. In other words, AKBC is 

more than just extraction, it also requires an assembly and 

refinement process. To the extent that questions appear that are 

not answerable by information in the knowledge resources, 

additional run-time search and extraction may be needed. Also, 

note that our architecture (Figure 1) does not assume a single, 

monolithic knowledge base; rather, it accommodates a variety of 

resources, with elements that may be in conflict with each other, 

hence reducing inconsistency is desirable but not an absolute 

requirement. Rather, an evidential reasoning is required during 

question answering. 

Our survey of the fourth grade exams suggests that there is a 

wide variety of question types and corresponding targets for 

AKBC, as we have enumerated. The result of our analysis 

suggests that as well as fact extraction from text and statistically 

driven rule extraction, three other styles of AKBC would be 

useful: acquiring definitional knowledge, direct “reading” of rules 

from texts that state them explicitly, and, given a particular 

representational framework (e.g., qualitative reasoning), 

acquisition of specific instances of those models from text (e..g, 

specific qualitative models). While there has been work in these 

areas in the past (e.g., work on processing machine readable 

dictionaries), further exploration is needed if machines are to have 

the knowledge to pass a fourth grade science exam.  
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