
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VINEPPO: UNLOCKING RL POTENTIAL FOR LLM
REASONING THROUGH REFINED CREDIT ASSIGN-
MENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly applied to complex reasoning
tasks that require executing several complex steps before receiving any reward.
Properly assigning credit to these steps is essential for enhancing model perfor-
mance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement
learning (RL) algorithm used for LLM finetuning, employs value networks to
tackle credit assignment. However, value networks face challenges in predict-
ing the expected cumulative rewards accurately in complex reasoning tasks, often
leading to high-variance updates and suboptimal performance. In this work, we
systematically evaluate the efficacy of value networks and reveal their significant
shortcomings in reasoning-heavy LLM tasks, showing that they barely outperform
a random baseline when comparing alternative steps. To address this, we propose
VinePPO, a straightforward approach that leverages the flexibility of language
environments to compute unbiased Monte Carlo-based estimates, bypassing the
need for large value networks. Our method consistently outperforms PPO and
other RL-free baselines across MATH and GSM8K datasets with fewer gradient
updates (up to 9x), less wall-clock time (up to 3.0x). These results emphasize the
importance of accurate credit assignment in RL finetuning of LLM and demon-
strate VinePPO’s potential as a superior alternative.

1 INTRODUCTION

Large language models (LLMs) are increasingly used for tasks requiring complex reasoning, such as
solving mathematical problems (OpenAI, 2024), navigating the web (Zhou et al., 2024), or editing
large codebases (Jimenez et al., 2024). In these settings, LLMs often engage in extended reason-
ing steps, executing multiple actions to arrive at a solution. However, not all steps are equally
important—some contribute significantly, while others are irrelevant or detrimental. For example,
in Figure 1.a, only step s2 provides a key insight. Indeed, most reasoning steps generated by a
model do not affect the chance of it solving the problem (Figure 1.b). Identifying the contribution
of each action is crucial for improving model performance. However, this is inherently difficult due
to the significant delay between actions and their eventual effect. This issue, known as the credit
assignment problem, is a core challenge in reinforcement learning (RL, Sutton and Barto 1998).

Proximal Policy Optimization (PPO, Schulman et al. 2017; Ouyang et al. 2022), a state-of-the-art
algorithm for RL-based finetuning of LLMs (Xu et al., 2024; Ivison et al., 2024; Chang et al., 2023),
tackles credit assignment using a value network (or critic). This network, typically a separate model
initialized from a pretrained checkpoint, is trained during PPO finetuning to estimate the expected
cumulative rewards (or value) of an intermediate action. In Figure 1.b, an ideal value network
would assign high value to step s2 and subsequent steps, where the model predicted a critical action.
PPO uses these value estimates to measure the advantage of each action and update the model
accordingly.

Accurately modeling value—predicting future rewards from an incomplete response—requires the
value network to understand both the space of correct solutions (the very task the policy model is
trying to learn) and predict the model’s future behavior, both of which are inherently challenging. In
fact, there are hints in the literature that standard PPO implementations for LLMs have inaccurate

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Prompt (s0) p̂(correct|s:t)

0.4
Let a and b be nonzero real numbers such that
(2−7i)(a+bi) is pure imaginary. Find a

b .

Response

s1 0.4We can expand the left-hand side to get

s2 1.0(2 − 7i)(a + bi) = (2a + 7b) + (−7a + 2b)i.

s3 1.0This is pure imaginary if and only if the real part is 0, i.e.

s4 1.02a + 7b = 0.

s5 1.0Then a = − 7
2 b, so a

b = − 7
2 .

A Sample Response

0%

20%

40%

60%

-1.0 -0.5 0.0 0.5 1.0
0%

20%

40%

60%

D
eep

S
eekM

ath
 7B

R
h
oM

ath
 1.1B

p̂(correct|s:t+1) − p̂(correct|s:t)

Figure 1: (Left) A response generated by the model. The notation p̂(correct|s:t) represents the
estimated probability of successfully solving the problem at step t. Here, only step s2 is critical;
after this, the model completes the solution correctly. (Right) The delta in probability of successful
completion between response steps. Most steps show little or no advantage over the preceding step.

value estimations. Ahmadian et al. (2024) and Trung et al. (2024) find that value networks often
serve best as just a baseline in policy gradient1. Shao et al. (2024) show that the value network can
be replaced by averaging rewards of responses to a given problem without degradation in perfor-
mance. Since errors in value estimation can lead to poor credit assignment and negatively impact
convergence and performance (Greensmith et al., 2001), a natural question to ask is: how accurately
do value networks actually perform during LLM finetuning? If we could improve credit assignment,
to what extent would it enhance LLM performance? While recent studies (Hwang et al., 2024; Setlur
et al., 2024) have begun to highlight the importance of identifying incorrect reasoning steps and in-
corporating them via ad-hoc mechanisms in “RL-free” methods (Rafailov et al., 2023), the broader
question of how improving credit assignment might boost RL fine-tuning for LLMs remains open.

In this work, we evaluate the standard PPO pipeline in mathematical reasoning tasks across various
model sizes. We find that value networks consistently provide inaccurate estimates and struggle to
rank alternative steps correctly, suggesting that current PPO finetuning approaches for LLMs operate
without effective credit assignment. To address this issue and illustrate the effect of accurate credit
assignment, we propose VinePPO (Figure 2). Instead of relying on value networks, VinePPO com-
putes unbiased value estimates of intermediate states by using independent Monte Carlo (MC) sam-
ples and averaging their respective return. This straightforward modification to PPO takes advantage
of a special property of the language environment: the ability to easily reset to any intermediate state
along the trajectory.

VinePPO consistently outperforms standard PPO and “RL-free” baselines, especially on more chal-
lenging datasets. Despite its slower per-iteration speed, it reaches and surpasses PPO’s peak perfor-
mance with fewer gradient updates, resulting in less wall-clock time and lower KL divergence from
the base model. Our findings highlight the importance of precise credit assignment in LLM finetun-
ing and establishes VinePPO as a straightforward alternative to value network-based approaches.

Our contributions are as follows:

• We demonstrate the suboptimal credit assignment in standard PPO finetuning by analyzing the
value network, showing that it provides inaccurate estimates of intermediate state values and
barely outperforms a random baseline when ranking alternative steps (see Section 7 for details).

• We propose VinePPO, introduced in Section 4, which takes advantage of the flexibility of lan-
guage as an RL environment to compute unbiased value estimates, eliminating the need for large
value networks and reducing memory requirements (up to 112GB for a 7B LLM).

1setting the Generalized Advantage Estimation (GAE, Schulman et al. 2016) parameter λ = 1

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

x

...

yt−1

yt

...

V̂ϕ(x;y<t) =

ValNet(x;y<t)

(a)

Value Prediction
in PPO

0.42

x

...

yt−1

yt

...

τ ′
1

✓

τ ′
2 . . .

×

τ ′
K

✓

V̂MC(x;y<t) =

1/K
∑

k R(τ ′
k)

(b)

Value Prediction
in VinePPO

0.33

Figure 2: (a) PPO finetunes the model by adjusting action probabilities based on their advantage,
which is primarily guided by the value network’s value estimates. (b) VinePPO modifies standard
PPO and obtains values estimates by simply resetting to intermediate states and using MC samples.

• VinePPO highlights the significance of credit assignment: It outperforms PPO and other baselines,
especially on more challenging datasets. It achieves PPO’s peak performance with fewer iterations
(up to 9x), less wall-clock time (up to 3.0x), and better KL-divergence trade-off. See Section 6.

2 RELATED WORK

Credit Assignment in Post-Training of LLM PPO, as applied in RL from Human Feedback
(RLHF, Ouyang et al. 2022), pioneered RL finetuning of LLMs. However, its computational over-
head and hyperparameter sensitivity led to the development of simpler alternatives. RL-free methods
such as DPO (Rafailov et al., 2023) operate in a bandit setting, treating the entire response as a single
action. Similarly, rejection sampling methods like RestEM (Singh et al., 2024) finetune on full high-
reward responses. RLOO (Ahmadian et al., 2024) and GRPO (Shao et al., 2024) abandon PPO’s
value network, instead using average reward from multiple samples as a baseline. Recent work has
emphasized finer credit assignment, with Hwang et al. (2024) and Setlur et al. (2024) introducing
MC-based methods to detect key errors in reasoning chains for use as ad-hoc mechanisms in DPO.
Our work, by contrast, fully embraces the RL training, with the target of unlocking PPO’s poten-
tial. Parallel efforts have also focused on building better verifiers and reward models for per-step
feedback, with recent attempts to automate their data collection using MC rollouts (Ma et al., 2023;
Uesato et al., 2022; Luo et al., 2024; Wang et al., 2024). Our method is orthogonal to these methods,
operating within PPO-based training to optimize a given reward, instead of designing new ones.

Value Estimation in RL and Monte Carlo Tree Search (MCTS) Deep RL algorithms are typi-
cally categorized into value-based and policy-based methods. Policy-based methods like PPO usu-
ally employ critic networks for value prediction. An exception is the “Vine” variant of TRPO
(Schulman et al., 2015), which uses MC samples for state value estimation. The authors, however,
note that the Vine variant is limited to environments that allow intermediate state resets, rare in
typical RL settings2. However, language generation – when formulated as RL environment – en-
ables such intermediate reset capabilities. In domains with similar reset capabilities, such as Go and
Chess, MC-heavy methods like AlphaGo (Silver et al., 2016) and AlphaZero (Silver et al., 2017)
have emerged. AlphaGo’s architecture includes a policy, trained using expert moves and self-play,
and a value network that predicts game outcomes. At inference, it employs tree search guided by MC
rollouts and value network to select optimal moves. AlphaZero advances this approach by distilling
MCTS outcomes into the policy. Recent works have adapted AlphaZero’s principles to LLMs, em-
ploying similar search techniques during inference to improve responses and during training to find
better trajectories for distillation (Xie et al., 2024; Chen et al., 2024; Wan et al., 2024; Zhang et al.,
2024; Hao et al., 2023). While this is a promising direction, our method is not an MCTS approach;
it uses MC samples solely for value estimation during PPO training to improve credit assignment.

2This is reflected in the design of Gym (Towers et al., 2024), which only allows resets to the initial state.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Initial SFT RestEM DPO + PPO VinePPO

40

45

50

55

40.3

42.8

46.4

50.1

53.4

Initial SFT RestEM DPO + PPO VinePPO
15.0

17.5

20.0

22.5

25.0

15.5

17.3

19.2
18.1

23.0

Initial SFT RestEM DPO + PPO VinePPO

70

75

80

69.6

72.0

74.4

78.9
80.1

Initial SFT RestEM DPO + PPO VinePPO

35

40

45

32.8
34.9

37.6

42.8

46.0A
cc

u
ra

cy
 (

)

GSM8K

RhoMath 1.1B

MATH

RhoMath 1.1B

DeepSeekMath 7B DeepSeekMath 7B

Figure 3: VinePPO outperforms standard PPO and other RL-free baselines on Pass@1 performance
on MATH and GSM8K datasets, while also exhibiting scalability across different model sizes.

3 BACKGROUND

We focus on the RL tuning phase in the RLHF pipeline, following Ouyang et al. (2022); Shao et al.
(2024). In this section, we provide an overview of actor-critic finetuning as implemented in PPO.

RL Finetuning In this setup, the policy πθ represents a language model that generates a response
y = [y0, . . . , yT−1] autoregressively given an input x = [x0, . . . , xM−1]. The goal of RL finetuning
is to maximize the expected undiscounted (γ = 1) finite-horizon return, while incorporating a KL-
divergence constraint to regularize the policy and prevent it from deviating too far from a reference
policy πref (typically the initial supervised finetuned, SFT, model). The objective can be written as:

J(θ) = Ex∼D,y∼π(·|x) [R(x;y)]− βKL[πθ∥πref], (1)

where D is the dataset of prompts, R(x;y) is the complete sequence-level reward function, and β
controls the strength of the KL penalty. Note that the policy πθ is initialized from πref .

Language Environment as an MDP Language generation is typically modeled as a token-level
Markov Decision Process (MDP) in an actor-critic setting, where each response y is an episode.
The state at time step t, st ∈ S , is the concatenation of the input prompt and the tokens generated
up to that point: st = x;y<t = [x0, . . . , xM−1, y0, . . . , yt−1]. At each time step, the action at cor-
responds to generating the next token yt from fixed vocabulary. The process begins with the initial
state s0 = x, and after each action, the environment transitions to the next state, st+1 = st; [at],
by appending the action at to the current state st. In this case, since states are always constructed
by concatenating tokens, the environment dynamics are known and the transition function is de-
terministic, i.e., P (st+1|st, at) = 1. During the generation process, the reward rt is set to zero
for all intermediate actions at’s, with the sequence-level reward R(x;y) only applied at the final
step when the model stops generating. A trajectory τ = (s0, a0, s1, a1, . . .) is therefore a sequence
of state-action pairs, starting from the input prompt until the terminal state. Finally, we define the
cumulative return of a trajectory τ as R(τ) =

∑T−1
t=0 rt = rT−1 = R(x;y).

Policy Gradient Given this MDP formulation, policy gradient methods like PPO maximize
Equation 1 by repeatedly sampling trajectories and taking a step in the direction of the gradient
gpg := ∇θJ(θ) to update the parameters. Policy gradient gpg takes the following form:

gpg = Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at|st)A(st, at)

]
, where st = x;y<t, at = yt, (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

PPO VinePPO
(K = 1)

VinePPO
(K = 3)

VinePPO
(K = 9)

50%

52%

55%

50.1 50.1

51.9

53.4

Increasing Compute

PPO VinePPO
(K = 1)

VinePPO
(K = 3)

VinePPO
(K = 9)

15%

18%

20%

22%

25%

28%

18.1

19.9
21.2

23.0

Increasing Compute

A
cc

u
ra

cy
 (

)

GSM8K MATH

Figure 4: Impact of number of sampled trajectories K for estimating V̂MC(st), evaluated on
RhoMath 1.1B models. Increasing the number of rollouts improves task performance consistently.

where A(st, at) is the advantage function. If A(st, at) > 0, gpg will increase the probability
of action at in state st, and decrease it when A(st, at) < 0. Intuitively, the advantage function
quantifies how much better action at is compared to average actions taken in state st under the
policy. Formally, it is defined as:

A(st, at) = Q(st, at)− V (st) = rt + γV (st+1)− V (st), (3)

where Q(st, at) is the state-action value and V (st) is the per-state value function3. The value func-
tion, V (st) : S → R, offers a long-term assessment of how desirable a particular state is under
the current policy. Formally, it represents the expected cumulative reward obtained from starting in
state st and following the policy thereafter4: V (st) = Eτ∼πθ

[R(τ) | s0 = st] . PPO uses the same
advantage-weighted policy gradient as in Equation 2, but constrains policy updates through clipping
to ensure stable training. For full details, see Appendix A.

Estimating Advantage via Value Networks In practice, the advantage A(st, at) is not known
beforehand and is typically estimated by first using a value network V̂ϕ to approximate the true
value function V (st), then substituting the learned values into Equation 3 or alternative methods
like GAE (Schulman et al., 2016). The value network is parameterized by ϕ and trained alongside
the policy network πθ. The training objective for the value network minimizes the mean squared
error between the predicted value and the empirical return:

LV (ϕ) = Eτ∼πθ

[
1

T

∑
t

1

2
(V̂ϕ(st)−Gt)

2

]
, (4)

where Gt =
∑T−1

t′=t rt′ is the empirical return from state st. PPO uses the same objective for V̂ϕ but
enhances stability by applying clipping during training (see Appendix A.1 for details). In RL-tuning
of LLMs, the value network is often initialized using the initial SFT policy πref (or the reward model
when available), with the language modeling head swapped out for a scalar head to predict values
(Zheng et al., 2023). This setup leverages the prior knowledge of the pretrained model.

4 ACCURATE CREDIT ASSIGNMENT WITH VINEPPO

As outlined in Section 3, a step in the PPO gradient update aims to increase the probability of
better-than-average actions while decreasing the probability of those that perform worse—a process
quantified by the advantage A(st, at). However, the true advantage is generally unknown and must
be estimated, typically by substituting estimates from a value network into Equation 3. As we will
elaborate in Section 7, value networks are often inaccurate and result in biased value computation.
Fortunately, the language environment as an MDP (Section 3) offers a useful property that allows
for unbiased estimation of V (st). Since states are simply concatenated tokens, we can prompt the
language model πθ to generate continuations from any intermediate state. This flexibility allows

3Such derivation is possible as the language environment is deterministic.
4We drop the dependency on πθ for brevity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000

12%

16%

20%

24%

0 200 400 600 800 1000

32%

36%

40%

44%

Training Step

A
cc

u
ra

cy
 (

)

RhoMath 1.1B DeepSeekMath 7B

Method

VinePPO

PPO

Figure 5: Comparison of the training behavior between VinePPO and PPO. VinePPO demonstrates
consistently higher accuracy (as measured on the test set of MATH dataset) throughout the training.
Refer to Appendix D for more detailed plots.

us to explore alternative future paths from arbitrary points in a generation. Moreover, recent ad-
vancements in LLM inference engines (Kwon et al., 2023; Zheng et al., 2024) have dramatically
increased the speed of on-the-fly response generation5. This computational efficiency makes it fea-
sible to conduct fast environment simulation, opening up unique opportunities for RL training of
LLMs. VinePPO uses this property and estimates advantage via MC sampling. It only modifies the
way advantages are estimated, leaving the rest of the standard PPO pipeline intact (Figure 2).

We start by estimating the true value V (st). Instead of relying on a value network, for any intermedi-
ate state st, we sample K independent trajectories τk’s. The average return across these trajectories
serves as the value estimate:

V̂MC(st) :=
1

K

K∑
k=1

R(τk), where τ1, . . . , τK ∼ πθ(· | st). (5)

This is a MC estimate of V (st) = E [R(τ) | s0 = st] . Note that these trajectories are not trained on.
Once the value V̂MC(st) is computed, we estimate the advantages of each action using Equation 3:

ÂMC(st, at) := r(st, at) + γV̂MC(st+1)− V̂MC(st). (6)

For any K ≥ 1, the policy gradient computed using the advantage estimator ÂMC is an unbiased
estimate of the gradient of expected return gpg. To enhance the efficiency of ÂMC, we group states
within a reasoning step and compute a single advantage, which is assigned to all tokens in that step
(examples in Appendix B). This trades off granularity for efficiency, allowing finer resolution with
more compute, or coarser estimates with limited resources. The parameter K also offers another
trade-off between computational cost (i.e. more MC samples per state) and the variance of the
estimator. As shown in Section 6.1, even K = 1 performs well.

In essence, VinePPO is a straightforward modification to the PPO pipeline, altering only the advan-
tage computation. This minimal adjustment allows us to leverage PPO’s benefits while enabling a
systematic evaluation of the effect of unbiased advantage estimation and improved credit assign-
ment. In the following sections, we compare various aspects such as task performance, computa-
tional efficiency, KL divergence, and robustness to shed light on the nature of these approaches.

5 EXPERIMENTAL SETUP

Datasets and Pretrained LLMs We conduct our experiments using LLMs that show strong per-
formance on mathematical reasoning: DeepSeekMath 7B (Shao et al., 2024) and RhoMath 1.1B
(Lin et al., 2024), both of which have been trained on diverse mathematical and natural language
corpora. Having different sized models allows evaluating the effect of scaling. We focus on math-
ematical reasoning datasets MATH (Hendrycks et al., 2021), consisting of competition-level math-
ematical problems, and GSM8K (Cobbe et al., 2021), containing simpler grade-school level math

5up to 5K tokens/second on a single Nvidia A100 GPU for a 7B LLM loaded in bfloat16.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 10 20 30

15.0%

17.5%

20.0%

22.5%

0 5 10 15 20

30%

35%

40%

45%

KL[ref]

A
cc

u
ra

cy
 (

)

RhoMath 1.1B DeepSeekMath 7B

Method

VinePPO

PPO

Figure 6: Task accuracy as a function of KL divergence during training on the MATH dataset.
VinePPO achieves higher accuracy, reflecting more efficient credit assignment and focused updates.

word problems. Both datasets are well-established and present a range of difficulty levels that allow
for comprehensive evaluation. For each dataset, we finetune the base LLMs on its respective training
sets to obtain the initial SFT policy (πref). In all experiments, we employ full-parameter finetuning
to allow utilization of models’ full capacity (Sun et al., 2023; Biderman et al., 2024).

Evaluation We evaluate model performance on the test sets of each dataset, using accuracy
(Pass@1) as our primary metric, which measures the correctness of the final answers produced by
the models. As our baseline, we adopt the standard PPO framework, as commonly implemented for
LLM finetuning (Ouyang et al., 2022; Huang et al., 2024). Additionally, we compare them against
RL-free methods that doesn’t have explicit credit assignment mechanisms: RestEM (Singh et al.,
2024), a form of Iterative Rejection Finetuning (Yuan et al., 2023; Anthony et al., 2017) and DPO+

(Pal et al., 2024), variant of DPO with strong performance on reasoning tasks. All methods are
initialized from the same SFT checkpoint to ensure a fair comparison.

Training Details and Hyperparameters To ensure standard PPO (and its value network) has a
healthy training and our evaluation reflects its full potential, we first focus our hyperparameter search
on PPO parameters (such as KL penalty coefficient, batch size, minibatch size, GAE λ, number of
epochs per iteration) and apply all well-known techniques and best practices (Huang et al., 2024;
Ivison et al., 2024) in PPO tuning (Refer to Appendix C.2 for the full list). Following previous work
(Pal et al., 2024; Singh et al., 2024), we set the task reward R to be a binary function that only checks
final answer against the ground truth. VinePPO borrows the exact same hyperparameters from PPO
and only modifies the advantage A(st, at) estimation, keeping the rest of the pipeline unchanged.
This allows us to isolate the effect of accurate credit assignment. We found that sampling K = 9

trajectories in V̂MC performs well; the effect of varying K is fully analyzed in Section 6.1. For the
other baseline, we closely follow the original setup while ensuring consistency in training conditions
for a fair comparison. We choose the best checkpoint based on a held-out validation set for all
experiments. Full implementation details, including all hyperparameters and training procedures,
are provided in Appendix C.6.

6 RESULTS

We evaluate the effect of accurate credit assignment on four key measures of model finetuning ef-
ficiency and success: task performance, KL divergence, temperature tolerance, and computational
efficiency. Our experimental setup is designed to control for and isolate the impact of credit assign-
ment on each of these measures.

6.1 TASK PERFORMANCE

VinePPO consistently outperforms standard PPO throughout training (Figure 5) and other baselines
(Figure 3). More importantly, its performance gap widens in MATH which is a much more challeng-
ing reasoning task. Unlike VinePPO and PPO, DPO+ and RestEM lacks any explicit mechanisms
for credit assignment, opting instead to finetune the model on the full trajectory. Our experiments

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 10 20

16%

20%

24%

3.0x Faster

0 25 50 75

32%

36%

40%

44%
1.51x Faster

Wall Clock (Hours)

A
cc

u
ra

cy

RhoMath 1.1B DeepSeekMath 7B

Method

VinePPO

PPO

Figure 7: Accuracy vs. Wall Clock Time for both methods measured on the same hardware (shown
only up to PPO’s final performance). Despite VinePPO taking longer per iteration (up to 2x for 7B
and 5x for 1.1B models), it passes PPO’s peak performance in fewer iterations and less overall time.

show that these RL-free methods lags behind both PPO-based methods. For RestEM, the absence
of targeted credit assignments likely leads to overfitting (Appendix C.5).

To assess the impact of K, the number of MC samples used to estimate the value, we run an ablation
on RhoMath 1.1B, varying K from 1 to 3 and then to 9. As shown in Figure 4, VinePPO demon-
strates improved performance with higher K values, as more MC samples reduce the variance of
the ÂMC estimator. Notably, increasing K provides a reliable approach to leveraging additional
computational resources for better performance.

6.2 KL DIVERGENCE

0 100 200 300

30%

35%

40%

45%

Initial SFT

Training Step

Ac
cu

ra
cy

 (
)

Method VinePPO PPO

Temparature 0.6 0.8 1.0

Figure 8: Test set accuracy dur-
ing training with higher tempera-
ture presented for DeepSeekMath
7B and MATH dataset. VinePPO
can tolerate higher temperatures.

The RL objective (Equation 1) balances maximizing task per-
formance while constraining deviations from the initial policy
πref , measured by KL divergence. We analyze how VinePPO
and PPO navigate this trade-off by plotting task accuracy
against KL divergence KL[πθ∥πref] throughout training (Fig-
ure 6). Results show VinePPO consistently achieves higher ac-
curacy at same KL divergence, indicating more efficient use of
the “KL budget.” This efficiency stems from VinePPO’s more
precise credit assignment. As shown in Figure 1, many ad-
vantages are zero, and VinePPO excludes these steps from the
loss. By avoiding unnecessary updates on non-contributing to-
kens, VinePPO reduces non-essential parameter adjustments
that would inflate KL. See Appendix D.1 for full results.

6.3 TEMPERATURE TOLERANCE

Sampling temperature is a critical hyperparameter controlling
the randomness of sampled trajectories. At higher temper-
atures models generates more diverse trajectories, accelerat-
ing early training through increased exploration. However,
this diversity challenges PPO’s value network, requiring gen-
eralization over a wider range of states. We compared VinePPO and PPO using temperatures
T ∈ {0.6, 0.8, 1.0} over the initial third of training steps. Figure 8 shows VinePPO consistently
benefits from higher temperatures, achieving faster convergence. Conversely, PPO fails to benefit
from increased exploration and even diverges at T = 1.0, where trajectories are most diverse.

6.4 COMPUTATIONAL EFFICIENCY

VinePPO and PPO require different resources: PPO uses a separate value network, requiring two
times more GPU memory (up to 112GB for a 7B LLM, considering both model and its optimizer);
VinePPO, conversely, relies on MC samples. This skips value network’s memory requirements, but
shifts the computational burden to increased LLM inferences, making VinePPO generally slower

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.00

0.25

0.50

0.75

1.00
MAE: 0.27 MAE: 0.16 MAE: 0.16 MAE: 0.09

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00
MAE: 0.04

0.00 0.25 0.50 0.75 1.00

MAE: 0.04

0.00 0.25 0.50 0.75 1.00

MAE: 0.04

0.00 0.25 0.50 0.75 1.00

MAE: 0.01

Ground Truth Value

P
re

d
ic

te
d
 V

al
u
e

Training Step: 60 Training Step: 360 Training Step: 540 Training Step: 960

PPO
VinePPO

Figure 9: Distribution of predicted values for each state vs. ground truth (computed using 256 MC
samples) during training for DeepSeekMath 7B on MATH dataset, highlighting the nature of errors.
VinePPO achieves much lower Mean Absolute Error (MAE).

per iteration (up to 5x for RhoMath 1.1B and 2x for DeepSeekMath 7B). However, the effect
of VinePPO’s accurate credit assignment is substantial. Although slower per iteration, VinePPO
achieves PPO’s peak accuracy in fewer gradient steps and less wall-clock time. Figure 7 shows
RhoMath 1.1B and DeepSeekMath 7B require about 3.0x and 1.51x less time and 9x and 2.8x fewer
steps. This improvement occurs despite all hyperparameters being tuned for PPO. Therefore, switch-
ing to VinePPO offers a way to enhance performance within the same compute budget and serves as
the only option when memory is constrained.

7 VALUE PREDICTION ANALYSIS

In this section, we explore the underlying reasons for the performance gap between PPO and
VinePPO by closely analyzing the value prediction of both methods. First, we establish a “ground
truth” value at each reasoning step within trajectories by running many MC samples (256 in our
case) and averaging the returns. This provides a low-variance reference value. We then compare the
value predictions in both methods against this ground truth. We present the results for DeepSeek-
Math 7B on the MATH dataset (full analysis with other models and datasets in Appendix D.2).

Accuracy Figure 9 presents the distribution of value predictions at each reasoning step. The er-
rors produced by VinePPO and PPO differ significantly. VinePPO’s estimates are unbiased, with
variance peaking at 0.5 and dropping to zero at 0 and 1. PPO’s value network shows high bias, often
misclassifying bad states (ground truth near 0) as good and vice versa. To further visualize accuracy,
we classify a value prediction as “correct” if it falls within 0.05 of the ground truth. The accuracy of
this formulation is shown in Figure 11.a. PPO’s value network starts with low accuracy, gradually
improving to 65%. VinePPO, however, consistently achieves 70-90% accuracy throughout training.

Top Action Identification In value-based RL, ranking actions correctly is more crucial than ab-
solute value accuracy. While PPO, as a policy gradient method, requires accurate value estimates
to compute meaningful advantages, it is still a compelling question whether PPO’s value network,
despite its bias, can maintain correct action ranking. To investigate, we sample five new next steps
from the same initial state and evaluate if the method correctly identifies the resulting next state
with the highest ground truth value. As shown in Figure 11.b, PPO’s value network performs near
chance levels for much of the training, with slight improvements over time. In contrast, VinePPO
consistently identifies the top action with high accuracy throughout training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0

0.15

0.20

0.25

0.30

0.0 0.5 1.0

0.12

0.14

0.16

0.18

0.20

0.0 0.5 1.0

0.06

0.07

0.08

0.09

0.10

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.08

0.0 0.5 1.0
0.00

0.03

0.05

0.08

0.0 0.5 1.0

0.00

0.01

0.02

0.03

Reasoning Progress

M
A
E

PPO @ Step 60 PPO @ Step 540 PPO @ Step 960 VinePPO @ Step 60 VinePPO @ Step 540 VinePPO @ Step 960

Figure 10: Visualizing the Mean Absolute Error (MAE) of the value predictions at different point
of the reasoning chain. Value Network in PPO fails to generalize as the reasoning chain progresses,
while VinePPO’s value estimates become more accurate as the model become more deterministic.

250 500 750 1000
0%

25%

50%

75%

100%

(a) Value Prediction

Step

A
cc

u
ra

cy

300 400 500 600 700
0%

25%

50%

75%

100%

Random Chance

(b) Top Action Identification

Step

A
cc

u
ra

cy

Method

VinePPO

PPO

Figure 11: (a) Value prediction accuracy formulated as a classification problem, where a prediction
is considered correct if it falls within 0.05 of the ground truth. (b) Accuracy of identifying the top
action in a set of five possible next states. VinePPO consistently outperforms the value network.

Error Per Reasoning Step To understand value computation mechanisms, we visualize the pre-
diction error at each reasoning step within a trajectory. As shown in Figure 10, PPO’s estimation
error increases as reasoning progresses. We hypothesize this occurs because early steps have lower
diversity and resemble training data more, allowing the value network to rely on memorization.
Later, as space of states become much larger, they become unfamiliar and the network struggles to
generalize. VinePPO’s prediction error decreases with reasoning progression. We attribute this to
the model becoming more deterministic in later steps as it conditions on bigger and longer context.
This determinism enables more accurate estimates from the same number of MC samples.

8 DISCUSSION

Accurate credit assignment has profound implications on the performance of RL tuning of LLMs.
As we’ve demonstrated, standard PPO, despite outperforming most RL-free baselines, suffers from
suboptimal value estimation. More importantly, its scaling behavior is concerning; PPO struggles
with increasingly diverse trajectories and tends to perform worse as tasks become more complex.

VinePPO, on the other hand, is a viable alternative. As shown in Section 6.4, it offers lowered mem-
ory requirements and better performance with the same computational budget. VinePPO could also
be a particularly attractive option for frontier LLMs as even doubling the post-training compute is
negligible compared to their pre-training costs (Ouyang et al., 2022)6. Given the major investments
in pre-training compute and data collection of these models, it is imperative for model developers
to employ post-training methods that provide more accurate updates, avoiding the high-variance
adjustments caused by inferior credit assignment. Additionally, VinePPO offers a straightforward
scaling axis: increasing the number of MC samples directly enhances performance with additional
compute. Unlike recent approaches that focus on increasing inference-time compute to boost per-
formance (OpenAI, 2024; Bansal et al., 2024), VinePPO’s training compute is amortized over all
future inferences. Note that the computational workload of VinePPO is highly parallelizable with
linear scalability, making it well-suited for large-scale training.

6For example, InstructGPT used nearly 60 times more compute for pre-training (Ouyang et al., 2022).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

The unique properties of the language environment are what enabled VinePPO to be viable credit
assignment option; it may have limited practical use in traditional deep RL policy gradient methods.
This suggests that adapting RL techniques to LLMs requires careful consideration and perhaps a
reevaluation of underlying assumptions. Overall, our work highlights the potential of well-tuned RL
finetuning strategies with proper credit assignment, and we hope it encourages further research into
optimizing RL post-training pipelines for LLMs.

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. 2024. Back to Basics: Revisiting REINFORCE-style Optimiza-
tion for Learning from Human Feedback in LLMs. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, pages
12248–12267, Bangkok, Thailand. Association for Computational Linguistics.

Thomas Anthony, Zheng Tian, and David Barber. 2017. Thinking Fast and Slow with Deep Learning
and Tree Search. In Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,, pages
5360–5370, USA.

Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q. Tran, and Mehran Kazemi. 2024.
Smaller, Weaker, Yet Better: Training LLM Reasoners via Compute-optimal Sampling. CoRR,
abs/2408.16737.

Dan Biderman, Jose Javier Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor
Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and John P.
Cunningham. 2024. LoRA Learns Less and Forgets Less. CoRR, abs/2405.09673.

Jonathan D Chang, Kiante Brantley, Rajkumar Ramamurthy, Dipendra Misra, and Wen Sun. 2023.
Learning to generate better than your llm. arXiv preprint arXiv:2306.11816.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. 2024. AlphaMath Almost Zero: process
Supervision without process. CoRR, abs/2405.03553.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. 2021. Training Verifiers to Solve Math Word Problems. CoRR, abs/2110.14168.

Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. 2001. Variance Reduction Techniques for
Gradient Estimates in Reinforcement Learning. In Advances in Neural Information Processing
Systems 14 [Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, Decem-
ber 3-8, 2001, pages 1507–1514, Vancouver, British Columbia, Canada. MIT Press.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
2023. Reasoning with Language Model is Planning with World Model. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, pages
8154–8173, Singapore. Association for Computational Linguistics.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. 2021. Measuring Mathematical Problem Solving With the MATH Dataset.
In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021.

Shengyi Huang, Michael Noukhovitch, Arian Hosseini, Kashif Rasul, Weixun Wang, and Lewis
Tunstall. 2024. The N+ Implementation Details of RLHF with PPO: A Case Study on TL;DR
Summarization. CoRR, abs/2403.17031.

Hyeonbin Hwang, Doyoung Kim, Seungone Kim, Seonghyeon Ye, and Minjoon Seo. 2024. Self-
explore to Avoid the Pit: Improving the Reasoning Capabilities of Language Models with Fine-
grained Rewards. CoRR, abs/2404.10346.

11

https://doi.org/10.18653/V1/2024.ACL-LONG.662
https://doi.org/10.18653/V1/2024.ACL-LONG.662
https://proceedings.neurips.cc/paper/2017/hash/d8e1344e27a5b08cdfd5d027d9b8d6de-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d8e1344e27a5b08cdfd5d027d9b8d6de-Abstract.html
https://doi.org/10.48550/ARXIV.2408.16737
https://doi.org/10.48550/ARXIV.2405.09673
https://doi.org/10.48550/ARXIV.2405.03553
https://doi.org/10.48550/ARXIV.2405.03553
http://arxiv.org/abs/2110.14168
https://proceedings.neurips.cc/paper/2001/hash/584b98aac2dddf59ee2cf19ca4ccb75e-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/584b98aac2dddf59ee2cf19ca4ccb75e-Abstract.html
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.507
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/ARXIV.2403.17031
https://doi.org/10.48550/ARXIV.2403.17031
https://doi.org/10.48550/ARXIV.2404.10346
https://doi.org/10.48550/ARXIV.2404.10346
https://doi.org/10.48550/ARXIV.2404.10346

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu Wu, Valentina Pyatkin, Nathan Lambert,
Noah A. Smith, Yejin Choi, and Hannaneh Hajishirzi. 2024. Unpacking DPO and PPO: Dis-
entangling Best Practices for Learning from Preference Feedback. CoRR, abs/2406.09279.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. 2024. SWE-bench: Can Language Models Resolve Real-world Github Issues? In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria.
OpenReview.net.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient Memory Management for Large Language
Model Serving with PagedAttention. In Proceedings of the 29th Symposium on Operating Systems
Principles, SOSP 2023, pages 611–626, Koblenz, Germany. ACM.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay V.
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. 2022. Solving Quantitative Reasoning Problems
with Language Models. In Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. 2024. Let’s Verify Step by Step. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria.
OpenReview.net.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
Yang, Jian Jiao, Nan Duan, and Weizhu Chen. 2024. Rho-1: Not All Tokens Are What You
Need. CoRR, abs/2404.07965.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. 2024. Improve Mathematical Reasoning in
Language Models by Automated Process Supervision. CoRR, abs/2406.06592.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
2023. Let’s reward step by step: Step-level reward model as the Navigators for Reasoning. CoRR,
abs/2310.10080.

OpenAI. 2024. OpenAI o1 System Card.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. 2022. Training language models to follow instructions with human feed-
back. In Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA.

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
2024. Smaug: Fixing Failure Modes of Preference Optimisation with DPO-positive. CoRR,
abs/2402.13228.

Qwen. 2024. Qwen2.5-Math: The world’s leading open-sourced mathematical LLMs. https:
//qwenlm.github.io/blog/qwen2.5-math/. Accessed: 2024-09-23.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
Chelsea Finn. 2023. Direct Preference Optimization: Your Language Model is Secretly a Re-
ward Model. In Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA.

John Schulman. 2020. Notes on the KL-divergence Approximation. http://joschu.net/
blog/kl-approx.html. Accessed: 2024-09-23.

12

https://doi.org/10.48550/ARXIV.2406.09279
https://doi.org/10.48550/ARXIV.2406.09279
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.48550/ARXIV.2404.07965
https://doi.org/10.48550/ARXIV.2404.07965
https://doi.org/10.48550/ARXIV.2406.06592
https://doi.org/10.48550/ARXIV.2406.06592
https://doi.org/10.48550/ARXIV.2310.10080
https://api.semanticscholar.org/CorpusID:272684752
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2402.13228
https://qwenlm.github.io/blog/qwen2.5-math/
https://qwenlm.github.io/blog/qwen2.5-math/
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. 2015. Trust
Region Policy Optimization. In Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 1889–
1897, Lille, France. JMLR.org.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. 2016. High-
dimensional Continuous Control Using Generalized Advantage Estimation. In 4th International
Conference on Learning Representations, ICLR 2016Proceedings, San Juan, Puerto Rico.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal
Policy Optimization Algorithms. CoRR, abs/1707.06347.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. 2024.
RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning by Eight-fold.
CoRR, abs/2406.14532.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. 2024. DeepSeekMath: Pushing the Limits of Mathematical Reasoning in
Open Language Models. CoRR, abs/2402.03300.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the
game of Go with deep neural networks and tree search. Nat., 529(7587):484–489.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen
Simonyan, and Demis Hassabis. 2017. Mastering Chess and Shogi by Self-play with a General
Reinforcement Learning Algorithm. CoRR, abs/1712.01815.

Avi Singh, John D. Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Pe-
ter J. Liu, James Harrison, Jaehoon Lee, Kelvin Xu, Aaron T. Parisi, Abhishek Kumar, Alexan-
der A. Alemi, Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet, Gamaleldin Fathy El-
sayed, Hanie Sedghi, Igor Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jeffrey Pen-
nington, Jiri Hron, Kathleen Kenealy, Kevin Swersky, Kshiteej Mahajan, Laura Culp, Lechao
Xiao, Maxwell L. Bileschi, Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin, Yundi
Qian, Yamini Bansal, Ethan Dyer, Behnam Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel.
2024. Beyond Human Data: Scaling Self-training for Problem-solving with Language Models.
Transactions on Machine Learning Research, 2024.

Xianghui Sun, Yunjie Ji, Baochang Ma, and Xiangang Li. 2023. A Comparative Study between Full-
parameter and LoRA-based Fine-tuning on Chinese Instruction Data for Instruction Following
Large Language Model. CoRR, abs/2304.08109.

Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement Learning. In Intro-
duction to Reinforcement Learning.

Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. 1999. Policy Gradient
Methods for Reinforcement Learning with Function Approximation. In Advances in Neural In-
formation Processing Systems 12, [NIPS Conference, pages 1057–1063, Denver, Colorado, USA.
The MIT Press.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
et al. 2023. Llama 2: Open Foundation and Fine-tuned Chat Models. CoRR, abs/2307.09288.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. 2024. Gymnasium: A
standard interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032.

13

http://proceedings.mlr.press/v37/schulman15.html
http://proceedings.mlr.press/v37/schulman15.html
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/ARXIV.2406.14532
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.1038/NATURE16961
https://doi.org/10.1038/NATURE16961
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://openreview.net/forum?id=lNAyUngGFK
https://doi.org/10.48550/ARXIV.2304.08109
https://doi.org/10.48550/ARXIV.2304.08109
https://doi.org/10.48550/ARXIV.2304.08109
https://api.semanticscholar.org/CorpusID:261579713
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
https://doi.org/10.48550/ARXIV.2307.09288

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Luong Quoc Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. 2024. ReFT:
Reasoning with Reinforced Fine-tuning. In Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), ACL 2024, pages 7601–7614,
Bangkok, Thailand. Association for Computational Linguistics.

Jonathan Uesato, Nate Kushman, Ramana Kumar, H. Francis Song, Noah Y. Siegel, Lisa Wang,
Antonia Creswell, Geoffrey Irving, and Irina Higgins. 2022. Solving math word problems with
process- and outcome-based feedback. CoRR, abs/2211.14275.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
Jun Wang. 2024. AlphaZero-like Tree-search can Guide Large Language Model Decoding and
Training. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna,
Austria. OpenReview.net.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. 2024. Math-shepherd: Verify and reinforce llms step-by-step without human annotations.
CoRR, abs/2406.06592.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi,
and Michael Shieh. 2024. Monte Carlo Tree Search Boosts Reasoning via Iterative Preference
Learning. CoRR, abs/2405.00451.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. 2024. Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study. In
Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria. Open-
Review.net.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou. 2023.
Scaling Relationship on Learning Mathematical Reasoning with Large Language Models. CoRR,
abs/2308.01825.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. 2024. ReST-MCTS*: LLM
Self-training via Process Reward Guided Tree Search. CoRR, abs/2406.03816.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. 2024. Sglang:
Efficient execution of structured language model programs. CoRR, abs/2312.07104.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin,
Qin Liu, Yuhao Zhou, Limao Xiong, Lu Chen, Zhiheng Xi, Nuo Xu, Wenbin Lai, Minghao Zhu,
Cheng Chang, Zhangyue Yin, Rongxiang Weng, Wensen Cheng, Haoran Huang, Tianxiang Sun,
Hang Yan, Tao Gui, Qi Zhang, Xipeng Qiu, and Xuanjing Huang. 2023. Secrets of RLHF in
Large Language Models Part I: PPO. CoRR, abs/2307.04964.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. 2024. WebArena:
A Realistic Web Environment for Building Autonomous Agents. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria. OpenReview.net.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul F.
Christiano, and Geoffrey Irving. 2019. Fine-tuning Language Models from Human Preferences.
CoRR, abs/1909.08593.

14

https://doi.org/10.18653/V1/2024.ACL-LONG.410
https://doi.org/10.18653/V1/2024.ACL-LONG.410
https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.48550/ARXIV.2211.14275
https://openreview.net/forum?id=C4OpREezgj
https://openreview.net/forum?id=C4OpREezgj
http://arxiv.org/abs/2312.08935
https://doi.org/10.48550/ARXIV.2405.00451
https://doi.org/10.48550/ARXIV.2405.00451
https://openreview.net/forum?id=6XH8R7YrSk
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2406.03816
https://doi.org/10.48550/ARXIV.2406.03816
http://arxiv.org/abs/2312.07104
http://arxiv.org/abs/2312.07104
https://doi.org/10.48550/ARXIV.2307.04964
https://doi.org/10.48550/ARXIV.2307.04964
https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx
http://arxiv.org/abs/1909.08593

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A REVIEWING PPO

PPO, as used in RL tuning of LLMs, formulates language generation as token-level MDP (Sec-
tion 3), where each response y is an episode. The state at time step t, st ∈ S , is the concatenation
of the prompt and the tokens generated so far: st = x;y<t = [x0, . . . , xM−1, y0, . . . , yt−1]. The
action at corresponds to generating the next token yt from the model’s vocabulary. Given a prompt
x, an episode of this MDP starts from the initial state s0 = x, and with each action taken, the
environment moves to a subsequent state, st+1 = st; [at], by adding the action at to the existing
state st. In the language environment, because states are always formed by concatenating tokens,
the environment dynamics are fully known, and the transition function is deterministic, meaning
P (st+1|st, at) = 1. Throughout the generation process, the reward rt is set to zero for all inter-
mediate actions at, with the sequence-level reward R(x;y) applied only at the final step when the
model stops the generation. That is:

rt = r(st, at) =

{
R(x;y) if t = T − 1, where st+1 = y is terminal,
0 otherwise.

(7)

A trajectory τ = (s0, a0, s1, a1, . . .) thus represents a sequence of state-action pairs that begins at
the input prompt and continues until reaching the terminal state. Finally, the cumulative return of a
trajectory τ is defined as R(τ) =

∑T−1
t=0 rt = rT−1 = R(x;y).

The goal of RL tuning is to maximize the expected return of the model’s responses to prompts in
the dataset, as defined by the reward function R (Equation 1). PPO, similar to other policy gradi-
ent methods, achieves this goal by repeatedly sampling trajectories for a batch of prompt sampled
from D and taking multiple optimization steps in the direction of the gradient gppo to update the
parameters. PPO gradient gppo is defined as the gradient of the following loss:

Lppo(θ) = Eτ∼πθk

[
T−1∑
t=0

min

(
πθ(at | st)
πθk(at | st)

Aθk
t , clip(θ)Aθk

t

)
− βKL[πθ ∥ πref]

]
(8)

where πθk is the policy at the previous iteration, ϵ is the clipping parameter, β is the KL penalty
coefficient, Aθk

t = Aθk(st, at) is the advantage estimate for policy πθk , and the clip(θ) function is:

clip(θ) = clip
(

πθ(at | st)
πθk(at | st)

, 1− ϵ, 1 + ϵ

)
. (9)

Note that the KL penalty could be also added to the reward function R. We follow the more recent
implementations (Shao et al., 2024; Qwen, 2024), where it is added to the loss function. The KL
term can be computed using the following unbiased estimator (Schulman, 2020):

K̂L(θ) =
πref(at | st)
πθ(at | st)

− log
πref(at | st)
πθ(at | st)

− 1, (10)

where πref denotes the reference model (initial SFT).

A.1 VALUE NETWORK

In addition to the policy πθ, PPO also trains a separate value network V̂ϕ to obtain an estimate the
true values V (st) of states st. Parameterized by ϕ, the value network is trained alongside the policy
network πθ using the following loss:

LValNet(ϕ) =
1

2
Eτ∼πθ

[
1

T

T−1∑
t=0

max
(∥∥∥V̂ϕ(st)−Gt

∥∥∥2, ∥∥∥clip(ϕ)−Gt

∥∥∥2)] (11)

where V̂ϕk
is the value network at the previous iteration, Gt =

∑T−1
t′=t γ

t′−trt′ is the empirical return
from state st, ϵ′ is a value clipping parameter, and the clip(θ) is defined as:

clip(ϕ) = clip
(
V̂ϕ(st), V̂ϕk

(st)− ϵ′, V̂ϕk
(st) + ϵ′

)
. (12)

In RL-tuning of LLMs, the value network is typically initialized from the initial policy πref (or the
reward model, if available), replacing the language modeling head with a scalar output head to pre-
dict values (Zheng et al., 2023) This approach takes advantage of the base model’s prior knowledge
for value estimation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Prompt
If we express 3x2 + x− 4 in the form a(x− h)2 + k, then
what is k?

Response

We complete the square.† First, we factor 3 out of the

terms 3x2 + x to get 3
(
x2 + x

3

)
.† We can square x + 1

6

to get x2 + x
3 + 1

36 , so†

3

(
x
2
+

x

3

)†
= 3

[(
x +

1

6

)2

−
1

36

]†

= 3

(
x +

1

6

)2

−
3

36

†

= 3

(
x +

1

6

)2

−
1

12
,
†

and

3

(
x
2
+

x

3

)
− 4

†
= 3

(
x +

1

6

)2

−
1

12
− 4

†

= 3

(
x +

1

6

)2

−
49

12
.

We see that k =† −
49

12
.†

Prompt
Suppose the roots of the polynomial x2−mx+n are positive
prime integers (not necessarily distinct). Given that m < 20,
how many possible values of n are there?

Response

Let p and q be the prime roots.† Then, we know that

m = p + q and n = pq.† Since m < 20, the primes p

and q must both be less than 20.†

The primes less than 20 are 2, 3, 5, 7, 11, 13, 17, 19.†

Now we list all possible pairs (p, q) such that p + q < 20,†

remembering to also include the cases in which p = q:†

(2, 2), (2, 3), (2, 5), (2, 7), (2, 11), (2, 13), (2, 17)
†

(3, 3), (3, 5), (3, 7), (3, 11), (3, 13)
†

(5, 5), (5, 7), (5, 11), (5, 13)
†

(7, 7), (7, 11)

There are 7 + 5 + 4 + 2 = 18 pairs in total.† Each pair

produces a value for n, and furthermore,† these values are

all distinct, because every positive integer has a unique prime

factorization.† Thus, there are 18 possible values for n.†

Figure B.1: Examples of solutions separated into its reasoning steps on the MATH dataset. Steps
are highlighted using distinct colors. † denotes the reasoning step boundary.

Advantage Estimation Once the estimated values V̂ϕ(st) are obtained, the advantages A(st, at)
are computed using the GAE (Schulman et al., 2016):

A(st, at) ≈ ÂGAE(st, at) (13)

= (1− λ)
(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . .

)
(14)

=

∞∑
l=0

(γλ)lδt+l (15)

=

∞∑
l=0

(γλ)l
(
rt+l + γV̂ϕ(st+l+1)− V̂ϕ(st+l)

)
(16)

where δt = rt + γV̂ϕ(st+1)− V̂ϕ(st) is the temporal difference error, λ is the GAE parameter, and
γ is the discount factor. Also, we have:

Â
(k)
t :=

k−1∑
l=0

γlδt+l = rt + γrt+1 + · · ·+ γk−1rt+k−1 + γkV̂ϕ(st+k)− V̂ϕ(st). (17)

Adjusting the GAE parameter λ allows for a trade-off between bias and variance in the advantage
estimates. However, as we discuss in Appendix C.6, we found that λ = 1 works best in our exper-
iments (similar to the findings of Trung et al. (2024) and Ahmadian et al. (2024)). In this case, the
GAE simplifies to the following form (assuming γ = 1): ÂGAE(st, at) =

∑T−1
t′=t rt′ − V̂ϕ(st).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Prompt
Tobias is buying a new pair of shoes that costs $95. He
has been saving up his money each month for the past three
months. He gets a $5 allowance a month. He also mows lawns
and shovels driveways. He charges $15 to mow a lawn and $7
to shovel. After buying the shoes, he has $15 in change. If he
mows 4 lawns, how many driveways did he shovel?

Response

He saved up $110 total because 95 + 15 = 110†

He saved $15 from his allowance because 3 x 5 = 15†

He earned $60 mowing lawns because 4 x 15 = 60†

He earned $35 shoveling driveways because 110-60-15 = 35†

He shoveled 5 driveways because 35 / 7 = 5.

5†

Prompt
Tim rides his bike back and forth to work for each of his 5
workdays. His work is 20 miles away. He also goes for a
weekend bike ride of 200 miles. If he can bike at 25 mph how
much time does he spend biking a week?

Response

He bikes 20 x 2 = 40 miles each day for work.†

So he bikes 40 x 5 = 200 miles for work†

That means he bikes a total of 200+200 =400 miles for work†

So he bikes a total of 400 / 25=16 hours

16†

Figure B.2: Examples of solutions separated into its reasoning steps on the GSM8K dataset. Steps
are highlighted using distinct colors. † denotes the reasoning step boundary.

B REASONING STEP SEPARATION EXAMPLES

In this section, we outline the methodology used to segment solutions into discrete reasoning steps
for the MATH and GSM8K datasets, as illustrated in Figures B.1 and B.2.

For the MATH dataset, we begin by splitting solutions based on clear natural boundaries such as
newline characters or punctuation marks (e.g., periods or commas). Care is taken to avoid splitting
within mathematical expressions, ensuring that mathematical formulas remain intact. After this
initial segmentation, if any resulting step exceeds 100 characters, we further try to divide it by
identifying logical breakpoints, such as equal signs (=) within math mode.

For the GSM8K dataset, we take a simpler approach, segmenting the reasoning steps by newlines
alone as with this task newlines already serve as natural delimiters.

C EXPERIMENTAL DETAILS

C.1 DATASETS

We focus on mathematical reasoning datasets that require step-by-step solutions and are widely used
to evaluate the reasoning capabilities of LLMs. Below is a brief overview of the datasets used in our
experiments:

MATH (Hendrycks et al., 2021) The MATH dataset contains problems from high school math
competitions, covering a wide range of topics such as algebra, geometry, and probability. For our
experiments, we use the OpenAI split provided by Lightman et al. (2024), which consists of 500
problems for testing and 12,500 problems for training. We further divide the training set into 11,500
problems for training and 500 problems for validation. Each problem includes a step-by-step solu-
tion, ending in a final answer marked by \boxed{} in the solution (e.g., “..so the smallest possible
value of c is π ”). This marking allows for verification of the correctness of model-generated
responses by comparing the final answer to the ground truth. We use the scripts provided by
Lewkowycz et al. (2022), Lightman et al. (2024), and Shao et al. (2024) to extract and compare
the final answers to the ground truth.

GSM8K (Cobbe et al., 2021) The GSM8K dataset comprises high-quality grade-school math
problems, requiring basic arithmetic or elementary algebra to solve. Although simpler than the
MATH dataset, GSM8K is still widely used to assess the reasoning capabilities of LLMs. It contains
1,319 problems for testing and 7,473 for training. To create a validation set, we further split the
training set into 7,100 problems for training and 373 for validation. Verifying the correctness of

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 1: Summary of PPO hyperparamters used in the experiments.

Parameter Value

TRAINING

Optimizer AdamW
Adam Parameters (β1, β2) (0.9, 0.999)
Learning rate 1× 10−6

Weight Decay 0.0
Max Global Gradient Norm for Clipping 1.0
Learning Rate Scheduler Polynomial
Warm Up 3% of training steps
Train Steps For MATH dataset 1000 steps (around 8 dataset epochs)
Train Steps For GSM8K dataset 650 steps (around 8 dataset epochs)

GENERAL

Maximum Response Length 1024 tokens
Maximum Sequence Length for RhoMath 1.1B 2048 tokens
Maximum Sequence Length for DeepSeekMath 7B 2500 tokens

PPO

Responses per Prompt 8 Search Space: {8, 16, 32}
Episodes per PPO Step 512 Search Space: {256, 512}
Prompts per PPO Step 512/8 = 64
Mini-batch Size 64
Inner epochs per PPO Step 2 Search Space: {1, 2}
Sampling Temperature 0.6 Search Space: {0.6, 0.8, 1.0}
Discount Factor γ 1.0
GAE Parameter λ 1.0 Search Space: [0.95− 1.0]
KL Penalty Coefficient β 1e-4 Search Space: {1e-1, 1e-2, 3e-3, 1e-4}
Policy Clipping Parameter ϵ 0.2
Value Clipping Parameter ϵ′ 0.2

Table 2: Summary of RestEM hyperparamters used in the experiments.

Parameter Value

TRAINING

Optimizer AdamW
Adam Parameters (β1, β2) (0.9, 0.999)
Learning rate 1× 10−6

Weight Decay 0.0
Max Global Gradient Norm for Clipping 1.0
Learning Rate Scheduler Polynomial
Warm Up 3% of training steps

RESTEM

iterations 10
Sampled Responses per Prompt 8 Search Space: {8, 32}
Sampling Temperature 0.6 Search Space: {0.6, 0.8, 1.0}
Checkpoints every # iteration 500 step
Checkpoint Selection until validation improves

Search Space: {until validation improves, best validation}

model responses is straightforward, as the final answer is typically an integer, marked by #### in
the solution.

C.2 PPO IMPLEMENTATION

To ensure our PPO implementation is robust, and our evaluation reflects its full potential, we have
applied a set of well-established techniques and best practices from the literature (Huang et al., 2024;

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 3: Summary of DPO-Positive hyperparameters used in the experiments.

Parameter Value

TRAINING

Optimizer AdamW
Adam Parameters (β1, β2) (0.9, 0.999)
Learning rate 1× 10−6

Weight Decay 0.0
Max Global Gradient Norm for Clipping 1.0
Learning Rate Scheduler Polynomial
Warm Up 3% of training steps

DPO-POSITIVE

DPO-β 0.1 for MATH, 0.3 for GSM8K
DPO-Positive-λ 50.
Epochs 3 Search Space: {3, 8}
Sampled Responses per Prompt 64 Search Space: {8, 64}
Pairs per prompt 64 Search Space: {8, 64}
Sampling Temperature 0.6

Ivison et al., 2024; Zheng et al., 2023). Below, we outline the key implementation details that were
most effective in our experiments:

• Advantage Normalization: After calculating the advantages, we normalize them to have
zero mean and unit variance, not only across the batch but also across data parallel ranks.
This normalization step is applied consistently in both our PPO and VinePPOimplementa-
tions.

• Reward Normalization: We follow Ivison et al. (2024) and do not normalize the rewards,
as the reward structure in our task is already well-defined within the range of [0, 1]. Specif-
ically, correct responses are assigned a reward of 1, while incorrect responses receive 0.

• End-of-Sequence (EOS) Trick: As detailed in Appendix A, rewards are only applied at
the final token of a response, which corresponds to the EOS token when the response is
complete. For responses that exceed the maximum length, we truncate the response to the
maximum length and apply the reward to the last token of the truncated sequence. We also
experimented with penalizing truncated responses by assigning a negative reward (-1), but
this did not lead to performance improvements.

• Dropout Disabling: During the RL tuning phase, we disable dropout across all models.
This ensures that the log probabilities remain consistent between different forward passes,
thereby avoiding stochastic effects that could hurt training stability.

• Fixed KL Coefficient We use a constant coefficient for the KL penalty. Although the
original PPO implementation for finetining language models (Ziegler et al., 2019) utilized
an adaptive KL controller, more recent implementations typically do not use this approach
(Ouyang et al., 2022; Touvron et al., 2023; Xu et al., 2024).

C.3 SFT MODELS

To ensure a systematic and reproducible evaluation, we create our SFT models πref by finetuning the
base pretrained LLMs (as opposed to their “Instruct” version) on the training splits of the respective
datasets. Specifically, we produce four distinct SFT models: two base LLM (DeepSeekMath 7B and
RhoMath 1.1B) across two datasets (MATH and GSM8K). The base models are finetuned using
the Adam optimizer without weight decay. We employ a learning rate warm-up over 6% of the total
training steps. Each model is trained for three epochs with a batch size of 64, and the best checkpoint
is selected based on validation accuracy. For each SFT model, we conduct a hyperparameter sweep
over learning rates in the range {1× 10−7, 3× 10−7, 1× 10−6, 3× 10−6, 1× 10−5, 3× 10−5, 8×
10−5, 1 × 10−4} to ensure optimal performance. We then use these SFT models as the initial
checkpoint for training the methods mentioned in our paper.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C.4 EVALUATION

We evaluate each method’s performance on the test sets of each dataset. For example, when we
report that PPO achieves 42.8% accuracy on the MATH dataset for the DeepSeekMath 7B model,
this means the PPO training was initialized with the SFT model specific to DeepSeekMath 7B on the
MATH dataset, and accuracy was measured on the MATH test set. Our primary evaluation metric is
accuracy, specifically Pass@1, which reflects the percentage of correctly answered problems on the
first attempt. This metric is crucial because it represents a realistic user interaction, where the model
is expected to deliver a correct answer without the need for multiple tries. For each evaluation, we
sample a response from the model for a given prompt, using a maximum token length of 1024 and
a temperature of 0.35. A response is considered correct if its final answer matches the ground truth
final answer, as detailed in Appendix C.1. Furthermore, each accuracy score is averaged over 16
evaluation rounds, each conducted with different random seeds. This will ensure a robust and low
variance assessment of model performance.

C.5 BASELINES

DPO+ (DPO-Positive) (Pal et al., 2024) The original DPO method has a failure mode when the edit
distance between positive (correct) and negative (incorrect) responses is small. In these cases, the
probability of both responses tends to decrease. This issue is especially common in reasoning and
mathematical tasks, where multiple solution paths may involve similar equations or steps. Although
DPO achieves its goal by reducing the probability of the incorrect response more than the correct
one, it ultimately still lowers the likelihood of generating the correct response. This undermines
model performance, making it a failure mode despite partially fulfilling the DPO objective. (Pal
et al., 2024; Hwang et al., 2024). While previous methods mitigated this issue by maintaining a high
edit distance between positive and negative response pairs, DPO-Positive (Pal et al., 2024) addresses
it more effectively. It introduces an additional term to the DPO objective, penalizing any reduction in
the probability of the correct response below its probability under the reference model. This ensures
that the correct response is not overly suppressed, even when the edit distance is small. The final
objective of DPO-Positive is::

LDPO-Positive(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

)
︸ ︷︷ ︸

DPO Original term

− λ ·max

(
0, log

πref(yw|x)
πθ(yw|x)

)
︸ ︷︷ ︸

DPO-Positive additional term

)]
(18)

where λ is a hyperparameter controlling the weight of the additional term keeping the probabilities
of correct responses high. We chose DPO-Positive as a baseline due to its strong performance in
(Setlur et al., 2024).

RestEM (Singh et al., 2024) RestEM is an iterative method where, in each iteration, the base model
is trained on correct, self-generated responses from the chosen checkpoint of the previous iteration.
RestEM takes gradient steps to maximize this objective until the fine-tuned model’s accuracy drops
on a validation split. The objective of the fine-tuning process is to maximize the log-likelihood of
correct responses. Training the model with a maximum likelihood objective on correct responses is
mathematically equivalent to training the model with REINFORCE (Sutton et al., 1999), without a
baseline, where the entire response is treated as a single action. The reward is 1 when the response
is correct, and 0 otherwise. Specifically, we have:

Ex∼D,y∼π(·|x),R(x;y)=1 [∇θ logPθ(y|x)]︸ ︷︷ ︸
max log-likelihood on correct responses

= Ex∼D,y∼π(·|x) [∇θ logPθ(y|x)R(x;y)]︸ ︷︷ ︸
REINFORCE

(19)

Therefore, maximizing log-likelihood training on correct responses is equivalent to train with policy
gradient without precise credit assignment, such as without advantages for specific actions. In our
experiments, we observe the impact of this limitation in both Figure C.3 and Figure C.4 where
RestEM overfits on the training data.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 10000 20000 30000 40000
0.6

0.7

0.8

0 10000 20000 30000 40000

0.41

0.42

0.43

RhoMath 1.1B - GSM8K - RestEM

Global Step

Ac
cu

ra
cy

train test

0 10000 20000 30000 400000.2

0.3

0.4

0.5

0.6

0 10000 20000 30000 40000

0.16

0.17

0.18

RhoMath 1.1B - MATH - RestEM

Global Step

Ac
cu

ra
cy

train test

0 20000 40000

0.80

0.85

0.90

0 20000 40000
0.70

0.71

0.72

0.73

DeepSeekMath 7B - GSM8K - RestEM

Global Step

Ac
cu

ra
cy

train test

0 20000 400000.4

0.5

0.6

0 20000 40000
0.33

0.34

0.35

0.36

0.37

DeepSeekMath 7B - MATH - RestEM

Global Step

Ac
cu

ra
cy

train test

Figure C.3: Performance comparisons across different models and datasets: (a) RhoMath 1.1B on
GSM8K, (b) RhoMath 1.1B on MATH, (c) DeepSeekMath 7B on GSM8K, and (d) DeepSeekMath
7B on MATH. The yellow points are chosen checkpoints based on the RestEM rule. Within each
iteration, we train on the generated data of the chosen checkpoint for eight epochs and then we
choose the first place where performance on a validation split drops following Singh et al. (2024)

C.6 HYPERPARAMETERS

In this section, we present a comprehensive overview of the hyperparameters used in our experi-
ments. It’s important to note that the number of training samples was carefully selected to ensure
that the amount of training data remained consistent across all methods.

PPO Finetuning LLMs using PPO is known to be sensitive to hyperparameter selection, and find-
ing the optimal settings is critical for achieving strong performance. To ensure the robustness of our
study, we explored hyperparameter values reported in recent studies (Shao et al., 2024; Zheng et al.,
2023; Ivison et al., 2024; Huang et al., 2024) and conducted various sweeps across a wide range of
values to identify the best configuration for our tasks and models. The full set of hyperparameters,
along with their respective search spaces, is detailed in Table 1.

VinePPO We utilized the same hyperparameter setup as in the PPO implementation (Table 1) for
VinePPO. As outlined in Section 5, the number of MC samples, K, was set to 9 for all experiments.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.6 0.7 0.8 0.9

0.40

0.45

0.50

0.55

0.2 0.3 0.4 0.5 0.6

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.8 0.9

0.69

0.72

0.75

0.78

0.81

0.4 0.5 0.6 0.7
0.32

0.36

0.40

0.44

Train Accuracy

T
es

t
A
cc

u
ra

cy

RhoMath 1.1B - GSM8K RhoMath 1.1B - MATH

DeepSeekMath 7B - GSM8K DeepSeekMath 7B - MATH

Method VinePPO PPO DPO + RestEM

Figure C.4: A scatter plot showing the relationship between achieved training accuracy and test ac-
curacy at various checkpoints throughout training. This plot highlights the dynamics of overfitting
and generalization across different methods. As we progress from no credit assignment to accurate
credit assignment—from RestEM to DPO+, PPO, and finally VinePPO—generalization improves
and overfitting decreases. In other words, by treating the training dataset as a resource, VinePPO
achieves higher test accuracy per unit of training data consumed. Note that all these are fully trained.
Note that the training accuracy does not reach 100 percent due to several factors, including mecha-
nisms like the KL penalty in DPO+, PPO, and VinePPO, the reset to the base model in RestEM, or
the absence of any correct self-generated responses for certain questions.

RestEM To ensure fair comparison we equalize the number of sampled responses for training
between our RestEM run and our PPO runs. Therefore, in each RestEM iteration we sample 8
responses per prompt and train for 8 epochs on the correct responses. To enhance RestEM’s perfor-
mance, we also conducted a sweep of other reasonable parameters(Table 2). This included increas-
ing the number of samples to expand the training data and reducing the number of correct responses
per question to minimize overfitting.However, we observed no significant improvement .

DPO+ (DPO-Positive) We adopted the same hyperparameters as those used by Setlur et al.
(2024). In addition, we conducted a search for the optimal value of β to see if using the same
β as in our PPO experiments would yield better performance than the values they recommended.
To maintain a fair comparison, we ensured that the number of training samples in our DPO+ runs
matched those in our PPO run where we trained for eight epochs, with each epoch consisting of
training on eight responses per question. To match this, we generated 64 pairs of positive and nega-
tive responses given 64 self-generated responses from the base model. (Table 3)

C.7 TRAIN VS. TEST DURING TRAINING

When training on reasoning datasets, the training data can be viewed as a finite resource of learn-
ing signals. Algorithms that exhaust this resource through memorization tend to generalize less
effectively on the test set. As we move from RL-free methods or less accurate credit assignment
towards more accurate credit assignment, or full reinforcement learning—from RestEM to DPO,
PPO, and finally VinePPO—the model demonstrates higher test accuracy gains per unit of training
data consumed. This trend is illustrated in Figure C.4.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 4: Average time spent per each training step for different methods and models measured for
MATH dataset

Method Model Hardware Average Training Step Time (s)

PPO RhoMath 1.1B 4 × Nvidia A100 80GB 80
VinePPO RhoMath 1.1B 4 × Nvidia A100 80GB 380

PPO DeepSeekMath 7B 8 × Nvidia H100 80GB 312
VinePPO DeepSeekMath 7B 8 × Nvidia H100 80GB 583

C.8 COMPUTE

All experiments were conducted using multi-GPU training to efficiently handle the computational
demands of large-scale models. For the RhoMath 1.1B model, we utilized a node with 4 × Nvidia
A100 80GB GPUs to train both PPO and VinePPO. For the larger DeepSeekMath 7B model, we
employed a more powerful setup, using a node with 8 × Nvidia H100 80GB GPUs. Addition-
ally, for training DeepSeekMath 7B models with the RestEM approach, we used a node with 4 ×
Nvidia A100 80GB GPUs. The average training step time for each method on the MATH dataset is
presented in Table 4.

C.9 SOFTWARE STACK

Both PPO and VinePPOrequire a robust and efficient implementation. For model implementation,
we utilize the Huggingface library. Training is carried out using the DeepSpeed distributed training
library, which offers efficient multi-GPU support. Specifically, we employ DeepSpeed ZeRO stage 0
(vanilla data parallelism) for RhoMath 1.1B and ZeRO stage 2 (shared optimizer states and gradients
across GPUs) for DeepSeekMath 7B . For trajectory sampling during RL training, we rely on the
vLLM library (Kwon et al., 2023), which provides optimized inference for LLMs. Additionally,
VinePPOleverages vLLM to generate Monte Carlo samples for value estimation. This software
stack ensures that our experiments are both efficient and reproducible. For instance, during VinePPO
training, we achieve an inference speed of up to 30K tokens per second using 8 × Nvidia H100 GPUs
with the DeepSeekMath 7B model.

C.10 REPRODUCIBILITY

In this study, all experiments were conducted using open-source libraries, publicly available datasets,
and open-weight LLMs. To ensure full reproducibility, we will release both Singularity and Docker
containers, equipped with all dependencies and libraries, enabling our experiments to be run on
any machine equipped with NVIDIA GPUs, now or in the future. Additionally, we will make our
codebase publicly available on GitHub at https://www.omitted.link.

D FULL RESULTS

D.1 TRAINING PLOTS

In this section, we present additional training plots for both PPO and VinePPO on the GSM8K
dataset, as shown in Figure D.5. Figure D.6 further illustrates the trade-off between accuracy and
KL divergence, while Figure D.7 highlights the computational efficiency of the models7.

We observe consistent patterns with the results reported in Section 6. Although the performance
gap for the DeepSeekMath 7B model is narrower on GSM8K, VinePPO still higher accuracy with
significantly lower KL divergence and faster per-iteration time (this happens because responses to
GSM8K problems are typically shorter, making MC estimation quite fast).

7For GSM8K runs of RhoMath 1.1B , different hardware was used, making direct comparison of wall-clock
time not feasible.

23

https://www.omitted.link

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 200 400 600

40%

44%

48%

52%

0 200 400 600

72%

76%

80%

Training Step

A
cc

u
ra

cy
 (

)

RhoMath 1.1B DeepSeekMath 7B

Method

VinePPO

PPO

Figure D.5: Comparison of the training behavior between VinePPO and PPO. VinePPO demon-
strates consistently higher accuracy throughout the training on the GSM8K dataset. Refer to Fig-
ure 5 for MATH dataset.

0 10 20

35%

40%

45%

50%

55%

0 5 10 15 20

70%

75%

80%

KL[ref]

A
cc

u
ra

cy
 (

)

RhoMath 1.1B DeepSeekMath 7B

Method

VinePPO

PPO

Figure D.6: Task accuracy as a function of KL divergence during training on the GSM8K dataset.
VinePPO significantly higher accuracy per KL. Refer to Figure 6 for MATH dataset.

D.2 VALUE PREDICTION ANALYSIS

In this section, we provide additional plots for value analysis. Specifically, Figures D.8 to D.11
demonstrates these plots for on the MATH dataset, and Figures D.12 to D.15 on the GSM8K dataset.

Furthermore, we present the prediction error per step in Figures D.16 to D.19.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 10 20 30 40
68%

72%

76%

80%

2.2x Faster

Wall Clock (Hours)

A
cc

u
ra

cy

DeepSeekMath 7B

Method
VinePPO

PPO

Figure D.7: Accuracy vs. Wall Clock Time for both methods measured on the same hardware
throughout the entire training. Since the responses to GSM8K problems are short, VinePPO is even
faster per-iteration in our setup and it reaches PPO’s peak performance in fewer iterations and less
overall time.

Figure D.8: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure D.9: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).

Figure D.10: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure D.11: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).

Figure D.12: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure D.13: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).

Figure D.14: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure D.15: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training. MAE denotes the Mean Absolute Error (MAE).

0.15

0.20

0.25

0.30

0.15

0.20

0.25

0.12

0.16

0.20

0.08

0.12

0.16

0.20

0.10

0.12

0.14

0.16

0.06

0.07

0.08

0.09

0.10

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.08

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.08

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.0 0.5 1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.0 0.5 1.0

0.00

0.01

0.02

0.03

Reasoning Progress

M
A
E

PPO @ Step 60 PPO @ Step 120 PPO @ Step 360 PPO @ Step 420 PPO @ Step 840 PPO @ Step 960

VinePPO @ Step 60 VinePPO @ Step 120 VinePPO @ Step 360 VinePPO @ Step 420 VinePPO @ Step 840 VinePPO @ Step 960

Figure D.16: Visualizing the Mean Absolute Error (MAE) of the value predictions in different point
of reasoning chain, plotted for DeepSeekMath 7B on MATH dataset.

0.10

0.15

0.20

0.25

0.30

0.15

0.20

0.25

0.09

0.12

0.15

0.18

0.10

0.12

0.15

0.18

0.06

0.08

0.10

0.04

0.05

0.06

0.07

0.08

0.09

0.0 0.5 1.0

0.00

0.02

0.04

0.0 0.5 1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.0 0.5 1.0

0.00

0.01

0.02

0.03

0.04

0.0 0.5 1.0

0.00

0.01

0.02

0.03

0.0 0.5 1.0

0.00

0.01

0.01

0.01

0.02

0.0 0.5 1.0

0.00

0.01

0.01

0.01

Reasoning Progress

M
A
E

PPO @ Step 60 PPO @ Step 180 PPO @ Step 240 PPO @ Step 300 PPO @ Step 480 PPO @ Step 600

VinePPO @ Step 60 VinePPO @ Step 180 VinePPO @ Step 240 VinePPO @ Step 300 VinePPO @ Step 480 VinePPO @ Step 600

Figure D.17: Visualizing the Mean Absolute Error (MAE) of the value predictions in different point
of reasoning chain, plotted for DeepSeekMath 7B on GSM8K dataset.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0.10

0.15

0.20

0.10

0.12

0.15

0.18

0.20

0.05

0.10

0.15

0.20

0.09

0.12

0.15

0.18

0.05

0.10

0.15

0.20

0.08

0.12

0.16

0.20

0.0 0.5 1.0

0.02

0.04

0.06

0.0 0.5 1.0

0.02

0.03

0.04

0.05

0.0 0.5 1.0

0.02

0.03

0.04

0.05

0.06

0.0 0.5 1.0
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.0 0.5 1.0

0.00

0.01

0.02

0.03

0.04

Reasoning Progress

M
A
E

PPO @ Step 40 PPO @ Step 120 PPO @ Step 320 PPO @ Step 520 PPO @ Step 800 PPO @ Step 880

VinePPO @ Step 40 VinePPO @ Step 120 VinePPO @ Step 320 VinePPO @ Step 520 VinePPO @ Step 840 VinePPO @ Step 920

Figure D.18: Visualizing the Mean Absolute Error (MAE) of the value predictions in different point
of reasoning chain, plotted for RhoMath 1.1B on MATH dataset.

0.20

0.30

0.20

0.25

0.30

0.15

0.20

0.25

0.12

0.15

0.17

0.20

0.23

0.14

0.16

0.18

0.15

0.20

0.25

0.0 0.5 1.0

0.00

0.03

0.05

0.08

0.10

0.0 0.5 1.0

0.00

0.03

0.05

0.08

0.0 0.5 1.0

0.00

0.03

0.05

0.08

0.0 0.5 1.0

0.02

0.04

0.06

0.08

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.0 0.5 1.0
0.00

0.02

0.04

0.06

Reasoning Progress

M
A
E

PPO @ Step 40 PPO @ Step 80 PPO @ Step 160 PPO @ Step 280 PPO @ Step 360 PPO @ Step 480

VinePPO @ Step 40 VinePPO @ Step 80 VinePPO @ Step 160 VinePPO @ Step 280 VinePPO @ Step 360 VinePPO @ Step 480

Figure D.19: Visualizing the Mean Absolute Error (MAE) of the value predictions in different point
of reasoning chain, plotted for RhoMath 1.1B on GSM8K dataset.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Post-Submission Updates

• RLOO and GRPO Baselines (Appendix E)
• Updated Compute Efficiency Plots (Appendix F)

– RLOO and GRPO Efficiency (Appendix F)
– Effect of K in VinePPO’s Efficiency (Appendix F)

• Updated Value Prediction Analysis (Appendix G)
– Explained Variance and Mean Absolute Error (Appendix G)

• More Examples of Advantages in VinePPO (Appendix H)
• Difference Between Bias in Estimated Values and Bias in Policy Gradient (Appendix I)
• Updated “C.9 Software Stack” section (Appendix J)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

E RLOO AND GRPO BASELINES

As requested by the reviewers, we included RLOO and GRPO as baselines and trained RhoMath
1.1B on GSM8K and MATH using these methods. As shown in Figure E.20, both RLOO and GRPO
lag behind VinePPO. Comprehensive results and analysis are provided in Figures E.20 and E.21 and
F.20.1

Init.SFT RestEM RLOO GRPO DPO + PPO VinePPO

40

45

50

55

40.3

42.8
44.5 44.6

46.4

50.1

53.4

Init.SFT RestEM RLOO GRPO DPO + PPO VinePPO
15.0

17.5

20.0

22.5

25.0

15.5

17.3 17.3
17.8

19.2

18.1

23.0

A
cc

u
ra

cy
 (

)

GSM8K

RhoMath 1.1B

MATH

RhoMath 1.1B

Figure E.20: Pass@1 Performance of RLOO and GRPO Baselines RLOO and GRPO outper-
form RestEM and match PPO on MATH but underperform PPO on GSM8K. VinePPO consistently
surpasses all baselines. This is expected as RLOO and GRPO lack fine-grained credit assignment
and use a shared baseline for all tokens. Their training is also less stable than VinePPO and PPO,
requiring a higher KL coefficient. This instability likely stems from high bias in value estimates,
leading to high-variance gradients. See analysis in Figures G.24 and G.25

0.6 0.7 0.8 0.9

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.2 0.3 0.4 0.5 0.6

0.16

0.18

0.20

0.22

0.24

Train Accuracy

T
es

t
A

cc
u
ra

cy

RhoMath 1.1B - GSM8K RhoMath 1.1B - MATH
method

VinePPO

PPO

DPO

RestEM

RLOO

GRPO

Figure E.21: Train vs. Test Accuracy This figure illustrates the generalization dynamics of various
methods. VinePPO demonstrates superior generalization compared to all other baselines.

Init.SFTRestEM RLOO GRPO DPO + PPO VinePPO

70

75

80

69.6

72.0

75.3 74.8 74.4

78.9
80.1

Init.SFT RestEM RLOO DPO + PPO VinePPO

35

40

45

32.8

34.9

36.8
37.6

42.8

46.0

A
cc

u
ra

cy
 (

)

DeepSeekMath 7B DeepSeekMath 7B

Figure E.20.1: Pass@1 Performance of RLOO and GRPO Baseline on DeepSeekMath 7B
RLOO outperforms RestEM and DPO+ but still underperforms both PPO and VinePPO on

GSM8K (left). In MATH, which is a more challenging task, RLOO underperform both PPO and
VinePPO (right).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

F UPDATED COMPUTE EFFICIENCY PLOTS

RLOO and GRPO To evaluate the computational efficiency of these methods, we plotted test
accuracy against wall-clock time during training in Figure F.22.

Effect of K in VinePPO In addition to analyzing final performance in Figure 4, we examine the
impact of K on computational efficiency in Figure F.23.

0 10 20

16%

20%

24%

3.0x Faster

Wall Clock (Hours)

A
cc

u
ra

cy

RhoMath 1.1B

Method

VinePPO

PPO

RLOO

GRPO

(a) performance on MATH

0.0 2.5 5.0 7.5 10.0

40%

44%

48%

52%

1.0x Faster

Wall Clock (Hours)

A
cc

u
ra

cy

RhoMath 1.1B

Method

VinePPO

PPO

RLOO

GRPO

(b) performance on GSM8K

Figure F.22: Compute Efficiency of RLOO and GRPO. Accuracy vs. Wall Clock Time for all
methods, measured on the same hardware. On MATH, VinePPO reaches the peak performance
of RLOO and GRPO 2.7x and 2.2x faster, respectively, using identical computational resources.
Notably, on GSM8K, even PPO—despite training an additional network—outperforms RLOO and
GRPO in efficiency.

0 10 20

16%

20%

24%

3.0x Faster

Wall Clock (Hours)

A
cc

u
ra

cy

RhoMath 1.1B

Method

VinePPO (K = 9)

VinePPO (K = 3)

VinePPO (K = 1)

PPO

Figure F.23: Effect of K on compute efficiency of VinePPO. Accuracy vs. Wall Clock Time for
runs with different K values, measured on the same hardware. Generally, VinePPO with higher K
achieves greater efficiency. VinePPO(K=9) slightly outperforms VinePPO(K=3), while both signif-
icantly surpass VinePPO(K=1). Despite higher K requiring nearly linear increases in computation,
this result highlights the strong impact of low-variance value estimates on training, which shifts the
trade-off toward improved efficiency with more samples.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

G UPDATED VALUE PREDICTION ANALYSIS

RLOO and GRPO use a shared baseline for all tokens in a response, resulting in high bias in value
estimation for individual steps. To illustrate this, we follow the protocol in Section 7 and present
the distribution of value predictions and the mean absolute error (MAE) across reasoning steps in
Figures G.24 and G.25.

0.00

0.25

0.50

0.75

1.00
MAE: 0.03 MAE: 0.04 MAE: 0.03

0.00

0.25

0.50

0.75

1.00
MAE: 0.15 MAE: 0.14 MAE: 0.16

0.00

0.25

0.50

0.75

1.00
MAE: 0.09 MAE: 0.12 MAE: 0.11

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00
MAE: 0.10

0.00 0.25 0.50 0.75 1.00

MAE: 0.10

0.00 0.25 0.50 0.75 1.00

MAE: 0.11

Ground Truth Value

P
re

d
ic

te
d
 V

al
u
e

Training Step: 40 Training Step: 320 Training Step: 520

VinePPO
PPO

RLO
O

G
RPO

Figure G.24: Value prediction analysis of VinePPO, PPO, RLOO, and GRPO during training.
Distribution of predicted values for each state vs. ground truth (computed using 256 MC samples)
during training for RhoMath 1.1B on the MATH dataset, highlighting the nature of errors. While
RLOO and GRPO exhibit slightly lower MAE compared to PPO, their errors are still significantly
higher than VinePPO. Additionally, RLOO and GRPO estimates show a high bias, frequently as-
signing high values to states with a low probability of successfully completing the solution and vice
versa. This is expected, as RLOO and GRPO inherently assign the same value or baseline to all
steps in a response, lacking fine-grained credit assignment.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Figure G.25: Distribution of predicted values for each state vs. ground truth (computed using 256
MC samples) during training for RhoMath 1.1B on the GSM8K dataset. Similar to Figure G.24,
RLOO and GRPO exhibit lower MAE than PPO but significantly higher than VinePPO.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

G.1 EXPLAINED VARIANCE AND MEAN ABSOLUTE ERROR (MAE)

In addition to the analysis in Appendix G, we quantify the accuracy of value predictions using
explained variance and mean absolute error during training, as shown in Figure G.26.

200 400 600

0.7

0.8

0.9

0 250 500 750

0.6

0.7

0.8

0.9

1.0

200 400 600

0.1

0.2

0 250 500 750

0.04

0.08

0.12

0.16

iteration

va
lu

e

Explained Variance
RhoMath 1.1B - GSM8K

Explained Variance
RhoMath 1.1B - MATH

MAE
RhoMath 1.1B - GSM8K

MAE
RhoMath 1.1B - MATH

method

GRPO

RLOO

PPO

VinePPO

Figure G.26: Explained Variance and Mean Absolute Error of values. VinePPO demonstrates
higher explained variance in value predictions and lower mean absolute error compared to RLOO,
GRPO, and PPO across both datasets. Additionally, PPO’s value predictions show non-negative
explained variance values close to one, indicating stable and effective training. Furthermore, the
value network in PPO achieves lower error on GSM8K at the end of training than RLOO and GRPO,
highlighting that PPO’s value network can outperform simplistic baselines in certain scenarios.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

H MORE EXAMPLES OF ADVANTAGES IN VINEPPO

In addition to Figure 1, we provide more examples of effective advantage computation of Vine PPO
in Figures H.27 to H.29.

Prompt (s0) Advantage

The vertex of the parabola described by the equation y = −3x2 − 30x− 81 is (m,n). What is n?

Response

s1 0.0We can re-write the given equation as y = −3(x2 + 10x) − 81.

s2 0.2To complete the square, we add (−10/2)2 = 25 inside the parentheses:

s3 0.5y = −3(x2 + 10x + 25) − 81 − (−3)(25)

s4 0.0= −3(x + 5)2 − 81 + 75

s5 0.0= −3(x + 5)2 − 6.

s6 0.0The vertex of a parabola in the form a(x − h)2 + k is at the point (h, k),

s7 0.0so the vertex of the given parabola is at the point (−5,−6).

s8 0.0Therefore, n = −6 .

Example of Advantages Computed by VinePPO

Figure H.27: Steps s2 and s3 provide a critical insight for advancing the solution since they provide
a way to organize the equation.

Prompt (s0) Advantage

0.4Let f(x) = 2x − 3 and g(f(x)) = 5 − 4x. Find g(4).

Response

s1 0.0We know that g(f(x)) = 5 − 4x.

s2 −0.6So, if we can figure out what f(x) is when x = 4,

s3 0.0we can plug that value into g(f(x)) to find g(4).

s4 0.0Since f(x) = 2x − 3, we have f(4) = 2(4) − 3 = 5.

s5 0.0Therefore, g(f(4)) = g(5) = 5 − 4(5) = 5 − 20 = −15 .

Example ofAdvantages Computed by VinePPO

Figure H.28: This example demonstrates an error in step s2 where the correct step would be ...what
x is when f(x) = 4. This mistake prevents to model to successfully solve the question after s2.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Prompt (s0) Advantage

Write the expression 4+3c
7 + 2 as a single fraction.

Response

s1 0.0We get a common denominator of 7:

s2 0.04+3c
7 + 2 = 4+3c

7 + 2·7
7

s3 −0.3= 4+3c
7 + 14

7

s4 0.4= 4+3c+14
7

s5 0.0=
18 + 3c

7
.

Example of Advantages Computed by VinePPO

Figure H.29: Steps s3 and s4, despite impacting the probability of solving the question, they are not
meaningfully incorrect or insightful.

I DIFFERENCE BETWEEN BIAS IN VALUE ESTIMATIONS AND IN POLICY
GRADIENT

Note that when λ = 1, the value estimates are used solely as a baseline. It is well-known that, in
this case, the policy gradient Eq 2 provides an unbiased estimate of the true values. However, it is
important to emphasize that the value estimates themselves can still be biased. Consequently, the
fact that the policy gradient is unbiased does not guarantee that the value estimates used to compute
the advantages are unbiased estimators of the true value of a given state.

J UPDATED “C.9 SOFTWARE STACK” SECTION

Both PPO and VinePPOrequire a robust and efficient implementation. For model implementation,
we utilize the Huggingface library. Training is carried out using the DeepSpeed distributed training
library, which offers efficient multi-GPU support. Specifically, we employ DeepSpeed ZeRO stage
0 (vanilla data parallelism) for RhoMath 1.1B and ZeRO stage 2 (shared optimizer states and gra-
dients across GPUs) for DeepSeekMath 7B . For trajectory sampling during RL training, we rely
on the vLLM library (Kwon et al., 2023), which provides optimized inference for LLMs. Addition-
ally, VinePPOleverages vLLM to generate Monte Carlo samples for value estimation. Specifically,
after each RL training iteration, the current policy’s checkpoint is loaded into vLLM. Then, we use
vLLM’s serving API to sample new trajectories and also Monte Carlo Samples for VinePPO’s value
estimation. In our setup, we spawn a separate vLLM engine on each GPU rank. This would al-
low for data parallelism during both sample generation and training. This software stack ensures
that our experiments are both efficient and reproducible. For instance, during VinePPO training, we
achieve an inference speed of up to 30K tokens per second using 8 × Nvidia H100 GPUs with the
DeepSeekMath 7B model.

38

	Introduction
	Related Work
	Background
	Accurate Credit Assignment with VinePPO
	Experimental Setup
	Results
	Task Performance
	KL Divergence
	Temperature Tolerance
	Computational Efficiency

	Value Prediction Analysis
	Discussion
	Reviewing PPO
	Value Network

	Reasoning Step Separation Examples
	Experimental Details
	Datasets
	PPO Implementation
	SFT Models
	Evaluation
	Baselines
	Hyperparameters
	Train vs. Test During Training
	Compute
	Software Stack
	Reproducibility

	Full Results
	Training Plots
	Value Prediction Analysis

	RLOO and GRPO Baselines
	Updated Compute Efficiency Plots
	Updated Value Prediction Analysis
	Explained Variance and Mean Absolute Error (MAE)

	More Examples of Advantages in VinePPO
	Difference Between Bias in Value Estimations and in Policy Gradient
	Updated ``C.9 Software Stack'' section

