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ABSTRACT

Accurate uncertainty quantification in large language models (LLMs) is essential
for providing credible confidence estimates over their outputs. However, fine-tuned
LLMs often exhibit overconfidence in uncertain predictions, which stems from
their limited ability to generalize with sparse data. Existing parameter efficient
fine-tuning (PEFT) uncertainty quantification methods for LLMs focus on post
fine-tuning stage, and thus fail to address the core issue: limited specialization of
PEFT adapters to accurately capture task-specific input-output relationships. To
address these limitations, we propose Functional-Level Uncertainty Quantification
for Calibrated Fine-Tuning (UQ4CT), which captures and calibrates uncertainty
over the space of functions that map input prompts to outputs. We implement
UQ4CT during the fine-tuning stage via a mixture-of-experts framework that
hierarchically decomposes the functional space. Empirically, UQ4CT achieves over
25% reduction in Expected Calibration Error (ECE) while preserving high accuracy
across five benchmarks. Even under distribution shift, UQ4CT maintains superior
ECE performance with high accuracy, showcasing improved generalizability.

1 INTRODUCTION

Quantifying the credibility of outputs has been one of the most important problems around large
language models (LLMs)(Chang et al., 2024). In particular, fine-tuned LLMs often struggle with
overconfidence in their outputs due to limited training data, failing to reflect the true credibility of their
answers(Xiao et al., 2022; He et al., 2023; Tian et al., 2023; OpenAI, 2023). Such overconfidence can
assert misinformation with high certainty, making it difficult for users to discern truth from falsehood.
This has become a crucial problem in safety-critical decision making and scientific domains where
data is relatively limited, such as formal proof generation, climate science, and healthcare (Singhal
et al., 2022; Wu et al., 2023a; Lampinen et al., 2023; Li et al., 2022). Methods that enhance uncertainty
quantification for fine-tuned LLMs are therefore essential to ensure trustworthy predictions.

One salient challenge of uncertainty quantification in large language models is the trade-off among
accuracy, calibration, and efficiency. Ideally, one seeks to calibrate model uncertainty without
degrading accuracy or slowing output generation. Recent approaches often focus on prompt perturba-
tion—modifying the model input and quantifying the resulting prediction variance (Hou et al., 2023;
Gao et al., 2024)—or sampling multiple completions to measure prediction disagreement (Farquhar
et al., 2024). However, these methods generally assume the model is already well-aligned with
the data distribution, and thus struggle to capture uncertainty arising during fine-tuning, especially
the generalization gap due to adaptation on limited data. Additionally, since these methods require
multiple forward passes per input, they incur significant computational overhead, limiting scalability.

Beyond prompt-level approaches, Bayesian methods and ensemble-based uncertainty quantification
have been established for fine-tuned LLMs, often in conjunction with low-rank adaptation (LoRA)
(Hu et al., 2021a). Methods such as Monte Carlo dropout (Gal & Ghahramani, 2016), checkpoint
ensembles (Chen et al., 2017), deep ensembles (Lakshminarayanan et al., 2017; Wang et al., 2023;
Zhai et al., 2023), and Laplace-LoRA (Yang et al., 2024a) apply Bayesian inference or ensembling
over LoRA parameters to capture uncertainty arising from model adaptation and limited data. While
Bayesian and ensemble methods estimate uncertainty after fine-tuning by analyzing the learned
parameter space, they do not address the limitations caused by sparse data during fine-tuning. This
post hoc perspective can miss uncertainty that arises when adapting to new tasks with limited data.
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Figure 1: Left: The Mixture of Experts (MoE) ar-
chitecture captures diverse functional relationships
by dynamically routing inputs to different expert
modules based on the prompt. Right: The standard
LoRA approach lacks such functional-space diver-
sity, limiting its capacity to capture variations in
the functional relationships during fine-tuning.

To overcome this, we shift focus from parameter-
space to functional-space uncertainty quantifi-
cation. The functional space encompasses the
input-output mappings the model can realize,
capturing the true variability in its predictions.
By calibrating uncertainty at this level during
fine-tuning, we ensure the model’s confidence
better reflects its actual predictive reliability.

We therefore introduce Functional-Level Uncer-
tainty Quantification for Calibrated Fine-Tuning
(UQ4CT), a method that explicitly calibrates
functional-level uncertainty in LLMs during
fine-tuning. UQ4CT leverages ensembles of
LoRA modules at each layer to construct a
rich set of basis functions. We then employ a
Mixture-of-Experts (MoE) architecture (Li et al.,
2024) to hierarchically combine these basis func-
tions, forming a flexible functional space (see
Figure 1). During fine-tuning, UQ4CT jointly
learns the LoRA expert parameters and cali-
brates the prompt-dependent function mixture
to align functional-level uncertainty with pre-
dictive correctness, enabling the model to out-
put calibrated distributions over the functional
space.

During inference, LoRA experts offer diverse
functional relationships acquired during fine-
tuning, while MoE routers dynamically select the most relevant experts for each input prompt.
This selection is guided by functional-level uncertainty calibration performed throughout fine-tuning,
which aims to optimize the choice of the correct functional relationship for each prompt. More
accurate expert selection enables the model to learn diverse functional relationships. As a result, the
model’s uncertainty estimates become better aligned, enhancing calibration without compromising
accuracy. To summarize, our contributions include:

• A novel uncertainty quantification approach for LLMs with MoE architecture during fine-
tuning to quantify functional-level uncertainty and align with the probability of predictive
correctness, which mitigates overconfidence issue and improves generalizability.

• A new calibration loss that incorporates predictive correctness probability to dynamically
align the prompt-dependent LoRA mixture for better uncertainty estimation.

• Hierarchical decomposition of functional-level uncertainty into layer-wise mixture weights
with guarantee that our calibration loss aligns mixture weights with predictive correctness.

• More than 25% expected calibration error (ECE) reduction on 4 common-sense reasoning
tasks and 1 domain-specific question answering task; improved ECE performance without
compromising accuracy under distribution shift on 2 common-sense reasoning tasks and 4
domain-specific question answering tasks.

2 PRELIMINARIES

Low-rank Adaptation (LoRA). LLMs have numerous large weight matrices to perform matrix
multiplication, denoted as W0 ∈ Rnout×nin that maps inputs x to outputs h. Hu et al. (2021a) proposes
LoRA, which fixes W0 and introduces a low-rank perturbation ∆W to the weight matrix:

h = W0x+∆Wx = W0x+BAx. (1)

Here, ∆W is calculated as the product of two matrices, B ∈ Rnout×nlr and A ∈ Rnlr×nin where nlr
is significantly smaller than nin or nout. For example, we use nlr = 32 while nin = nout = 4096 for
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the Llama3.1-8B model (Dubey et al., 2024). Therefore, the total number of LoRA parameters for
this ∆W is nlr(nin + nout), which is far smaller than the parameter count of the full matrix, ninnout.
One of the key motivations of incorporating LoRA to fine-tune LLMs is the vast amount of memory
cost reduction compared with fine-tuning on the full model. For an LLM with 7 billion parameters,
maintaining the average gradient and average squared gradients for optimization multiplies the
memory required by a factor of 3 compared to simply loading model weights. LoRA greatly mitigates
this memory cost as the tripled memory consumption only applies to LoRA adapters.

Mixture of Experts (MoE). LoRA Mixture-of-Experts (Li et al., 2024; Wu et al., 2024b) is an
efficient approach to scale the number of parameters while maintaining the same computational
bounds. LoRA MoE utilizes the top-k router to assign each token to the LoRA experts (Lepikhin
et al., 2020). The router is a linear layer that maps the input hidden state h to a probability distribution
of candidate experts.

The plain transformer block in a large language model consists of the q, k, v encoding layers
(FFNq,k,v), layer norm (LN) and the feedforward layer (FFN), together with residual connections.
Formally, given h1 as the tokenized input text, the output of ℓ-th layer is generated as:

zℓ = fattn(FFNq,k,v(LN(hℓ−1))) + hℓ−1, hℓ = FFN(LN(zℓ)) + zℓ. (2)

Here, fattn represents the attention calculation step.

Let hℓ ∈ R1×d (1 ≤ ℓ ≤ L) denote the output hidden state at the ℓ-th layer of the LLM, where L is
the number of LLM layers and d is the hidden dimension. With Wℓ

r as the trainable router weight at
layer ℓ, the top-k gate router R̃(·) chooses k experts with highest probability given a hidden state hℓ:

R̃ℓ(hℓ) = Keep-Top-k(Softmax(Wℓ
r · hℓ)). (3)

Finally, we obtain the final MixLoRA prediction with:

MixLoRA(hℓ) =

K∑
k=1

R̃ℓ(hℓ)kE
ℓ
k(h

ℓ), Eℓ
k(h

ℓ) = Wℓ
pre · hℓ +Bℓ

kA
ℓ
k · hℓ (4)

where Wℓ
pre is the frozen pretrained weight at layer ℓ and Bℓ

kA
ℓ
k is the k-th LoRA expert.

With MixLoRA defined in Equation 4, we can apply MixLoRA layers at q, k, v encoding and FFN
layers:

zℓ = fattn(MixLoRAq,k,v(LN(hℓ−1))) + hℓ−1, hℓ = MixLoRA(LN(zℓ)) + zℓ. (5)

3 METHODOLOGY

The high-level goal of UQ4CT is to leverage the ensemble of prompt-dependent LoRA mixture-of-
experts (MoE) to guide and calibrate the confidence of the model during fine-tuning. By quantifying
the variability in how different LoRA experts are combined for each input, UQ4CT enables the model
to adaptively select expert mixtures that reflect the true uncertainty in its predictions. Our approach
not only encourages the model to exploit confident expert combinations for accurate predictions
but also promotes exploration of alternative experts when uncertainty is high, ultimately leading to
better-calibrated and more reliable model outputs.

3.1 DECOMPOSITION OF THE FUNCTIONAL SPACE

Given the immense size of both the pre-training dataset and the model, we posit that the pretrained
network contains submodules capable of expressing a wide range of functional relationships present
in the data. During fine-tuning, our focus is on the functional space spanned by the model, which
can be effectively captured as a mixture of LoRA experts, each representing a distinct basis function.
However, naively decomposing the full functional space by considering all possible combinations of
these experts quickly leads to a combinatorial explosion.

Naive Decomposition. Denote the input prompt as x and the functional map from input to output as
f . A straightforward approach is to express the function as a sum over all possible compositions of

3
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Figure 2: MoE architecture to capture functional-level uncertainty. LoRA experts (Bi, Ai) capture
diverse functional bases, while the top-k router assigns mixture weights based on the input hidden
state. The calibration loss aligns functional-level uncertainty with prediction correctness, encouraging
confident expert selection for correct predictions and higher uncertainty for incorrect ones.

K submodules per layer, across L layers:

f(x) =

K∑
k1,··· ,kL=1

αk1,...,kLgLkL

(
· · ·

(
glkl

(
. . . g1k1(x)

)))
, (6)

where each gℓkℓ denotes a particular variant (e.g., LoRA-adapted) of the ℓ-th block and

gℓkℓ(h
ℓ) = hℓ + Eℓ

kℓ

(
f ℓ
trans(h

ℓ)
)
, (7)

here f ℓ
trans represents the necessary non-fine-tuned operations within a transformer block (i.e. layer

norm, attention calculation, etc.) and as defined in Eq. 4, Eℓ
kℓ denotes the parameterized adaptation

associated with the kℓ-th expert in the ℓ-th layer.

However, this naive decomposition is intractable in practice, as it requires keeping track of KL

mixture weights αk1,...,kL . This is an exponential growth in the number of parameters with respect
to both the number of layers L and the number of submodules per layer K, which makes the direct
approach computationally infeasible for realistic network sizes.

Hierarchical Decomposition. To address the combinatorial explosion of mixture weights, we instead
propose a hierarchical decomposition. Here, the mixture at each layer is formed independently, and
the output of each layer is a weighted sum over its submodules, with the weights themselves being
layer-specific:

f(x) =

K∑
kL=1

αL
kLg

L
kL

(
· · ·

(
K∑

kl=1

αl
klg

l
kl

(
· · ·

K∑
k1=1

α1
k1g

1
k1(x)

)))
. (8)

Instead of needing KL mixture weights, this hierarchical structure only requires K · L weights αℓ
kℓ ,

one for each submodule in each layer. This dramatically reduces the parameters required and makes
the decomposition tractable, while still enabling a rich set of compositional functions.

Dynamic, Input-Dependent Routing. To further enhance expressivity and efficiency, we allow
the mixture weights to depend dynamically on the input at each layer. Specifically, we set the
mixture weights to be a sparse routing function Rℓ of the hidden state hℓ at each layer, where
αℓ
kℓ = αℓ

kℓ(h
ℓ) = Rℓ

kℓ(f
ℓ
trans(h

ℓ)).

Substituting this definition into the hierarchical mixture, the overall function f(x) becomes:

f(x) =

K∑
kL=1

RL
kL(f

L
trans(h

L))gLkL

(
. . .

(
K∑

k1=1

R1
k1(f

1
trans(h

1))g1k1(x)

))
. (9)
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This recursive formulation shows that at each layer, the submodules are weighted according to the
input-dependent routing function, which adapts based on the current hidden state.

For a layer-wise perspective, the computation at each layer ℓ can be explicitly written as:

hℓ+1 =

K∑
kℓ=1

Rℓ
kℓ(f

ℓ
trans(h

ℓ))gℓkℓ(h
ℓ). (10)

Here, Rℓ selects the most relevant submodules for a given input, allowing the network to adaptively
compose its computation path at each layer in a sparse fashion.

3.2 QUANTIFYING FLU WITH MIXLORA

In the previous section, we have established a parsimonious representation of the functional space.
In this section, we choose a simple function to encode the functional level uncertainty and provide
the intuition as follows. We first note that given a fixed MoE model architecture, the larger weight a
mixture component has, the more certain we are about that component.

The model uncertainty of the MixLoRA architecture is quantified by considering perturbations
∆f(x) to the model f(x). Following the discussion and notation in Sec. 3.1, we can show that these
perturbations are instantiated in the space of the mixture weights α (as defined in Eq. 8 and 9):
Fact 3.1 (Model Perturbation Structure). Under regularity assumptions on the residual connection
architecture, perturbations ∆f(x) to the model f(x) approximately decompose as:

∆f(x) ≈
L∑

ℓ=1

K∑
kℓ=1

∆αℓ
kℓ(h

ℓ) · gℓkℓ(h
ℓ).

In high-dimensional settings, the basis functions are approximately orthogonal. Thus, the perturbation
∆f(x) is entirely represented by the set

{
∆αℓ

kℓ(h
ℓ)
}ℓ=1,...,L

kℓ=1,...,K
. Therefore, the functional-level

uncertainty (FLU) can be generally modeled as a linear function over the mixture weights:

FLU(x) = U
({

αℓ
kℓ(h

ℓ)
}ℓ=1,...,L

kℓ=1,...,K

)
,

where U(·) denotes a linear aggregation function. Details of derivation is presented in Appendix A.1.

In practice, as illustrated in Figure 2, the top-k router at each layer produces a sparse probability
vector αℓ = (αℓ

1, ..., α
ℓ
k), dynamically mixing the basis functions captured by the LoRA experts

given the current hidden state. The values of the top-K routing weights that contribute to the final
output hidden state serve as a direct quantification of the model’s uncertainty at functional-level. We
follow the routing mechanisms used in MoE layers (see Eq. (3) and (4)), employing top-2 gate routers
for the mixture. At each layer ℓ, we compute the raw router probabilities and retain the largest two:

R̃ℓ(hℓ) = Keep-Top-2(Softmax(Wℓ
r · hℓ)). (11)

Given an input prompt x of length s, we aggregate the router weights over the selected experts and
across all layers to estimate the FLU:

FLU(x) =
1

L

L∑
ℓ=1

2∑
i=1

R̃ℓ
i(h

ℓ). (12)

This formulation provides an efficient approach to quantify functional-level uncertainty in LoRA
MoE architectures.

3.3 CALIBRATION LOSS

The FLU model provides a principled way to calibrate the mixture parameters against predictive accu-
racy, enabling better alignment between output distributions and true model confidence. Specifically,
for MoE top-k routers, we design the following calibration loss for training:

Lcal = (1{MixLoRA(x) = y∗} − FLU(x))
2
. (13)

5
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The first term is an indicator function that equals 1 if the model prediction matches the ground truth
y∗ for prompt x, and 0 otherwise, corresponding to a one-hot definition of ground truth confidence.

This calibration loss directly encourages the functional-level uncertainty (FLU) to reflect the true
correctness of the model’s predictions. As shown in Figure 2, when the mixture model predicts
correctly, the loss pushes FLU toward 1 (high confidence); when incorrect, toward 0 (low confidence).
In other words, when optimized over the data distribution, the calibration loss pushes FLU to represent
the probability of prediction correctness. We formally state this property as follows and present the
proof in Appendix A.1:
Proposition 3.2 (Truthfulness of Calibration Loss). Let the calibration risk be defined as the
expectation of the calibration loss over the data distribution:

L̄cal = E(x,y∗)∼D (1{MixLoRA(x) = y∗} − FLU(x))
2
.

If this calibration risk is optimized over the data distribution D, then the optimal solution is FLU(x) =
P(MixLoRA(x) = y∗(x)); that is, the optimally trained FLU corresponds to the probability that the
model’s prediction is correct.

3.4 FINE-TUNING WITH THE TOTAL LOSS

Our proposed calibration loss Lcal improves predictive reliability by adaptively balancing expert
exploitation and exploration according to functional-level uncertainty. As shown in Figure 2, Lcal

aligns uncertainty with predictive correctness, increasing the router probability of the selected expert
for correct predictions (exploitation) and decreasing it for incorrect ones (exploration).

Ideally, when the K LoRA experts collectively capture the relevant functional relationships in the
data during fine-tuning via cross-entropy loss, Lcal further guides the model to select appropriate
mixtures of LoRA experts conditioned on the input x. This targeted selection enables the model to
match the data distribution more closely and provides more calibrated uncertainty estimates.

To ensure balanced expert utilization, we incorporate a load balancing loss Lb as proposed by Li et al.
(2024). Our overall loss function is:

L = CE+ γ · Lb + β · Lcal, (14)

where CE is the cross-entropy loss, and γ, β are hyperparameters for the auxiliary terms. We fix γ,
β to 1 for our experiments. Details of Lb are provided in Appendix A.2.

4 RELATED WORK

Mixture of LoRA Experts. Large Language Models (LLMs) have achieved impressive perfor-
mance across diverse NLP tasks (Brown et al., 2020; Hoffmann et al., 2022; Touvron et al., 2023a;d),
with instruction fine-tuning (Chung et al., 2022; Iyer et al., 2022; Zheng et al., 2024) further boosting
their adaptability for conversational AI (Wu et al., 2023b; Achiam et al., 2023). However, scaling
LLMs increases the resource demands of full fine-tuning. Parameter-efficient fine-tuning (PEFT)
methods (Mangrulkar et al., 2022)—such as LoRA (Hu et al., 2021b) and its variants (Kopiczko
et al., 2023; Hyeon-Woo et al., 2021; Renduchintala et al., 2023; Zhang et al., 2023; Liu et al.,
2024)—reduce adaptation costs by updating a subset of parameters.

Recent advances combine PEFT with the Mixture-of-Experts (MoE) framework (Jacobs et al., 1991;
Wang et al., 2020), which sparsely activates expert subnetworks for greater model capacity and special-
ization. MoE-based LLMs leverage expert routing and parameter-efficient adaptations to target new
domains or tasks efficiently. Notably, methods such as MoRAL (Yang et al., 2024b), LoRAMoE (Dou
et al., 2024), PESC (Wu et al., 2024a), MoE-LoRA (Luo et al., 2024), and MixLoRA (Li et al., 2024)
optimize domain-specific routing, mitigate forgetting, and enable scalable, high-throughput training
and inference with mixtures of LoRA experts.

Uncertainty Quantification in LLMs. Established uncertainty quantification methods have been
studied in conjunction with the LoRA structure for LLMs. Monte-Carlo dropout (Gal & Ghahramani,
2016) interprets dropout in neural networks as approximate Bayesian inference in deep Gaussian
processes, allowing uncertainty estimates to be obtained from existing LoRA adapters without

6
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Table 1: Performance comparison of different methods fine-tuned with LlaMA3.1-8B across four
common sense reasoning tasks and a domain-specific task. UQ4CT shows substantial ECE improve-
ments while maintaining high accuracy.

Metrics Methods BoolQ ARC-E ARC-C OBQA ClimateQA

ACC ↑

LoRA 89.730.58 88.821.82 78.210.73 88.001.22 78.251.29
MC Drop 89.650.55 88.161.75 77.140.69 87.121.18 78.191.35
Ensemble 89.870.43 89.141.31 78.810.96 86.470.42 78.532.98
MixLoRA 88.680.82 87.740.36 78.561.87 88.270.50 79.941.29
LA 89.580.19 86.223.52 78.003.76 86.006.01 79.823.48
BLoB(Mean) 89.020.93 88.710.82 79.370.71 87.601.04 79.020.50
BLoB(N=10) 89.391.13 87.960.62 80.081.55 87.130.88 79.020.50
UQ4CT 89.171.33 88.660.20 79.601.21 88.400.35 79.970.85

ECE ↓

LoRA 15.820.57 6.551.70 14.070.68 7.300.43 13.701.50
MC Drop 14.730.54 6.481.74 14.120.71 7.240.39 13.111.46
Ensemble 14.560.55 7.080.73 13.711.29 8.630.38 14.690.84
MixLoRA 15.850.76 7.790.45 13.711.90 6.580.21 14.680.09
LA 3.780.60 7.631.71 8.924.16 11.975.97 11.481.66
BLoB(Mean) 7.540.57 4.890.32 11.261.13 6.830.90 12.740.88
BLoB(N=10) 2.760.41 3.350.50 6.811.43 3.841.00 11.962.57
UQ4CT 1.790.43 3.970.78 4.430.82 3.341.60 9.362.77

modifying them. Checkpoint ensemble (Chen et al., 2017) utilizes predictions from multiple LoRA
checkpoints saved during a single fine-tuning process to calibrate uncertainty. Deep ensemble
(Lakshminarayanan et al., 2017; Wang et al., 2023; Zhai et al., 2023) combines the predictions from
multiple LoRA adapters for better uncertainty calibration. Laplace-LoRA (Yang et al., 2024a) applies
Bayesian inference via Laplace approximation to the LoRA parameters after fine-tuning, resulting in
improved calibration and uncertainty estimates. Bayesian Low-Rank Adaptation by Backpropagation
(BLoB) (Wang et al., 2024) extends the LA method by jointly optimizing the mean and covariance of
LoRA parameters via backpropagation throughout fine-tuning.

Prompt-perturbation and resampling-based approaches have also been explored for uncertainty
quantification in LLMs. These methods estimate uncertainty by measuring prediction variability
under different prompt formulations or sampled input variants, without altering model parameters
(Farquhar et al., 2024; Hou et al., 2023; Gao et al., 2024). This line of work leverages the inherent
sensitivity of LLMs to input perturbations as a means to assess model confidence, providing a
complementary perspective to parameter-based methods. Ye et al. (2024) benchmark LLMs using
conformal prediction, which quantifies uncertainty by constructing prediction sets with guaranteed
coverage, where set size directly reflects model uncertainty.

5 EXPERIMENTS

Datasets. We evaluate on five multiple-choice QA benchmarks: OpenBookQA (OBQA) (Mihaylov
et al., 2018), ARC-Easy (ARC-E) and ARC-Challenge (ARC-C) (Clark et al., 2018), BOOLQ (Clark
et al., 2019), and ClimateQA—a domain-specific climate science benchmark. To assess robustness
under distribution shift, we ensemble the domain-specific MMLU subtasks (Hendrycks et al., 2020)
into 4 benchmarks focusing on different professionalities: Computer Science (CS), Engineering
(Eng), Law and Health. Details for the ensemble are provided in Appendix A.8. Models are fine-tuned
on the public training split and evaluated on the test split for each benchmark.

Experiment Setup. We implement UQ4CT with PyTorch (Paszke et al., 2019), extending the
MixLoRA repository in (Li et al., 2024). We use the Llama-3.1-8B (Touvron et al., 2023c) as our base
model. In particular, we apply MixLoRA to query, key, value and output layers, together with the
feed-forward networks in LLaMA-3.1-8B (gate layer, down layer and up layer). Details are provided
in Appendix A.6.

Baselines. We compare UQ4CT with state-of-the-art uncertainty estimation methods along with
naive fine-tuning applied to the LoRA adapters of LLMs, including LoRA (Hu et al., 2021a), Monte
Carlo (MC) Dropout (Gal & Ghahramani, 2016), Deep Ensemble (Lakshminarayanan et al., 2017),
Laplace-LoRA (LA) (Yang et al., 2024a), Bayesian Low-Rank Adaptation by Backpropagation
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Table 2: Performance comparison of different methods fine-tuned on the OBQA dataset with
LlaMA3.1-8B across two smaller distribution shift (DS) tasks and four larger distribution shift
tasks. UQ4CT shows substantial ECE improvements while maintaining high accuracy.

ID Smaller DS Larger DS
Metrics Methods OBQA ARC-C ARC-E CS Eng Law Health

ACC ↑

LoRA 88.01.22 77.80.16 86.70.77 55.80.52 54.33.30 44.90.23 58.80.21
MC Drop 87.11.18 77.12.01 86.92.42 54.41.58 54.11.82 45.00.76 58.31.46
Ensemble 86.50.42 78.20.90 85.40.47 53.81.02 52.40.56 45.00.20 60.60.57
MixLoRA 88.30.50 78.10.45 86.70.35 53.11.14 54.72.28 45.01.46 60.91.04
LA 86.06.01 78.70.55 86.40.76 54.71.82 53.62.77 44.91.03 59.70.94
BLoB(Mean) 87.61.04 79.51.10 86.60.65 51.20.99 48.61.44 39.97.85 57.03.51
BLoB(N=10) 87.10.88 79.81.06 87.20.79 52.81.28 51.93.13 43.84.60 58.55.33
UQ4CT 88.40.35 79.00.56 87.80.47 53.30.61 61.13.20 45.40.50 61.11.48

ECE ↓

LoRA 7.300.43 14.80.62 9.60.69 21.03.05 24.13.63 29.31.98 24.01.81
MC Drop 7.240.39 13.42.15 10.21.89 20.83.26 24.10.77 29.10.64 21.63.92
Ensemble 8.630.38 15.40.46 10.70.56 14.03.18 17.41.98 19.92.95 16.12.07
MixLoRA 6.580.21 14.50.55 9.90.20 17.13.06 17.82.80 21.64.07 18.02.78
LA 11.975.97 7.20.5 6.40.42 13.72.14 15.52.0 19.00.54 15.72.30
BLoB(Mean) 6.830.90 11.371.94 6.61.65 17.22.72 18.52.82 22.61.26 16.93.02
BLoB(N=10) 3.841.00 5.80.96 3.00.87 11.52.76 14.91.93 19.73.21 14.53.38
UQ4CT 3.341.60 3.61.44 3.61.32 10.83.73 13.21.86 18.14.40 13.24.06

(BLoB) (Wang et al., 2024) and MixLoRA (Li et al., 2024). Note that for BLoB(N=10), the method
performs 10 forward passes with differently sampled LoRA parameters for each question, which is a
unfair computational budget advantage compared against UQ4CT with only 1 forward pass.

Evaluation. We evaluate prediction accuracy on the validation set across all five tasks. For
uncertainty calibration, we use the expected calibration error (ECE; Guo et al. (2017); more details in
A.7) to measure the alignment between predicted probabilities and actual outcomes.

To assess robustness under distribution shifts, we fine-tune models on the OBQA dataset and evaluate
them following Yang et al. (2024a). We use ARC-C and ARC-E to represent smaller distribution
shifts, as these datasets focus on general science reasoning similar to OBQA but are more challenging
and diverse. For larger shifts, we utilize the four aforementioned domain-specific MMLU subtasks,
which span a wide range of expertise from elementary to professional levels. This domain specificity
represents a greater distribution shift from the general common sense focus of OBQA.

The in-distribution scenario tests model alignment on the target task, while the distribution shift
scenario assesses generalizability to novel domains. Together, they provide a comprehensive evalua-
tion for real-world applications, ensuring strong performance on the primary task and resilience to
out-of-distribution inputs.

5.1 IN-DISTRIBUTION PERFORMANCE

As shown in Table 1, UQ4CT achieves notable gains in uncertainty calibration across diverse tasks,
while maintaining competitive accuracy (ACC) relative to baseline approaches. For instance, on
OBQA and ClimateQA tasks, UQ4CT attains accuracy rates of 88.4% and 79.9%, demonstrating
that improved uncertainty quantification does not come at the expense of predictive performance.

The most significant improvements are seen in reduced Expected Calibration Error (ECE). UQ4CT
consistently lowers ECE by over 25% on average across benchmarks, and unlike other approaches, it
continues to perform well even on challenging datasets such as ARC-C, achieving an ECE of 4.4.

To further validate our method, we include results from fine-tuning both LLaMA-3.1-8B (main text)
and Mistral-7B (Appendix A.3). Across both models, UQ4CT delivers substantial and consistent
improvements in uncertainty calibration. These results underscore the practical value of UQ4CT,
particularly in scenarios where reliable uncertainty estimates are crucial, such as safety-critical
applications. A key advantage of UQ4CT is that it incorporates uncertainty calibration directly during
fine-tuning, incurring minimal computational overhead compared to other uncertainty quantification
(UQ) methods, which often require costly repetitive sampling or post-hoc adjustments.
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Table 3: Performance of UQ4CT with varying β values on the OBQA dataset. Prediction accuracy
and uncertainty calibration improve with increasing β, highlighting the effectiveness of Lcal.

β 0 0.2 0.5 0.8 1 1.2 1.5 1.8 2

ACC ↑ 87.02.85 87.10.58 87.10.29 87.30.38 88.40.35 88.30.57 87.50.88 87.20.79 87.30.89

ECE ↓ 12.71.92 7.350.75 7.690.89 5.821.12 3.341.60 6.312.58 9.030.82 7.961.38 6.521.79

5.2 PERFORMANCE UNDER DISTRIBUTION SHIFT

Due to the sparse nature of the fine-tuning data, real world deployment of LLMs often requires the
model to be robust to out-of-distribution knowledge (Ouyang et al., 2022; Touvron et al., 2023b;c).
Therefore, we evaluate the performance of UQ4CT along with other baseline models fine-tuned on
the OBQA dataset under smaller and larger distribution shift scenarios.

Table 2 presents the distribution shift evaluations. UQ4CT achieves substantial ECE improvements
while maintaining high accuracy across both smaller and larger distribution shifts. For smaller shifts,
UQ4CT’s ECE remains comparable to the in-distribution scenario. Under larger shifts, UQ4CT
attains the lowest ECE among all baselines and delivers competitive accuracy on all domain-specific
tasks. These results demonstrate that aligning uncertainty at the functional level with predictive
correctness improves generalizability and mitigates overconfidence in fine-tuned models.

5.3 ABLATION STUDIES

We conduct ablation studies to investigate the effectiveness of our designed calibration loss, Lcal. We
first perform a sensitivity test, in which we explore the impact of Lcal on the overall performance.
Then we evaluate the incremental weighting performance of the calibration term in Appendix A.4,
which investigates the effectiveness of Lcal at the early stage of fine-tuning. We also conduct an
ablation study on the impact of active LoRA experts in Appendix A.5.

Sensitivity Test on Calibration Term. To further understand the effectiveness of the calibration loss,
we perform a sensitivity test of β in Equation 14. This evaluates how our proposed calibration of
parameter mixtures affect the overall model prediction and uncertainty quantification capabilities.
We evaluate β values ranging from 0 to 2, where β = 0 resembles the original MixLoRA method.

Results in Table 3 demonstrate the effectiveness of the calibration loss. When β = 0, the model is
optimized without calibration on parameter mixtures, resulting in high ECE value. Even with small
β = 0.2 or β = 0.5, the ECE scores drastically improved compared to no calibration setting. Finally,
when β = 1, the calibration term effectively optimizes the conditional parameter mixtures to generate
outputs that fit data distribution well, resulting in lower ECE scores and higher accuracies.

6 DISCUSSION & CONCLUSION

In this work, we propose Functional-Level Uncertainty Quantification for Calibrated Fine-Tuning
(UQ4CT), which addresses the overconfidence issues commonly encountered during fine-tuning of
large language models. We present a functional perspective on quantifying uncertainty in LLMs
and utilize it for uncertainty-calibrated fine-tuning. By incorporating functional-level uncertainty
quantification with a mixture-of-experts framework, our proposed uncertainty-calibrated training loss
effectively addresses the challenge of overconfidence in fine-tuned LLMs by significantly improving
uncertainty calibration while maintaining high accuracy. Our evaluations demonstrate that UQ4CT
reduces the Expected Calibration Error by more than 25% without compromising accuracy across
a variety of downstream tasks, including common-sense and domain-specific reasoning, under
in-distribution and out-of-distribution scenarios.

The limitation of UQ4CT lies in its dependency on predictive correctness. For general language
modeling tasks such as chat completion, there lacks a clear metric on response correctness. This
limits the application of UQ4CT as naively token matching is a poor indicator of semantic correctness
due to the ambiguous nature of language. For future work, we are exploring ways to adapt UQ4CT to
open-ended problems that lack a definitive optimization objective.
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7 REPRODUCIBILITY STATEMENT

We will make all code, simulators, and benchmark datasets publicly available to ensure reproducibility.
A code repository is included in the supplementary materials and will be released upon paper
acceptance. Detailed implementation instructions are provided in the repository’s README file.

8 ETHICS STATEMENT

Our work aims to advance the trustworthiness of large language models, which we foresee positive
impacts in the applicable fields, such as medical advising and general reasoning. Since we are using
public datasets, we do not foresee any ethic problems.

9 LLM USAGE

Large language models were used exclusively for refining the writing style. They were not employed
for generating content or shaping ideas.
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A APPENDIX

A.1 THEORETICAL DERIVATION OF THE METHOD

In this section, we provide complete theoretical statements and proofs that are used in Sec. 3 to derive
our method.

Fact A.1 (Model Perturbation Structure, Restatement of Fact 3.1). Assume that in the resid-
ual connection architecture in each layer: gℓkℓ(h

ℓ) = hℓ + Eℓ
kℓ

(
f ℓ
trans(h

ℓ)
)
, the Lipschitz-

ness of the residual term Eℓ
kℓ

(
f ℓ
trans(h

ℓ)
)

is much smaller as compared to that of hℓ itself:∥∥∥Eℓ
kℓ

(
f ℓ
trans(ĥ

ℓ)
)
− Eℓ

kℓ

(
f ℓ
trans(h

ℓ)
)∥∥∥ = o

(
∥ĥℓ − hℓ∥

)
. Under this regularity assumption, per-

turbations ∆f(x) to the model f(x) approximately decomposes as:

∆f(x) ≈
L∑

ℓ=1

K∑
kℓ=1

∆αℓ
kℓ(h

ℓ) · gℓkℓ(h
ℓ).

Proof of Fact 3.1 and A.1. In each layer, we can decompose the perturbation to the output as follows:

∆hℓ+1 =

K∑
kℓ=1

[
∆αℓ

kℓ(h
ℓ) · gℓkℓ(h

ℓ) + αℓ
kℓ(h

ℓ) ·∆gℓkℓ(h
ℓ)
]
, ∀ℓ = 1, . . . , L,

where the input h1 = x and the output f(x) = hL+1.

Due to the residual connection architecture and our assumption on the regularity of the residual term,
we have:

∆gℓkℓ(h
ℓ) = ∆hℓ +∆Eℓ

kℓ

(
f ℓ
trans(h

ℓ)
)
= ∆hℓ + o

(
∆hℓ

)
.

Hence,

∆hℓ+1 ≈
K∑

kℓ=1

(
∆αℓ

kℓ(h
ℓ) · gℓkℓ(h

ℓ) + αℓ
kℓ(h

ℓ) ·∆hℓ
)
=

K∑
kℓ=1

∆αℓ
kℓ(h

ℓ) · gℓkℓ(h
ℓ) + ∆hℓ.

Expanding this recursion, the output perturbation can be approximated as:

∆f(x) = ∆hL+1 ≈
L∑

ℓ=1

K∑
kℓ=1

∆αℓ
kℓ(h

ℓ) · gℓkℓ(h
ℓ).

Proposition A.2 (Calibration Loss, Restatement of Proposition 3.2). Let the calibration risk be
defined as the expectation of the calibration loss over the data distribution:

L̄cal = E(x,y∗)∼D (1{MixLoRA(x) = y∗} − FLU(x))
2
.

If this calibration risk is optimized over the data distribution D, then the optimal solution is FLU(x) =
P(MixLoRA(x) = y∗(x)); that is, the optimally trained FLU corresponds to the probability that the
model’s prediction is correct.

Proof of Proposition 3.2 and A.2. Expanding the calibration risk, we have:

L̄cal = E(x,y∗)∼D (1{MixLoRA(x) = y∗} − FLU(x))
2

= E(x,y∗)∼D [1{MixLoRA(x) = y∗}]2

− 2ExEy∗|x [1{MixLoRA(x) = y∗} · FLU(x)] + Ex

[
FLU(x)2

]
= C + Ex

[
FLU(x)2 − 2P(MixLoRA(x) = y∗(x)) · FLU(x)

]
,

where C is a constant independent of FLU(x). Thus, the calibration risk is minimized when
FLU(x) = P(MixLoRA(x) = y∗(x)).
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Table 4: Performance comparison of UQ4CT with and without incremental weighting. Incremental
weighting has worse ECE performance while maintains similar accuracy.

Metrics Methods BoolQ ARC-E ARC-C OBQA ClimateQA

ACC ↑ UQ4CT 89.171.33 88.660.20 79.601.21 88.400.35 79.970.85
UQ4CT_Incremental 87.330.24 87.150.95 80.841.03 88.530.48 75.872.89

ECE ↓ UQ4CT 1.790.43 3.970.78 4.430.82 3.341.60 9.362.77

UQ4CT_Incremental 3.100.18 6.551.42 10.021.95 6.871.68 14.160.91

Table 5: Performance comparison of different methods fine-tuned with Mistral-7B across 4 common
sense reasoning tasks and a domain-specific task. UQ4CT shows significant ECE improvements
while maintaining high accuracy.

Metrics Methods BoolQ ARC-E ARC-C OBQA ClimateQA

ACC ↑

LoRA 70.30.62 84.80.47 70.20.84 82.80.62 72.51.6
MC Drop 69.61.07 84.60.91 69.60.76 82.60.71 72.51.6
Ensemble 71.81.29 84.20.66 71.01.41 82.50.6 72.92.88
LA 70.71.82 82.42.05 68.53.31 82.50.77 71.61.56
MixLoRA 73.10.38 85.51.27 71.21.75 83.31.14 72.01.69
UQ4CT 73.60.28 85.90.82 74.40.82 83.71.22 73.21.29

ECE ↓

LoRA 10.170.24 9.461.62 18.421.91 13.30.25 13.722.62
MC Drop 10.620.51 8.911.35 18.381.66 13.30.31 13.722.61
Ensemble 8.721.13 8.721.49 17.00.97 9.142.82 12.861.78
LA 5.332.16 20.35.7 21.274.15 6.413.22 14.642.21
MixLoRA 8.811.03 8.160.99 15.513.86 10.531.73 14.053.09
UQ4CT 3.070.83 5.70.69 7.040.58 7.921.14 11.41.14

A.2 LOAD BALANCING LOSS

We follow the load balancing loss in (Li et al., 2024). Given N experts indexed by i = 1 to N and a
batch B with T tokens, the auxiliary loss is computed as:

Laux = a ·N ·
N∑
i=1

Fi · Pi, (15)

where

Fi =
1

T

∑
x∈B

1{argmaxkR(x)k = i},Pi =
1

T

∑
x∈B

R(x)i. (16)

Here, R(·) is the top-k router, Fi is the fraction of tokens dispatched to expert i and Pi is the fraction
of the router probability allocated for expert i. The final loss is multiplied by the expert count N
to keep the loss constant as the number of experts varies, and the constant term a is set to 10−2as
a multiplicative coefficient, which is large enough to ensure load balancing while remaining small
enough not to overwhelm the primary objective.

A.3 EXPERIMENTAL RESULTS WITH MISTRAL-7B

In this section, we present the results using Mistral-7B (Jiang et al., 2023), a different decoder-based
LLM backbone. Table 5 shows the results of fine-tuning Mistral-7B on 4 common-sense reasoning
tasks and one domain-specific climate question-answering task.

For each of the tasks, UQ4CT effectively calibrates the parameter mixtures, leading to the best ECE
performance in 4 out of 5 tasks. This indicates the robustness of UQ4CT across different LLMs.

A.4 INCREMENTAL WEIGHTING ON CALIBRATION TERM

Due to the random initialization of LoRA experts, the predictions during early fine-tuning stage are
likely to be incorrect as the model has little knowledge on the functional relationships regarding the
data. Thus, it is intuitive to incrementally increase the weight parameter β over the calibration term
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Table 6: Performance comparison of UQ4CT with varying number of experts on OBQA dataset.
Top-2 expert selection strategy grants best accuracy and calibration.

Top-K ACC ↑ ECE ↓
Top-1 86.80.59 7.541.89
Top-2 88.40.35 3.341.60

Top-3 87.00.77 5.680.78
Top-4 87.40.51 7.520.44
Top-5 87.10.48 6.160.58

Lcal in the training loss for the LoRA experts to learn before calibration. We conduct this study by
incrementally increase β from 0 to 1 within 50 gradient steps during the early stage of fine-tuning:

β = min

{
1,

current_grad_step
50

}
. (17)

We choose 50 gradient steps from our observation that training loss generally stabilizes after 50
gradient steps, indicating the LoRA experts have learned some functional relationships from data.

As shown in Table 4, the incremental loss has significantly worse ECE performance across all tasks.
This demonstrates the advantage of uncertainty calibration even in the early stage. In the beginning,
the lack of functional relationships on the training data in LoRA experts lead to high functional-level
uncertainty. Thus, UQ4CT encourages exploration over all LoRA experts while UQ4CT_Incremental
lacks it due to the small weighting in the beginning.

A.5 DECIDING NUMBER OF ACTIVE EXPERTS

One important aspect of the LoRA MoE architecture is how many experts to activate. Here, we
investigate the performance impact of different number of active LoRA experts. We evaluate the
model performance with 1 to 5 active experts with 8 in total.

As shown in Table 6, 2 active experts give the optimal performance in terms of accuracy and ECE
scores. One expert alone cannot capture complicated functional relationships, while more than 2
experts could potentially introduce redundant functional bases to the model, which deviates the output
distribution more from data distribution, thus worsening predictive and calibration performance.
Additionally, more active experts lead to a more flattened distribution across experts, which hardens
the alignment of parameter mixtures during fine-tuning.

A.6 TRAINING DETAILS

We train our model with total of 8 LoRA experts, and select 2 experts with the highest probability.
For each expert, we use rank = 16 and alpha = 32. We use batch size of 16 to train our model. For
climate task, we set the learning rate to 5e− 4 and dropout rate to 0.1 to incorporate the small dataset
size. For other tasks, we use 2e− 4 as our learning rate with dropout 0.05. We use AdamW as our
optimizer and a cutoff length of 512 for prompts during training. Our model is trained on A100 GPU,
with 20GB GPU memory consumption per task. Training time is from 25 to 50 minutes depending
on the task.

The experimental setup for single LoRA based models is similar with LoRA ranks set to 80 to
accommodate the MoE model size. For the ensemble baseline, we use an ensemble size of 8 with
rank = 16. For Laplace-LoRA, we follow the Laplace hyperparameters in this Github Repository.

A.7 EXPECTED CALIBRATION ERROR

Expected calibration error (ECE) is a commonly used metric to asses uncertainty quantification
performance. ECE measures the alignment between prediction accuracy and model confidence
through regrouping the predicted probabilities into m bins. This method then computes the weighted
average of the difference between average accuracy and confidence in each bin:

ECE =

M∑
m=1

|Bm|
N

|acc(Bm)− conf(Bm)|, (18)
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where |Bm| is the number of evaluated datapoints in bin m, acc and conf is calculated as following:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi), (19)

conf(Bm) =
1

|Bm|
∑
i∈Bm

P (ŷi). (20)

In this paper, we use an ECE bin size of 15, following the experiment setup in Laplace-LoRA (Yang
et al., 2024a).

A.8 MMLU DISTRIBUTION SHIFT DATASET COMPOSITION

• Computer Science (CS):
– College Computer Science
– Computer Security
– High School Computer Science
– Machine Learning

• Engineering (Eng):
– Electrical Engineering

• Law:
– International Law
– Jurisprudence
– Professional Law

• Health:
– Anatomy
– Clinical Knowledge
– College Medicine
– Human Aging
– Nutrition
– Professional Medicine
– Virology

A.9 PROMPT PERTURBATION COMPARISON

Here, we compare our method with SPUQ (Gao et al., 2024), which perturbs the prompt, aggregates
predictions and confidences to measure uncertainty. We test SPUQ and UQ4CT with LLama2-7b
as the base model. As shown in Table 7, SPUQ’s large ECE values suggest that simply aggregating
predictions from perturbed prompts does not adequately calibrate model confidence, highlighting the
limitations of prompt perturbation as an uncertainty quantification strategy for LLMs, especially for
smaller models.

Table 7: Performance comparison of UQ4CT and SPUQ across five tasks. UQ4CT achieves higher
accuracy and substantially lower ECE than SPUQ.

Metrics Methods BoolQ ARC-E ARC-C OBQA ClimateQA

ACC ↑ SPUQ 62.20 75.14 45.99 59.00 60.64
UQ4CT 73.50.52 76.61.30 52.81.77 77.31.36 63.31.74

ECE ↓ SPUQ 30.47 13.13 24.74 20.00 19.98
UQ4CT 2.30.82 6.00.2 6.11.11 5.01.15 8.10.52
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