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Abstract

The emergence of accurate open large language
models (LLMs) has led to a race towards perfor-
mant quantization techniques which can enable
their execution on end-user devices. In this pa-
per, we revisit the problem of “extreme” LLM
compression—defined as targeting extremely low
bit counts, such as 2 to 3 bits per parameter—from
the point of view of classic methods in Multi-
Codebook Quantization (MCQ). Our algorithm,
called AQLM, generalizes the classic Additive
Quantization (AQ) approach for information re-
trieval to advance the state-of-the-art in LLM com-
pression, via two innovations: 1) learned additive
quantization of weight matrices in input-adaptive
fashion, and 2) joint optimization of codebook pa-
rameters across each transformer blocks. Broadly,
AQLM is the first scheme that is Pareto optimal
in terms of accuracy-vs-model-size when com-
pressing to less than 3 bits per parameter, and
significantly improves upon all known schemes in
the extreme compression (2bit) regime. In addi-
tion, AQLM is practical: we provide fast GPU and
CPU implementations of AQLM for token gen-
eration, which enable us to match or outperform
optimized FP16 implementations for speed, while
executing in a much smaller memory footprint.

1. Introduction
The rapid advancement of generative large language models
(LLMs) has led to massive industrial and popular interest,
driven in part by the availability of accurate open LLMs,
such as LLAMA 1 and 2 (Touvron et al., 2023), Falcon (TII
UAE, 2023), BLOOM (Scao et al., 2022), OPT (Zhang
et al., 2022), or NeoX/Pythia (Biderman et al., 2023). A key
advantage of open models is that they can be inferenced or
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Figure 1: Comparison of AQLM (2-bit) relative to the state-
of-the-art QuIP# (2-bit) and the original 16-bit weights on
LLAMA 2 7, 13, and 70B models.

fine-tuned locally by end-users, assuming that their compu-
tational and memory costs can be reduced to be manageable
on commodity hardware. This has led to several methods for
inference and fine-tuning on compressed LLMs (Dettmers
et al., 2022; Frantar et al., 2022a; Dettmers & Zettlemoyer,
2022; Lin et al., 2023; Dettmers et al., 2023a). Currently, the
primary approach for accurate post-training compression of
LLMs is quantization, which reduces the bit-width at which
model weights (and possibly activations) are stored, leading
to improvements in model footprint and memory transfer.

By and large, LLM weights are compressed via “direct”
quantization, in the sense that a suitable quantization grid
and normalization are first chosen for each matrix sub-
component, and then weights are each mapped onto the grid
either by direct rounding, e.g. (Dettmers & Zettlemoyer,
2022), or via more complex allocations, e.g. (Frantar et al.,
2022a). Quantization induces a natural compression-vs-
accuracy trade-off, usually measured in terms of model size
vs model perplexity (PPL). Existing approaches can achieve
arguably low accuracy loss at 3-4 bits per element (Dettmers
et al., 2023b; Chee et al., 2023; Kim et al., 2023), and can
even stably compress models to 2 or even less bits per ele-
ment, in particular, for extremely large models (Frantar &
Alistarh, 2023). Yet, in most cases, low bit counts come at
the cost of significant drops in accuracy, higher implementa-
tion complexity and runtime overheads. Specifically, from
the practical perspective, “extreme” quantization in the 2-bit
range using current techniques is inferior to simply using
a smaller base model and quantizing it to higher bitwidths,
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such as 3-4 bits per parameter, as the latter yields higher
accuracy given the same model size in bytes (Dettmers &
Zettlemoyer, 2022; Chee et al., 2023).

Contribution. In this work, we improve the state-of-the-art
in LLM compression by showing for the first time that Multi-
Codebook Quantization (MCQ) techniques can be extended
to LLM weight compression. Broadly, MCQ is a family
of information retrieval methods (Chen et al., 2010; Jegou
et al., 2010; Ge et al., 2013; Zhang et al., 2014; Babenko &
Lempitsky, 2014; Martinez et al., 2016; 2018), consisting of
specialized quantization algorithms to compress databases
of vectors, allowing for efficient search. Unlike direct quan-
tization, MCQ compresses multiple values jointly, by lever-
aging the mutual information of quantized values.

More precisely, we extend Additive Quantization
(AQ) (Babenko & Lempitsky, 2014; Martinez et al., 2016),
a popular MCQ algorithm, to the task of compressing
LLM weights such that the output of each layer and
Transformer block are approximately preserved. Our
extension reformulates the classic AQ optimization problem
to reduce the error in LLM layer outputs under the input
token distribution and as well as to jointly optimize
codes over layer blocks, rather than only preserving the
weights themselves as in standard AQ. We refer to the
resulting procedure as Additive Quantization of Language
Models (AQLM). Unlike some extreme LLM quantization
approaches that require hybrid sparse-quantized formats
which separate outlier quantization (Kim et al., 2023;
Dettmers et al., 2023b), AQLM quantizes models in a
simple homogeneous format, which is easy to support in
practice. Our main contributions are as follows:

1. We propose the AQLM algorithm, which extends AQ
to post-training compression of LLM weights, via two
innovations: (1) adapting the MAP-MRF1 optimiza-
tion problem behind AQ to be instance-aware, taking
layer calibration input & output activations into ac-
count; (2) complementing the layer-wise optimization
with an efficient intra-block tuning technique, which
optimizes quantization parameters jointly over several
layers, using only the calibration data.

2. We evaluate the effectiveness of this algorithm on the
task of compressing accurate open LLMs from the
LLAMA 2 (Touvron et al., 2023) family with com-
pression rates of 2-4 bits per parameter. We find that
AQLM outperforms the previous state-of-the-art across
the standard 2-4 bit compression range, with the most
significant improvements for extreme 2-bit quantiza-
tion (see Figure 1). We provide detailed ablations
for the impact of various algorithm parameters, such
as code width and number of codebooks, and extend

1Maximum a Posteriori inference in Markov Random Fields

our analysis to the recent Mixtral model (Jiang et al.,
2024). We also evaluate AQLM with improved fine-
tuning algorithms from subsequent works, which leads
to further increase in accuracy for 2- and 3-bit models.

3. We show that AQLM is practical, by providing efficient
GPU and CPU kernels implementations for specific
encodings, as well as end-to-end generation2. Results
show that our approach can match or even outperform
the floating point baseline in terms of speed, while re-
ducing the memory footprint by up to 8x. Specifically,
AQLM can be executed with layer-wise speedups of
∼ 30% for GPUs, and of up to 4x for CPU inference.

2. Background & Related Work
2.1. LLM Quantization

Early efforts towards post-training quantization (PTQ)
methods (Nagel et al., 2020; Gholami et al., 2021) that
scale to LLMs such as ZeroQuant (Yao et al., 2022),
LLM.int8() (Dettmers et al., 2022), and nuQmm (Park et al.,
2022) employed direct round-to-nearest (RTN) projections,
and adjusted quantization granularity to balance memory
efficiency and accuracy. GPTQ (Frantar et al., 2022a) pro-
posed a more accurate data-aware approach via an approxi-
mate large-scale solver for minimizing layer-wise ℓ2 errors.

Dettmers & Zettlemoyer (2022) examined the accuracy-
compression trade-offs of these early methods, suggesting
that 4-bit quantization may be optimal for RTN quantization,
and observing that data-aware methods like GPTQ allow
for higher compression, i.e. strictly below 4 bits/weight,
maintaining Pareto optimality. Our work brings this Pareto
frontier below 3 bits/weight, for the first time. Parallel
work quantizing both weights and activations to 8-bits,
by Dettmers et al. (2022), Xiao et al. (2022), and Yao et al.
(2022) noted that the “outlier features” in large LLMs cause
substantial errors, prompting various mitigation strategies.

Recently, several improved techniques have focused on the
difficulty of quantizing weight outliers, which have high
impact on the output error. SpQR (Dettmers et al., 2023b)
addresses this by saving outliers as a highly-sparse higher-
precision matrix. AWQ (Lin et al., 2023) reduces the error of
quantizing channels with the highest activation magnitudes
by employing per-channel scaling to reduce the error on
important weights. SqueezeLLM (Kim et al., 2023) uses the
diagonal Fisher as a proxy for the Hessian and implements
non-uniform quantization through K-means clustering.

The published state-of-the-art method is QuIP (Chee et al.,
2023). Concurrent to our work, an improved variant called
QuIP# (Tseng et al., 2024) was introduced. Roughly, they

2https://github.com/Vahe1994/AQLM/tree/
AQLM_camera_ready
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work by first “smoothening” weights by multiplying with a
rotation matrix, and then mapping them onto a lattice. At
a high level, QuIP and QuIP# aim to minimize the “worst-
case” error for each layer, given initial weights and calibra-
tion data. For instance, in QuIP#, the distribution of the
rotated weights approximates a Gaussian, while the encod-
ing lattice (E8P) is chosen to minimize “rounding” error.
By contrast, our approach uses a different weight encoding
(codebooks are additive), and learned codebooks instead
of a fixed codebook. Thus, our insight is that we should be
able to obtain higher accuracy by direct optimization of the
codebooks over the calibration set, removing the rotation.
Further, we show that codebooks for different layers can
co-train via joint fine-tuning over the calibration data.

2.2. Quantization for Nearest Neighbor Search

Our work builds on approximate nearest neighbor search
(ANN) algorithms. Unlike PTQ, ANN quantization aims to
compress a database of vectors to allow a user to efficiently
compute similarities and find nearest neighbors relative to
a set of query points. For high compression, modern ANN
search algorithms employ vector quantization (VQ)—which
quantizes multiple vector dimensions jointly (Burton et al.,
1983; Gray, 1984). It achieves this by learning “codebooks”:
i.e. a set of learnable candidate vectors that can be used
to encode the data. To encode a given database vector,
VQ splits it into sub-groups of entries, then encodes every
group by choosing a vector from the learned codebook. The
algorithm efficiently computes distances or dot-products for
similarity search by leveraging the linearity of dot products.

Quantization methods for ANN search generalize vector
quantization and are referred to as multi-codebook quan-
tization (MCQ). MCQ methods typically do not involve
information loss on the query side, which makes them the
leading approach for memory-efficient ANN (Ozan et al.,
2016; Martinez et al., 2018). We briefly review MCQ below.

Product quantization (PQ) (Jegou et al., 2010) is an early
version of MCQ, which encodes each vector x ∈ RD as
a concatenation of M codewords from M D

M -dimensional
codebooks C1, . . . , CM , each containing K codewords. PQ
decomposes a vector into M separate subvectors and applies
vector quantization (VQ) to each subvector, while using a
separate codebook. Thus, each vector x is encoded by a
tuple of codeword indices [i1, . . . , iM ] and approximated by
x ≈ [c1i1 , . . . , cMiM ]. Fast Euclidean distance computation
becomes possible using lookup tables:

∥q − x∥2 ≈ ∥q − [c1i1 , . . . , cMiM ]∥2 =

M∑
m=1

∥qm − cmim∥2,

where qm is the mth subvector of a query q. This sum
can be calculated using M additions and lookups if the dis-

tances from query subvectors to codewords are precomputed.
Since product-based approximations work better if the D

M -
dimensional components independent distributions, subse-
quent work has looked into finding better transformations
(Ge et al., 2013; Norouzi & Fleet, 2013). As for the other
similarity functions, (Guo et al., 2016) proposes a quantiza-
tion procedure for maximum inner product search (MIPS).
They minimize quantization error in the inner products be-
tween database and query vectors by solving a constrained
optimization problem. Similarly to the formula above, this
procedure allows for efficient inner product search by pre-
computing dot products between the query q an all codes in
the learned codebooks, then adding these partial dot prod-
ucts to recover the full similarity score.

Non-orthogonal quantizations. Follow-up work (Chen
et al., 2010; Babenko & Lempitsky, 2014; Martinez et al.,
2016; Zhang et al., 2014; Ozan et al., 2016; Martinez et al.,
2018) generalized the idea of Product Quantization by ap-
proximating each vector by a sum of M codewords instead
of concatenation. The resulting procedure is still efficient
while the approximation accuracy is increased.

For this, Residual Vector Quantization (Chen et al., 2010),
quantizes original vectors, and then iteratively quantizes the
approximation residuals from the previous iteration. Addi-
tive Quantization (AQ) (Babenko & Lempitsky, 2014) is
more general, as it does not impose constraints on the code-
words from the different codebooks. Usually, AQ provides
the smallest compression errors, but is more complex to
train for large M . We discuss this in detail in Section 3.

Finally, several recent works (Martinez et al., 2016; 2018;
Zhang et al., 2014) elaborate the idea of Additive Quantiza-
tion, proposing the more effective procedure for codebooks
learning. Composite Quantization (CQ) (Zhang et al., 2014)
learns codebooks with a fixed value of inner product be-
tween the codewords from different codebooks. Currently,
the state-of-the-art compression accuracy is achieved by the
LSQ method (Martinez et al., 2018).

Vector quantization for model compression. There has
been significant work on exploiting vector quantization
in the context of machine learning. For instance, Zhou
et al. (2017); Li et al. (2017); Chen et al. (2019) use
multi-codebook quantization to compress word embeddings
within deep learning models. Another line of work (Blalock
& Guttag, 2021; McCarter & Dronen, 2022; Fernández-
Marqués et al., 2023) explores vector quantization for linear
models, or linear layers within deep models. Similarly to
PQ above, these techniques pre-compute inner products be-
tween inputs and all codes, then compute linear layer via
look-up, which speeds up inference. However, these algo-
rithms introduce significant prediction error that does not
allow them to compress deep models. Thus, we believe we
are the first to successfully adapt and scale MCQ to LLMs.

3



Extreme LLM Compression via Additive Quantization

3. AQLM: Additive Quantization for LLMs
3.1. Overview

We start from the observation that additive quantization
(AQ) solves a related problem to post-training quantization
(PTQ) (Nagel et al., 2020; Frantar et al., 2022b): both set-
tings assume the existence of a set of “input” vectors, i.e.
input data for AQ, and the weight matrix rows for PTQ. The
goal is to compress these inputs while preserving dot prod-
uct similarity, against query vectors (for AQ), and against
layer input embeddings (for PTQ). The difference between
the two is that AQ assumes that the distribution of queries
is unknown, whereas PTQ methods, e.g. (Frantar et al.,
2022b), show that it is sufficient to optimize for sample
input embeddings from a set of calibration data.

At a high level, we start by solving the following problem:
for a linear layer with din input and dout output features
given its weights W ∈ Rdout×din and a set of calibration
inputs X ∈ Rdin×n, one seeks for a configuration of quan-
tized weights Ŵ that optimizes squared error between the
output of the original and compressed layer:

argmin
Ŵ

||WX− ŴX||22. (1)

In the following, we will assume that Ŵ is quantized using
AQ, and adopt standard notation (Martinez et al., 2016). AQ
splits weight rows into groups of g consecutive elements,
and represents each group of weights as a sum of M vec-
tors chosen from multiple learned codebooks C1, ..., CM ,
each containing 2B vectors (for B-bit codes). A weight
is encoded by choosing a single code from each codebook
and summing them up. We denote this choice as a one-hot
vector bm, which results in the following representation
for a group:

∑M
m=1 Cmbijm. This is similar to PTQ algo-

rithms (Frantar et al., 2022a), except for using much more
complex coding per group. To represent the full weights,
we simply concatenate:

Ŵi=

M∑
m=1

Cmbi,1,m ⊕ ...⊕
M∑

m=1

Cmbi,din/g,m, (2)

where ⊕ denotes concatenation and bijm ∈ R2B represents
a one-hot code for the i-th output unit, j-th group of input
dimensions and m-th codebook.

Our algorithm will learn codebooks Cm ∈ Rg×2B

and the discrete codes represented by one-hot b ∈
Rdout×din/g×M×2B . The resulting scheme encodes each
group of g weights using M · B bits and further requires
g · 2B · 16 bits for FP16 codebooks. The error becomes:

argmin
C,b

||WX−

(
Concati,j

M∑
m=1

Cmbi,j,m

)
X||22. (3)
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Figure 2: Groups of weights are represented by a sum of
codes selected from codebooks by corresponding indices.

To learn this weight representation, we initialize codebooks
C and codes b by running residual K-means as in Chen et al.
(2010). Specifically, the initialization algorithm proceeds as
follows: first, it runs K-means clustering of weight groups
and saves the resulting cluster indices. Next, it computes the
quantization errors by subtracting the nearest cluster from
every weight. Finally, the algorithm runs another round
of K-means clustering, but this time on quantization errors
instead of weights. Thus, each subsequent codebook is ini-
tialized to compensate the quantization error from previous
codebooks. After initialization, we alterQuantizingnate be-
tween updating codes bi,j,m and codebooks Cm until the
loss function (3) stops improving up to the specified toler-
ance. Since codes are discrete and codebooks are continu-
ous, and we are optimizing over multiple interacting layers,
our approach has three phases, described in Algorithm 1
and detailed below.

3.2. Phase 1: Beam search for codes

First, AQLM updates the codes bi,j,m to minimize the MSE
objective (3). Similarly to Babenko & Lempitsky (2014);
Martinez et al. (2016; 2018), we reformulate the objective in
terms of a fully-connected discrete Markov Random Field
(MRF) to take advantage of MRF solvers.

To simplify the derivation, let us first consider a special case
of a single output unit (dout=1) and a single quantization
group (i.e. g=din), to get rid of the concatenation operator:
||WX −

∑M
m=1 CmbmX||22. We rewrite this objective by

expanding the squared difference:

||WX−
M∑

m=1

CmbmX||22 = ||WX||22−

− 2

〈
WX ,

M∑
m=1

CmbmX

〉
F

+ ||
M∑

m=1

CmbmX||22

(4)

Above, ⟨·, ·⟩F denotes a Frobenius inner product of two
matrices. Next, let us consider the three components of
Eqn. (4) in isolation. First, note that ||WX||22 is constant in
b and can be ignored. The third component can be expanded
further into pairwise dot products:
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||
M∑

m=1

CmbmX||22 =

M∑
i=1

M∑
j=1

⟨CibiX, CjbjX⟩F . (5)

Note that both the second and third components rely on
Frobenius products of CmbmX-like matrices. These matri-
ces can be inconvenient in practice: since X ∈ Rdin×n, the
size of each matrix will scale with the size of calibration
dataset n. To circumvent this, we rewrite the products as:

⟨CibiX, CjbjX⟩F =
〈
CibiXXT , Cjbj

〉
F
. (6)

Thus one can pre-compute XXT ∈ Rdin×din . We will de-
note this type of product as ⟨A,B⟩XXT

def
=
〈
AXXT ,B

〉
F

in future derivations. Then, Eqn. (4) becomes:

||WX−
M∑

m=1

CmbmX||22 = ||WX||22−

− 2

M∑
m=1

⟨W, Cmbm⟩XXT +

M∑
i=1

M∑
j=1

⟨Cibi, Cjbj⟩XXT .

(7)

Finally, we generalize this equation to multiple output units
(dout > 1) and quantization groups (g ̸=din). For dout > 1,
note that the original objective (3) is additive with respect to
output units: thus, we can apply (7) independently to each
output dimension and sum up results. To support multiple
input groups (g ̸=din), we can treat each group as a separate
codebook where only the codes for the active group are
nonzero. Thus, we need to repeat each codebook din/g
times and pad it with zeros according to the active group.

It is now evident that minimizing (4) is equivalent to MAP
inference in a Markov Random Field with ⟨W, Cmbm⟩XXT

as unary potentials and ⟨Cibi, Cjbj⟩XXT as pairwise poten-
tials. While finding the exact optimum is infeasible, prior
work has shown that this type of MRF can be solved approx-
imately via beam search or ICM (Besag, 1986).

To solve this problem, we chose to adapt a beam search al-
gorithm from Babenko & Lempitsky (2014). This algorithm
maintains a beam of k (beam size) best configurations for
the codes, starting from the previous solution. On each step,
the algorithm attempts to replace one code by trying all 2Bk
alternatives and selecting the k best based on MSE (7).

Since the loss function is additive, changing one code only
affects a small subset of loss components. Thus, we can
compute the loss function efficiently by starting with a pre-
vious loss function (before code replacement), then adding
and subtracting the components that changed during this
iteration. These few loss components can be computed ef-
ficiently by multiplying with XXT ahead of beam search.

The beam search runs over all dout output units in paral-
lel. This is possible because encoding one output unit does
not affect the objective (7) of other units. Note that beam
search is not necessarily the best solution to this problem.
AQ variants for retrieval (Martinez et al., 2016; 2018) use
randomized ICM to find solutions faster. In this study, we
chose beam search because it was easier to implement in
ML frameworks like PyTorch/JAX.

3.3. Phase 2: Codebook update

In the second phase, we find the optimal codebook vec-
tors C1, ..., CM that minimize the same squared error as
the beam search. If we treat the codes b as constants, min-
imizing (3) becomes a least squares problem for Cm. The
original AQ algorithm solves this problem in closed form,
relying on the fact that each vector dimension can be opti-
mized independently. Our problem is complicated due to the
presence of XXT : the optimal value of one codebook coor-
dinate depends on the values of all others. In principle, we
could optimize Cm in closed form, but it would require in-
verting a large matrix, or using iterative least squares solvers
(e.g. conjugate gradients) specialized to this problem.

For simplicity, our current implementation defaults to using
Adam (Kingma & Ba, 2015) for approximately solving this
minimization problem. In practice, this codebook tuning
phase takes up a small fraction of the total compute time.
We compute the objective as follows:

||WX− ŴX||22 = ||(W − Ŵ)X||22 =

=
〈
(W − Ŵ)XXT , (W − Ŵ)

〉
F
, (8)

where Ŵ is the quantized weight matrix from 2, and the
XXT matrix is pre-computed. We optimize this objective
by iterating (non-stochastic) full-batch gradient descent.

For each update phase, our implementation runs 100 Adam
steps with learning rate 10−4. However, we found that the fi-
nal result is not sensitive to either of these parameters: train-
ing with smaller number of steps or learning rate achieves
the same loss, but takes longer to converge. In future work,
these hyperparameters could be eliminated by switching to
dedicated least squares solver for codebooks. Similarly to
other algorithms, we also learn per-unit scales s ∈ Rdout

that are initialized as si := ||Wi||2 and updated alongside
codebooks via the same optimizer (line 10 in Algorithm 1).

3.4. Phase 3: Fine-tuning for intra-layer cohesion

So far, our algorithm compresses each weight matrix inde-
pendently of the rest of the model. However, in practice,
quantization errors interact differently between matrices.
This issue is especially relevant in the case of extreme (2-
bit) compression, where quantization errors are larger.
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Figure 3: AQLM compressed weight format. Horizontal and vertical axes are input features and output units, respectively.
Depth represents the codebook index. Reconstruction procedure, from left to right: i) compressed weight codes ii) zoom-in
one weight group, each code is an index in its respective codebook iii) select codes from each codebook iv) add up codes as
in (2) v) multiply by scales (one scale per output dimension).

Algorithm 1 AQLM: Additive Quantization for LLMs
Require: model, data
1: Xblock := model.input_embeddings(data)
2: for i = 1, . . . ,model.num_layers do
3: block := model.get_block(i)
4: Yblock := block(Xblock)
5: for layer ∈ linear_layers(block) do
6: W := layer.weight
7: X := layer_inputs(layer,Xblock)
8: C, b, s := initialize(W) // k-means
9: while loss improves by at least τ do

10: C, s := train_Cs_adam(XXT ,W, C, b, s)
11: b := beam_search(XXT ,W, C, b, s)
12: end while
13: /* save for fine-tuning */
14: layer.weight := AQLMFormat(C, b, s)
15: end for
16: θ := trainable_parameters(block)
17: while loss improves by at least τ do
18: L := ||block(Xblock)−Yblock||22
19: θ := adam(θ, ∂L

∂θ
)

20: end while
21: Yblock := block(Xblock)
22: end for

Prior work addresses this issue via quantization-aware train-
ing (QAT), e.g. (Gholami et al., 2021). Instead of compress-
ing the entire model in a single pass, they quantize model
parameters gradually and train the remaining parameters to
compensate for the quantization error. Unfortunately, run-
ning QAT in our setting is infeasible, since most modern
LLMs are extremely expensive to train or even fine-tune.
Thus, most PTQ algorithms for LLMs only adjust model pa-
rameters within the same linear layer (Frantar et al., 2022a;
Lin et al., 2023; Dettmers et al., 2023b).

Here, we opt for a middle ground by performing optimiza-
tion at the level of individual transformer blocks, i.e. groups
of 4-8 linear layers3 that constitute a single multi-head self-
attention, followed by a single MLP layer. Having quantized
all linear layers within a single transformer block, we fine-
tune its remaining parameters to better approximate the orig-
inal outputs of that transformer block by backpropagating
through the weight representation (2).

3This number depends on factors including the use of gated
GLU activations, group query attention and QKV weight merging.

Concretely, we use the PyTorch autograd engine to differ-
entiate the ||block(Xblock)−Yblock||2 , where Xblock are
the inputs activations for that transformer block and Yblock

are output activations of block(Xblock) recorded prior to
quantization. We train the codebooks Cm, scale vectors s
and all non-quantized parameters (RMSNorm scales and
biases), while keeping the codes bi,j,m frozen. Similarly
to Section 3.3, we train these parameters using Adam to
minimize the MSE against the original block outputs (prior
to quantization). This phase uses the same calibration data
as for the individual layer quantization. The full procedure
is summarized in Alg. 1.

While fine-tuning blocks is more expensive than individual
linear layers, it is still possible to quantize billion-parameter
models on a single GPU in reasonable time. Also, since the
algorithm only modifies a few trainable parameters, it uses
little VRAM for optimizer states. This fine-tuning converges
after a few iterations, as it starts from a good initial guess.
In practice, fine-tuning transformer layers takes a minority
(10-30% or less) of the total calibration time.

4. Experiments
We evaluate the AQLM algorithm in typical scenarios for
post-training quantization of modern LLMs. Our evalua-
tion is focused on the LLAMA 2 model family since it is a
popular backbone for fine-tuned models or general LLM ap-
plications, e.g. (Dettmers et al., 2023a), and we also present
results on Mistral-family models (Jiang et al., 2024). In
Section 4.1, we evaluate the full AQ procedure for various
LLAMA 2 models and quantization bit-widths; Section 4.3
presents an ablation analysis for individual AQ components
and implementation details.

4.1. Compression quality for modern LLMs

We report perplexity on WikiText-2 (Merity et al., 2016)
and C4 (Raffel et al., 2020) validation sets. We also measure
zero-shot accuracy on WinoGrande (Sakaguchi et al., 2021),
PiQA (Tata & Patel, 2003), HellaSwag (Zellers et al., 2019),
ARC-easy and ARC-challenge (Clark et al., 2018) via the
LM Eval Harness (Gao et al., 2021). We follow the eval-
uation setup of GPTQ (Frantar et al., 2022a) and provide
configurations for AQLM and baselines in Appendix C.
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Table 1: Evaluation of quantized LLAMA 2 models for 2-2.8 bits per parameter, with an extra section for higher bitwidth.
We report perplexity on WikiText-2 (Merity et al., 2016) & C4 (Raffel et al., 2020) and accuracy for zero-shot tasks. The
Average accuracy is the mean of 5 zero-shot tasks. Primary metrics are Wiki2 (PPL), C4 (PPL) and Average accuracy.

Size Method Avg bits Wiki2↓ C4↓ WinoGrande↑ PiQA↑ HellaSwag↑ ArcE↑ ArcC↑ Average accuracy↑

7B

– 16 5.12 6.63 67.25 78.45 56.69 69.32 40.02 62.35
AQLM 2.02 6.59 8.54 65.67 74.76 49.55 63.68 32.76 57.28
QuIP# 2.02 8.22 11.01 62.43 71.38 42.94 55.56 28.84 52.23

AQLM 2.29 6.29 8.11 65.67 74.92 50.88 66.50 34.90 58.57

13B

– 16 4.57 6.05 69.61 78.73 59.72 73.27 45.56 65.38
AQLM 1.97 5.60 7.49 68.82 75.90 53.80 69.28 38.82 61.32
QuIP 2.00 13.48 16.16 52.80 62.02 35.80 45.24 23.46 43.86
QuIP# 2.01 6.06 8.07 63.38 74.76 51.58 64.06 33.96 57.55

AQLM 2.19 5.37 7.16 67.64 77.37 55.03 70.29 38.65 61.80
AQLM 2.53 5.13 6.82 69.77 76.99 56.15 70.33 39.16 62.48
AQLM 2.76 4.94 6.54 68.98 77.58 57.71 72.90 43.60 64.15

70B

– 16 3.12 4.97 76.95 81.07 63.99 77.74 51.11 70.17
AQLM 2.07 3.94 5.72 75.93 80.43 61.79 77.68 47.93 68.75
QuIP 2.01 5.90 8.17 67.48 74.76 50.45 62.16 33.96 57.76
QuIP# 2.01 4.16 6.01 74.11 79.76 60.01 76.85 47.61 67.67

Table 2: Evaluation of quantized LLAMA 2 models for 3-3.1 bits per parameter, with the same metrics as in Table 1.

Size Method Avg bits Wiki2↓ C4↓ WinoGrande↑ PiQA↑ HellaSwag↑ ArcE↑ ArcC↑ Average accuracy↑

7B

– 16 5.12 6.63 67.25 78.45 56.69 69.32 40.02 62.35
AQLM 3.04 5.46 7.08 66.93 76.88 54.12 68.06 38.40 60.88
GPTQ 3.00 8.06 10.61 59.19 71.49 45.21 58.46 31.06 53.08
SpQR 2.98 6.20 8.20 63.54 74.81 51.85 67.42 37.71 59.07

13B

– 16 4.57 6.05 69.61 78.73 59.72 73.27 45.56 65.38
AQLM 3.03 4.82 6.37 68.43 77.26 58.30 70.88 42.58 64.49
GPTQ 3.00 5.85 7.86 63.93 76.50 53.47 65.66 38.48 59.61
SpQR 2.98 5.28 7.06 67.48 77.20 56.34 69.78 39.16 61.99
QuIP 3.00 5.12 6.79 69.93 76.88 57.07 70.41 41.47 63.15

70B

– 16 3.12 4.97 76.95 81.07 63.99 77.74 51.11 70.17
AQLM 3.01 3.36 5.17 77.19 81.28 63.23 77.61 50.00 69.86
GPTQ 3.00 4.40 6.26 71.82 78.40 60.00 72.73 44.11 65.41
SpQR 2.98 3.85 5.63 74.66 80.52 61.95 75.93 48.04 68.22
QuIP 3.01 3.87 5.67 74.59 79.98 60.73 73.19 46.33 66.96

We consider three main targets in terms of compression
ranges: 2-2.8 bits, 3-3.1 bits, and 4-4.1 bits per model pa-
rameter. In the results below average bits per parameter
takes into account only quantized weights, we do not include
parameters kept in floating precision similarly to the related
work. The details on the model size estimate are provided
in Appendix H. We compare AQ against GPTQ for 3&4
bits (Frantar et al., 2022a), SpQR for 3&4 bits (Dettmers
et al., 2023b), QuIP in 2,3 & 4 bits (Chee et al., 2023) and
QuIP# for 2&4 bits (Tseng et al., 2024). While GPTQ and
SpQR technically support 2-bit quantization, they perform
poorly in the 2-3 bit range. For QuIP, our adapted4 imple-

4The official QuIP (non-#) code does not support LLAMA 2.

mentation shows acceptable performance for LLAMA 2 13B
& 70B but performs poorly for the 7B model. We calibrate
each algorithm using the subset of RedPajama dataset (Com-
puter, 2023), with a sequence length of 4096.

The exact bit-widths for each method are dictated by param-
eters such as the number of codebooks and code width. We
report results for the 2−2.8 and 3−3.1 bitwidth ranges in
Tables 1 and 2, respectively. Additional results for 4− 4.1
bits are deferred to Appendix F.2.

The results show that AQLM outperforms the previous best
PTQ algorithms across all settings, often by wide margins,
especially at high compression. This holds both in terms of
PPL across standard validation sets (Wiki-Text2 and C4),
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Table 3: Evaluation of quantized Mixtral (Jiang et al., 2024) models for 2 bits. The table reports perplexity on WikiText-
2 (Merity et al., 2016) and C4 (Raffel et al., 2020), as well as accuracy for zero-shot tasks. The Average accuracy column
is the mean of 5 zero-shot task accuracies. Primary metrics are Wiki2 (PPL), C4 (PPL) and Average accuracy.

Size Method Avg bits Wiki2↓ C4↓ WinoGrande↑ PiQA↑ HellaSwag↑ ArcE↑ ArcC↑ Average accuracy↑

8x7B

– 16 3.46 5.02 75.45 82.37 64.65 83.38 55.80 72.33
AQLM 1.98 4.61 5.75 73.64 79.27 57.91 78.96 48.63 67.68
QuIP# 2.01 4.75 5.89 71.11 79.05 58.23 77.57 45.73 66.34

and accuracy across zero-shot tasks. Specifically, we ob-
serve the highest accuracy gains in the “extreme” 2-2.1 bits
per parameter range, where the deviation from the uncom-
pressed model becomes large for all methods.

Mixtral quantization. Table 3 presents results on the
Mixtral MoE, comparing against QuIP# at 2-bits. (See
Appendix F.1 for full results.) AQLM outperforms QuIP# in
this case as well. Although the margins are lower compared
to LLAMA 2 models, they are still significant for “harder”
tasks, such as Arc Challenge (+3 points).

Pareto optimality of AQLM. The significant error improve-
ments raise the question of choosing the “optimal” model
variant to maximize accuracy within a certain memory bud-
get. For this, we follow Dettmers & Zettlemoyer (2022): a
quantized model is said to be Pareto-optimal if it maximizes
accuracy at the same or lower total size (bytes). Despite
rapid progress, prior art methods are not Pareto-optimal at
2-bits: for instance, the previous best 2-bit LLAMA 2 13B
(QuIP#, Table 1) achieves Wiki2 PPL of 6.06, but one can
get much lower 5.21 PPL by using a 7B model with 4-bit
quantization, which is smaller (see Appendix Table 10).

AQLM compression to strictly 2 bits for the same model
is also below Pareto-optimality, as it is outperformed by
4-bit AQLM compression for LLAMA 2 7B (5.21 vs 5.59).
To find the Pareto-optimal quantization bitwidth, we run
experiments between 2-3 bits per parameter and report them
in Table 1, below horizontal bars. Thus, the Pareto-optimal
bitwidth for AQLM appears to be around 2.5 bits per param-
eter (Table 1), at which point we are comparable to 5-bit
AQLM for LLAMA 2 7B (Appendix Table 10). In turn, the
2.76-bit AQLM on 13B outperforms the uncompressed 7B
model. As such, AQLM is the first algorithm to achieve
Pareto-optimality at less than 3 bits per parameter.

4.2. End-to-end fine-tuning experiments

Subsequent work in QuIP# (Tseng et al., 2024) improves
upon our block-wise protocol (Section 3.4) by fine-tuning
the entire model to mimimize KL divergence. Here, we an-
alyze how this end-to-end fine-tuning translates to AQLM.
We follow the setup from QuIP# (Tseng et al., 2024) and
run end-to-end fine-tuning with default parameters (see Ap-

pendix A). Table 4 reports our results for 2-bit quantization
using AQLM and QuIP# with end-to-end fine-tuning. We
report additional results in this setup in Tables 6, 13 and 15
in supplementary materials. To differentiate between two
versions, we mark quantized models with end-to-end fine-
tuning with ⋆. Overall, end-to-end fine-tuning improves
both QuIP# and AQLM, reaching comparable accuracy for
both methods. Additionally, we notice that the boost from
end-to-end fine-tuning is more profound on 2-bit quantized
models with diminishing returns for 3 bits and above. Fi-
nally, we can see that 2.19-bit AQLM with end-to end fine-
tuning on 13B is comparable with an uncompressed 7B
model achieving Pareto optimality on zero-shot tasks.

4.3. Ablation analysis

In Appendix E, we examine key design choices regarding
initialization, alternating optimization, the impact of the fine-
tuning, and sensitivity to hyperparameters. In brief, we first
find that the residual K-means initialization is critical for
fast algorithm convergence: when compared with random
initialization, it needs significantly fewer training iterations.
We also compare different hyperparameter configurations
for the same bitwidth, varying the number of codebooks
and group size. Second, to validate our calibration fine-
tuning procedure, we compare it against 1) no fine-tuning,
2) fine-tuning only of non-linear layers (e.g. RMSNorm)
but not of codebook parameters, and 3) fine-tuning only the
codebooks (but not other layers). The results, presented
in full in Appendix E, show that fine-tuning the codebook
parameters has the highest impact on accuracy, by far, while
fine-tuning the RMSNorm only has minor impact. This
validates our choice of leveraging the calibration set for
learned codebooks.

Further, we observe that, increasing the number of sam-
ple sequences in the range 128 to 4096 leads to a gradual
PPL improvement, but with diminishing returns. This is
true for both initial AQLM calibraton and fine-tuning. In
this respect, AQLM benefits more from larger calibration
sets (similarly to QuIP#), as opposed to direct methods
like GPTQ which saturate accuracy at around 256 input
sequences. Finally, we investigate various options for in-
vesting a given bit budget, comparing e.g. longer codes (e.g.
1x15) vs multiple codebooks with shorter codes (e.g. 2x8).
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Table 4: Evaluation of quantized LLAMA 2 with end-to-end fine-tuning, with the same metrics as in Table 1.

Size Method Avg bits Wiki2↓ C4↓ WinoGrande↑ PiQA↑ HellaSwag↑ ArcE↑ ArcC↑ Average accuracy↑

7B

– 16 5.12 6.63 67.25 78.45 56.69 69.32 40.02 62.35
AQLM⋆ 2.02 6.14 8.09 65.67 76.01 51.83 63.43 34.39 58.27
QuIP#⋆ 2.02 6.19 8.16 64.96 75.41 51.91 64.96 35.15 58.48

AQLM⋆ 2.29 5.92 7.86 63.77 76.93 52.82 66.16 36.95 59.33

13B

– 16 4.57 6.05 69.61 78.73 59.72 73.27 45.56 65.38
AQLM⋆ 1.97 5.33 7.19 68.67 76.82 56.31 69.99 40.36 62.43
QuIP#⋆ 2.01 5.35 7.20 67.64 77.26 56.04 69.02 39.85 61.96

AQLM⋆ 2.19 5.22 6.98 68.27 77.53 57.09 69.78 40.70 62.67

70B

– 16 3.12 4.97 76.95 81.07 63.99 77.74 51.11 70.17
AQLM⋆ 2.07 3.83 5.62 74.35 80.90 62.17 74.58 48.98 68.20
QuIP#⋆ 2.01 3.91 5.71 74.66 79.54 62.52 77.06 47.61 68.28

4.4. Inference Speed

Although our primary objective is to maximize accuracy for
a given model size, AQLM can also be practical in terms
of inference latency. To demonstrate this, we implemented
efficient GPU and CPU kernels for a few hardware-friendly
configurations of AQLM. The results can be found in Ta-
ble 5. For GPU inference, we targeted quantized LLAMA 2
models with 16-bit codebooks, corresponding to 2.07 bits
for LLAMA 2 70B, 2.19 bits for 13B, and 2.29 bits for 7B
models (see Table 1, 4), as well as a 2x8-bit codebook model
with perplexity 6.57 on Wiki2(see Table 12). For each model
we benchmark the matrix-vector multiplication subroutine
performance on a standard layer. The results show that
AQLM can execute at speeds comparable to or better than
FP16. End-to-end generative numbers with HuggingFace
integration can be found in Appendix I: for instance, we
can achieve ≈14 tokens/s on LLAMA 2 70B in this setting.
We observe that multiple smaller codebooks allow efficient
GPU cache utilization, leading to greater speedup, at the
price of slightly lower accuracy.

Table 5: Speed of the FP16 gate_proj layer matrix-vector
multiplication in PyTorch, and relative AQLM speedups.

Llama 2 7B 13B 70B

2 bit speedup over FP16 on Nvidia RTX 3090 GPU

Original (float16) 129 µs 190 µs 578 µs
AQLM (Table 1) x1.31 x1.20 x1.20
AQLM (2×8-bit) x1.57 x1.82 x3.05

2 bit speedup over FP32 on Intel i9 CPU, 8 cores

Original (float32) 1.83 ms 3.12 ms 11.31 ms
AQLM (2×8-bit) x2.75 x3.54 x3.69
AQLM (4×8-bit) x2.55 x3.02 x4.07
AQLM (8×8-bit) x2.29 x2.68 x4.03

Next, we explore how to leverage AQLM to accelerate CPU

inference. As discussed in Section 2.2, additive quantization
can compute dot products efficiently if the codebook size is
small. One way to achieve it for AQLM is to replace each
16-bit codebook with a number of smaller 8-bit ones. This
leads to higher quantization error, but still outperforms the
baselines in terms of accuracy (see Appendix Table 9). The
results in Table 5 show that this also allows for up to 4x
faster inference relative to FP32 on CPU.

5. Conclusion and Future Work
We presented AQLM, a new form of additive quantization
(AQ) targeting LLM compression, which significantly im-
proved the state-of-the-art results for LLM quantization in
the regime of 2 and 3 bits per weight. In terms of limita-
tions, AQLM is more computationally-expensive than direct
post-training quantization methods, such as RTN or GPTQ,
specifically because of the use of a more complex coding
representation. Yet, despite the more sophisticated encoding
and decoding, we have shown AQLM lends itself to effi-
cient implementation on both CPU and GPU. Overall, we
find it remarkable that, using AQLM, massive LLMs can be
executed accurately and efficiently using little memory.

While AQLM already achieves substantial improvements in
low-bit quantization, there are several promising directions
for further improvement that we did not explore in this work.
One such direction is better fine-tuning strategies. In Sec-
tion 4.2 we found that better fine-tuning algorithms (Tseng
et al., 2024; Malinovskii et al., 2024) can significantly im-
prove quantized model accuracy. We believe that AQLM can
benefit from a more systematic exploration of fine-tuning
algorithms in future work. Another promising direction is
generalizing AQLM to other quantization scenarios. While
our work is focused around LLM quantization, the underly-
ing algorithm can potentially be adapted to other problems,
e.g. quantizing computer vision models, compressing LLM
attention caches for long sequences, and others.
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A. End-to-end fine-tuning
The block-wise finetuning procedure, introduced in 3.4, considerably improves performance of compressed models. However,
block-wise finetuning optimizes the loss only at the level of a current transformer block and is agnostic of the actual task
of interest. To minimize the target loss, one can run backpropagation through the whole model and directly optimize all
trainable parameters to minimize a model-level objective function.

This allows to search for globally optimal parameters, as opposed to sequentially selected ones, during block-wise finetuning.

One can minimize the error between the quantized model and the floating-point model on some calibration set. The
parameters being optimized (namely the codebooks, scales and the non-quantized parameters) typically constitute a small
fraction of the total number of parameters in the original model. Therefore, the proposed distillation method resembles
parameter-efficient finetuning (PEFT) in both optimization and memory footprint.

To transfer the knowledge from the original model to the quantized one, we adopt Knowledge Distillation (Hinton et al.,
2015) where the student model is taught to mimic the output of a teacher given the same input. We follow the setup from
QuIP# (Tseng et al., 2024) that uses KL divergence between the outputs of teacher and student models:

L =
1

N

N−1∑
i=0

DKL(ps(xi), pt(xi)) (9)

Above DKL is the Kullback–Leibler divergence and ps, pt are the student and teacher probabilities given input sequence xi.

Despite its simplicity, this fine-tuning procedure often significantly improves performance of the compressed model.

We fine-tune all models on 4−16M training tokens: 1−4k sequences of length 4k for LLAMA 2 models (Touvron et al.,
2023) and 512 sequences of length 8k for Mixtral (Jiang et al., 2024). We fine-tune on the same data as during initial
calibration (i.e. samples from RedPajama (Computer, 2023)) and use Adam (Kingma & Ba, 2015) optimizer with constant
learning rate 10−5 without weight decay. Batch size is set to 8−16 sequences. A single epoch of fine-tuning turns out to be
sufficient, and longer training leads to marginal improvements.

B. Code reproducibility
We share the code for our method in the GitHub repository https://github.com/Vahe1994/AQLM/tree/
AQLM_camera_ready. The hyperparameters for our experimental setup are discussed in Appendix C.

C. Experimental Configurations
Hardware. In all of our experiments, we used either Nvidia A100 or H100. The number of GPUs varied from 1 to 8. We
used activation offloading to lower pick memory usage. To evaluate inference speed on GPU we used consumer-grade GPU
Nvidia 3090 and for CPU setup we used Intel core i9 13900k.

Calibration set. All methods were calibrated on a slice of RedPajama-v1 dataset (Computer, 2023) for both LLAMA and
Mistral/Mixtral family models. We used the same context length as models were trained on, for LLAMA 2 4096 and for
Mistral/Mixtral 8192.

For LLAMA 2 experiments, we used 8M tokens as a calibration set for SpQR, GPTQ, and AQLM. Quip, however, was
calibrated on 4M tokens due to OOM errors when trying to use more samples. Taking into account the fact that after 2M
tokens improvement of methods results is fairly small we chose to report these numbers as is. For Quip#, we used LLAMA 2
and Mistral’s quantized models provided by authors in their GitHub repository. To the best of our knowledge, they used 6k
samples for calibration with a context length of 4096/8192.
For Mixtral we calibrated both our method and QUIP# on 8M tokens with context length 8192.

Hyperparameters.

For GPTQ for both 3 and 4 bits we used a standard set of parameters without grouping and with permutation order act_order.

SpQR method was evaluated with base 2 and 3 bit-width with group size of 16 and 3 bits for zeros and scales. Outliers rate
was chosen such that average bit will be close to 3 and 4 bits respectively.
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Table 6: Evaluation of quantized LLAMA 2 end-to-end fine-tuned models for 3-3.1 bits per parameter, with the same
metrics as in Table 1.

Size Method Avg bits Wiki2↓ C4↓ WinoGrande↑ PiQA↑ HellaSwag↑ ArcE↑ ArcC↑ Average accuracy↑

7B

– 16 5.12 6.63 67.25 78.45 56.69 69.32 40.02 62.35
AQLM⋆ 3.04 5.38 7.01 65.35 77.31 55.49 66.79 38.48 60.68
QuIP#⋆ 3.04 5.41 7.04 66.85 77.31 55.32 68.43 38.99 61.38

13B

– 16 4.57 6.05 69.61 78.73 59.72 73.27 45.56 65.38
AQLM⋆ 3.03 4.78 6.33 68.75 78.45 58.54 72.94 42.75 64.29
QuIP#⋆ 3.01 4.78 6.35 68.03 77.86 57.56 72.18 41.38 63.40

70B

– 16 3.12 4.97 76.95 81.07 63.99 77.74 51.11 70.17
AQLM⋆ 3.01 3.36 5.17 75.30 80.69 63.48 77.99 50.26 69.54
QuIP#⋆ 3.00 3.35 5.15 76.40 81.45 63.53 77.53 50.77 69.94

Quip was adapted to work on the LLAMA family and was calibrated with 1024 samples and 4096 context length.

Quip# For LLAMA 2 and Mistral models we used the officially published quantized models. For Mixtral we adapted the
code to work with the model’s architecture and quantized it with the recommended set of parameters. For both AQLM and
QuIP#, we don’t quantize gate linear layer in Mixtral, because it contains relatively small amount of paramters and have
severe impact on performance.

AQLM For to get 2, 3, 4 bits: we used 1 codebook size of 215 or 216, with groups of 8 for 2 bits. For 3 bits we used 2
codebooks size of 212 with groups of 8. Finally for 4 bits we used 2 codebooks size of 215 or 216 with groups of 8.

Both for finetuning 3.4 and codebooks update 3.3 we used Adam optimizer (Kingma & Ba, 2015) with learning rate of
10−4, β1 = 0.90 and β2 = 0.95. We used early stopping both for the finetuning phase and for the codebook optimization
phase, by stopping when the least square error not decreasing more than some threshold. In our experiments the threshold
varies between 10−2 and 10−3.

Hyperparameters for end-end fine-tuning discussed at the end of Appendix A.

D. Quantization time
AQLM quantization takes considerably longer to calibrate than simpler quantization methods such as RTN or GPTQ. This
only impacts quantization time, not inference time.

Quantizing a 7B model with default configuration takes about 1 day on a single A100 gpu. Similarly, quantizing a 70B
model on a single GPU would take 10-14 days. However, the procedure can be parallelized across multiple GPU: 7B
quantization takes 14h on 2 GPUs, and 70B quantization takes 3-4 days on 8 GPUs.

Full model fine-tuning with default configuration for 7B model would take 3-6 hours on four A100 , for 13B 10-16 hours on
four A100, and for 70B 1-2 days on 8 A100.

Finally, the quantization time is dependent on the quantization configuration and its hyperparameters. Tweaking these
parameters, e.g. by reducing the number of beams, can achieve notable speedups of 2-4x during quantization, but at the cost
of lower model accuracy.

E. Ablation analysis
The AQLM algorithm makes several design choices that need to be validated separately: initialization, alternating optimiza-
tion, the fine-tuning protocol, and the choice of hyperparameters. Here, we study how each of these components affect
results.

Initialization. As discussed in Section 3, we initialize AQLM with residual K-means to obtain a good initial guess for both
codes and codebooks. That is, we run K-means for the weight matrix, then subtract the nearest cluster from each weight,
and run K-means again M times. A simple baseline would be to initialize all codes uniformly at random. We compare
the two initialization strategies for the problem of quantizing a single linear layer within LLAMA 2 70B model to 3 bits
per parameter. We quantize groups of 8 consecutive weights using 2 codebooks, 12 bit each. Each codebook contains 212

learnable values. As we can see in Figure 4, AQLM with K-means initialization needs significantly fewer training iterations
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to achieve the desired loss. The difference is so drastic that we expect that running AQLM with a random initialization
would require extremely high runtimes to accurately quantize the largest models.
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Figure 4: MSE loss learning curves of AQLM trained on the self attention q_proj linear layer of 10-th block in the LLAMA
2 70B model.

Fine-tuning. Next, we validate the fine-tuning procedure. We compare the full block fine-tuning (default) against three
alternatives: i) no fine-tuning at all, ii) fine-tuning only non-linear layers (i.e. RMSNorm), but not the AQ parameters, and
iii) fine-tuning only the AQ parameters, but not the non-linear layers. Table 7 summarizes our results: fine-tuning the entire
model or only AQ parameters achieves competitive performance, while training only RMSNorm scales is comparable to not
fine-tuning at all. We attribute these observations to the fact that over 99% of quantized layer parameters are contained in
AQ codebooks Cm, whereas the remaining parameters are small 1-dimensional tensors. This validates the use of the AQ
approach, as many competing algorithms do not have learnable per-layer codebooks. Notably, QuIP# uses a shared fixed
lattice instead. We also note that, even without fine-tuning, AQLM is competitive to previous state-of-the-art results.

Table 7: Ablation analysis of AQLM with different fine-tuning restrictions on Llama-2 7B model at 2.02 bit width.

Name Wiki2↓ C4↓
w/o 8.18 10.59
RMSnorm 8.31 10.46
AQ params 6.92 8.85
Full 6.93 8.84

Number of samples. We verify our choice of calibration hyperparameters. Traditionally, most PTQ algorithms use several
hundred calibration sequences (e.g. Frantar et al. (2022a) has 128). In our experiments, we evaluate both AQLM and
baselines with additional calibration data. Our original motivation for that was to avoid potential overfitting when fine-tuning
entire transformer blocks. To test this assumption, we run our algorithm with different calibration set sizes, varying from
128 to 4096 sequences. For each size, we report the average perplexity on WikiText-2 over 3 runs, along with standard
deviations. The results in Table 8 demonstrate that increasing the number of samples leads to gradual reduction in perplexity
with seemingly diminishing returns. Since the perplexity is still monotonically improving from 128 to 4096 samples, it is
possible that larger sample sizes would yield further improvements.

Number of codebooks vs groups. Finally, we conducted an additional set of experiments on LLAMA 2 7B models to see
perplexity dependence on simultaneous change on WikiText-2 of both codebooks and groups keeping compression rate
fixed to 2bits. We present both AQLM with and without end-to-end fine-tuning in Table 9.
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Table 10: Evaluation of quantized LLAMA 2 models for 4+ bits per parameter. The table reports perplexity on WikiText-
2 (Merity et al., 2016) and C4 (Raffel et al., 2020), as well as accuracy for zero-shot tasks. The Average accuracy column
is the mean of 5 zero-shot task accuracies. Primary metrics are Wiki2 (PPL), C4 (PPL) and Average accuracy.

Size Method Avg bits Wiki2↓ C4↓ WinoGrande↑ PiQA↑ HellaSwag↑ ArcE↑ ArcC↑ Average accuracy↑

7B

– 16 5.12 6.63 67.25 78.45 56.69 69.32 40.02 62.35
AQLM 4.04 5.21 6.75 67.32 78.24 55.99 70.16 41.04 62.55
GPTQ 4.00 5.49 7.20 68.19 76.61 55.44 66.20 36.77 60.64
SpQR 3.98 5.28 6.87 66.93 78.35 56.10 69.11 39.68 62.17
QuIP# 4.02 5.29 6.86 66.85 77.91 55.78 68.06 39.68 61.66

AQLM 5.02 5.16 6.68 67.40 78.29 56.53 68.94 39.93 62.22

13B

– 16 4.57 6.05 69.61 78.73 59.72 73.27 45.56 65.38
AQLM 3.94 4.65 6.14 69.85 78.35 59.27 73.32 44.80 65.12
GPTQ 4 4.78 6.34 70.01 77.75 58.67 70.45 42.49 63.87
SpQR 3.98 4.69 6.20 69.69 78.45 59.25 71.21 44.52 64.42
QuIP 4.00 4.76 6.29 69.69 79.00 58.91 73.27 44.88 65.15

QuIP# 4.01 4.68 6.20 69.38 77.91 58.86 73.74 44.63 64.90

70B

– 16 3.12 4.97 76.95 81.07 63.99 77.74 51.11 70.17
AQLM 4.14 3.19 5.03 76.48 81.50 63.69 77.31 50.68 69.93
GPTQ 4.00 3.35 5.15 75.61 81.23 63.47 76.81 49.15 69.25
SpQR 3.97 3.25 5.07 76.01 81.28 63.71 77.36 49.15 69.50
QuIP 4.00 3.58 5.38 76.01 80.25 61.97 74.28 47.01 67.90

QuIP# 4.01 3.22 5.05 76.80 81.45 63.51 78.37 50.85 70.20

AQLM 3.82 3.21 5.03 76.32 80.90 63.69 77.61 50.34 69.77

Table 8: WikiText-2 PPL as a function of calibration set size
for Llama 2 (7B) quantized to 2.3 bits with AQLM, averaged
over 3 runs. SD stands for adjusted standard deviation.

# of samples Average PPL SD

128 6.994 0.127
256 6.584 0.031
512 6.455 0.005
1024 6.353 0.008
2048 6.297 0.018
4096 6.267 0.005

Table 9: WikiText-2 PPL as a function of from groups
and number of codebook for Llama 2 (7B) quantized
with approximately 2 bits quantization.

Method Setup Average PPL

AQLM

2x8gs8 7.6107
4x8gs16 8.1394
8x8gs32 7.3755
15x8gs64 7.8459

AQLM⋆
2x8gs8 6.5746

8x8gs32 6.6126
15x8gs64 6.6602

F. Additional experiments
In this section we report additional experimental results for Mixtral(Jiang et al., 2024), Mistral7B(Jiang et al., 2023) and
LLAMA 2 model.

F.1. Mixtral

We report the results for Mixtral(Jiang et al., 2024) MoE-type model for 3 and 4 bits in Table 11. In the 4 bit case,
performance of QuIP# and AQLM are very similar across all metrics and close to uncompressed FP16 model.
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Table 11: Evaluation of quantized Mixtral (Jiang et al., 2024) models for 3 and 4 bits per parameter. The table reports
perplexity on WikiText-2 (Merity et al., 2016) and C4 (Raffel et al., 2020), as well as accuracy for zero-shot tasks. The
Average accuracy column is the mean of 5 zero-shot task accuracies. The primary metrics are Wiki2 (PPL, lower is better),
C4 (PPL, lower is better) and Average accuracy (percentage, higher is better).

Size Method Avg bits Wiki2↓ C4↓ WinoGrande↑ PiQA↑ HellaSwag↑ ArcE↑ ArcC↑ Average accuracy↑

3-bit
– 16.00 3.46 5.02 75.45 82.37 64.65 83.38 55.80 72.33

AQLM 3.02 3.79 5.17 75.45 81.61 63.25 81.90 53.92 71.23

4-bit
– 16.00 3.46 5.02 75.45 82.37 64.65 83.38 55.80 72.33

AQLM 3.915 3.57 5.07 74.82 81.99 64.23 83.12 54.61 71.75
QuIP# 4.000 3.60 5.08 76.56 81.99 63.92 82.62 54.78 71.97

Table 12: Evaluation of quantized LLAMA 2 for 2x8groupsize8 codebooks models. We report perplexity on WikiText-
2 (Merity et al., 2016) & C4 (Raffel et al., 2020) and accuracy for zero-shot tasks. The Average accuracy is the mean of 5
zero-shot tasks. Primary metrics are Wiki2 (PPL), C4 (PPL) and Average accuracy.

Size Method Avg bits Wiki2↓ C4↓ WinoGrande↑ PiQA↑ HellaSwag↑ ArcE↑ ArcC↑ Average accuracy↑

7B
– 16 5.12 6.63 67.25 78.40 56.67 69.36 39.51 62.24

AQLM 2 7.61 9.68 62.27 71.87 46.41 61.03 30.03 54.32

AQLM⋆ 2 6.57 8.60 63.22 74.54 50.08 61.28 31.83 56.19

13B
– 16 4.57 6.05 69.61 78.73 59.72 73.27 45.56 65.38

AQLM 2 6.54 8.77 55.96 71.06 48.29 62.50 31.40 53.84

AQLM⋆ 2 5.63 7.55 6385 77.04 54.19 67.85 37.20 60.03

70B
– 16 3.12 4.97 76.95 81.07 63.99 77.74 51.11 70.17

AQLM⋆ 2 4.21 5.99 73.48 79.54 61.29 74.49 46.84 67.13

Table 13: Evaluation of quantized Mistral7B (Jiang et al., 2023) models for 2, 3 and 4 bits per parameter: perplexity on
WikiText-2 (Merity et al., 2016) and C4 (Raffel et al., 2020), as well as accuracy for zero-shot tasks. The Average accuracy
column is the mean of 5 zero-shot task accuracies. Primary metrics are Wiki2 (PPL), C4 (PPL) and Average accuracy.

Size Method Avg bits Wiki2↓ C4↓ WinoGrande↑ PiQA↑ HellaSwag↑ ArcE↑ ArcC↑ Average accuracy↑

2-bit
– 16.00 4.77 5.71 73.64 80.47 61.15 78.87 49.23 68.67

AQLM 2.01 6.32 6.93 68.75 76.01 52.13 73.65 40.44 62.17
QuIP# 2.01 6.02 6.84 69.30 76.71 52.95 72.14 39.76 62.20

AQLM⋆ 2.01 5.76 6.60 68.67 77.64 56.44 73.32 42.66 63.75

3-bit
– 16.00 4.77 5.71 73.64 80.47 61.15 78.87 49.23 68.67

AQLM 3.04 5.02 5.93 73.24 79.22 59.31 78.28 46.76 67.36

AQLM⋆ 3.04 5.12 6.09 72.85 79.05 59.92 77.57 48.12 67.50

4-bit

– 16.00 4.77 5.71 73.64 80.47 61.15 78.87 49.23 68.67
AQLM 4.02 4.89 5.81 73.80 79.71 60.27 77.86 48.21 67.97
QuIP# 4.01 4.85 5.79 73.95 80.41 60.62 78.96 49.40 68.67

F.2. LLAMA 2

We show results for 4 bit quantization of the LLAMA 2 models in Table 10. We can see that AQLM outperforms other
methods in terms of perplexity and has the best or close to the best results. We also report results of perplexity for our
quantized 2x8 codebooks models in Table 12.
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Figure 5: Comparison of AQLM relative to QuIP# on
LLAMA 2 7B, 13B, and 70B models.
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Figure 6: Model optimality for AQLM on LLAMA 2 7, 13,
and 70B models.

F.3. Mistral

Finally, we evaluate AQLM and QuIP# quantization on Mistral 7b (Jiang et al., 2023) model for 3 and 4 bits in Table 13. In
2 bits, QuIP# slightly outperform AQLM on most benchmarks. And for 4 bits setup results are very close across the board.

G. Pareto optimality
We visualize WikiText-2 perplexity of Llama-2 7B, 13B, 70B models quantized with AQLM and QuIP# as plotted against
quantized weight size in bytes and report it in Figure 5. Our method outperforms QuIP# in terms of perplexity in WikiText-2
across all model sizes.

Additionally, in Figure 6, we show perplexity on WikiText-2 for AQLM method against size of quantized parameters. We
can notice that starting around 3.7 GiB of quantized weights, which correspond to 2.5 bits compression on LLAMA 2 13B
model, it is more advantageous to compress 13B model rather 7B model at the same model size in bytes.

H. Estimating model size
In this section, we describe how to estimate the size of the quantized model for a given codebook configuration. The
total cost of storing quantized weight comprises the codebooks, codes and per-unit scales. Specifically for a weight with
input dimension din, output dimension dout, group size g, M codebooks corresponding to B-bit codes, the total amount of
memory required is (assuming that codebooks and scales are stored in half precision):

• codebooks: g ·M · 2B · 16

• codes: dout · (din/g) ·B

• scales: dout · 16

Therefore, the average bits per parameter can be computed as follows:

b̄ =
size in bits

number of parameters
=

16 g M 2B + dout (din/g)B + 16 dout
doutdin

(10)

For example, for mlp.gate_proj layer of LLAMA 2 70B model with din = 8192, dout = 28672, quantization with
group size 8, two 8-bit codebooks the formula above yields 2.002 bits per parameter. Typically, storage cost is dominated by
the codes, whereas codebooks and scales induce small memory overhead.
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Figure 7: Visualization of learned codes and codebooks in layers.5.self_attn.q_proj linear projection.
(Left) Codes distribution. (Right) Two leading principal components of codebook.

I. End-to-End Inference Speed

Table 14: Text generation speed benchmark.

Llama 2 7B 13B 70B

Inference on Nvidia RTX 3090 GPU, tok/s

Original (float16) 54.2 29.5 5.8
AQLM (1×16-bit) 65.3 34.1 6.7
AQLM (2×8-bit) 114.1 68.1 14.3

Inference on Intel i9 CPU, 8 cores, tok/s

Original (float32) 3.106 1.596 0.297
AQLM (2×8-bit) 6.961 4.180 0.966
AQLM (4×8-bit) 6.837 4.004 0.948
AQLM (8×8-bit) 5.319 3.193 0.775

For quantized LLAMA 2 models, setup described in Sec-
tion 4.4, we measure the time it takes to generate 128
tokens from scratch, performed on compiled computa-
tional graphs, with batch size 1, and report the average
number of generated tokens per second on a single 24GB
RTX 3090 GPU, as well as Intel i9 CPU, in Table 14.
Perplexity on WikiText-2 on these configurations pre-
sented at the Table 9

J. Codebook and codes distribution
The proposed AQLM quantization method allows for large freedom in the choice of quantization lattice and ability to
represent different weight distribution. To understand how do the learned codes and codebooks look like, we visualize the
distribution of codes (how frequently given codebook vector is chosen) and the learned codebooks. Below on Figure 7
we provide a cumulative probability plot of leaned codes and two leading principal codebook components for a specific
layer. One can observe that codes distribution is close to uniform. Its entropy equals 15.91 bits per code, which is close
to the maximum possible entropy of 16 bits (for a 16-bit codebook) for the uniform distribution. Codebook vectors are
concentrated in some ball. This pattern is pertinent to all linear projections inside transformer blocks.

K. Evaluation on MMLU and GSM8k
While measurement of perplexity on WikiText-2 and C4 together with zero-shot accuracy on subset of simple 0-shot tasks
from LM Eval Harness (Gao et al., 2021) is an established benchmark for evaluation of performance of compressed models,
it may be not exhaustive enough for many real-world cases. While the complete and exhaustive evaluation of LLM abilities
is still an open question, we evaluate our AQLM models and QuIP# on MMLU (Hendrycks et al., 2020) benchmark that
involves problems from 57 different domains, such as humanities, social sciences, physics, e.t.c, and GSM8k (Cobbe et al.,
2021) to assess the performance of quantized models on more complex and challenging tasks, requiring reasoning to get
the correct answer. Below we consider AQLM and QuIP# after end-to-end finetuning, i.e. the best performing quantized
models. We observed that relative decrease on performance on these tasks is higher compared to the standard evaluation.
Fine-tuned AQML and QuIP# yield very similar performance on these benchmarks.
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Table 15: Evaluation of quantized LLAMA 2 models for 2-2.1 bits per parameter on MMLU and GSM8k.
⋆ corresponds to end-to-end finetuning

Size Method Avg bits MMLU (5-shot) GSM8k (8-shot)

7B
– 16 45.9 14.6

QuIP#⋆ 2.02 36.8 6.2
AQLM⋆ 2.02 38.5 5.3

13B
– 16 55.2 24.3

QuIP#⋆ 2.01 50.0 14.0
AQLM⋆ 1.97 48.8 13.8

70B
– 16 68.8 56.3

QuIP#⋆ 2.01 65.3 46.4
AQLM⋆ 2.07 65.3 47.9

L. Block-wise tuning for scalar quantization
The block-wise procedure introduced in our work is quite general and can be applied to scalar quantization as well.
Specifically, operations with quantized weights are differentiable with respect to quantization scales kept in original
precision. Therefore, scales can be tuned in the same way as AQLM codebooks. We observed that tuning significantly
improves the quality of GPTQ at low bit widths. However, the resulting quality is still far below AQLM at similar bit-widths.

Table 16: Evaluation of AQLM and GPTQ quantization after block tuning for LLAMA 2 models with 2-2.1 bits per
parameter.

Size Method Avg bits Wiki2↓ C4↓

7B
– 16 5.12 6.63

GPTQ 2.14 16.77 17.53
AQLM 2.02 6.64 8.56
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