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ABSTRACT

Large language models (LLMs) are increasingly applied to complex reasoning
tasks that require executing several complex steps before receiving any reward.
Properly assigning credit to these steps is essential for enhancing model perfor-
mance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement
learning (RL) algorithm used for LLM finetuning, employs value networks to
tackle credit assignment. However, value networks face challenges in predict-
ing the expected cumulative rewards accurately in complex reasoning tasks, often
leading to high-variance updates and suboptimal performance. In this work, we
systematically evaluate the efficacy of value networks and reveal their significant
shortcomings in reasoning-heavy LLM tasks, showing that they barely outperform
a random baseline when comparing alternative steps. To address this, we propose
VinePPO, a straightforward approach that leverages the flexibility of language
environments to compute unbiased Monte Carlo-based estimates, bypassing the
need for large value networks. Our method consistently outperforms PPO and
other RL-free baselines across MATH and GSM8K datasets with fewer gradient
updates (up to 9x), less wall-clock time (up to 3.0x). These results emphasize the
importance of accurate credit assignment in RL finetuning of LLM and demon-
strate VinePPO’s potential as a superior alternative.

1 INTRODUCTION

Large language models (LLMs) are increasingly used for tasks requiring complex reasoning, such as
solving mathematical problems (OpenAI, 2024), navigating the web (Zhou et al., 2024), or editing
large codebases (Jimenez et al., 2024). In these settings, LLMs often engage in extended reason-
ing steps, executing multiple actions to arrive at a solution. However, not all steps are equally
important—some contribute significantly, while others are irrelevant or detrimental. For example,
in Figure 1.a, only step s2 provides a key insight. Indeed, most reasoning steps generated by a
model do not affect the chance of it solving the problem (Figure 1.b). Identifying the contribution
of each action is crucial for improving model performance. However, this is inherently difficult due
to the significant delay between actions and their eventual effect. This issue, known as the credit
assignment problem, is a core challenge in reinforcement learning (RL, Sutton and Barto 1998).

Proximal Policy Optimization (PPO, Schulman et al. 2017; Ouyang et al. 2022), a state-of-the-art
algorithm for RL-based finetuning of LLMs (Xu et al., 2024; Ivison et al., 2024; Chang et al., 2023),
tackles credit assignment using a value network (or critic). This network, typically a separate model
initialized from a pretrained checkpoint, is trained during PPO finetuning to estimate the expected
cumulative rewards (or value) of an intermediate action. In Figure 1.b, an ideal value network
would assign high value to step s2 and subsequent steps, where the model predicted a critical action.
PPO uses these value estimates to measure the advantage of each action and update the model
accordingly.

Accurately modeling value—predicting future rewards from an incomplete response—requires the
value network to understand both the space of correct solutions (the very task the policy model is
trying to learn) and predict the model’s future behavior, both of which are inherently challenging. In
fact, there are hints in the literature that standard PPO implementations for LLMs have inaccurate
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Figure 1: (Left) A response generated by the model. The notation p̂(correct|s:t) represents the
estimated probability of successfully solving the problem at step t. Here, only step s2 is critical;
after this, the model completes the solution correctly. (Right) The delta in probability of successful
completion between response steps. Most steps show little or no advantage over the preceding step.

value estimations. Ahmadian et al. (2024) and Trung et al. (2024) find that value networks often
serve best as just a baseline in policy gradient1. Shao et al. (2024) show that the value network can
be replaced by averaging rewards of responses to a given problem without degradation in perfor-
mance. Since errors in value estimation can lead to poor credit assignment and negatively impact
convergence and performance (Greensmith et al., 2001), a natural question to ask is: how accurately
do value networks actually perform during LLM finetuning? If we could improve credit assignment,
to what extent would it enhance LLM performance? While recent studies (Hwang et al., 2024; Setlur
et al., 2024) have begun to highlight the importance of identifying incorrect reasoning steps and in-
corporating them via ad-hoc mechanisms in “RL-free” methods (Rafailov et al., 2023), the broader
question of how improving credit assignment might boost RL fine-tuning for LLMs remains open.

In this work, we evaluate the standard PPO pipeline in mathematical reasoning tasks across various
model sizes. We find that value networks consistently provide inaccurate estimates and struggle to
rank alternative steps correctly, suggesting that current PPO finetuning approaches for LLMs operate
without effective credit assignment. To address this issue and illustrate the effect of accurate credit
assignment, we propose VinePPO (Figure 2). Instead of relying on value networks, VinePPO com-
putes unbiased value estimates of intermediate states by using independent Monte Carlo (MC) sam-
ples and averaging their respective return. This straightforward modification to PPO takes advantage
of a special property of the language environment: the ability to easily reset to any intermediate state
along the trajectory.

VinePPO consistently outperforms standard PPO and “RL-free” baselines, especially on more chal-
lenging datasets. Despite its slower per-iteration speed, it reaches and surpasses PPO’s peak perfor-
mance with fewer gradient updates, resulting in less wall-clock time and lower KL divergence from
the base model. Our findings highlight the importance of precise credit assignment in LLM finetun-
ing and establishes VinePPO as a straightforward alternative to value network-based approaches.

Our contributions are as follows:

• We demonstrate the suboptimal credit assignment in standard PPO finetuning by analyzing the
value network, showing that it provides inaccurate estimates of intermediate state values and
barely outperforms a random baseline when ranking alternative steps (see Section 7 for details).

• We propose VinePPO, introduced in Section 4, which takes advantage of the flexibility of lan-
guage as an RL environment to compute unbiased value estimates, eliminating the need for large
value networks and reducing memory requirements (up to 112GB for a 7B LLM).

1setting the Generalized Advantage Estimation (GAE, Schulman et al. 2016) parameter λ = 1
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Figure 2: (a) PPO finetunes the model by adjusting action probabilities based on their advantage,
which is primarily guided by the value network’s value estimates. (b) VinePPO modifies standard
PPO and obtains values estimates by simply resetting to intermediate states and using MC samples.

• VinePPO highlights the significance of credit assignment: It outperforms PPO and other baselines,
especially on more challenging datasets. It achieves PPO’s peak performance with fewer iterations
(up to 9x), less wall-clock time (up to 3.0x), and better KL-divergence trade-off. See Section 6.

2 RELATED WORK

Credit Assignment in Post-Training of LLM PPO, as applied in RL from Human Feedback
(RLHF, Ouyang et al. 2022), pioneered RL finetuning of LLMs. However, its computational over-
head and hyperparameter sensitivity led to the development of simpler alternatives. RL-free methods
such as DPO (Rafailov et al., 2023) operate in a bandit setting, treating the entire response as a single
action. Similarly, rejection sampling methods like RestEM (Singh et al., 2024) finetune on full high-
reward responses. RLOO (Ahmadian et al., 2024) and GRPO (Shao et al., 2024) abandon PPO’s
value network, instead using average reward from multiple samples as a baseline. Recent work has
emphasized finer credit assignment, with Hwang et al. (2024) and Setlur et al. (2024) introducing
MC-based methods to detect key errors in reasoning chains for use as ad-hoc mechanisms in DPO.
Our work, by contrast, fully embraces the RL training, with the target of unlocking PPO’s poten-
tial. Parallel efforts have also focused on building better verifiers and reward models for per-step
feedback, with recent attempts to automate their data collection using MC rollouts (Ma et al., 2023;
Uesato et al., 2022; Luo et al., 2024; Wang et al., 2024). Our method is orthogonal to these methods,
operating within PPO-based training to optimize a given reward, instead of designing new ones.

Value Estimation in RL and Monte Carlo Tree Search (MCTS) Deep RL algorithms are typi-
cally categorized into value-based and policy-based methods. Policy-based methods like PPO usu-
ally employ critic networks for value prediction. An exception is the “Vine” variant of TRPO
(Schulman et al., 2015), which uses MC samples for state value estimation. The authors, however,
note that the Vine variant is limited to environments that allow intermediate state resets, rare in
typical RL settings2. However, language generation – when formulated as RL environment – en-
ables such intermediate reset capabilities. In domains with similar reset capabilities, such as Go and
Chess, MC-heavy methods like AlphaGo (Silver et al., 2016) and AlphaZero (Silver et al., 2017)
have emerged. AlphaGo’s architecture includes a policy, trained using expert moves and self-play,
and a value network that predicts game outcomes. At inference, it employs tree search guided by MC
rollouts and value network to select optimal moves. AlphaZero advances this approach by distilling
MCTS outcomes into the policy. Recent works have adapted AlphaZero’s principles to LLMs, em-
ploying similar search techniques during inference to improve responses and during training to find
better trajectories for distillation (Xie et al., 2024; Chen et al., 2024; Wan et al., 2024; Zhang et al.,
2024; Hao et al., 2023). While this is a promising direction, our method is not an MCTS approach;
it uses MC samples solely for value estimation during PPO training to improve credit assignment.

2This is reflected in the design of Gym (Towers et al., 2024), which only allows resets to the initial state.
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Figure 3: VinePPO outperforms standard PPO and other RL-free baselines on Pass@1 performance
on MATH and GSM8K datasets, while also exhibiting scalability across different model sizes.

3 BACKGROUND

We focus on the RL tuning phase in the RLHF pipeline, following Ouyang et al. (2022); Shao et al.
(2024). In this section, we provide an overview of actor-critic finetuning as implemented in PPO.

RL Finetuning In this setup, the policy πθ represents a language model that generates a response
y = [y0, . . . , yT−1] autoregressively given an input x = [x0, . . . , xM−1]. The goal of RL finetuning
is to maximize the expected undiscounted (γ = 1) finite-horizon return, while incorporating a KL-
divergence constraint to regularize the policy and prevent it from deviating too far from a reference
policy πref (typically the initial supervised finetuned, SFT, model). The objective can be written as:

J(θ) = Ex∼D,y∼π(·|x) [R(x;y)]− βKL[πθ∥πref ], (1)

where D is the dataset of prompts, R(x;y) is the complete sequence-level reward function, and β
controls the strength of the KL penalty. Note that the policy πθ is initialized from πref .

Language Environment as an MDP Language generation is typically modeled as a token-level
Markov Decision Process (MDP) in an actor-critic setting, where each response y is an episode.
The state at time step t, st ∈ S , is the concatenation of the input prompt and the tokens generated
up to that point: st = x;y<t = [x0, . . . , xM−1, y0, . . . , yt−1]. At each time step, the action at cor-
responds to generating the next token yt from fixed vocabulary. The process begins with the initial
state s0 = x, and after each action, the environment transitions to the next state, st+1 = st; [at],
by appending the action at to the current state st. In this case, since states are always constructed
by concatenating tokens, the environment dynamics are known and the transition function is de-
terministic, i.e., P (st+1|st, at) = 1. During the generation process, the reward rt is set to zero
for all intermediate actions at’s, with the sequence-level reward R(x;y) only applied at the final
step when the model stops generating. A trajectory τ = (s0, a0, s1, a1, . . . ) is therefore a sequence
of state-action pairs, starting from the input prompt until the terminal state. Finally, we define the
cumulative return of a trajectory τ as R(τ) =

∑T−1
t=0 rt = rT−1 = R(x;y).

Policy Gradient Given this MDP formulation, policy gradient methods like PPO maximize
Equation 1 by repeatedly sampling trajectories and taking a step in the direction of the gradient
gpg := ∇θJ(θ) to update the parameters. Policy gradient gpg takes the following form:

gpg = Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at|st)A(st, at)

]
, where st = x;y<t, at = yt, (2)
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Figure 4: Impact of number of sampled trajectories K for estimating V̂MC(st), evaluated on
RhoMath 1.1B models. Increasing the number of rollouts improves task performance consistently.

where A(st, at) is the advantage function. If A(st, at) > 0, gpg will increase the probability
of action at in state st, and decrease it when A(st, at) < 0. Intuitively, the advantage function
quantifies how much better action at is compared to average actions taken in state st under the
policy. Formally, it is defined as:

A(st, at) = Q(st, at)− V (st) = rt + γV (st+1)− V (st), (3)

where Q(st, at) is the state-action value and V (st) is the per-state value function3. The value func-
tion, V (st) : S → R, offers a long-term assessment of how desirable a particular state is under
the current policy. Formally, it represents the expected cumulative reward obtained from starting in
state st and following the policy thereafter4: V (st) = Eτ∼πθ

[R(τ) | s0 = st] . PPO uses the same
advantage-weighted policy gradient as in Equation 2, but constrains policy updates through clipping
to ensure stable training. For full details, see Appendix A.

Estimating Advantage via Value Networks In practice, the advantage A(st, at) is not known
beforehand and is typically estimated by first using a value network V̂ϕ to approximate the true
value function V (st), then substituting the learned values into Equation 3 or alternative methods
like GAE (Schulman et al., 2016). The value network is parameterized by ϕ and trained alongside
the policy network πθ. The training objective for the value network minimizes the mean squared
error between the predicted value and the empirical return:

LV (ϕ) = Eτ∼πθ

[
1

T

∑
t

1

2
(V̂ϕ(st)−Gt)

2

]
, (4)

where Gt =
∑T−1

t′=t rt′ is the empirical return from state st. PPO uses the same objective for V̂ϕ but
enhances stability by applying clipping during training (see Appendix A.1 for details). In RL-tuning
of LLMs, the value network is often initialized using the initial SFT policy πref (or the reward model
when available), with the language modeling head swapped out for a scalar head to predict values
(Zheng et al., 2023). This setup leverages the prior knowledge of the pretrained model.

4 ACCURATE CREDIT ASSIGNMENT WITH VINEPPO

As outlined in Section 3, a step in the PPO gradient update aims to increase the probability of
better-than-average actions while decreasing the probability of those that perform worse—a process
quantified by the advantage A(st, at). However, the true advantage is generally unknown and must
be estimated, typically by substituting estimates from a value network into Equation 3. As we will
elaborate in Section 7, value networks are often inaccurate and result in biased value computation.
Fortunately, the language environment as an MDP (Section 3) offers a useful property that allows
for unbiased estimation of V (st). Since states are simply concatenated tokens, we can prompt the
language model πθ to generate continuations from any intermediate state. This flexibility allows

3Such derivation is possible as the language environment is deterministic.
4We drop the dependency on πθ for brevity.
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Figure 5: Comparison of the training behavior between VinePPO and PPO. VinePPO demonstrates
consistently higher accuracy (as measured on the test set of MATH dataset) throughout the training.
Refer to Appendix D for more detailed plots.

us to explore alternative future paths from arbitrary points in a generation. Moreover, recent ad-
vancements in LLM inference engines (Kwon et al., 2023; Zheng et al., 2024) have dramatically
increased the speed of on-the-fly response generation5. This computational efficiency makes it fea-
sible to conduct fast environment simulation, opening up unique opportunities for RL training of
LLMs. VinePPO uses this property and estimates advantage via MC sampling. It only modifies the
way advantages are estimated, leaving the rest of the standard PPO pipeline intact (Figure 2).

We start by estimating the true value V (st). Instead of relying on a value network, for any intermedi-
ate state st, we sample K independent trajectories τk’s. The average return across these trajectories
serves as the value estimate:

V̂MC(st) :=
1

K

K∑
k=1

R(τk), where τ1, . . . , τK ∼ πθ(· | st). (5)

This is a MC estimate of V (st) = E [R(τ) | s0 = st] . Note that these trajectories are not trained on.
Once the value V̂MC(st) is computed, we estimate the advantages of each action using Equation 3:

ÂMC(st, at) := r(st, at) + γV̂MC(st+1)− V̂MC(st). (6)

For any K ≥ 1, the policy gradient computed using the advantage estimator ÂMC is an unbiased
estimate of the gradient of expected return gpg. To enhance the efficiency of ÂMC, we group states
within a reasoning step and compute a single advantage, which is assigned to all tokens in that step
(examples in Appendix B). This trades off granularity for efficiency, allowing finer resolution with
more compute, or coarser estimates with limited resources. The parameter K also offers another
trade-off between computational cost (i.e. more MC samples per state) and the variance of the
estimator. As shown in Section 6.1, even K = 1 performs well.

In essence, VinePPO is a straightforward modification to the PPO pipeline, altering only the advan-
tage computation. This minimal adjustment allows us to leverage PPO’s benefits while enabling a
systematic evaluation of the effect of unbiased advantage estimation and improved credit assign-
ment. In the following sections, we compare various aspects such as task performance, computa-
tional efficiency, KL divergence, and robustness to shed light on the nature of these approaches.

5 EXPERIMENTAL SETUP

Datasets and Pretrained LLMs We conduct our experiments using LLMs that show strong per-
formance on mathematical reasoning: DeepSeekMath 7B (Shao et al., 2024) and RhoMath 1.1B
(Lin et al., 2024), both of which have been trained on diverse mathematical and natural language
corpora. Having different sized models allows evaluating the effect of scaling. We focus on math-
ematical reasoning datasets MATH (Hendrycks et al., 2021), consisting of competition-level math-
ematical problems, and GSM8K (Cobbe et al., 2021), containing simpler grade-school level math

5up to 5K tokens/second on a single Nvidia A100 GPU for a 7B LLM loaded in bfloat16.
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Figure 6: Task accuracy as a function of KL divergence during training on the MATH dataset.
VinePPO achieves higher accuracy, reflecting more efficient credit assignment and focused updates.

word problems. Both datasets are well-established and present a range of difficulty levels that allow
for comprehensive evaluation. For each dataset, we finetune the base LLMs on its respective training
sets to obtain the initial SFT policy (πref ). In all experiments, we employ full-parameter finetuning
to allow utilization of models’ full capacity (Sun et al., 2023; Biderman et al., 2024).

Evaluation We evaluate model performance on the test sets of each dataset, using accuracy
(Pass@1) as our primary metric, which measures the correctness of the final answers produced by
the models. As our baseline, we adopt the standard PPO framework, as commonly implemented for
LLM finetuning (Ouyang et al., 2022; Huang et al., 2024). Additionally, we compare them against
RL-free methods that doesn’t have explicit credit assignment mechanisms: RestEM (Singh et al.,
2024), a form of Iterative Rejection Finetuning (Yuan et al., 2023; Anthony et al., 2017) and DPO+

(Pal et al., 2024), variant of DPO with strong performance on reasoning tasks. All methods are
initialized from the same SFT checkpoint to ensure a fair comparison.

Training Details and Hyperparameters To ensure standard PPO (and its value network) has a
healthy training and our evaluation reflects its full potential, we first focus our hyperparameter search
on PPO parameters (such as KL penalty coefficient, batch size, minibatch size, GAE λ, number of
epochs per iteration) and apply all well-known techniques and best practices (Huang et al., 2024;
Ivison et al., 2024) in PPO tuning (Refer to Appendix C.2 for the full list). Following previous work
(Pal et al., 2024; Singh et al., 2024), we set the task reward R to be a binary function that only checks
final answer against the ground truth. VinePPO borrows the exact same hyperparameters from PPO
and only modifies the advantage A(st, at) estimation, keeping the rest of the pipeline unchanged.
This allows us to isolate the effect of accurate credit assignment. We found that sampling K = 9

trajectories in V̂MC performs well; the effect of varying K is fully analyzed in Section 6.1. For the
other baseline, we closely follow the original setup while ensuring consistency in training conditions
for a fair comparison. We choose the best checkpoint based on a held-out validation set for all
experiments. Full implementation details, including all hyperparameters and training procedures,
are provided in Appendix C.6.

6 RESULTS

We evaluate the effect of accurate credit assignment on four key measures of model finetuning ef-
ficiency and success: task performance, KL divergence, temperature tolerance, and computational
efficiency. Our experimental setup is designed to control for and isolate the impact of credit assign-
ment on each of these measures.

6.1 TASK PERFORMANCE

VinePPO consistently outperforms standard PPO throughout training (Figure 5) and other baselines
(Figure 3). More importantly, its performance gap widens in MATH which is a much more challeng-
ing reasoning task. Unlike VinePPO and PPO, DPO+ and RestEM lacks any explicit mechanisms
for credit assignment, opting instead to finetune the model on the full trajectory. Our experiments

7
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Figure 7: Accuracy vs. Wall Clock Time for both methods measured on the same hardware (shown
only up to PPO’s final performance). Despite VinePPO taking longer per iteration (up to 2x for 7B
and 5x for 1.1B models), it passes PPO’s peak performance in fewer iterations and less overall time.

show that these RL-free methods lags behind both PPO-based methods. For RestEM, the absence
of targeted credit assignments likely leads to overfitting (Appendix C.5).

To assess the impact of K, the number of MC samples used to estimate the value, we run an ablation
on RhoMath 1.1B, varying K from 1 to 3 and then to 9. As shown in Figure 4, VinePPO demon-
strates improved performance with higher K values, as more MC samples reduce the variance of
the ÂMC estimator. Notably, increasing K provides a reliable approach to leveraging additional
computational resources for better performance.

6.2 KL DIVERGENCE
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)

Method VinePPO PPO

Temparature 0.6 0.8 1.0

Figure 8: Test set accuracy dur-
ing training with higher tempera-
ture presented for DeepSeekMath
7B and MATH dataset. VinePPO
can tolerate higher temperatures.

The RL objective (Equation 1) balances maximizing task per-
formance while constraining deviations from the initial policy
πref , measured by KL divergence. We analyze how VinePPO
and PPO navigate this trade-off by plotting task accuracy
against KL divergence KL[πθ∥πref ] throughout training (Fig-
ure 6). Results show VinePPO consistently achieves higher ac-
curacy at same KL divergence, indicating more efficient use of
the “KL budget.” This efficiency stems from VinePPO’s more
precise credit assignment. As shown in Figure 1, many ad-
vantages are zero, and VinePPO excludes these steps from the
loss. By avoiding unnecessary updates on non-contributing to-
kens, VinePPO reduces non-essential parameter adjustments
that would inflate KL. See Appendix D.1 for full results.

6.3 TEMPERATURE TOLERANCE

Sampling temperature is a critical hyperparameter controlling
the randomness of sampled trajectories. At higher temper-
atures models generates more diverse trajectories, accelerat-
ing early training through increased exploration. However,
this diversity challenges PPO’s value network, requiring gen-
eralization over a wider range of states. We compared VinePPO and PPO using temperatures
T ∈ {0.6, 0.8, 1.0} over the initial third of training steps. Figure 8 shows VinePPO consistently
benefits from higher temperatures, achieving faster convergence. Conversely, PPO fails to benefit
from increased exploration and even diverges at T = 1.0, where trajectories are most diverse.

6.4 COMPUTATIONAL EFFICIENCY

VinePPO and PPO require different resources: PPO uses a separate value network, requiring two
times more GPU memory (up to 112GB for a 7B LLM, considering both model and its optimizer);
VinePPO, conversely, relies on MC samples. This skips value network’s memory requirements, but
shifts the computational burden to increased LLM inferences, making VinePPO generally slower

8
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Figure 9: Distribution of predicted values for each state vs. ground truth (computed using 256 MC
samples) during training for DeepSeekMath 7B on MATH dataset, highlighting the nature of errors.
VinePPO achieves much lower Mean Absolute Error (MAE).

per iteration (up to 5x for RhoMath 1.1B and 2x for DeepSeekMath 7B). However, the effect
of VinePPO’s accurate credit assignment is substantial. Although slower per iteration, VinePPO
achieves PPO’s peak accuracy in fewer gradient steps and less wall-clock time. Figure 7 shows
RhoMath 1.1B and DeepSeekMath 7B require about 3.0x and 1.51x less time and 9x and 2.8x fewer
steps. This improvement occurs despite all hyperparameters being tuned for PPO. Therefore, switch-
ing to VinePPO offers a way to enhance performance within the same compute budget and serves as
the only option when memory is constrained.

7 VALUE PREDICTION ANALYSIS

In this section, we explore the underlying reasons for the performance gap between PPO and
VinePPO by closely analyzing the value prediction of both methods. First, we establish a “ground
truth” value at each reasoning step within trajectories by running many MC samples (256 in our
case) and averaging the returns. This provides a low-variance reference value. We then compare the
value predictions in both methods against this ground truth. We present the results for DeepSeek-
Math 7B on the MATH dataset (full analysis with other models and datasets in Appendix D.2).

Accuracy Figure 9 presents the distribution of value predictions at each reasoning step. The er-
rors produced by VinePPO and PPO differ significantly. VinePPO’s estimates are unbiased, with
variance peaking at 0.5 and dropping to zero at 0 and 1. PPO’s value network shows high bias, often
misclassifying bad states (ground truth near 0) as good and vice versa. To further visualize accuracy,
we classify a value prediction as “correct” if it falls within 0.05 of the ground truth. The accuracy of
this formulation is shown in Figure 11.a. PPO’s value network starts with low accuracy, gradually
improving to 65%. VinePPO, however, consistently achieves 70-90% accuracy throughout training.

Top Action Identification In value-based RL, ranking actions correctly is more crucial than ab-
solute value accuracy. While PPO, as a policy gradient method, requires accurate value estimates
to compute meaningful advantages, it is still a compelling question whether PPO’s value network,
despite its bias, can maintain correct action ranking. To investigate, we sample five new next steps
from the same initial state and evaluate if the method correctly identifies the resulting next state
with the highest ground truth value. As shown in Figure 11.b, PPO’s value network performs near
chance levels for much of the training, with slight improvements over time. In contrast, VinePPO
consistently identifies the top action with high accuracy throughout training.
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Figure 11: (a) Value prediction accuracy formulated as a classification problem, where a prediction
is considered correct if it falls within 0.05 of the ground truth. (b) Accuracy of identifying the top
action in a set of five possible next states. VinePPO consistently outperforms the value network.

Error Per Reasoning Step To understand value computation mechanisms, we visualize the pre-
diction error at each reasoning step within a trajectory. As shown in Figure 10, PPO’s estimation
error increases as reasoning progresses. We hypothesize this occurs because early steps have lower
diversity and resemble training data more, allowing the value network to rely on memorization.
Later, as space of states become much larger, they become unfamiliar and the network struggles to
generalize. VinePPO’s prediction error decreases with reasoning progression. We attribute this to
the model becoming more deterministic in later steps as it conditions on bigger and longer context.
This determinism enables more accurate estimates from the same number of MC samples.

8 DISCUSSION

Accurate credit assignment has profound implications on the performance of RL tuning of LLMs.
As we’ve demonstrated, standard PPO, despite outperforming most RL-free baselines, suffers from
suboptimal value estimation. More importantly, its scaling behavior is concerning; PPO struggles
with increasingly diverse trajectories and tends to perform worse as tasks become more complex.

VinePPO, on the other hand, is a viable alternative. As shown in Section 6.4, it offers lowered mem-
ory requirements and better performance with the same computational budget. VinePPO could also
be a particularly attractive option for frontier LLMs as even doubling the post-training compute is
negligible compared to their pre-training costs (Ouyang et al., 2022)6. Given the major investments
in pre-training compute and data collection of these models, it is imperative for model developers
to employ post-training methods that provide more accurate updates, avoiding the high-variance
adjustments caused by inferior credit assignment. Additionally, VinePPO offers a straightforward
scaling axis: increasing the number of MC samples directly enhances performance with additional
compute. Unlike recent approaches that focus on increasing inference-time compute to boost per-
formance (OpenAI, 2024; Bansal et al., 2024), VinePPO’s training compute is amortized over all
future inferences. Note that the computational workload of VinePPO is highly parallelizable with
linear scalability, making it well-suited for large-scale training.

6For example, InstructGPT used nearly 60 times more compute for pre-training (Ouyang et al., 2022).
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The unique properties of the language environment are what enabled VinePPO to be viable credit
assignment option; it may have limited practical use in traditional deep RL policy gradient methods.
This suggests that adapting RL techniques to LLMs requires careful consideration and perhaps a
reevaluation of underlying assumptions. Overall, our work highlights the potential of well-tuned RL
finetuning strategies with proper credit assignment, and we hope it encourages further research into
optimizing RL post-training pipelines for LLMs.
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A REVIEWING PPO

PPO, as used in RL tuning of LLMs, formulates language generation as token-level MDP (Sec-
tion 3), where each response y is an episode. The state at time step t, st ∈ S , is the concatenation
of the prompt and the tokens generated so far: st = x;y<t = [x0, . . . , xM−1, y0, . . . , yt−1]. The
action at corresponds to generating the next token yt from the model’s vocabulary. Given a prompt
x, an episode of this MDP starts from the initial state s0 = x, and with each action taken, the
environment moves to a subsequent state, st+1 = st; [at], by adding the action at to the existing
state st. In the language environment, because states are always formed by concatenating tokens,
the environment dynamics are fully known, and the transition function is deterministic, meaning
P (st+1|st, at) = 1. Throughout the generation process, the reward rt is set to zero for all inter-
mediate actions at, with the sequence-level reward R(x;y) applied only at the final step when the
model stops the generation. That is:

rt = r(st, at) =

{
R(x;y) if t = T − 1, where st+1 = y is terminal,
0 otherwise.

(7)

A trajectory τ = (s0, a0, s1, a1, . . . ) thus represents a sequence of state-action pairs that begins at
the input prompt and continues until reaching the terminal state. Finally, the cumulative return of a
trajectory τ is defined as R(τ) =

∑T−1
t=0 rt = rT−1 = R(x;y).

The goal of RL tuning is to maximize the expected return of the model’s responses to prompts in
the dataset, as defined by the reward function R (Equation 1). PPO, similar to other policy gradi-
ent methods, achieves this goal by repeatedly sampling trajectories for a batch of prompt sampled
from D and taking multiple optimization steps in the direction of the gradient gppo to update the
parameters. PPO gradient gppo is defined as the gradient of the following loss:

Lppo(θ) = Eτ∼πθk

[
T−1∑
t=0

min

(
πθ(at | st)
πθk(at | st)

Aθk
t , clip(θ)Aθk

t

)
− βKL[πθ ∥ πref ]

]
(8)

where πθk is the policy at the previous iteration, ϵ is the clipping parameter, β is the KL penalty
coefficient, Aθk

t = Aθk(st, at) is the advantage estimate for policy πθk , and the clip(θ) function is:

clip(θ) = clip
(

πθ(at | st)
πθk(at | st)

, 1− ϵ, 1 + ϵ

)
. (9)

Note that the KL penalty could be also added to the reward function R. We follow the more recent
implementations (Shao et al., 2024; Qwen, 2024), where it is added to the loss function. The KL
term can be computed using the following unbiased estimator (Schulman, 2020):

K̂L(θ) =
πref(at | st)
πθ(at | st)

− log
πref(at | st)
πθ(at | st)

− 1, (10)

where πref denotes the reference model (initial SFT).

A.1 VALUE NETWORK

In addition to the policy πθ, PPO also trains a separate value network V̂ϕ to obtain an estimate the
true values V (st) of states st. Parameterized by ϕ, the value network is trained alongside the policy
network πθ using the following loss:

LValNet(ϕ) =
1

2
Eτ∼πθ

[
1

T

T−1∑
t=0

max
(∥∥∥V̂ϕ(st)−Gt

∥∥∥2, ∥∥∥clip(ϕ)−Gt

∥∥∥2)] (11)

where V̂ϕk
is the value network at the previous iteration, Gt =

∑T−1
t′=t γ

t′−trt′ is the empirical return
from state st, ϵ′ is a value clipping parameter, and the clip(θ) is defined as:

clip(ϕ) = clip
(
V̂ϕ(st), V̂ϕk

(st)− ϵ′, V̂ϕk
(st) + ϵ′

)
. (12)

In RL-tuning of LLMs, the value network is typically initialized from the initial policy πref (or the
reward model, if available), replacing the language modeling head with a scalar output head to pre-
dict values (Zheng et al., 2023) This approach takes advantage of the base model’s prior knowledge
for value estimation.
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Prompt
If we express 3x2 + x− 4 in the form a(x− h)2 + k, then
what is k?

Response

We complete the square.† First, we factor 3 out of the

terms 3x2 + x to get 3
(
x2 + x

3

)
.† We can square x + 1

6

to get x2 + x
3 + 1

36 , so†

3

(
x
2
+

x

3

)†
= 3

[(
x +

1

6

)2

−
1

36

]†

= 3

(
x +

1

6

)2

−
3

36

†

= 3

(
x +

1

6

)2

−
1

12
,
†

and

3

(
x
2
+

x

3

)
− 4

†
= 3

(
x +

1

6

)2

−
1

12
− 4

†

= 3

(
x +

1

6

)2

−
49

12
.

We see that k =† −
49

12
.†

Prompt
Suppose the roots of the polynomial x2−mx+n are positive
prime integers (not necessarily distinct). Given that m < 20,
how many possible values of n are there?

Response

Let p and q be the prime roots.† Then, we know that

m = p + q and n = pq.† Since m < 20, the primes p

and q must both be less than 20.†

The primes less than 20 are 2, 3, 5, 7, 11, 13, 17, 19.†

Now we list all possible pairs (p, q) such that p + q < 20,†

remembering to also include the cases in which p = q:†

(2, 2), (2, 3), (2, 5), (2, 7), (2, 11), (2, 13), (2, 17)
†

(3, 3), (3, 5), (3, 7), (3, 11), (3, 13)
†

(5, 5), (5, 7), (5, 11), (5, 13)
†

(7, 7), (7, 11)

There are 7 + 5 + 4 + 2 = 18 pairs in total.† Each pair

produces a value for n, and furthermore,† these values are

all distinct, because every positive integer has a unique prime

factorization.† Thus, there are 18 possible values for n.†

Figure B.1: Examples of solutions separated into its reasoning steps on the MATH dataset. Steps
are highlighted using distinct colors. † denotes the reasoning step boundary.

Advantage Estimation Once the estimated values V̂ϕ(st) are obtained, the advantages A(st, at)
are computed using the GAE (Schulman et al., 2016):

A(st, at) ≈ ÂGAE(st, at) (13)

= (1− λ)
(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . .

)
(14)

=

∞∑
l=0

(γλ)lδt+l (15)

=

∞∑
l=0

(γλ)l
(
rt+l + γV̂ϕ(st+l+1)− V̂ϕ(st+l)

)
(16)

where δt = rt + γV̂ϕ(st+1)− V̂ϕ(st) is the temporal difference error, λ is the GAE parameter, and
γ is the discount factor. Also, we have:

Â
(k)
t :=

k−1∑
l=0

γlδt+l = rt + γrt+1 + · · ·+ γk−1rt+k−1 + γkV̂ϕ(st+k)− V̂ϕ(st). (17)

Adjusting the GAE parameter λ allows for a trade-off between bias and variance in the advantage
estimates. However, as we discuss in Appendix C.6, we found that λ = 1 works best in our exper-
iments (similar to the findings of Trung et al. (2024) and Ahmadian et al. (2024)). In this case, the
GAE simplifies to the following form (assuming γ = 1): ÂGAE(st, at) =

∑T−1
t′=t rt′ − V̂ϕ(st).
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Prompt
Tobias is buying a new pair of shoes that costs $95. He
has been saving up his money each month for the past three
months. He gets a $5 allowance a month. He also mows lawns
and shovels driveways. He charges $15 to mow a lawn and $7
to shovel. After buying the shoes, he has $15 in change. If he
mows 4 lawns, how many driveways did he shovel?

Response

He saved up $110 total because 95 + 15 = 110†

He saved $15 from his allowance because 3 x 5 = 15†

He earned $60 mowing lawns because 4 x 15 = 60†

He earned $35 shoveling driveways because 110-60-15 = 35†

He shoveled 5 driveways because 35 / 7 = 5.

#### 5†

Prompt
Tim rides his bike back and forth to work for each of his 5
workdays. His work is 20 miles away. He also goes for a
weekend bike ride of 200 miles. If he can bike at 25 mph how
much time does he spend biking a week?

Response

He bikes 20 x 2 = 40 miles each day for work.†

So he bikes 40 x 5 = 200 miles for work†

That means he bikes a total of 200+200 =400 miles for work†

So he bikes a total of 400 / 25=16 hours

#### 16†

Figure B.2: Examples of solutions separated into its reasoning steps on the GSM8K dataset. Steps
are highlighted using distinct colors. † denotes the reasoning step boundary.

B REASONING STEP SEPARATION EXAMPLES

In this section, we outline the methodology used to segment solutions into discrete reasoning steps
for the MATH and GSM8K datasets, as illustrated in Figures B.1 and B.2.

For the MATH dataset, we begin by splitting solutions based on clear natural boundaries such as
newline characters or punctuation marks (e.g., periods or commas). Care is taken to avoid splitting
within mathematical expressions, ensuring that mathematical formulas remain intact. After this
initial segmentation, if any resulting step exceeds 100 characters, we further try to divide it by
identifying logical breakpoints, such as equal signs (=) within math mode.

For the GSM8K dataset, we take a simpler approach, segmenting the reasoning steps by newlines
alone as with this task newlines already serve as natural delimiters.

C EXPERIMENTAL DETAILS

C.1 DATASETS

We focus on mathematical reasoning datasets that require step-by-step solutions and are widely used
to evaluate the reasoning capabilities of LLMs. Below is a brief overview of the datasets used in our
experiments:

MATH (Hendrycks et al., 2021) The MATH dataset contains problems from high school math
competitions, covering a wide range of topics such as algebra, geometry, and probability. For our
experiments, we use the OpenAI split provided by Lightman et al. (2024), which consists of 500
problems for testing and 12,500 problems for training. We further divide the training set into 11,500
problems for training and 500 problems for validation. Each problem includes a step-by-step solu-
tion, ending in a final answer marked by \boxed{} in the solution (e.g., “..so the smallest possible
value of c is π ”). This marking allows for verification of the correctness of model-generated
responses by comparing the final answer to the ground truth. We use the scripts provided by
Lewkowycz et al. (2022), Lightman et al. (2024), and Shao et al. (2024) to extract and compare
the final answers to the ground truth.

GSM8K (Cobbe et al., 2021) The GSM8K dataset comprises high-quality grade-school math
problems, requiring basic arithmetic or elementary algebra to solve. Although simpler than the
MATH dataset, GSM8K is still widely used to assess the reasoning capabilities of LLMs. It contains
1,319 problems for testing and 7,473 for training. To create a validation set, we further split the
training set into 7,100 problems for training and 373 for validation. Verifying the correctness of
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Table 1: Summary of PPO hyperparamters used in the experiments.

Parameter Value

TRAINING

Optimizer AdamW
Adam Parameters (β1, β2) (0.9, 0.999)
Learning rate 1× 10−6

Weight Decay 0.0
Max Global Gradient Norm for Clipping 1.0
Learning Rate Scheduler Polynomial
Warm Up 3% of training steps
# Train Steps For MATH dataset 1000 steps (around 8 dataset epochs)
# Train Steps For GSM8K dataset 650 steps (around 8 dataset epochs)

GENERAL

Maximum Response Length 1024 tokens
Maximum Sequence Length for RhoMath 1.1B 2048 tokens
Maximum Sequence Length for DeepSeekMath 7B 2500 tokens

PPO

# Responses per Prompt 8 Search Space: {8, 16, 32}
# Episodes per PPO Step 512 Search Space: {256, 512}
# Prompts per PPO Step 512/8 = 64
Mini-batch Size 64
# Inner epochs per PPO Step 2 Search Space: {1, 2}
Sampling Temperature 0.6 Search Space: {0.6, 0.8, 1.0}
Discount Factor γ 1.0
GAE Parameter λ 1.0 Search Space: [0.95− 1.0]
KL Penalty Coefficient β 1e-4 Search Space: {1e-1, 1e-2, 3e-3, 1e-4}
Policy Clipping Parameter ϵ 0.2
Value Clipping Parameter ϵ′ 0.2

Table 2: Summary of RestEM hyperparamters used in the experiments.

Parameter Value

TRAINING

Optimizer AdamW
Adam Parameters (β1, β2) (0.9, 0.999)
Learning rate 1× 10−6

Weight Decay 0.0
Max Global Gradient Norm for Clipping 1.0
Learning Rate Scheduler Polynomial
Warm Up 3% of training steps

RESTEM

# iterations 10
# Sampled Responses per Prompt 8 Search Space: {8, 32}
Sampling Temperature 0.6 Search Space: {0.6, 0.8, 1.0}
Checkpoints every # iteration 500 step
Checkpoint Selection until validation improves

Search Space: {until validation improves, best validation}

model responses is straightforward, as the final answer is typically an integer, marked by #### in
the solution.

C.2 PPO IMPLEMENTATION

To ensure our PPO implementation is robust, and our evaluation reflects its full potential, we have
applied a set of well-established techniques and best practices from the literature (Huang et al., 2024;

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 3: Summary of DPO-Positive hyperparameters used in the experiments.

Parameter Value

TRAINING

Optimizer AdamW
Adam Parameters (β1, β2) (0.9, 0.999)
Learning rate 1× 10−6

Weight Decay 0.0
Max Global Gradient Norm for Clipping 1.0
Learning Rate Scheduler Polynomial
Warm Up 3% of training steps

DPO-POSITIVE

# DPO-β 0.1 for MATH, 0.3 for GSM8K
# DPO-Positive-λ 50.
# Epochs 3 Search Space: {3, 8}
# Sampled Responses per Prompt 64 Search Space: {8, 64}
# Pairs per prompt 64 Search Space: {8, 64}
Sampling Temperature 0.6

Ivison et al., 2024; Zheng et al., 2023). Below, we outline the key implementation details that were
most effective in our experiments:

• Advantage Normalization: After calculating the advantages, we normalize them to have
zero mean and unit variance, not only across the batch but also across data parallel ranks.
This normalization step is applied consistently in both our PPO and VinePPOimplementa-
tions.

• Reward Normalization: We follow Ivison et al. (2024) and do not normalize the rewards,
as the reward structure in our task is already well-defined within the range of [0, 1]. Specif-
ically, correct responses are assigned a reward of 1, while incorrect responses receive 0.

• End-of-Sequence (EOS) Trick: As detailed in Appendix A, rewards are only applied at
the final token of a response, which corresponds to the EOS token when the response is
complete. For responses that exceed the maximum length, we truncate the response to the
maximum length and apply the reward to the last token of the truncated sequence. We also
experimented with penalizing truncated responses by assigning a negative reward (-1), but
this did not lead to performance improvements.

• Dropout Disabling: During the RL tuning phase, we disable dropout across all models.
This ensures that the log probabilities remain consistent between different forward passes,
thereby avoiding stochastic effects that could hurt training stability.

• Fixed KL Coefficient We use a constant coefficient for the KL penalty. Although the
original PPO implementation for finetining language models (Ziegler et al., 2019) utilized
an adaptive KL controller, more recent implementations typically do not use this approach
(Ouyang et al., 2022; Touvron et al., 2023; Xu et al., 2024).

C.3 SFT MODELS

To ensure a systematic and reproducible evaluation, we create our SFT models πref by finetuning the
base pretrained LLMs (as opposed to their “Instruct” version) on the training splits of the respective
datasets. Specifically, we produce four distinct SFT models: two base LLM (DeepSeekMath 7B and
RhoMath 1.1B ) across two datasets (MATH and GSM8K). The base models are finetuned using
the Adam optimizer without weight decay. We employ a learning rate warm-up over 6% of the total
training steps. Each model is trained for three epochs with a batch size of 64, and the best checkpoint
is selected based on validation accuracy. For each SFT model, we conduct a hyperparameter sweep
over learning rates in the range {1× 10−7, 3× 10−7, 1× 10−6, 3× 10−6, 1× 10−5, 3× 10−5, 8×
10−5, 1 × 10−4} to ensure optimal performance. We then use these SFT models as the initial
checkpoint for training the methods mentioned in our paper.
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C.4 EVALUATION

We evaluate each method’s performance on the test sets of each dataset. For example, when we
report that PPO achieves 42.8% accuracy on the MATH dataset for the DeepSeekMath 7B model,
this means the PPO training was initialized with the SFT model specific to DeepSeekMath 7B on the
MATH dataset, and accuracy was measured on the MATH test set. Our primary evaluation metric is
accuracy, specifically Pass@1, which reflects the percentage of correctly answered problems on the
first attempt. This metric is crucial because it represents a realistic user interaction, where the model
is expected to deliver a correct answer without the need for multiple tries. For each evaluation, we
sample a response from the model for a given prompt, using a maximum token length of 1024 and
a temperature of 0.35. A response is considered correct if its final answer matches the ground truth
final answer, as detailed in Appendix C.1. Furthermore, each accuracy score is averaged over 16
evaluation rounds, each conducted with different random seeds. This will ensure a robust and low
variance assessment of model performance.

C.5 BASELINES

DPO+ (DPO-Positive) (Pal et al., 2024) The original DPO method has a failure mode when the edit
distance between positive (correct) and negative (incorrect) responses is small. In these cases, the
probability of both responses tends to decrease. This issue is especially common in reasoning and
mathematical tasks, where multiple solution paths may involve similar equations or steps. Although
DPO achieves its goal by reducing the probability of the incorrect response more than the correct
one, it ultimately still lowers the likelihood of generating the correct response. This undermines
model performance, making it a failure mode despite partially fulfilling the DPO objective. (Pal
et al., 2024; Hwang et al., 2024). While previous methods mitigated this issue by maintaining a high
edit distance between positive and negative response pairs, DPO-Positive (Pal et al., 2024) addresses
it more effectively. It introduces an additional term to the DPO objective, penalizing any reduction in
the probability of the correct response below its probability under the reference model. This ensures
that the correct response is not overly suppressed, even when the edit distance is small. The final
objective of DPO-Positive is::

LDPO-Positive(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

)
︸ ︷︷ ︸

DPO Original term

− λ ·max

(
0, log

πref(yw|x)
πθ(yw|x)

)
︸ ︷︷ ︸

DPO-Positive additional term

)]
(18)

where λ is a hyperparameter controlling the weight of the additional term keeping the probabilities
of correct responses high. We chose DPO-Positive as a baseline due to its strong performance in
(Setlur et al., 2024).

RestEM (Singh et al., 2024) RestEM is an iterative method where, in each iteration, the base model
is trained on correct, self-generated responses from the chosen checkpoint of the previous iteration.
RestEM takes gradient steps to maximize this objective until the fine-tuned model’s accuracy drops
on a validation split. The objective of the fine-tuning process is to maximize the log-likelihood of
correct responses. Training the model with a maximum likelihood objective on correct responses is
mathematically equivalent to training the model with REINFORCE (Sutton et al., 1999), without a
baseline, where the entire response is treated as a single action. The reward is 1 when the response
is correct, and 0 otherwise. Specifically, we have:

Ex∼D,y∼π(·|x),R(x;y)=1 [∇θ logPθ(y|x)]︸ ︷︷ ︸
max log-likelihood on correct responses

= Ex∼D,y∼π(·|x) [∇θ logPθ(y|x)R(x;y)]︸ ︷︷ ︸
REINFORCE

(19)

Therefore, maximizing log-likelihood training on correct responses is equivalent to train with policy
gradient without precise credit assignment, such as without advantages for specific actions. In our
experiments, we observe the impact of this limitation in both Figure C.3 and Figure C.4 where
RestEM overfits on the training data.
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Figure C.3: Performance comparisons across different models and datasets: (a) RhoMath 1.1B on
GSM8K, (b) RhoMath 1.1B on MATH, (c) DeepSeekMath 7B on GSM8K, and (d) DeepSeekMath
7B on MATH. The yellow points are chosen checkpoints based on the RestEM rule. Within each
iteration, we train on the generated data of the chosen checkpoint for eight epochs and then we
choose the first place where performance on a validation split drops following Singh et al. (2024)

C.6 HYPERPARAMETERS

In this section, we present a comprehensive overview of the hyperparameters used in our experi-
ments. It’s important to note that the number of training samples was carefully selected to ensure
that the amount of training data remained consistent across all methods.

PPO Finetuning LLMs using PPO is known to be sensitive to hyperparameter selection, and find-
ing the optimal settings is critical for achieving strong performance. To ensure the robustness of our
study, we explored hyperparameter values reported in recent studies (Shao et al., 2024; Zheng et al.,
2023; Ivison et al., 2024; Huang et al., 2024) and conducted various sweeps across a wide range of
values to identify the best configuration for our tasks and models. The full set of hyperparameters,
along with their respective search spaces, is detailed in Table 1.

VinePPO We utilized the same hyperparameter setup as in the PPO implementation (Table 1) for
VinePPO. As outlined in Section 5, the number of MC samples, K, was set to 9 for all experiments.
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Figure C.4: A scatter plot showing the relationship between achieved training accuracy and test ac-
curacy at various checkpoints throughout training. This plot highlights the dynamics of overfitting
and generalization across different methods. As we progress from no credit assignment to accurate
credit assignment—from RestEM to DPO+, PPO, and finally VinePPO—generalization improves
and overfitting decreases. In other words, by treating the training dataset as a resource, VinePPO
achieves higher test accuracy per unit of training data consumed. Note that all these are fully trained.
Note that the training accuracy does not reach 100 percent due to several factors, including mecha-
nisms like the KL penalty in DPO+, PPO, and VinePPO, the reset to the base model in RestEM, or
the absence of any correct self-generated responses for certain questions.

RestEM To ensure fair comparison we equalize the number of sampled responses for training
between our RestEM run and our PPO runs. Therefore, in each RestEM iteration we sample 8
responses per prompt and train for 8 epochs on the correct responses. To enhance RestEM’s perfor-
mance, we also conducted a sweep of other reasonable parameters(Table 2). This included increas-
ing the number of samples to expand the training data and reducing the number of correct responses
per question to minimize overfitting.However, we observed no significant improvement .

DPO+ (DPO-Positive) We adopted the same hyperparameters as those used by Setlur et al.
(2024). In addition, we conducted a search for the optimal value of β to see if using the same
β as in our PPO experiments would yield better performance than the values they recommended.
To maintain a fair comparison, we ensured that the number of training samples in our DPO+ runs
matched those in our PPO run where we trained for eight epochs, with each epoch consisting of
training on eight responses per question. To match this, we generated 64 pairs of positive and nega-
tive responses given 64 self-generated responses from the base model. (Table 3)

C.7 TRAIN VS. TEST DURING TRAINING

When training on reasoning datasets, the training data can be viewed as a finite resource of learn-
ing signals. Algorithms that exhaust this resource through memorization tend to generalize less
effectively on the test set. As we move from RL-free methods or less accurate credit assignment
towards more accurate credit assignment, or full reinforcement learning—from RestEM to DPO,
PPO, and finally VinePPO—the model demonstrates higher test accuracy gains per unit of training
data consumed. This trend is illustrated in Figure C.4.
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Table 4: Average time spent per each training step for different methods and models measured for
MATH dataset

Method Model Hardware Average Training Step Time (s)

PPO RhoMath 1.1B 4 × Nvidia A100 80GB 80
VinePPO RhoMath 1.1B 4 × Nvidia A100 80GB 380

PPO DeepSeekMath 7B 8 × Nvidia H100 80GB 312
VinePPO DeepSeekMath 7B 8 × Nvidia H100 80GB 583

C.8 COMPUTE

All experiments were conducted using multi-GPU training to efficiently handle the computational
demands of large-scale models. For the RhoMath 1.1B model, we utilized a node with 4 × Nvidia
A100 80GB GPUs to train both PPO and VinePPO. For the larger DeepSeekMath 7B model, we
employed a more powerful setup, using a node with 8 × Nvidia H100 80GB GPUs. Addition-
ally, for training DeepSeekMath 7B models with the RestEM approach, we used a node with 4 ×
Nvidia A100 80GB GPUs. The average training step time for each method on the MATH dataset is
presented in Table 4.

C.9 SOFTWARE STACK

Both PPO and VinePPOrequire a robust and efficient implementation. For model implementation,
we utilize the Huggingface library. Training is carried out using the DeepSpeed distributed training
library, which offers efficient multi-GPU support. Specifically, we employ DeepSpeed ZeRO stage 0
(vanilla data parallelism) for RhoMath 1.1B and ZeRO stage 2 (shared optimizer states and gradients
across GPUs) for DeepSeekMath 7B . For trajectory sampling during RL training, we rely on the
vLLM library (Kwon et al., 2023), which provides optimized inference for LLMs. Additionally,
VinePPOleverages vLLM to generate Monte Carlo samples for value estimation. This software
stack ensures that our experiments are both efficient and reproducible. For instance, during VinePPO
training, we achieve an inference speed of up to 30K tokens per second using 8 × Nvidia H100 GPUs
with the DeepSeekMath 7B model.

C.10 REPRODUCIBILITY

In this study, all experiments were conducted using open-source libraries, publicly available datasets,
and open-weight LLMs. To ensure full reproducibility, we will release both Singularity and Docker
containers, equipped with all dependencies and libraries, enabling our experiments to be run on
any machine equipped with NVIDIA GPUs, now or in the future. Additionally, we will make our
codebase publicly available on GitHub at https://www.omitted.link.

D FULL RESULTS

D.1 TRAINING PLOTS

In this section, we present additional training plots for both PPO and VinePPO on the GSM8K
dataset, as shown in Figure D.5. Figure D.6 further illustrates the trade-off between accuracy and
KL divergence, while Figure D.7 highlights the computational efficiency of the models7.

We observe consistent patterns with the results reported in Section 6. Although the performance
gap for the DeepSeekMath 7B model is narrower on GSM8K, VinePPO still higher accuracy with
significantly lower KL divergence and faster per-iteration time (this happens because responses to
GSM8K problems are typically shorter, making MC estimation quite fast).

7For GSM8K runs of RhoMath 1.1B , different hardware was used, making direct comparison of wall-clock
time not feasible.
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Figure D.5: Comparison of the training behavior between VinePPO and PPO. VinePPO demon-
strates consistently higher accuracy throughout the training on the GSM8K dataset. Refer to Fig-
ure 5 for MATH dataset.
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Figure D.6: Task accuracy as a function of KL divergence during training on the GSM8K dataset.
VinePPO significantly higher accuracy per KL. Refer to Figure 6 for MATH dataset.

D.2 VALUE PREDICTION ANALYSIS

In this section, we provide additional plots for value analysis. Specifically, Figures D.8 to D.11
demonstrates these plots for on the MATH dataset, and Figures D.12 to D.15 on the GSM8K dataset.

Furthermore, we present the prediction error per step in Figures D.16 to D.19.
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throughout the entire training. Since the responses to GSM8K problems are short, VinePPO is even
faster per-iteration in our setup and it reaches PPO’s peak performance in fewer iterations and less
overall time.

Figure D.8: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).
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Figure D.9: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).

Figure D.10: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).
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Figure D.11: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).

Figure D.12: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).
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Figure D.13: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).

Figure D.14: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).
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Figure D.15: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).

0.15

0.20

0.25

0.30

0.15

0.20

0.25

0.12

0.16

0.20

0.08

0.12

0.16

0.20

0.10

0.12

0.14

0.16

0.06

0.07

0.08

0.09

0.10

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.08

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.08

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.0 0.5 1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.0 0.5 1.0

0.00

0.01

0.02

0.03

Reasoning Progress

M
A
E

PPO @ Step 60 PPO @ Step 120 PPO @ Step 360 PPO @ Step 420 PPO @ Step 840 PPO @ Step 960

VinePPO @ Step 60 VinePPO @ Step 120 VinePPO @ Step 360 VinePPO @ Step 420 VinePPO @ Step 840 VinePPO @ Step 960

Figure D.16: Visualizing the Mean Absolute Error (MAE) of the value predictions in different point
of reasoning chain, plotted for DeepSeekMath 7B on MATH dataset.
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Figure D.17: Visualizing the Mean Absolute Error (MAE) of the value predictions in different point
of reasoning chain, plotted for DeepSeekMath 7B on GSM8K dataset.
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Figure D.18: Visualizing the Mean Absolute Error (MAE) of the value predictions in different point
of reasoning chain, plotted for RhoMath 1.1B on MATH dataset.
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Figure D.19: Visualizing the Mean Absolute Error (MAE) of the value predictions in different point
of reasoning chain, plotted for RhoMath 1.1B on GSM8K dataset.
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Post-Submission Updates

• RLOO and GRPO Baselines (Appendix E)
• Updated Compute Efficiency Plots (Appendix F)

– RLOO and GRPO Efficiency (Appendix F)
– Effect of K in VinePPO’s Efficiency (Appendix F)

• Updated Value Prediction Analysis (Appendix G)
– Explained Variance and Mean Absolute Error (Appendix G)

• More Examples of Advantages in VinePPO (Appendix H)
• Difference Between Bias in Estimated Values and Bias in Policy Gradient (Appendix I)
• Updated “C.9 Software Stack” section (Appendix J)
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E RLOO AND GRPO BASELINES

As requested by the reviewers, we included RLOO and GRPO as baselines and trained RhoMath
1.1B on GSM8K and MATH using these methods. As shown in Figure E.20, both RLOO and GRPO
lag behind VinePPO. Comprehensive results and analysis are provided in Figures E.20 and E.21 and
F.20.1
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Figure E.20: Pass@1 Performance of RLOO and GRPO Baselines RLOO and GRPO outper-
form RestEM and match PPO on MATH but underperform PPO on GSM8K. VinePPO consistently
surpasses all baselines. This is expected as RLOO and GRPO lack fine-grained credit assignment
and use a shared baseline for all tokens. Their training is also less stable than VinePPO and PPO,
requiring a higher KL coefficient. This instability likely stems from high bias in value estimates,
leading to high-variance gradients. See analysis in Figures G.24 and G.25
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Figure E.21: Train vs. Test Accuracy This figure illustrates the generalization dynamics of various
methods. VinePPO demonstrates superior generalization compared to all other baselines.
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Figure E.20.1: Pass@1 Performance of RLOO and GRPO Baseline on DeepSeekMath 7B
RLOO outperforms RestEM and DPO+ but still underperforms both PPO and VinePPO on

GSM8K (left). In MATH, which is a more challenging task, RLOO underperform both PPO and
VinePPO (right).

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

F UPDATED COMPUTE EFFICIENCY PLOTS

RLOO and GRPO To evaluate the computational efficiency of these methods, we plotted test
accuracy against wall-clock time during training in Figure F.22.

Effect of K in VinePPO In addition to analyzing final performance in Figure 4, we examine the
impact of K on computational efficiency in Figure F.23.
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Figure F.22: Compute Efficiency of RLOO and GRPO. Accuracy vs. Wall Clock Time for all
methods, measured on the same hardware. On MATH, VinePPO reaches the peak performance
of RLOO and GRPO 2.7x and 2.2x faster, respectively, using identical computational resources.
Notably, on GSM8K, even PPO—despite training an additional network—outperforms RLOO and
GRPO in efficiency.
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Figure F.23: Effect of K on compute efficiency of VinePPO. Accuracy vs. Wall Clock Time for
runs with different K values, measured on the same hardware. Generally, VinePPO with higher K
achieves greater efficiency. VinePPO(K=9) slightly outperforms VinePPO(K=3), while both signif-
icantly surpass VinePPO(K=1). Despite higher K requiring nearly linear increases in computation,
this result highlights the strong impact of low-variance value estimates on training, which shifts the
trade-off toward improved efficiency with more samples.
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G UPDATED VALUE PREDICTION ANALYSIS

RLOO and GRPO use a shared baseline for all tokens in a response, resulting in high bias in value
estimation for individual steps. To illustrate this, we follow the protocol in Section 7 and present
the distribution of value predictions and the mean absolute error (MAE) across reasoning steps in
Figures G.24 and G.25.
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Figure G.24: Value prediction analysis of VinePPO, PPO, RLOO, and GRPO during training.
Distribution of predicted values for each state vs. ground truth (computed using 256 MC samples)
during training for RhoMath 1.1B on the MATH dataset, highlighting the nature of errors. While
RLOO and GRPO exhibit slightly lower MAE compared to PPO, their errors are still significantly
higher than VinePPO. Additionally, RLOO and GRPO estimates show a high bias, frequently as-
signing high values to states with a low probability of successfully completing the solution and vice
versa. This is expected, as RLOO and GRPO inherently assign the same value or baseline to all
steps in a response, lacking fine-grained credit assignment.
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Figure G.25: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training for RhoMath 1.1B on the GSM8K dataset. Similar to Figure G.24,
RLOO and GRPO exhibit lower MAE than PPO but significantly higher than VinePPO.
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G.1 EXPLAINED VARIANCE AND MEAN ABSOLUTE ERROR (MAE)

In addition to the analysis in Appendix G, we quantify the accuracy of value predictions using
explained variance and mean absolute error during training, as shown in Figure G.26.
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Figure G.26: Explained Variance and Mean Absolute Error of values. VinePPO demonstrates
higher explained variance in value predictions and lower mean absolute error compared to RLOO,
GRPO, and PPO across both datasets. Additionally, PPO’s value predictions show non-negative
explained variance values close to one, indicating stable and effective training. Furthermore, the
value network in PPO achieves lower error on GSM8K at the end of training than RLOO and GRPO,
highlighting that PPO’s value network can outperform simplistic baselines in certain scenarios.
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H MORE EXAMPLES OF ADVANTAGES IN VINEPPO

In addition to Figure 1, we provide more examples of effective advantage computation of Vine PPO
in Figures H.27 to H.29.

Prompt (s0) Advantage

The vertex of the parabola described by the equation y = −3x2 − 30x− 81 is (m,n). What is n?

Response

s1 0.0We can re-write the given equation as y = −3(x2 + 10x) − 81.

s2 0.2To complete the square, we add (−10/2)2 = 25 inside the parentheses:

s3 0.5y = −3(x2 + 10x + 25) − 81 − (−3)(25)

s4 0.0= −3(x + 5)2 − 81 + 75

s5 0.0= −3(x + 5)2 − 6.

s6 0.0The vertex of a parabola in the form a(x − h)2 + k is at the point (h, k),

s7 0.0so the vertex of the given parabola is at the point (−5,−6).

s8 0.0Therefore, n = −6 .

Example of Advantages Computed by VinePPO

Figure H.27: Steps s2 and s3 provide a critical insight for advancing the solution since they provide
a way to organize the equation.

Prompt (s0) Advantage

0.4Let f(x) = 2x − 3 and g(f(x)) = 5 − 4x. Find g(4).

Response

s1 0.0We know that g(f(x)) = 5 − 4x.

s2 −0.6So, if we can figure out what f(x) is when x = 4,

s3 0.0we can plug that value into g(f(x)) to find g(4).

s4 0.0Since f(x) = 2x − 3, we have f(4) = 2(4) − 3 = 5.

s5 0.0Therefore, g(f(4)) = g(5) = 5 − 4(5) = 5 − 20 = −15 .

Example ofAdvantages Computed by VinePPO

Figure H.28: This example demonstrates an error in step s2 where the correct step would be ...what
x is when f(x) = 4. This mistake prevents to model to successfully solve the question after s2.
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Prompt (s0) Advantage

Write the expression 4+3c
7 + 2 as a single fraction.

Response

s1 0.0We get a common denominator of 7:

s2 0.04+3c
7 + 2 = 4+3c

7 + 2·7
7

s3 −0.3= 4+3c
7 + 14

7

s4 0.4= 4+3c+14
7

s5 0.0=
18 + 3c

7
.

Example of Advantages Computed by VinePPO

Figure H.29: Steps s3 and s4, despite impacting the probability of solving the question, they are not
meaningfully incorrect or insightful.

I DIFFERENCE BETWEEN BIAS IN VALUE ESTIMATIONS AND IN POLICY
GRADIENT

Note that when λ = 1, the value estimates are used solely as a baseline. It is well-known that, in
this case, the policy gradient Eq 2 provides an unbiased estimate of the true values. However, it is
important to emphasize that the value estimates themselves can still be biased. Consequently, the
fact that the policy gradient is unbiased does not guarantee that the value estimates used to compute
the advantages are unbiased estimators of the true value of a given state.

J UPDATED “C.9 SOFTWARE STACK” SECTION

Both PPO and VinePPOrequire a robust and efficient implementation. For model implementation,
we utilize the Huggingface library. Training is carried out using the DeepSpeed distributed training
library, which offers efficient multi-GPU support. Specifically, we employ DeepSpeed ZeRO stage
0 (vanilla data parallelism) for RhoMath 1.1B and ZeRO stage 2 (shared optimizer states and gra-
dients across GPUs) for DeepSeekMath 7B . For trajectory sampling during RL training, we rely
on the vLLM library (Kwon et al., 2023), which provides optimized inference for LLMs. Addition-
ally, VinePPOleverages vLLM to generate Monte Carlo samples for value estimation. Specifically,
after each RL training iteration, the current policy’s checkpoint is loaded into vLLM. Then, we use
vLLM’s serving API to sample new trajectories and also Monte Carlo Samples for VinePPO’s value
estimation. In our setup, we spawn a separate vLLM engine on each GPU rank. This would al-
low for data parallelism during both sample generation and training. This software stack ensures
that our experiments are both efficient and reproducible. For instance, during VinePPO training, we
achieve an inference speed of up to 30K tokens per second using 8 × Nvidia H100 GPUs with the
DeepSeekMath 7B model.
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