
Under review as a conference paper at ICLR 2023

ETSFORMER: EXPONENTIAL SMOOTHING TRANS-
FORMERS FOR TIME-SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have recently been actively studied for time-series forecasting. While
often showing promising results in various scenarios, traditional Transformers
are not designed to fully exploit the characteristics of time-series data and thus
suffer some fundamental limitations, e.g., they are generally not decomposable
or interpretable, and are neither effective nor efficient for long-term forecasting.
In this paper, we propose ETSformer, a novel time-series Transformer architec-
ture, which exploits the principle of exponential smoothing methods in improving
Transformers for time-series forecasting. Specifically, ETSformer leverages a
novel level-growth-seasonality decomposed Transformer architecture which leads
to more interpretable and disentangled decomposed forecasts. We further propose
two novel attention mechanisms – the exponential smoothing attention and fre-
quency attention, which are specially designed to overcome the limitations of the
vanilla attention mechanism for time-series data. Extensive experiments on the
long sequence time-series forecasting (LSTF) benchmark validates the efficacy
and advantages of the proposed method. Code is attached in the supplementary
material, and will be made publicly available.

1 INTRODUCTION

Transformer models have achieved great success in the fields of natural language processing (Vaswani
et al., 2017; Devlin et al., 2019), computer vision (Carion et al., 2020; Dosovitskiy et al., 2021),
and even more recently, time-series (Li et al., 2019; Wu et al., 2021; Zhou et al., 2021; Zerveas et al.,
2021; Zhou et al., 2022). While the success of Transformer models have been widely attributed to the
self-attention mechanism, alternative forms of attention, infused with the appropriate inductive biases,
have been introduced to tackle the unique properties of their underlying task or data (You et al.,
2020; Raganato et al., 2020). In time-series forecasting, decomposition-based architectures such as
Autoformer and FEDformer models (Wu et al., 2021; Zhou et al., 2022) have incorporated time-series
specific inductive biases, leading to increased accuracy, and more interpretable forecasts (by
decomposing forecasts into seasonal and trend components). Their success has been motivated by: (i)
disentangling seasonal and trend representations via seasonal-trend decomposition (Cleveland & Tiao,
1976; Cleveland et al., 1990; Woo et al., 2022), and (ii) replacing the vanilla pointwise dot-product
attention which handle time-series patterns such as seasonality and trend inefficiently, with time-series
specific attention mechanisms such as the Auto-Correlation mechanism and Frequency-Enhanced At-
tention. While these existing work introduce the promising direction of interpretable and decomposed
time-series forecasting for Transformer-based architectures, they suffer from two drawbacks.

Firstly, they suffer from entangled seasonal-trend representations, evidenced in Figure 1, where the
trend forecasts exhibit periodical patterns which should only be present in the seasonal component,
and the seasonal component does not accurately track the (multiple) periodicities present in the
ground truth seasonal component. This arises due to their decomposition mechanism which detects
trend via a simple moving average over the input signal and detrends the signal by removing the
detected trend component – an arguably naive approach. This method has many known pitfalls
(Hyndman & Athanasopoulos, 2018), such as the trend-cycle component not being available for the
first and last few observations, and over-smoothing rapid rises and falls.

Secondly, their proposed replacements for the vanilla attention mechanism are not human interpretable
– demonstrated in Section 3.3. Model inspection and diagnosis allows us to better understand the fore-

1

Under review as a conference paper at ICLR 2023

650 700 750 800 850 900
0.75

0.50

0.25

0.00

0.25

0.50

0.75

ETSformer

Lookback
Ground Truth
ETSformer
(MSE: 0.0029)

650 700 750 800 850 900
0.75

0.50

0.25

0.00

0.25

0.50

0.75

Autoformer

Lookback
Ground Truth
Autoformer
(MSE: 0.0109)

650 700 750 800 850 900
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FEDformer

Lookback
Ground Truth
FEDformer
(MSE: 0.0175)

650 700 750 800 850 900
0.8

0.6

0.4

0.2

0.0

0.2

0.4

ETSformer Trend

Lookback
Ground Truth Trend
ETSformer Trend
(MSE: 0.0015)

650 700 750 800 850 900
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

Autoformer Trend

Lookback
Ground Truth Trend
Autoformer Trend
(MSE: 0.0137)

650 700 750 800 850 900
0.8

0.6

0.4

0.2

0.0

0.2

0.4

FEDformer Trend

Lookback
Ground Truth Trend
FEDformer Trend
(MSE: 0.0296)

650 700 750 800 850 900

0.6

0.4

0.2

0.0

0.2

ETSformer Season

Lookback
Ground Truth Season
ETSformer Season
(MSE: 0.0018)

650 700 750 800 850 900

0.6

0.4

0.2

0.0

0.2

Autoformer Season

Lookback
Ground Truth Season
Autoformer Season
(MSE: 0.0120)

650 700 750 800 850 900
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

FEDformer Season

Lookback
Ground Truth Season
FEDformer Season
(MSE: 0.0329)

Figure 1: Seasonal-trend decomposed forecasts on synthetic data with ground truth seasonal and
trend components. Top row: combined forecast. Middle row: trend component forecast. Bottom row:
season component forecast. ETSformer is compared to two competing decomposed Transformer base-
lines, Autoformer, and FEDformer. Seen in the visualization, ETSformer exhibits a more disentangled
seasonal-trend decomposition which accurately tracks the ground truth components. Not visualized
here is ETSformer’s unique ability to further separate trend into level and growth components.

casts generated by our models, attributing predictions to each component to make better downstream
decisions. For an attention mechanism focusing on seasonality, we would expect the cross-attention
map visualization to produce clear periodic patterns which shift smoothly across decoder time steps.
Yet, the Auto-Correlation mechanism from Autoformer does not exhibit this property, yielding
similar attention weights across decoder time steps, while the Frequency-Enhanced Attention from
FEDformer does not have such model interpretability capabilities due to its complicated frequency
domain attention.

To address these limitations, we look towards the more principled approach of level-growth-season
decomposition from ETS methods (Hyndman et al., 2008) (further introduced in Appendix A). This
principle further deconstructs trend into level and growth components. To extract the level and
growth components, we also look at the idea of exponential smoothing, where more recent data
gets weighted more highly than older data, reflecting the view that the more recent past should be
considered more relevant for making new predictions or identifying current trends, to replace the
naive moving average. At the same time, we leverage the idea of extracting the most salient periodic
components in the frequency domain via the Fourier transform, to extract the global seasonal patterns
present in the signal. These principles help yield a stronger decomposition strategy by first extracting
global periodic patterns as seasonality, and subsequently extracting growth as the change in level in
an exponentially smoothed manner.

Motivated by the above, we propose ETSformer, an interpretable and efficient Transformer architec-
ture for time-series forecasting which yields disentangled seasonal-trend forecasts. Instead of reusing
the moving average operation for detrending, ETSformer overhauls the existing decomposition
architecture by leveraging the level-growth-season principle, embedding it into a novel Transformer
framework in a non-trivial manner. Next, we introduce interpretable and efficient attention mech-
anisms – Exponential Smoothing Attention (ESA) for trend, and Frequency Attention (FA) for
seasonality. ESA assigns attention weights in an exponentially decreasing manner, with high values
to nearby time steps and low values to far away time steps, thus specialising in extracting growth
representations. FA leverages frequency domain representations to extract dominating seasonal
patterns by selecting the Fourier bases with the K largest amplitudes. Both mechanisms have efficient
implementations with O(L logL) complexity. Furthermore, we demonstrate human interpretable
visualizations of both mechanisms in Section 3.3. To summarize, our key contributions are as follows:

• We introduce a novel decomposition Transformer architecture, incorporating the time-
tested level-growth-season principle for more disentangled, human-interpretable time-series
forecasts.

• We introduce two new attention mechanisms, ESA and FA, which incorporate stronger
time-series specific inductive biases. They achieve better efficiency than vanilla attention,
and yield interpretable attention weights upon model inspection.

• The resulting method is a highly effective, efficient, and interpretable deep forecasting
model. We show this via extensive empirical analysis, that ETSformer achieves performance
competitive with state-of-the-art methods over 6 real world datasets on both multivariate
and univariate settings, and is highly efficient compared to competing methods.

2

Under review as a conference paper at ICLR 2023

Input
Embedding

Lookback	Window:	𝑿!"#:!

Growth
Damping

Frequency
Attention

+
𝑩!

%

𝑺!"#:!
%

𝑩!:!&'
%

+𝑺!:!&'
%

Forecast	Horizon:	𝑿E!:!&'

Layer	2

Layer	1

𝑬!
"

Encoder

G+S	Stack	2

G+S	Stack	N

G+S	Stack	1

+

Level	Stack

+

Linear

Decoder

Layer	N

Linear

Concat

Difference

Linear

Exponential	
Smoothing	
Attention

𝒁!"#:!
%"(

𝑩!"#:!
% (Growth)

DFT

Top-K	
Amplitude

iDFT

𝒁!"#:!
%"(

𝑺!"#:!
% (Season)

+
Feedforward

LayerNorm

Multi-Head	ES	
Attention

LayerNorm

-

Frequency
Attention

-

Level

𝒁!"#:!
%

𝒁!"#:!
%"(𝑬!"#:!

%"(

𝑬!"#:!
% (Level)

𝑩!"#:!
%

𝑺!"#:!
%

Figure 2: ETSformer model architecture.
2 ETSFORMER

Problem Formulation Let xt ∈ Rm denote an observation of a multivariate time-series at time
step t. Given a lookback window Xt−L:t = [xt−L, . . . ,xt−1], we consider the task of predicting
future values over a horizon, Xt:t+H = [xt, . . . ,xt+H−1]. We denote X̂t:t+H as the point forecast
of Xt:t+H . Thus, the goal is to learn a forecasting function X̂t:t+H = f(Xt−L:t) by minimizing
some loss function L : RH×m × RH×m → R.

In the following, we explain how ETSformer infuses level-growth-seasonal decomposition the
the classical encoder-decoder Transformer architecture, specializing for interpretable time-series
forecasting. Our architecture design methodology relies on three key principles: (1) the architecture
leverages the stacking of multiple layers to progressively extract a series of level, growth, and
seasonal representations from the intermediate latent residual; (2) performs level-growth-seasonal
decomposition of latent representations, by extracting salient seasonal patterns while modeling level
and growth components following an exponential smoothing formulation; (3) the final forecast is a
composition of level, growth, and seasonal components making it human interpretable.

2.1 OVERALL ARCHITECTURE

Figure 2 illustrates the overall encoder-decoder architecture of ETSformer. At each layer, the encoder
is designed to iteratively extract growth and seasonal latent components from the lookback window.
The level is then extracted in a similar fashion to classical level smoothing in Equation (3). These
extracted components are then fed to the decoder to further generate the final H-step ahead forecast
via a composition of level, growth, and seasonal forecasts, which is defined:

X̂t:t+H = Et:t+H + Linear
(N∑

n=1

(B
(n)
t:t+H + S

(n)
t:t+H)

)
, (1)

where Et:t+H ∈ RH×m, and B
(n)
t:t+H ,S

(n)
t:t+H ∈ RH×d represent the level forecasts, and the

growth and seasonal latent representations of each time step in the forecast horizon, respectively.
The superscript represents the stack index, for a total of N encoder stacks. Note that Linear(·) :
Rd → Rm operates element-wise along each time step, projecting the extracted growth and seasonal
representations from latent to observation space.

2.1.1 INPUT EMBEDDING

Raw signals from the lookback window are mapped to latent space via the input embedding module,
defined by Z

(0)
t−L:t = E

(0)
t−L:t = Conv(Xt−L:t), where Conv is a temporal convolutional filter with

kernel size 3, input channel m and output channel d. In contrast to prior work (Li et al., 2019; Wu
et al., 2020; 2021; Zhou et al., 2021), the inputs of ETSformer do not rely on any other manually

3

Under review as a conference paper at ICLR 2023

designed dynamic time-dependent covariates (e.g. month-of-year, day-of-week) for both the lookback
window and forecast horizon. This is because the proposed Frequency Attention module (details
in Section 2.2.2) is able to automatically uncover these seasonal patterns, which renders it more
applicable for challenging scenarios without these discriminative covariates and reduces the need for
feature engineering.

2.1.2 ENCODER

The encoder focuses on extracting a series of latent growth and seasonality representations in a
cascaded manner from the lookback window. To achieve this goal, traditional methods rely on
the assumption of additive or multiplicative seasonality which has limited capability to express
complex patterns beyond these assumptions. Inspired by (Oreshkin et al., 2019; He et al., 2016),
we leverage residual learning to build an expressive, deep architecture to characterize the complex
intrinsic patterns. Each layer can be interpreted as sequentially analyzing the input signals. The
extracted growth and seasonal signals are then removed from the residual and undergo a nonlinear
transformation before moving to the next layer. Each encoder layer takes as input the residual from
the previous encoder layer Z(n−1)

t−L:t and emits Z
(n)
t−L:t,B

(n)
t−L:t,S

(n)
t−L:t, the residual, latent growth,

and seasonal representations for the lookback window via the Multi-Head Exponential Smoothing
Attention (MH-ESA) and Frequency Attention (FA) modules (detailed description in Section 2.2).
The following equations formalizes the overall pipeline in each encoder layer, and for ease of
exposition, we use the notation := for a variable update.

Seasonal: S
(n)
t−L:t = FAt−L:t(Z

(n−1)
t−L:t)

Z
(n−1)
t−L:t := Z

(n−1)
t−L:t − S

(n)
t−L:t

Growth: B
(n)
t−L:t = MH-ESA(Z

(n−1)
t−L:t)

Z
(n−1)
t−L:t := LN(Z

(n−1)
t−L:t −B

(n)
t−L:t)

Z
(n)
t−L:t = LN(Z

(n−1)
t−L:t + FF(Z

(n−1)
t−L:t))

LN is layer normalization (Ba et al., 2016), FF(x) = Linear(σ(Linear(x))) is a position-wise
feedforward network (Vaswani et al., 2017) and σ(·) is the sigmoid function.

Level Module Given the latent growth and seasonal representations from each layer, we extract the
level at each time step t in the lookback window in a similar way as the level smoothing equation in
Equation (3). Formally, the adjusted level is a weighted average of the current (de-seasonalized) level
and the level-growth forecast from the previous time step t− 1. It can be formulated as:

E
(n)
t = α ∗

(
E

(n−1)
t − Linear(S

(n)
t)

)
+ (1−α) ∗

(
E

(n)
t−1 + Linear(B

(n)
t−1)

)
,

where α ∈ Rm is a learnable smoothing parameter, ∗ is an element-wise multiplication term, and
Linear(·) : Rd → Rm maps representations to observation space. Finally, the extracted level in the
last layer E(N)

t−L:t can be regarded as the corresponding level for the lookback window. We show in
Appendix B.3 that this recurrent exponential smoothing equation can also be efficiently evaluated
using the efficient AES algorithm (Algorithm 1) with an auxiliary term.

2.1.3 DECODER

The decoder is tasked with generating the H-step ahead forecasts. As shown in Equation (1), the
final forecast is a composition of level forecasts Et:t+H , growth representations B(n)

t:t+H and seasonal

representations S(n)
t:t+H in the forecast horizon. It comprises N Growth + Seasonal (G+S) Stacks, and

a Level Stack. The G+S Stack consists of the Growth Damping (GD) and FA blocks, which leverage
B

(n)
t , S(n)

t−L:t to predict B(n)
t:t+H , S(n)

t:t+H , respectively.

Growth: B
(n)
t:t+H = GD(B

(n)
t) Seasonal: S

(n)
t:t+H = FAt:t+H(S

(n)
t−L:t)

To obtain the level in the forecast horizon, the Level Stack repeats the level in the last time step t

along the forecast horizon. It can be defined as Et:t+H = RepeatH(E
(N)
t) = [E

(N)
t , . . . ,E

(N)
t],

with RepeatH(·) : R1×m → RH×m.

4

Under review as a conference paper at ICLR 2023

Time

(a) Full Attention (2017)

Time

(b) Sparse Attention (2020; 2021)

Time

(c) Log-sparse Attention (2019)

Time
Period	1 Period	2

(d) Auto-Correlation Mechanism
(2021)

Time

(e) Exponential Smoothing Atten-
tion (Ours)

Time

High	Amplitude	Frequencies

Period	1 Period	2

Extrapolated
Pattern

(f) Frequency Attention (Ours)

Figure 3: Comparison between different attention mechanisms. (a) Full, (b) Sparse, and (c) Log-sparse
Attentions are adaptive mechanisms, where the green circles represent the attention weights adaptively
calculated by a point-wise dot-product query, and depends on various factors including the time-series
value, additional covariates (e.g. positional encodings, time features, etc.). (d) Auto-Correlation
mechanism considers sliding dot-product queries to construct attention weights for each rolled input
series. We introduce (e) Exponential Smoothing Attention (ESA) and (f) Frequency Attention (FA).
ESA directly computes attention weights based on the relative time lag, without considering the input
content, while FA attends to patterns which dominate with large magnitudes in the frequency domain.

Growth Damping To obtain the growth representation in the forecast horizon, we follow the idea of
trend damping in Equation (4) to make robust multi-step forecast. Thus, the trend representations can
be formulated as:

GD(B
(n)
t)j =

j∑
i=1

γiB
(n)
t ,

GD(B
(n)
t−L:t) = [GD(B

(n)
t)t, . . . ,GD(B

(n)
t)t+H−1],

where 0 < γ < 1 is the damping parameter which is learnable, and in practice, we apply a multi-head
version of trend damping by making use of nh damping parameters. Similar to the implementation
for level forecast in the Level Stack, we only use the last trend representation in the lookback window
B

(n)
t to forecast the trend representation in the forecast horizon.

2.2 EXPONENTIAL SMOOTHING ATTENTION AND FREQUENCY ATTENTION MECHANISM

Considering the ineffectiveness of existing attention mechanisms in handling time-series data, we
develop the Exponential Smoothing Attention (ESA) and Frequency Attention (FA) mechanisms to
extract latent growth and seasonal representations. ESA is a non-adaptive, learnable attention scheme
with an inductive bias to attend more strongly to recent observations by following an exponential
decay, while FA is a non-learnable attention scheme, that leverages Fourier transformation to select
dominating seasonal patterns. A comparison between existing work and our proposed ESA and FA is
illustrated in Figure 3.

2.2.1 EXPONENTIAL SMOOTHING ATTENTION

Vanilla self-attention can be regarded as a weighted combination of an input sequence, where the
weights are normalized alignment scores measuring the similarity between input contents (Tsai et al.,
2019). Inspired by the exponential smoothing in Equation (3), we aim to assign a higher weight to
recent observations. It can be regarded as a novel form of attention whose weights are computed by
the relative time lag, rather than input content. Thus, the ESA mechanism can be defined as AES :
RL×d → RL×d, where AES(V)t ∈ Rd denotes the t-th row of the output matrix, representing the
token corresponding to the t-th time step. Its exponential smoothing formula can be further written as:

AES(V)t = αVt + (1− α)AES(V)t−1 =

t−1∑
j=0

α(1− α)jVt−j + (1− α)tv0,

where 0 < α < 1 and v0 are learnable parameters known as the smoothing parameter and initial state
respectively.

5

Under review as a conference paper at ICLR 2023

Efficient AES algorithm The straightforward implementation of the ESA mechanism by constructing
the attention matrix, AES and performing a matrix multiplication with the input sequence (detailed
algorithm in Appendix B.4) results in an O(L2) computational complexity.

AES(V) =

AES(V)1
...

AES(V)L

 = AES ·
[
vT
0
V

]
,

Yet, we are able to achieve an efficient algorithm by exploiting the unique structure of the exponential
smoothing attention matrix, AES, which is illustrated in Appendix B.1. Each row of the attention
matrix can be regarded as iteratively right shifting with padding (ignoring the first column). Thus, a
matrix-vector multiplication can be computed with a cross-correlation operation, which in turn has an
efficient fast Fourier transform implementation (Mathieu et al., 2014). The full algorithm is described
in Algorithm 1, Appendix B.2, achieving an O(L logL) complexity.

Multi-Head Exponential Smoothing Attention (MH-ESA) We use AES as a basic building block,
and develop the Multi-Head Exponential Smoothing Attention to extract latent growth representations.
Formally, we obtain the growth representations by taking the successive difference of the residuals.

Z̃
(n)
t−L:t = Linear(Z

(n−1)
t−L:t),

B
(n)
t−L:t = MH-AES(Z̃

(n)
t−L:t − [Z̃

(n)
t−L:t−1,v

(n)
0]),

B
(n)
t−L:t := Linear(B

(n)
t−L:t),

where MH-AES is a multi-head version of AES and v
(n)
0 is the initial state from the ESA mechanism.

2.2.2 FREQUENCY ATTENTION

The goal of identifying and extracting seasonal patterns from the lookback window is twofold. Firstly,
it can be used to perform de-seasonalization on the input signals such that downstream components
are able to focus on modeling the level and growth information. Secondly, we are able to extrapolate
the seasonal patterns to build representations for the forecast horizon. The main challenge is to
automatically identify seasonal patterns. Fortunately, the use of power spectral density estimation for
periodicity detection has been well studied (Vlachos et al., 2005). Inspired by these methods, we
leverage the discrete Fourier transform (DFT, details in Appendix C) to develop the FA mechanism to
extract dominant seasonal patterns.

Specifically, FA first decomposes input signals into their Fourier bases via a DFT along the temporal
dimension, F(Z

(n−1)
t−L:t) ∈ CF×d where F = ⌊L/2⌋ + 1, and selects bases with the K largest

amplitudes. An inverse DFT is then applied to obtain the seasonality pattern in time domain.
Formally, this is given by the following equations:

Φk,i = ϕ
(
F(Z

(n−1)
t−L:t)k,i

)
, Ak,i =

∣∣∣F(Z
(n−1)
t−L:t)k,i

∣∣∣,
κ
(1)
i , . . . , κ

(K)
i = argTop-K

k∈{2,...,F}

{
Ak,i

}
,

S
(n)
j,i =

K∑
k=1

A
κ
(k)
i ,i

[
cos(2πf

κ
(k)
i

j +Φ
κ
(k)
i ,i

) + cos(2πf̄
κ
(k)
i

j + Φ̄
κ
(k)
i ,i

)
]
, (2)

where Φk,i,Ak,i are the phase/amplitude of the k-th frequency for the i-th dimension, arg Top-K
returns the arguments of the top K amplitudes, K is a hyperparameter, fk is the Fourier frequency
of the corresponding index, and f̄k, Φ̄k,i are the Fourier frequency/amplitude of the corresponding
conjugates.

Finally, the latent seasonal representation of the i-th dimension for the lookback window is formulated
as S

(n)
t−L:t,i = [S

(n)
t−L,i, . . . ,S

(n)
t−1,i]. For the forecast horizon, the FA module extrapolates beyond

the lookback window via, S(n)
t:t+H,i = [S

(n)
t,i , . . . ,S

(n)
t+H−1,i]. Since K is a hyperparameter typically

chosen for small values, the complexity for the FA mechanism is similarly O(L logL).

6

Under review as a conference paper at ICLR 2023

Table 1: Multivariate forecasting results over various forecast horizons. Best results are bolded, and
second best results are underlined.

Methods ETSformer FEDformer Autoformer Informer LogTrans Reformer LSTnet ES-RNN

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

m
2 96 0.189 0.280 0.203 0.287 0.255 0.339 0.365 0.453 0.768 0.642 0.658 0.619 3.142 1.365 0.204 0.323

192 0.253 0.319 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757 1.078 0.827 3.154 1.369 0.351 0.405
336 0.314 0.357 0.325 0.366 0.339 0.372 1.363 0.887 1.334 0.872 1.549 0.972 3.160 1.369 0.476 0.485
720 0.414 0.413 0.421 0.415 0.422 0.419 3.379 1.388 3.048 1.328 2.631 1.242 3.171 1.368 0.623 0.561

E
C

L

96 0.187 0.304 0.183 0.297 0.201 0.317 0.274 0.368 0.258 0.357 0.312 0.402 0.680 0.645 0.922 0.666
192 0.199 0.315 0.195 0.308 0.222 0.334 0.296 0.386 0.266 0.368 0.348 0.433 0.725 0.676 0.499 0.479
336 0.212 0.329 0.212 0.313 0.231 0.338 0.300 0.394 0.280 0.380 0.350 0.433 0.828 0.727 0.760 0.570
720 0.233 0.345 0.231 0.343 0.254 0.361 0.373 0.439 0.283 0.376 0.340 0.420 0.957 0.811 - -

E
xc

ha
ng

e 96 0.085 0.204 0.139 0.276 0.197 0.323 0.847 0.752 0.968 0.812 1.065 0.829 1.551 1.058 0.096 0.221
192 0.182 0.303 0.256 0.369 0.300 0.369 1.204 0.895 1.040 0.851 1.188 0.906 1.477 1.028 0.214 0.360
336 0.348 0.428 0.426 0.464 0.509 0.524 1.672 1.036 1.659 1.081 1.357 0.976 1.507 1.031 0.469 0.537
720 1.025 0.774 1.090 0.800 1.447 0.941 2.478 1.310 1.941 1.127 1.510 1.016 2.285 1.243 1.997 1.143

Tr
af

fic

96 0.607 0.392 0.562 0.349 0.613 0.388 0.719 0.391 0.684 0.384 0.732 0.423 1.107 0.685 1.315 0.546
192 0.621 0.399 0.562 0.346 0.616 0.382 0.696 0.379 0.685 0.390 0.733 0.420 1.157 0.706 0.727 0.373
336 0.622 0.396 0.570 0.323 0.622 0.337 0.777 0.420 0.733 0.408 0.742 0.420 1.216 0.730 - -
720 0.632 0.396 0.596 0.368 0.660 0.408 0.864 0.472 0.717 0.396 0.755 0.423 1.481 0.805 - -

W
ea

th
er

96 0.197 0.281 0.217 0.296 0.266 0.336 0.300 0.384 0.458 0.490 0.689 0.596 0.594 0.587 0.585 0.507
192 0.237 0.312 0.276 0.336 0.307 0.367 0.598 0.544 0.658 0.589 0.752 0.638 0.560 0.565 0.381 0.397
336 0.298 0.353 0.339 0.380 0.359 0.359 0.578 0.523 0.797 0.652 0.639 0.596 0.597 0.587 0.628 0.533
720 0.352 0.388 0.403 0.428 0.419 0.419 1.059 0.741 0.869 0.675 1.130 0.792 0.618 0.599 0.711 0.545

IL
I

24 2.527 1.020 2.203 0.963 3.483 1.287 5.764 1.677 4.480 1.444 4.400 1.382 6.026 1.770 5.393 1.561
36 2.615 1.007 2.272 0.976 3.103 1.148 4.755 1.467 4.799 1.467 4.783 1.448 5.340 1.668 6.478 1.751
48 2.359 0.972 2.209 0.981 2.669 1.085 4.763 1.469 4.800 1.468 4.832 1.465 6.080 1.787 7.160 1.963
60 2.487 1.016 2.545 1.061 2.770 1.125 5.264 1.564 5.278 1.560 4.882 1.483 5.548 1.720 5.801 1.711

3 EXPERIMENTS

This section presents extensive empirical evaluations on the LSTF task over 6 real world multivariate
datasets, ETT, ECL, Exchange, Traffic, Weather, and ILI, coming from a variety of application areas
(details in Appendix E). Performance is evaluated via the mean squared error (MSE) and mean
absolute error (MAE) metrics. For the main benchmark, datasets are split into train, validation, and
test sets chronologically, following a 60/20/20 split for the ETT datasets and 70/10/20 split for other
datasets. The multivariate benchmark makes use of all dimensions, while univariate benchmark
selects the last dimension of the datasets as the target variable, following previous work (Zhou
et al., 2021; Wu et al., 2021). Data is pre-processed by performing standardization based on train
set statistics. Further details on implementation and hyperparameters can be found in Appendix D.
This is followed by an ablation study of the various contributing components, and interpretability
experiments of our proposed model, and finally an analysis on computational efficiency.

3.1 RESULTS

For the multivariate benchmark, baselines include recently proposed time-series/efficient Transform-
ers – FEDformer, Autoformer, Informer, LogTrans (Li et al., 2019), and Reformer (Kitaev et al.,
2020), and RNN variants – LSTnet (Lai et al., 2018), and ES-RNN (Smyl, 2020). Univariate baselines
further include N-BEATS (Oreshkin et al., 2019), DeepAR (Salinas et al., 2020), ARIMA, Prophet
(Taylor & Letham, 2018), and AutoETS (Bhatnagar et al., 2021). We obtain baseline results from the
following papers: (Wu et al., 2021; Zhou et al., 2021), and further run AutoETS from the Merlion
library (Bhatnagar et al., 2021). Table 1 summarize the results of ETSformer against top performing
baselines on a selection of datasets, for the multivariate setting, and Table 6 in Appendix G for
space. Results for ETSformer are averaged over three runs (standard deviation in Appendix H).
Overall, ETSformer achieves competitive performance, achieving best performance on 14 out of
24 datasets/settings on MSE for the multivariate case, and within top 2 performance across all 24
datasets/settings.

3.2 ABLATION STUDY

We study the contribution of each major component which the final forecast is composed of level,
growth, and seasonality. Table 2 first presents the performance of the full model, and subsequently, the
performance of the resulting model by removing each component. We observe that the composition
of level, growth, and season provides the most accurate forecasts across a variety of application areas,
and removing any one component results in a deterioration. In particular, estimation of the level of
the time-series is critical. We also analyse the design of the MH-ESA in Section 3.2, replacing it with
a vanilla multi-head attention and an FC layer performing token mixing – we observe that our trend
attention formulation indeed is more effective.

7

Under review as a conference paper at ICLR 2023

Table 2: Ablation study on the various compo-
nents (Level, Growth, Season) of ETSformer, av-
eraged over multiple horizons {24, 96, 192, 336,
720} for ETTm2, ECL, and Traffic, {24, 36, 48,
60} for ILI.

Datasets ETTm2 ECL Traffic ILI

ETSformer
MSE 0.256 0.199 0.611 2.570
MAE 0.318 0.316 0.391 1.029

w/o Level
MSE 2.426 0.306 0.683 4.994
MAE 1.146 0.396 0.412 1.628

w/o Season
MSE 0.302 0.819 1.393 4.110
MAE 0.348 0.745 0.792 1.437

w/o Growth
MSE 0.261 0.202 0.619 2.642
MAE 0.321 0.317 0.397 1.101

Table 3: Ablation study on the effectiveness of
the MH-ESA design.

Datasets ETTm2 ECL Traffic ILI

ETSformer
MSE 0.256 0.199 0.611 2.570
MAE 0.318 0.316 0.391 1.029

MH-ESA → MHA
MSE 0.548 0.239 0.632 3.408
MAE 0.570 0.262 0.591 2.485

MH-ESA → FC
MSE 0.342 0.235 0.626 2.779
MAE 0.394 0.348 0.395 1.062

Table 4: MSE of decomposed forecasts over the
synthetic dataset’s test set (1000 samples).

Combined Trend Season

ETSformer 0.009 0.003 0.005
Autoformer 0.037 0.046 0.008
FEDformer 0.012 0.201 0.198

0 20 40 60 80

(a) FA weights

0 20 40 60 80

(b) ESA weights

0 20 40 60 80 100 120

Ground Truth
ETSformer
attend
query

(c) Learned dependencies

Figure 4: ETSformer attention weights visualization and learned seasonal
dependencies on the ECL dataset. For weights visualizations, each row
represents the attention weights a time step in the forecast horizon places
on each time step in the lookback window. FA learns a clear periodicity,
which is highlighted in the learned dependencies, where the top 6 time
steps being attended to by the query time step are highlighted in red. ESA
displays exponentially decaying weights representing growth.

0 20 40 60

Figure 5: Autoformer
Auto-Correlation mech-
anism weights on ECL
dataset.

3.3 INTERPRETABILITY

ETSformer generates interpretable forecasts which can be decomposed into disentangled level, growth,
and seasonal components. We showcased this ability compared to baselines in Figure 1 on synthetic
data containing (nonlinear) trend and seasonality patterns (details in Appendix F) , since we are not
able to obtain ground truth decomposition from real-world data. Forecast decompositions (without
component ground truth) can be found in Appendix J. Furthermore, we report quantitative results over
the test set in Table 4. ETSformer successfully forecasts interpretable level, trend (level + growth),
and seasonal components, as observed in the trend and seasonality components closely tracking the
ground truth patterns. Despite obtaining a good combined forecast, competing decomposition based
approaches, struggles to disambiguate between trend and seasonality.

Furthermore, ETSformer produces human interpretable attention weights for both the FA and ESA
mechanisms, visualized in Figure 4. The FA weights visualized exhibit clear periodicity which
can be used to identify the dominating seasonal patterns, while ESA weights exhibit exponentially
decaying property as per the inductive biases. This is contrasted to Autoformer’s Auto-Correlation
visualization in Figure 5 which does not follow periodicity properties despite being specialized to
handle seasonality.

3.4 COMPUTATIONAL EFFICIENCY

Figure 6 charts ETSformer’s empirical efficiency with that of competing Transformer-based ap-
proaches. ETSformer maintains competitive efficiency with competing quasilinear and linear com-
plexity Transformers. This is especially so when forecast horizon increasese, due to ETSformer’s
unique decoder architecture which relies on its Trend Damping and Frequency Attention modules
rather than relying on a cross attention mechanism. Of note, while FEDformer claims linear com-
plexity, our empirical results show that it incurs significant overhead especially in terms of runtime
efficiency. This slowdown arises from their (official) implementation still relying on the straightfor-

8

Under review as a conference paper at ICLR 2023

48 96 16
8

33
6

72
0

14
40

28
80

56
70

Lookback Window

0.0

0.5

1.0

1.5

2.0

Ti
m

e
(s

)

ETSformer (K=1)
ETSformer (K=2)
ETSformer (K=3)
FEDformer
Autoformer
Informer
Transformer

48 96 16
8

33
6

72
0

14
40

28
80

56
70

Forecast Horizon

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(s

)

(a) Runtime Efficiency Analysis

48 96 16
8

33
6

72
0

14
40

28
80

56
70

Lookback Window

0

5

10

15

20

25

30

M
em

or
y

(G
B)

ETSformer (K=1)
ETSformer (K=2)
ETSformer (K=3)
FEDformer
Autoformer
Informer
Transformer

48 96 16
8

33
6

72
0

14
40

28
80

56
70

Forecast Horizon

0

5

10

15

20

25

30

35

M
em

or
y

(G
B)

(b) Memory Efficiency Analysis

Figure 6: Computational Efficiency Analysis. Values reported are based on the training phase of
ETTm2 multivariate setting. Horizon is fixed to 48 for lookback window plots, and lookback is fixed
to 48 for forecast horizon plots. For runtime efficiency, values refer to the time for one iteration. The
“ ” marker indicates an out-of-memory error for those settings.

ward FFT operation, incurring O(L logL) complexity, as well as their Frequency Enhanced Modules
requiring a large number of trainable parameters.

4 RELATED WORK

Deep Forecasting LogTrans (Li et al., 2019) and AST (Wu et al., 2020) first introduced Transformer
based methods to reduce computational complexity of attention. The LSTF benchmark was first
introduced by Informer (Zhou et al., 2021), extending the Transformer architecture by proposing
the ProbSparse attention and distillation operation to achieve O(L logL) complexity. Similar to
our work that incorporates prior knowledge of time-series structure, Autoformer (Wu et al., 2021)
introduces the Auto-Correlation attention mechanism which focuses on sub-series based similarity
and is able to extract periodic patterns. FEDformer (Zhou et al., 2022) extends this line of work by
incorporating Frequency Enhanced structures. N-HiTS (Challu et al., 2022) introduced hierarchical
interpolation and multi-rate data sampling by building on top of N-BEATS (Oreshkin et al., 2019) for
the LSTF task. ES-RNN (Smyl, 2020) has explored combining ETS methods with neural networks.
However, they treat ETS as a pre and post processing step, rather than baking it into the model
architecture. Furthermore, their method requires prior knowledge on seasonality patterns, and they
were not proposed for LSTF, leading to high computation costs over long horizons.

Attention Mechanisms The self-attention mechanism in Transformer models has recently received
much attention, its necessity has been greatly investigated in attempts to introduce more flexibility
and reduce computational cost. Synthesizer (Tay et al., 2021) empirically studies the importance of
dot-product interactions, and show that a randomly initialized, learnable attention mechanisms with
or without token-token dependencies can achieve competitive performance with vanilla self-attention
on various NLP tasks. You et al. (2020) utilizes an unparameterized Gaussian distribution to replace
the original attention scores, concluding that the attention distribution should focus on a certain
local window and can achieve comparable performance. Raganato et al. (2020) replaces attention
with fixed, non-learnable positional patterns, obtaining competitive performance on NMT tasks.
Lee-Thorp et al. (2021) replaces self-attention with a non-learnable Fourier Transform and verifies it
to be an effective mixing mechanism.

5 DISCUSSION

Inspired by the classical exponential smoothing methods and emerging Transformer approaches for
time-series forecasting, we propose ETSformer, a novel level-growth-season decomposition Trans-
fomer. ETSformer leverages the novel Exponential Smoothing Attention and Frequency Attention
mechanisms which are more effective at modeling time-series than vanilla self-attention, and at the
same time achieves O(L logL) complexity, where L is the length of lookback window. We performed
extensive empirical evaluation, showing that ETSformer has extremely competitive accuracy and
efficiency, while being highly interpretable.

Limitations & Future Work ETSformer currently only produces point forecasts. Probabilistic
forecasting would be a valuable extension of our current work due to it’s importance in practical
applications. Other future directions which ETSformer does not currently consider but would be
useful are additional covariates such as holiday indicators and other dummy variables to consider
holiday effects which cannot be captured by the FA mechanism.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Aadyot Bhatnagar, Paul Kassianik, Chenghao Liu, Tian Lan, Wenzhuo Yang, Rowan Cassius, Doyen
Sahoo, Devansh Arpit, Sri Subramanian, Gerald Woo, et al. Merlion: A machine learning library
for time series. arXiv preprint arXiv:2109.09265, 2021.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer
Vision, pp. 213–229. Springer, 2020.

Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza, Max Mergenthaler, and Artur
Dubrawski. N-hits: Neural hierarchical interpolation for time series forecasting. arXiv preprint
arXiv:2201.12886, 2022.

Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Terpenning. Stl: A seasonal-trend
decomposition. J. Off. Stat, 6(1):3–73, 1990.

William P Cleveland and George C Tiao. Decomposition of seasonal time series: a model for the
census x-11 program. Journal of the American statistical Association, 71(355):581–587, 1976.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. ArXiv, abs/1810.04805, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Charles C Holt. Forecasting seasonals and trends by exponentially weighted moving averages.
International journal of forecasting, 20(1):5–10, 2004.

Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecasting with exponential
smoothing: the state space approach. Springer Science & Business Media, 2008.

Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=rkgNKkHtvB.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, pp. 95–104, 2018.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens with
fourier transforms. arXiv preprint arXiv:2105.03824, 2021.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. ArXiv, abs/1907.00235, 2019.

Michaël Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks through
ffts. CoRR, abs/1312.5851, 2014.

10

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB

Under review as a conference paper at ICLR 2023

Eddie McKenzie and Everette S Gardner Jr. Damped trend exponential smoothing: a modelling
viewpoint. International Journal of Forecasting, 26(4):661–665, 2010.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. In International Conference on
Learning Representations, 2019.

Alessandro Raganato, Yves Scherrer, and Jörg Tiedemann. Fixed encoder self-attention patterns
in transformer-based machine translation. In Trevor Cohn, Yulan He, and Yang Liu (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-
20 November 2020, volume EMNLP 2020 of Findings of ACL, pp. 556–568. Association for
Computational Linguistics, 2020. doi: 10.18653/v1/2020.findings-emnlp.49. URL https:
//doi.org/10.18653/v1/2020.findings-emnlp.49.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–
1191, 2020. ISSN 0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2019.07.001. URL https:
//www.sciencedirect.com/science/article/pii/S0169207019301888.

Slawek Smyl. A hybrid method of exponential smoothing and recurrent neural networks for time
series forecasting. International Journal of Forecasting, 36(1):75–85, 2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Ivan Svetunkov. Complex exponential smoothing. Lancaster University (United Kingdom), 2016.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer: Re-
thinking self-attention for transformer models. In International Conference on Machine Learning,
pp. 10183–10192. PMLR, 2021.

Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37–45,
2018.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Transformer dissection: An unified understanding for transformer’s attention via the lens
of kernel. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 4344–4353, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1443. URL https://aclanthology.org/D19-1443.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Michail Vlachos, Philip Yu, and Vittorio Castelli. On periodicity detection and structural periodic
similarity. In Proceedings of the 2005 SIAM international conference on data mining, pp. 449–460.
SIAM, 2005.

Peter R Winters. Forecasting sales by exponentially weighted moving averages. Management science,
6(3):324–342, 1960.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. CoST: Contrastive
learning of disentangled seasonal-trend representations for time series forecasting. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=PilZY3omXV2.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with Auto-Correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems, 2021.

11

https://doi.org/10.18653/v1/2020.findings-emnlp.49
https://doi.org/10.18653/v1/2020.findings-emnlp.49
https://www.sciencedirect.com/science/article/pii/S0169207019301888
https://www.sciencedirect.com/science/article/pii/S0169207019301888
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://aclanthology.org/D19-1443
https://openreview.net/forum?id=PilZY3omXV2
https://openreview.net/forum?id=PilZY3omXV2

Under review as a conference paper at ICLR 2023

Sifan Wu, Xi Xiao, Qianggang Ding, Peilin Zhao, Ying Wei, and Junzhou Huang. Adversarial sparse
transformer for time series forecasting. In NeurIPS, 2020.

Weiqiu You, Simeng Sun, and Mohit Iyyer. Hard-coded gaussian attention for neural machine
translation. arXiv preprint arXiv:2005.00742, 2020.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff.
A transformer-based framework for multivariate time series representation learning. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2114–2124,
2021.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of AAAI, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Fre-
quency enhanced decomposed transformer for long-term series forecasting. arXiv preprint
arXiv:2201.12740, 2022.

12

Under review as a conference paper at ICLR 2023

A CLASSICAL EXPONENTIAL SMOOTHING

We instantiate exponential smoothing methods (Hyndman et al., 2008) in the univariate forecasting
setting. They assume that time-series can be decomposed into seasonal and trend components, and
trend can be further decomposed into level and growth components. Specifically, a commonly used
model is the additive Holt-Winters’ method (Holt, 2004; Winters, 1960), which can be formulated as:

Level : et = α(xt − st−p) + (1− α)(et−1 + bt−1)

Growth : bt = β(et − et−1) + (1− β)bt−1

Seasonal : st = γ(xt − et) + (1− γ)st−p

Forecasting : x̂t+h|t = et + hbt + st+h−p (3)
where p is the period of seasonality, and x̂t+h|t is the h-steps ahead forecast. The above equations
state that the h-steps ahead forecast is composed of the last estimated level et, incrementing it by h
times the last growth factor, bt, and adding the last available seasonal factor st+h−p. Specifically, the
level smoothing equation is formulated as a weighted average of the seasonally adjusted observation
(xt − st−p) and the non-seasonal forecast, obtained by summing the previous level and growth
(et−1 + bt−1). The growth smoothing equation is implemented by a weighted average between
the successive difference of the (de-seasonalized) level, (et − et−1), and the previous growth, bt−1.
Finally, the seasonal smoothing equation is a weighted average between the difference of observation
and (de-seasonalized) level, (xt − et), and the previous seasonal index st−p. The weighted average
of these three equations are controlled by the smoothing parameters α, β and γ, respectively.

A widely used modification of the additive Holt-Winters’ method is to allow the damping of trends,
which has been proved to produce robust multi-step forecasts (Svetunkov, 2016; McKenzie &
Gardner Jr, 2010). The forecast with damping trend can be rewritten as:

x̂t+h|t = et + (ϕ+ ϕ2 + · · ·+ ϕh)bt + st+h−p, (4)
where the growth is damped by a factor of ϕ. If ϕ = 1, it degenerates to the vanilla forecast. For
0 < ϕ < 1, as h → ∞ this growth component approaches an asymptote given by ϕbt/(1− ϕ).

B EXPONENTIAL SMOOTHING ATTENTION

B.1 EXPONENTIAL SMOOTHING ATTENTION MATRIX

AES =

(1− α)1 α 0 0 . . . 0
(1− α)2 α(1− α) α 0 . . . 0
(1− α)3 α(1− α)2 α(1− α) α . . . 0

...
...

...
...

. . .
...

(1− α)L α(1− α)L−1 . . . α(1− α)j . . . α

B.2 EFFICIENT EXPONENTIAL SMOOTHING ATTENTION ALGORITHM

Algorithm 1 PyTorch-style pseudocode of efficient AES

conv1d fft: efficient convolution operation implemented with fast Fourier transform (Appendix B, Algorithm 3),
outer: outer product

V: value matrix, shape: L x d
v0: initial state, shape: d
alpha: smoothing parameter, shape: 1

obtain exponentially decaying weights
and compute weighted combination
powers = arange(L) # L
weight = alpha ∗ (1 − alpha) ∗∗ flip(powers) # L
output = conv1d fft(V, weight, dim=0) # L x d

compute contribution from initial state
init weight = (1 − alpha) ∗∗ (powers + 1) # L
init output = outer(init weight, v0) # L x d
return init output + output

13

Under review as a conference paper at ICLR 2023

B.3 LEVEL SMOOTHING VIA EXPONENTIAL SMOOTHING ATTENTION

E
(n)
t = α ∗ (E(n−1)

t − S
(n)
t) + (1−α) ∗ (E(n)

t−1 +B
(n)
t−1)

= α ∗ (E(n−1)
t − S

(n)
t) + (1−α) ∗B(n)

t−1

+ (1−α) ∗ [α ∗ (E(n−1)
t−1 − S

(n)
t−1) + (1−α) ∗ (E(n)

t−2 +B
(n)
t−2)]

= α ∗ (E(n−1)
t − S

(n)
t) +α ∗ (1−α) ∗ (E(n−1)

t−1 − S
(n)
t−1)

+ (1−α) ∗B(n)
t−1 + (1−α)2 ∗B(n)

t−2

+ (1−α)2[α ∗ (E(n−1)
t−2 − S

(n)
t−2) + (1−α) ∗ (E(n)

t−3 +B
(n)
t−3)]

...

= (1−α)t(E
(n)
0 − S

(n)
0) +

t−1∑
j=0

α ∗ (1−α)j ∗ (E(n−1)
t−j − S

(n)
t−j) +

t∑
k=1

(1−α)k ∗B(n)
t−k

= AES(E
(n−1)
t−L:t − S

(n)
t−L:t) +

t∑
k=1

(1−α)k ∗B(n)
t−k

Based on the above expansion of the level equation, we observe that E(t)
n can be computed by a sum

of two terms, the first of which is given by an AES term, and we finally, we note that the second
term can also be calculated using the conv1d fft algorithm, resulting in a fast implementation of level
smoothing.

14

Under review as a conference paper at ICLR 2023

B.4 FURTHER DETAILS ON ESA IMPLEMENTATION

Algorithm 2 PyTorch-style pseudocode of naive
AES

mm: matrix multiplication, outer: outer product
repeat: einops style tensor operations,
gather: gathers values along an axis specified by dim

V: value matrix, shape: L x d
v0: initial state, shape: d
alpha: smoothing parameter, shape: 1

L, d = V.shape

obtain exponentially decaying weights
powers = arange(L) # L
weight = alpha ∗ (1 − alpha).pow(flip(powers)) #

L

perform a strided roll operation
rolls a matrix along the columns in a strided

manner
i.e. first row is shifted right by L−1

positions,
second row is shifted L−2, ..., last row is

shifted by 0.
weight = repeat(weight, 'L −> T L', T=L) # L x L
indices = repeat(arange(L), 'L −> T L', T=L)
indices = (indices − (arange(L) + 1).unsqueeze(1)

) % L
weight = gather(weight, dim=−1, index=indices)

triangle masking to achieve the exponential
smoothing attention matrix

weight = triangle causal mask(weight)

output = mm(weight, V)

init weight = (1 − alpha) ∗∗ (powers + 1)
init output = outer(init weight, v0)

return init output + output

Algorithm 3 PyTorch-style pseudocode of
conv1d fft
next_fast_len: find the next fast size of input data to fft,
for zero-padding, etc.
rfft: compute the one-dimensional discrete Fourier Trans-
form for real input
x.conj(): return the complex conjugate, element-wise
irfft: computes the inverse of rfft
roll: roll array elements along a given axis
index select: returns a new tensor which index es the
input tensor along dimension dim using the entries in index

V: value matrix, shape: L x d
weight: exponential smoothing attention vector,

shape: L
dim: dimension to perform convolution on

obtain lengths of sequence to perform
convolution on

N = V.size(dim)
M = weight.size(dim)

Fourier transform on inputs
fast len = next fast len(N + M − 1)
F V = rfft(V, fast len, dim=dim)
F weight = rfft(weight, fast len, dim=dim)

multiplication and inverse
F V weight = F V ∗ F weight.conj()
out = irfft(F V weight, fast len, dim=dim)
out = out.roll(−1, dim=dim)

select the correct indices
idx = range(fast len − N, fast len)
out = out.index select(dim, idx)

return out

Algorithm 2 describes the naive implementation for ESA by first constructing the exponential
smoothing attention matrix, AES, and performing the full matrix-vector multiplication. Efficient
AES relies on Algorithm 3, to achieve an O(L logL) complexity, by speeding up the matrix-vector
multiplication. Due to the structure lower triangular structure of AES (ignoring the first column), we
note that performing a matrix-vector multiplication with it is equivalent to performing a convolution
with the last row. Algorithm 3 describes the pseudocode for fast convolutions using fast Fourier
transforms.

C DISCRETE FOURIER TRANSFORM

The DFT of a sequence with regular intervals, x = (x0, x1, . . . , xN−1) is a sequence of complex
numbers,

ck =

N−1∑
n=0

xn · exp(−i2πkn/N),

for k = 0, 1, . . . , N − 1, where ck are known as the Fourier coefficients of their respective Fourier
frequencies. Due to the conjugate symmetry of DFT for real-valued signals, we simply consider the
first ⌊N/2⌋+ 1 Fourier coefficients and thus we denote the DFT as F : RN → C⌊N/2⌋+1. The DFT
maps a signal to the frequency domain, where each Fourier coefficient can be uniquely represented

15

Under review as a conference paper at ICLR 2023

by the amplitude, |ck|, and the phase, ϕ(ck),

|ck| =
√
R{ck}2 + I{ck}2 ϕ(ck) = tan−1

(
I{ck}
R{ck}

)
where R{ck} and I{ck} are the real and imaginary components of ck respectively. Finally, the
inverse DFT maps the frequency domain representation back to the time domain,

xn = F−1(c)n =
1

N

N−1∑
k=0

ck · exp(i2πkn/N),

D IMPLEMENTATION DETAILS

D.1 HYPERPARAMETERS

For all experiments, we use the same hyperparameters for the encoder layers, decoder stacks, model
dimensions, feedforward layer dimensions, number of heads in multi-head exponential smoothing
attention, and kernel size for input embedding as listed in Table 5. We perform hyperparameter
tuning via a grid search over the number of frequencies K, lookback window size, and learning rate,
selecting the settings which perform the best on the validation set based on MSE (on results averaged
over three runs). The search range is reported in Table 5, where the lookback window size search
range was decided to be set as the values for the horizon sizes for the respective datasets.

Table 5: Hyperparameters used in ETSformer.

Hyperparameter Value

Encoder layers 2
Decoder stacks 2
Model dimension 512
Feedforward dimension 2048
Multi-head ESA heads 8
Input embedding kernel size 3
K K ∈ {0, 1, 2, 3}
Lookback window size L ∈ {96, 192, 336, 720}
Lookback window size (ILI) L ∈ {24, 36, 48, 60}
Learning rate lr ∈ {1e−3, 3e−4, 1e−4, 3e−5, 1e−5}

D.2 OPTIMIZATION

We use the Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.999, and ϵ = 1e − 08,
and a batch size of 32. We schedule the learning rate with linear warmup over 3 epochs, and cosine
annealing thereafter for a total of 15 training epochs for all datasets. The minimum learning rate is
set to 1e-30. For smoothing and damping parameters, we set the learning rate to be 100 times larger
and do not use learning rate scheduling. Training was done on an Nvidia A100 GPU.

D.3 REGULARIZATION

We apply two forms of regularization during the training phase.

Dropout We apply dropout (Srivastava et al., 2014) with a rate of p = 0.2 across the model.
Dropout is applied on the outputs of the Input Embedding, Frequency Self-Attention and Multi-Head
ES Attention blocks, in the Feedforward block (after activation and before normalization), on the
attention weights, as well as damping weights.

Noise Injection We utilize a composition of three noise distributions, applied in the following order
- scale, shift, and jitter, activating with a probability of 0.5.

16

Under review as a conference paper at ICLR 2023

1. Scale – The time-series is scaled by a single random scalar value, obtained by sampling
ϵ ∼ N (0, 0.2), and each time step is x̃t = ϵxt.

2. Shift – The time-series is shifted by a single random scalar value, obtained by sampling
ϵ ∼ N (0, 0.2) and each time step is x̃t = xt + ϵ.

3. Jitter – I.I.D. Gaussian noise is added to each time step, from a distribution ϵt ∼ N (0, 0.2),
where each time step is now x̃t = xt + ϵt.

E DATASETS

ETT1 Electricity Transformer Temperature (Zhou et al., 2021) is a multivariate time-series dataset,
comprising of load and oil temperature data recorded every 15 minutes from electricity transformers.
ETT consists of two variants, ETTm and ETTh, whereby ETTh is the hourly-aggregated version of
ETTm, the original 15 minute level dataset.

ECL2 Electricity Consuming Load measures the electricity consumption of 321 households clients
over two years, the original dataset was collected at the 15 minute level, but is pre-processed into an
hourly level dataset.

Exchange3 Exchange (Lai et al., 2018) tracks the daily exchange rates of eight countries (Australia,
United Kingdom, Canada, Switzerland, China, Japan, New Zealand, and Singapore) from 1990 to
2016.

Traffic4 Traffic is an hourly dataset from the California Department of Transportation describing
road occupancy rates in San Francisco Bay area freeways.

Weather5 Weather measures 21 meteorological indicators like air temperature, humidity, etc., every
10 minutes for the year of 2020.

ILI6 Influenza-like Illness records the ratio of patients seen with ILI and the total number of patients
on a weekly basis, obtained by the Centers for Disease Control and Prevention of the United States
between 2002 and 2021.

F SYNTHETIC DATASET

The synthetic dataset is constructed by a combination of trend and seasonal component. Each instance
in the dataset has a lookack window length of 720 and forecast horizon length of 192. The trend
pattern follows a nonlinear, saturating pattern, b(t) = 1

1+exp β0(t−β1)
, where β0 = −0.2, β1 = 720.

The seasonal pattern follows a complex periodic pattern formed by a sum of sinusoids. Concretely,
s(t) = A1 cos(2πf1t) + A2 cos(2πf2t, where f1 = 1/10, f2 = 1/13 are the frequencies, A1 =
A2 = 0.15 are the amplitudes. During training phase, we use an additional noise component by
adding i.i.d. gaussian noise with 0.05 standard deviation. Finally, the i-th instance of the dataset is
xi = [xi(1), xi(2), . . . , xi(720 + 192)], where xi(t) = b(t) + s(t+ i).

1https://github.com/zhouhaoyi/ETDataset
2lhttps://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://github.com/laiguokun/multivariate-time-series-data
4https://pems.dot.ca.gov/
5https://www.bgc-jena.mpg.de/wetter/
6https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

17

https://github.com/zhouhaoyi/ETDataset
lhttps://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://github.com/laiguokun/multivariate-time-series-data
https://pems.dot.ca.gov/
https://www.bgc-jena.mpg.de/wetter/
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

Under review as a conference paper at ICLR 2023

G UNIVARIATE FORECASTING BENCHMARK

Table 6: Univariate forecasting results over various forecast horizons. Best results are bolded, and
second best results are underlined.

Methods ETSformer FEDformer Autoformer Informer N-BEATS DeepAR Prophet ARIMA AutoETS

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.080 0.212 0.063 0.189 0.065 0.189 0.088 0.225 0.082 0.219 0.099 0.237 0.287 0.456 0.211 0.362 0.794 0.617
192 0.150 0.302 0.102 0.245 0.118 0.256 0.132 0.283 0.120 0.268 0.154 0.310 0.312 0.483 0.261 0.406 1.078 0.740
336 0.175 0.334 0.130 0.279 0.154 0.305 0.180 0.336 0.226 0.370 0.277 0.428 0.331 0.474 0.317 0.448 1.279 0.822
720 0.224 0.379 0.178 0.325 0.182 0.335 0.300 0.435 0.188 0.338 0.332 0.468 0.534 0.593 0.366 0.487 1.541 0.924

E
xc

ha
ng

e 96 0.099 0.230 0.131 0.284 0.241 0.299 0.591 0.615 0.156 0.299 0.417 0.515 0.828 0.762 0.112 0.245 0.192 0.316
192 0.223 0.353 0.277 0.420 0.273 0.665 1.183 0.912 0.669 0.665 0.813 0.735 0.909 0.974 0.304 0.404 0.355 0.442
336 0.421 0.497 0.426 0.511 0.508 0.605 1.367 0.984 0.611 0.605 1.331 0.962 1.304 0.988 0.736 0.598 0.577 0.578
720 1.114 0.807 1.162 0.832 0.991 0.860 1.872 1.072 1.111 0.860 1.890 1.181 3.238 1.566 1.871 0.935 1.242 0.865

H ETSFORMER STANDARD DEVIATION

Table 7: ETSformer main benchmark results with standard deviation. Experiments are performed
over three runs.

(a) Multivariate benchmark.

Metrics MSE (SD) MAE (SD)

E
T

T
m

2 96 0.189 (0.002) 0.280 (0.001)
192 0.253 (0.002) 0.319 (0.001)
336 0.314 (0.001) 0.357 (0.001)
720 0.414 (0.000) 0.413 (0.001)

E
C

L

96 0.187 (0.001) 0.304 (0.001)
192 0.199 (0.001) 0.315 (0.002)
336 0.212 (0.001) 0.329 (0.002)
720 0.233 (0.006) 0.345 (0.006)

E
xc

ha
ng

e 96 0.085 (0.000) 0.204 (0.001)
192 0.182 (0.003) 0.303 (0.002)
336 0.348 (0.004) 0.428 (0.003)
720 1.025 (0.031) 0.774 (0.014)

Tr
af

fic

96 0.607 (0.005) 0.392 (0.005)
192 0.621 (0.015) 0.399 (0.013)
336 0.622 (0.003) 0.396 (0.003)
720 0.632 (0.004) 0.396 (0.004)

W
ea

th
er

96 0.197 (0.007) 0.281 (0.008)
192 0.237 (0.005) 0.312 (0.004)
336 0.298 (0.003) 0.353 (0.003)
720 0.352 (0.007) 0.388 (0.002)

IL
I

24 2.527 (0.061) 1.020 (0.021)
36 2.615 (0.103) 1.007 (0.013)
48 2.359 (0.056) 0.972 (0.011)
60 2.487 (0.006) 1.016 (0.007)

(b) Univariate benchmark.

Metrics MSE (SD) MAE (SD)
E

T
T

m
2 96 0.080 (0.001) 0.212 (0.001)

192 0.150 (0.024) 0.302 (0.026)
336 0.175 (0.012) 0.334 (0.014)
720 0.224 (0.008) 0.379 (0.006)

E
xc

ha
ng

e 96 0.099 (0.003) 0.230 (0.003)
192 0.223 (0.015) 0.353 (0.009)
336 0.421 (0.002) 0.497 (0.000)
720 1.114 (0.049) 0.807 (0.016)

18

Under review as a conference paper at ICLR 2023

I LAYER ANALYSIS

Table 8: Analysis on the number of layers and stacks of ETSformer for ETTm2 and ECL datasets.
Obs Space refers to a variation of ETSformer which removes the embedding projection layer, and
performs operations in observation space.

Num Layers Obs. Space Layers=1 Layers=2 Layers=3 Layers=4 Layers=5

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.685 0.705 0.190 0.284 0.189 0.280 0.188 0.279 0.189 0.279 0.192 0.282
192 0.758 0.736 0.256 0.325 0.253 0.319 0.252 0.317 0.252 0.317 0.254 0.319
336 0.833 0.766 0.320 0.364 0.314 0.357 0.313 0.354 0.313 0.354 0.314 0.355
720 0.946 0.808 0.424 0.423 0.414 0.413 0.412 0.410 0.413 0.411 0.413 0.411

E
C

L

96 0.204 0.318 0.190 0.309 0.187 0.304 0.190 0.308 0.194 0.312 0.194 0.311
192 0.215 0.328 0.204 0.320 0.199 0.315 0.199 0.315 0.202 0.319 0.202 0.319
336 0.227 0.339 0.216 0.332 0.212 0.329 0.212 0.330 0.216 0.334 0.217 0.335
720 0.273 0.373 0.254 0.360 0.233 0.345 0.248 0.356 0.248 0.355 0.248 0.356

We provide additional analysis on the number of layers, and also ablations on the observation space
(meaning that there is no projection into representation space by removing the embedding layer).
We observe that learning deep representations lead to a significant increase in performance, and the
optimal number of layers is around 2 3, before overfitting occurs.

J REAL-WORLD DECOMPOSED FORECASTS

0 10 20 30 40

1.0

0.8

0.6

0.4

0.2

0.0

0.2 ETTh1
Ground Truth
Forecast
Trend
Season

0 20 40 60 80

1.5

1.0

0.5

0.0

0.5

1.0

1.5
ECL
Ground Truth
Forecast
Trend
Season

0 20 40 60 80
1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4
weather
Ground Truth
Forecast
Trend
Season

Figure 7: Visualization of decomposed forecasts from ETSformer on real world datasets, ETTh1,
ECL, and Weather. Note that season is zero-centered, and trend successfully tracks the level of the
time-series. Due to the long sequence forecasting setting and with a damping, the growth component
is not visually obvious, but notice for the Weather dataset, the trend pattern is has a strong downward
slope initially (near time step 0), and is quickly damped.

19

	Introduction
	ETSformer
	Overall Architecture
	Input Embedding
	Encoder
	Decoder

	Exponential Smoothing Attention and Frequency Attention Mechanism
	Exponential Smoothing Attention
	Frequency Attention

	Experiments
	Results
	Ablation Study
	Interpretability
	Computational Efficiency

	Related Work
	Discussion
	Classical Exponential Smoothing
	Exponential Smoothing Attention
	Exponential Smoothing Attention Matrix
	Efficient Exponential Smoothing Attention Algorithm
	Level Smoothing via Exponential Smoothing Attention
	Further Details on ESA Implementation

	Discrete Fourier Transform
	Implementation Details
	Hyperparameters
	Optimization
	Regularization

	Datasets
	Synthetic Dataset
	Univariate Forecasting Benchmark
	ETSformer Standard Deviation
	Layer Analysis
	Real-world Decomposed Forecasts

