

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LAPLACIAN KERNELIZED BANDIT

Anonymous authors

Paper under double-blind review

ABSTRACT

We study multi-user contextual bandits where users are related by a graph and their reward functions exhibit both non-linear behavior and graph homophily. We introduce a principled joint penalty for the collection of user reward functions $\{f_u\}$, combining a graph smoothness term based on RKHS distances with an individual roughness penalty. Our central contribution is proving that this penalty is equivalent to the squared norm within a single, unified *multi-user RKHS*. We explicitly derive its reproducing kernel, which elegantly fuses the graph Laplacian with the base arm kernel. This unification allows us to reframe the problem as learning a single "lifted" function, enabling the design of principled algorithms, LK-GP-UCB and LK-GP-TS, that leverage Gaussian Process posteriors over this new kernel for exploration. We provide high-probability regret bounds that scale with an *effective dimension* of the multi-user kernel, replacing dependencies on user count or ambient dimension. Empirically, our methods outperform strong linear and non-graph-aware baselines in non-linear settings and remain competitive even when the true rewards are linear. Our work delivers a unified, theoretically grounded, and practical framework that bridges Laplacian regularization with kernelized bandits for structured exploration.

1 INTRODUCTION

Graphs are pervasive in modern sequential decision-making, encoding similarity or interaction among entities like users, items, or sensors. In a multi-user contextual bandit setting, this graph structure is informative since it provides a pathway to share information, allowing an algorithm to learn more efficiently than if it treated each user in isolation. We study the problem where a known user graph promotes *homophily*, meaning connected users tend to have similar reward functions. At each round t , a learner observes a user u_t and a set of available arms (contexts) $\mathcal{D}_t \subset \mathbb{R}^d$, selects an arm $x_t \in \mathcal{D}_t$, and receives a noisy reward y_t . Naively learning a separate model for each user is inefficient, leading to regret that scales with the number of users. Exploiting the graph structure, however, can yield dramatic improvements in both sample efficiency and performance Szorenyi et al. (2013); Landgren et al. (2016); Gong & Zhang (2025); Wang et al. (2025).

This problem was first formalized as the Gang of Bandits (GOB) Cesa-Bianchi et al. (2013), which models the collection of user reward functions $\{f_u(\cdot)\}_{u=1}^n$ as a *smooth signal* on the graph. Seminal works like GoB Lin Cesa-Bianchi et al. (2013) assume linear reward functions, $f_u(x) = \theta_u^\top x$, and penalize roughness via the graph Laplacian, leading to the effective linear bandit solution. Subsequent research has extended this approach with improved computational scaling Vaswani et al. (2017); Yang et al. (2020), but has largely remained within the linear paradigm. Yet, in many applications, from recommendation systems to personalized medicine, reward functions exhibit complex, non-linear behavior. While a rich literature on kernelized bandits exists to handle non-linear rewards for a single agent Chowdhury & Gopalan (2017); Du et al. (2021); Bubeck et al. (2021); Li et al. (2022); Zhou & Ji (2022), principled methods for the multi-user graph setting are less developed. Existing approaches construct a multi-user kernel heuristically as a product of user and arm kernels Dubey et al. (2020), leaving a gap between the intuitive modeling goal and the final algorithm. [We refer to Appendix A for further discussion of the related work.](#)

Our work bridges this gap, starting from a natural first principle for this problem. A desirable collection of reward functions $\{f_u\}_{u=1}^n$, where each f_u lies in a Reproducing Kernel Hilbert Space (RKHS) \mathcal{H}_x , should be jointly regularized: they should be smooth across the graph (homophily) and individually well-behaved (low complexity). We formalize this via an intuitive, additive penalty

054 that combines a graph smoothness term with a standard ridge penalty. In the scalar case without arm
 055 features, this type of Laplacian-based regularization is known to induce a kernel whose matrix is the
 056 (regularized) Green’s function of the graph Smola & Kondor (2003). Building on this connection,
 057 we show that the same principle extends to the multi-user contextual setting: the joint penalty defines
 058 the squared norm of a single, lifted function $f(\mathbf{x}, u) := f_u(\mathbf{x})$ in a unified multi-user RKHS. We
 059 explicitly derive the reproducing kernel for this space, which elegantly fuses the graph Laplacian L
 060 and the base arm kernel K_x : $K((\mathbf{x}, u), (\mathbf{x}', u')) = [\mathbf{L}_\rho^{-1}]_{u, u'} K_x(\mathbf{x}, \mathbf{x}')$, where $\mathbf{L}_\rho = \mathbf{L} + \rho \mathbf{I}$ is the
 061 regularized Laplacian.

062 This unifying perspective transforms the problem of learning n related functions into the elegant
 063 problem of learning a single function in a well-defined kernel space. It allows us to directly apply
 064 the powerful machinery of Gaussian Process (GP) bandits Srinivas et al. (2009); Krause & Ong
 065 (2011); Vakili et al. (2021). We develop LK-GP-UCB and LK-GP-TS, algorithms whose principled
 066 uncertainty estimates are derived from the GP posterior of this unified kernel, enabling them to
 067 naturally and jointly leverage non-linear arm structure and Laplacian homophily. We provide regret
 068 guarantees for these algorithms in terms of an *effective dimension* that captures the spectral interplay
 069 between the graph and the kernel. Our experiments show that our methods are competitive in linear
 070 regimes and substantially outperform both linear and non-graph-aware baselines when rewards are
 071 non-linear yet graph-smooth.

072 Our main contributions are:

- 073 • We formalize the generalized gang-of-bandits problem with a principled joint penalty
 074 combining graph smoothness and RKHS regularity for the collection of reward functions
 075 $\{f_u\}_{u=1}^n$.
- 076 • We prove that this penalty is equivalent to the squared norm in a single multi-user RKHS
 077 and explicitly derive its reproducing kernel, unifying the graph and arm structures.
- 078 • We develop LK-GP-UCB and LK-GP-TS, GP-based bandit algorithms that leverage this
 079 unified kernel for principled and effective exploration.
- 080 • We provide novel regret bounds in terms of an effective dimension that depends on the
 081 spectral properties of both the kernel and the graph Laplacian.
- 082 • We empirically validate our approach, demonstrating significant performance gains over
 083 strong baselines in settings with non-linear, graph-smooth reward structures.

084 **Notations.** Let $[n]$ be set $\{1, 2, \dots, n\}$. For a set or event \mathcal{E} , we denote its complement as $\bar{\mathcal{E}}$. Vectors
 085 are assumed to be column vectors. \mathbf{e}_i is the i -th canonical basis vector in \mathbb{R}^n . \mathbf{I} is the identity matrix.
 086 $\lambda_{\min}(\mathbf{A})$ represents the minimum eigenvalue of matrix \mathbf{A} . \otimes is the Kronecker product. Denote the
 087 history of randomness up to (but not including) round t as \mathcal{F}_t and write $\mathbb{P}_t(\cdot) := \mathbb{P}(\cdot | \mathcal{F}_t)$ and
 088 $\mathbb{E}_t(\cdot) := \mathbb{E}[\cdot | \mathcal{F}_t]$ for the conditional probability and expectation given \mathcal{F}_t . We use $\tilde{\mathcal{O}}$ for big- O
 089 notation up to logarithmic factor and \asymp to represent asymptotically equivalence in rate of growth for
 090 any two functions.

091 2 PROBLEM FORMULATION

092 2.1 GANG OF BANDITS WITH NON-LINEAR REWARDS

093 We consider a multi-user contextual bandit problem, often called Gang of Bandits (GOB) Cesa-
 094 Bianchi et al. (2013), with n users and a potentially infinite set of arms. We denote the set of users
 095 as $\mathcal{U} = \{1, \dots, n\}$ and the arm set as $\mathcal{D} \subseteq \mathbb{R}^d$, where each arm is represented by a feature vector
 096 $\mathbf{x} \in \mathcal{D}$. The users are connected by a known undirected graph $G = (\mathcal{U}, \mathcal{E})$, where \mathcal{E} is the set of
 097 edges. Let $\mathbf{W} \in \mathbb{R}^{n \times n}$ be the matrix of non-negative edge weights w_{ij} , and \mathbf{D} be the diagonal
 098 degree matrix with entries $d_i := \sum_j w_{ij}$. The corresponding graph Laplacian is $\mathbf{L} := \mathbf{D} - \mathbf{W}$.

099 The learning process unfolds over T rounds. At each round $t \in \{1, \dots, T\}$, the environment
 100 presents a user $u_t \in \mathcal{U}$ (for example, randomly/uniformly pick one) and a finite subset of available
 101 arms $\mathcal{D}_t \subseteq \mathcal{D}$. The learner selects an arm $\mathbf{x}_t \in \mathcal{D}_t$ following some decision policy π and
 102 observes a noisy reward: $y_t = f_{u_t}(\mathbf{x}_t) + \epsilon_t$ where $\{f_u : \mathcal{D} \rightarrow \mathbb{R}\}_{u=1}^n$ is a collection of unknown
 103 reward functions, one for each user. The noise term ϵ_t is assumed to be conditionally zero-mean

108 and sub-Gaussian with variance proxy σ^2 , given the history of interactions \mathcal{F}_t . For the illustrative
 109 purpose, we use $f_{1:n} := \{f_u\}_{u=1}^n$ as the collection of the user-level reward functions.
 110

111 The learner’s objective is to minimize cumulative regret. The instantaneous regret incurred at time
 112 t is $\Delta_t = f_{u_t}(\mathbf{x}_t^*) - f_{u_t}(\mathbf{x}_t)$ where $\mathbf{x}_t^* = \arg \max_{\mathbf{x} \in \mathcal{D}_t} f_{u_t}(\mathbf{x})$ and cumulative regret over
 113 T rounds is defined as $\mathcal{R}_T = \sum_{t=1}^T \Delta_t$. A successful algorithm must achieve sub-linear regret,
 114 $\mathcal{R}_T/T \rightarrow 0$ as $T \rightarrow \infty$, ensuring that the average per-round regret vanishes.

115 2.2 A PRINCIPLED REGULARITY MODEL FOR GRAPH HOMOPHILY

117 To make learning tractable, we need to impose regularity on the unknown functions $f_{1:n}$. We make
 118 two core assumptions. First, we assume that each function f_u is individually well-behaved, be-
 119 longing to a common Reproducing Kernel Hilbert Space (RKHS), denoted \mathcal{H}_x , with a positive
 120 semi-definite kernel $K_x : \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$. The associated feature map is denoted as φ such that
 121 $K_x(\mathbf{x}, \mathbf{x}') = \langle \varphi(\mathbf{x}), \varphi(\mathbf{x}') \rangle_{\mathbb{R}^d}$. This captures the non-linear structure of rewards with respect to
 122 arm features.

123 Second, we formalize the notion of graph homophily by assuming that users connected by an edge
 124 in G have similar reward functions. This *user similarity* is measured by the squared distance be-
 125 between functions in the RKHS, $\|f_i - f_j\|_{\mathcal{H}_x}^2$. Combining these principles, we model the true reward
 126 functions as having a small joint penalty that balances graph smoothness with individual function
 127 complexity:

$$129 \text{PEN}(f_{1:n}; \rho) := \underbrace{\frac{1}{2} \sum_{i,j=1}^n w_{ij} \|f_i - f_j\|_{\mathcal{H}_x}^2}_{\text{PEN}_{\text{graph}}(f_{1:n})} + \rho \underbrace{\sum_{i=1}^n \|f_i\|_{\mathcal{H}_x}^2}_{\text{PEN}_{\text{ridge}}(f_{1:n})} = \sum_{i,j=1}^n [\mathbf{L}_\rho]_{ij} \langle f_i, f_j \rangle_{\mathcal{H}_x}, \quad (1)$$

133 where $\rho > 0$ is a regularization hyperparameter and $\mathbf{L}_\rho := \mathbf{L} + \rho \mathbf{I}$ is the regularized graph Lapla-
 134 cian. This penalty is central to our framework, as it provides a clear, interpretable objective for
 135 modeling related, non-linear functions.

136 2.3 FROM JOINT PENALTY TO A UNIFIED MULTI-USER KERNEL

139 Our key theoretical insight is that the intuitive, additive penalty in equation 1 is not merely an ad-
 140 hoc regularizer. It is, in fact, the squared norm in a single, unified Hilbert space over the user-arm
 141 product domain $\mathcal{U} \times \mathcal{D}$. This allows us to reframe the problem from learning n related functions
 142 to learning one “lifted” function, $f(\mathbf{x}, u) := f_u(\mathbf{x})$, in this new space. We show that it is the
 143 squared RKHS norm for the product space $\mathcal{H} = \mathcal{H}_G \otimes \mathcal{H}_x$ where \mathcal{H}_G is the RKHS with kernel
 144 $K_G(u, u') = [\mathbf{L}_\rho^{-1}]_{u, u'}$ in the following theorem.

145 **Theorem 2.1** (Multi-user Kernel). *Let \mathcal{H}_x be an RKHS of functions on \mathcal{D} with kernel K_x . The
 146 vector space of function collections $\mathcal{H} := \{(f_1, \dots, f_n) : f_u \in \mathcal{H}_x, \forall u \in \mathcal{U}\}$ equipped with the
 147 inner product*

$$148 \langle f, g \rangle_{\mathcal{H}} := \sum_{i,j=1}^n [\mathbf{L}_\rho]_{ij} \langle f_i, g_j \rangle_{\mathcal{H}_x}$$

150 *is a Reproducing Kernel Hilbert Space of functions on $\mathcal{U} \times \mathcal{D}$. The associated squared RKHS norm
 151 is precisely the penalty in equation 1, and its reproducing kernel $K : (\mathcal{D} \times \mathcal{U})^2 \rightarrow \mathbb{R}$ is given by:*

$$153 K((\mathbf{x}, u), (\mathbf{x}', u')) = [\mathbf{L}_\rho^{-1}]_{u, u'} K_x(\mathbf{x}, \mathbf{x}'). \quad (2)$$

154 This result is powerful: it provides a direct, canonical construction for a *multi-user kernel* that fuses
 155 graph and feature information. The kernel K_x captures similarity between arms, while the matrix
 156 \mathbf{L}_ρ^{-1} (the graph Green’s function) captures similarity between users, with $[\mathbf{L}_\rho^{-1}]_{u, u'}$ measuring the
 157 strength of connection between users u and u' through all paths in the graph. See Appendix A for
 158 more background.

160 This unification allows us to represent the lifted reward function $f(\mathbf{x}, u)$ via a feature map $\phi(\mathbf{x}, u)$
 161 such that $f(\mathbf{x}, u) = \langle \theta, \phi(\mathbf{x}, u) \rangle$ for some (potentially infinite-dimensional) parameter θ , and
 $K((\mathbf{x}, u), (\mathbf{x}', u')) = \langle \phi(\mathbf{x}, u), \phi(\mathbf{x}', u') \rangle$. Formally, for a context-user pair $(\mathbf{x}, u) \in \mathcal{D} \times \mathcal{U}$,

162 the feature map ϕ is defined as $\phi(\mathbf{x}, u) := \mathbf{L}_\rho^{-1/2} \mathbf{e}_u \otimes \varphi(\mathbf{x})$. The problem is now cast as learning a
 163 single function in the *multi-user RKHS* \mathcal{H} . This insight paves the way for a principled algorithmic
 164 approach based on Gaussian processes, which we detail next.
 165

166 3 LAPLACIAN KERNELIZED BANDIT ALGORITHMS

169 The identification of the *multi-user RKHS* with its explicit kernel K provides a powerful, unified
 170 framework for the GOB problem. It allows us to model the entire system—across all users and
 171 arms—with a single Gaussian Process (GP), sidestepping the complexity of managing n separate
 172 but correlated models.
 173

174 3.1 A GAUSSIAN PROCESS PERSPECTIVE

175 We propose algorithms based on the Gaussian process (GP), motivated by the kernelized bandit
 176 literature Chowdhury & Gopalan (2017). Our Bayesian modeling is only assumed for derivation of
 177 our estimators and it is not necessarily the true model. We place a GP prior over the unknown lifted
 178 reward function $f : \mathcal{D} \times \mathcal{U} \rightarrow \mathbb{R}$, denoted as
 179

$$180 [f_1(\cdot), \dots, f_n(\cdot)] \sim \mathcal{GP}(0, K(\cdot, \cdot)).$$

181 where K is the multi-user kernel defined in equation 2. For any finite set of user-arm pairs
 182 $\{(\mathbf{x}_i, u_i)\}_{i=1}^t$, This prior implies that $\mathbf{f}_t := [f_{u_1}(\mathbf{x}_1), \dots, f_{u_t}(\mathbf{x}_t)]^\top \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_t)$ where $\mathbf{K}_t \in$
 183 $\mathbb{R}^{t \times t}$ with entries $[\mathbf{K}_t]_{ij} = K((\mathbf{x}_i, u_i), (\mathbf{x}_j, u_j))$ is the kernel matrix.
 184

185 At round t , given user u_t and selected arm \mathbf{x}_t , the Bayesian model assume a reward model $y_t =$
 186 $f(\mathbf{x}_t, u_t) + \epsilon_t$ where $\epsilon_t \sim \mathcal{N}(0, \lambda)$ is the noise. Therefore, conditioned on the history \mathcal{F}_t , the
 187 posterior distribution for $f_u(\mathbf{x})$ is $\mathcal{N}(\mu_{u,t-1}(\mathbf{x}), \sigma_{u,t-1}^2(\mathbf{x}))$, with the posterior mean and variance:
 188

$$189 \mu_{u,t}(\mathbf{x}) = \mathbf{k}_t(\mathbf{x}, u)^\top (\mathbf{K}_t + \lambda \mathbf{I}_t)^{-1} \mathbf{y}_t \quad (3)$$

$$190 \sigma_{u,t}^2(\mathbf{x}) = K((\mathbf{x}, u), (\mathbf{x}, u)) - \mathbf{k}_t(\mathbf{x}, u)^\top (\mathbf{K}_t + \lambda \mathbf{I}_t)^{-1} \mathbf{k}_t(\mathbf{x}, u).$$

191 Here $\mathbf{k}_t(\mathbf{x}, u) := [K((\mathbf{x}_1, u_1), (\mathbf{x}, u)), \dots, K((\mathbf{x}_t, u_t), (\mathbf{x}, u))]^\top \in \mathbb{R}^t$ is the kernel vector be-
 192 tween past selected user-action pairs $\{(\mathbf{x}_s, u_s)\}_{s=1}^t$ and new pair (\mathbf{x}, u) , and $\mathbf{y}_t = [y_1, \dots, y_t]^\top \in$
 193 \mathbb{R}^t is the observed reward.
 194

195 **Remark 1.** When $\{(u_t, \mathbf{x}_t)\}_{t=1}^T$ is a fixed (deterministic) sequence, under this model we have
 196 $\mathbf{y}_t | \mathbf{f}_t \sim N(\mathbf{f}_t, \lambda \mathbf{I}_t)$ and $\mathbf{f}_t \sim N(\mathbf{0}, \mathbf{K}_t)$. Then, the mutual information between \mathbf{y}_t and \mathbf{f}_t is
 197 given by: $I(\mathbf{y}_t; \mathbf{f}_t) = \frac{1}{2} \log \det(\mathbf{I}_t + \lambda^{-1} \mathbf{K}_t)$, which is often referred as the information gain of
 198 the Bayesian model (Srinivas et al., 2009, Section 2.1). For convenience, we write

$$199 \gamma_t := \log \det(\mathbf{I}_t + \lambda^{-1} \mathbf{K}_t), \quad (4)$$

200 and refer to it as the information gain at round t , although it is twice what is usually called the
 201 information gain in the literature. Moreover, γ_t in our notation depends on the sequence, although
 202 in the literature, this symbol is often used for the maximum information gain over all sequence
 203 $\{(u_t, \mathbf{x}_t)\}_{t=1}^T$ of length T .
 204

206 **Connection to Regularized Regression.** It is worth noting that the GP posterior mean estimator
 207 in equation 3 is equivalent to the solution of an offline Kernel Laplacian Regularized Regression
 208 (KLRR) problem. Specifically, the function $f \in \mathcal{H}$ that minimizes the regularized least-squares
 209 objective

$$211 \min_{f \in \mathcal{H}} \sum_{s=1}^t (f(\mathbf{x}_s, u_s) - y_s)^2 + \lambda \|f\|_{\mathcal{H}}^2 \quad (5)$$

214 is precisely the posterior mean function $\mu_{t-1}(\mathbf{x}, u)$. This equivalence confirms that our online, GP-
 215 based algorithm is deeply connected to the batch learning principle of minimizing prediction error
 216 regularized by our proposed multi-user RKHS norm from equation 1.

216 3.2 DECISION STRATEGIES: UCB AND THOMPSON SAMPLING
217

218 With these posterior estimates, we can design bandit algorithms that effectively balance exploration
219 and exploitation. We propose two algorithms based on common and powerful heuristics: Upper
220 Confidence Bound (UCB) and Thompson Sampling (TS). The complete procedures are described in
221 Appendix E.1

222 **Laplacian Kernelized GP-UCB (LK-GP-UCB).** Following the principle of "optimism in the face of
223 uncertainty," our UCB algorithm selects the arm with the highest optimistic estimate of the reward.
224 At round t , upon observing user u_t and arm set \mathcal{D}_t , it chooses:

$$226 \quad \mathbf{x}_t = \arg \max_{\mathbf{x} \in \mathcal{D}_t} \left(\mu_{u_t, t-1}(\mathbf{x}) + \beta_t \sigma_{u_t, t-1}(\mathbf{x}) \right), \quad (6)$$

228 where β_t is the hyperparameter that ensures the appropriate scale of exploration via confidence width
229 $\sigma_{u_t, t-1}(\mathbf{x})$. Our theoretical analysis provides an explicit form for β_t in Theorem 4.2 to guarantee
230 low regret, though in practice it is often treated as a tunable hyperparameter.

231 **Laplacian Kernelized GP-TS (LK-GP-TS).** Thompson Sampling Thompson (1933); Russo et al.
232 (2018) operates on the principle of "probability matching." At each round, it draws a random func-
233 tion from the posterior distribution and acts greedily with respect to this sample. A practical way to
234 implement this is to select the arm that maximizes a sample from the posterior predictive distribution
235 for the reward:

$$237 \quad \mathbf{x}_t = \arg \max_{\mathbf{x} \in \mathcal{D}_t} \left(\mu_{u_t, t-1}(\mathbf{x}) + \nu_t z_t(\mathbf{x}) \sigma_{u_t, t-1}(\mathbf{x}) \right), \quad (7)$$

239 where ν_t is the scale hyperparameter for exploration and $z_t(\mathbf{x}) \sim \mathcal{N}(0, 1)$ is the Gaussian perturba-
240 tion. Aligned with common Thompson Sampling literature, our decision strategy in equation 7 can
241 be separated into two steps: sampling $\tilde{\mu}_t(\mathbf{x})$ from $\mathcal{N}(\mu_{u_t, t-1}(\mathbf{x}), \nu_t^2 \sigma_{u_t, t-1}^2(\mathbf{x}))$ for all $\mathbf{x} \in \mathcal{D}_t$
242 and choosing an arm by $\mathbf{x}_t = \arg \max_{\mathbf{x} \in \mathcal{D}_t} \tilde{\mu}_t(\mathbf{x})$. Similarly to the UCB algorithm, we also use
243 the explicit theoretical choice for ν_t in Theorem 4.3, while it is a tuning hyperparameter in a real
244 application.

245 3.3 PRACTICAL IMPLEMENTATION
246

247 A naive implementation of the posterior updates in equation 3 is computationally expensive, requir-
248 ing an $\mathcal{O}(t^3)$ matrix inversion at each step. To ensure practical scalability, we can use recursive
249 formulas to update the posterior mean and variance in $\mathcal{O}(t^2)$ or, for a fixed grid of points, even more
250 efficiently. Specifically, we can maintain and update the inverse matrix $(\mathbf{K}_t + \lambda \mathbf{I}_t)^{-1}$ or use the
251 following recursive updates for the posterior estimators Chowdhury & Gopalan (2017):

$$253 \quad \mu_{u, t}(\mathbf{x}) = \mu_{u, t-1}(\mathbf{x}) + \frac{q_{t-1}((\mathbf{x}, u), (\mathbf{x}_t, u_t))}{\lambda + \sigma_{u, t-1}^2(\mathbf{x}_t)} (y_t - \mu_{u, t-1}(\mathbf{x}_t))$$

$$254 \quad q_t((\mathbf{x}, u), (\mathbf{x}', u')) = q_{t-1}((\mathbf{x}, u), (\mathbf{x}', u')) - \frac{q_{t-1}((\mathbf{x}, u), (\mathbf{x}_t, u_t)) q_{t-1}((\mathbf{x}_t, u_t), (\mathbf{x}', u'))}{\lambda + \sigma_{u, t-1}^2(\mathbf{x}_t)} \quad (8)$$

$$255 \quad \sigma_{u, t}^2(\mathbf{x}) = \sigma_{u, t-1}^2(\mathbf{x}) - \frac{q_{t-1}^2((\mathbf{x}, u), (\mathbf{x}_t, u_t))}{\lambda + \sigma_{u, t-1}^2(\mathbf{x}_t)}.$$

260 where $q_t((\mathbf{x}, u), (\mathbf{x}', u'))$ is the estimated posterior covariance at round t . We explain how to obtain
261 the updates in Appendix E.2. A hybrid approach that uses exact inversion for small t and switches to
262 recursive updates for larger t can balance numerical stability and computational efficiency. Further
263 details on our implementation are provided in Appendix F.4.

264 4 REGRET ANALYSIS
265

266 We now provide theoretical guarantees for our proposed algorithms. Our analysis is built upon a
267 high-probability confidence bound for our GP posterior estimates, which in turn leads to sub-linear
268 regret bounds for both LK-GP-UCB and LK-GP-TS.

270 4.1 ASSUMPTIONS
271272 Our results rely on the following standard assumptions.
273274 **Assumption 1** (Sub-Gaussian Noise). *The noise process $\{\epsilon_t\}_{t=1}^T$ is a \mathcal{F}_t -measurable stochastic process and is conditionally sub-Gaussian with constant σ^2 .*
275276 **Assumption 2** (Bounded Base Kernel). *The base arm kernel $K_x(\cdot, \cdot)$ is positive semi-definite and its diagonal is uniformly bounded: $\sup_{\mathbf{x} \in \mathcal{D}} K_x(\mathbf{x}, \mathbf{x}) \leq \alpha^2$ for some $\alpha > 0$.*
277278 **Assumption 3** (Bounded Multi-User RKHS Norm). *The true lifted reward function f has a bounded norm in the multi-user RKHS \mathcal{H} : $\|f\|_{\mathcal{H}}^2 = \text{PEN}(f_{1:n}; \rho) \leq B_\rho^2$ for some constant $B_\rho > 0$.*
279280 Assumption 1 is common assumption in bandit literature. Assumption 2 and 3 indirectly align
281 with the regularity assumptions in kernelized bandit and graph smoothness literatures Belkin et al.
282 (2006); Kocák et al. (2020). These assumptions imply that the rewards and the *multi-user kernel* are
283 bounded. Formally, we have
284

285
$$\sup_{(\mathbf{x}, u) \in \mathcal{D} \times \mathcal{U}} K((\mathbf{x}, u), (\mathbf{x}, u)) \leq K_{\max} := \alpha^2 \cdot \max_{u \in \mathcal{U}} [\mathbf{L}_\rho^{-1}]_{u, u}.$$

286 4.2 HIGH PROBABILITY CONFIDENCE BOUND
287288 The core of our regret analysis is the confidence bound that relates the true function f to our pos-
289 terior mean estimator μ_t . This result quantifies the model’s uncertainty and justifies the exploration
290 strategy of the UCB algorithm.
291292 **Theorem 4.1** (Confidence Bound). *Suppose Assumptions 1, 2, and 3 hold. Let $\{(\mathbf{x}_t, u_t)\}_{t=1}^\infty$ be the
293 \mathcal{F}_{t-1} -measurable discrete time stochastic process. Then, using the posterior estimators $\mu_{u,t}(\mathbf{x})$ and
294 $\sigma_{u,t}(\mathbf{x})$ in equation 3 yields to a high probability upper bound: for any $\delta \in (0, 1)$, with probability
at least $1 - \delta$, for all $t \geq 1$ and all $(\mathbf{x}, u) \in \mathcal{D} \times \mathcal{U}$:*

295
$$|\mu_{u,t}(\mathbf{x}) - f(\mathbf{x}, u)| \leq \beta_t \cdot \sigma_{u,t}(\mathbf{x}) \quad (9)$$

296 where the confidence parameter β_t is given by
297

298
$$\beta_t := B_\rho + \sqrt{\frac{\sigma^2}{\lambda} \left(2 \log \frac{1}{\delta} + \log \det(\mathbf{I}_t + \lambda^{-1} \mathbf{K}_t) \right)}. \quad (10)$$

300 This confidence bound follows a structure similar to those in the kernelized bandit literature Chowd-
301 hury & Gopalan (2017); Valko et al. (2013); Dubey et al. (2020), but our analysis offers two key
302 distinctions. First, our proof does not require the constraint $\lambda \geq 1$ found in some prior work.
303 More significantly, we retain the term $\log \det(\mathbf{I}_t + \lambda^{-1} \mathbf{K}_t)$ directly within our confidence width
304 β_t . This contrasts with classical approaches that often proceed by further bounding this term using
305 information-theoretic quantities, which can result in looser bounds. By keeping the exact term, we
306 set the stage for a tighter, data-dependent analysis via the effective dimension.
307308 4.3 REGRET BOUNDS VIA EFFECTIVE DIMENSION
309310 To obtain concrete regret rates, we characterize the growth of the $\log \det$ term using the notion of an
311 *effective dimension*.
312313 **Definition 4.1** (Effective Dimension). *The effective dimension \tilde{d} of the learning problem, given the
314 sequence of actions up to time T , is defined as:*

315
$$\tilde{d} := \frac{\log \det(\mathbf{I}_T + \mathbf{K}_T / \lambda)}{\log(1 + T K_{\max} / \lambda)}. \quad (11)$$

316 This quantity, inspired by recent work in kernel methods and overparameterized models Wu &
317 Amini (2024); Bietti & Mairal (2019); Yang & Wang (2020), measures the intrinsic complexity of
318 the learning problem. It can be interpreted as the ratio of the sum of log-eigenvalues of the matrix
319 $\mathbf{I}_T + \mathbf{K}_T / \lambda$ to a bound on the maximum possible log-eigenvalue ($T K_{\max}$ is an upper bound on the
320 largest eigenvalue of \mathbf{K}_T). As such, it serves as a robust, graph-dependent measure of the matrix’s
321 rank, capturing the “dimensionality” of the function space actually explored by the algorithm.
322323 Using the confidence bound in Theorem 4.1 and \tilde{d} in Definition 4.1, we provide the regret upper
324 bound for LK-GP-UCB and LK-GP-TS as follow.
325

324 **Theorem 4.2** (Regret Bound of LK-GP-UCB). *Suppose Assumptions 1, 2 and 3 hold, with no as-
325 sumption on the number of arms. By setting the exploration parameter β_t in LK-GP-UCB to β_t
326 from Theorem 4.1, the cumulative regret is bounded with high probability as:*

$$327 \quad \mathcal{R}_T = \mathcal{O}(\tilde{d} \log(T) \sqrt{T}) = \tilde{\mathcal{O}}(\tilde{d} \sqrt{T})$$

329 **Theorem 4.3** (Regret Bound of LK-GP-TS). *Suppose Assumptions 1, 2 and 3 hold, and the decision
330 sets \mathcal{D}_t are uniformly finite. By setting the exploration parameter ν_t in LK-GP-TS to β_t from
331 Theorem 4.1, the cumulative regret is bounded with high probability as:*

$$332 \quad \mathcal{R}_T = \mathcal{O}(\tilde{d} \log(T)^{3/2} \sqrt{T}) = \tilde{\mathcal{O}}(\tilde{d} \sqrt{T})$$

334 These bounds demonstrate the efficiency of our approach. The regret scales not with the number of
335 users n or the ambient feature dimension, but with the effective dimension \tilde{d} . For problems where
336 the graph and kernel structure lead to a rapid spectral decay, \tilde{d} can be significantly smaller, resulting
337 in substantial gains in sample efficiency.

338 In the notation of Remark 1, the effective dimension \tilde{d} scales as: $\tilde{d} = \gamma_T / \log(1 + TK_{\max}/\lambda) \asymp$
339 $\frac{\gamma_T}{\log T}$ where the approximation assumes $\lambda = \Theta(1)$. The interpretation of \tilde{d} as a dimension is evident
340 in the linear setting ($n = 1$ with linear kernel on \mathbb{R}^d), where $\gamma_T = \mathcal{O}(d \log T)$ (Srinivas et al., 2009,
341 Theorem 5), yielding $\tilde{d} = \mathcal{O}(d)$. This example demonstrates that our bound $\tilde{\mathcal{O}}(\tilde{d} \sqrt{T})$ is tight up to
342 logarithmic factors for infinite action spaces, matching the minimax optimal rate $\tilde{\mathcal{O}}(d \sqrt{T})$ for linear
343 bandits Dani et al. (2008).

344 For uniformly finite action spaces ($|\mathcal{D}_t| \leq M$ for all t), it is possible to achieve a tighter regret
345 bound of $\tilde{\mathcal{O}}(\sqrt{\tilde{d}T})$ using algorithms such as SupKernelUCB Valko et al. (2013). This improvement
346 relies on scaling the exploration parameter as $\beta_t \propto 1/\sqrt{\lambda}$ rather than using equation 10, effectively
347 removing a factor of $\sqrt{\gamma_T}$. Since our primary contribution is the construction of the unified multi-
348 user kernel, such algorithmic refinements from the kernel bandit literature are directly applicable to
349 our framework.

352 4.4 SPECTRAL ANALYSIS OF THE MULTI-USER KERNEL

353 To interpret the effective dimension \tilde{d} , we analyze the spectrum of the multi-user kernel K . By
354 Theorem 2.1, $K = K_G \otimes K_x$, the tensor product of the user kernel K_G associated with matrix $\mathbf{K}_G =$
355 \mathbf{L}_ρ^{-1} and the arm kernel K_x . Consequently, the eigenvalues of the integral operator associated with
356 K are the pairwise products of the marginal eigenvalues. Let $\{\lambda_i^G\}_{i=1}^n$ be the eigenvalues of \mathbf{L}_ρ^{-1}
357 and $\{\nu_j^x\}_{j=1}^\infty$ be the eigenvalues of K_x . The operator eigenvalues for K are then $\{\mu_{ij} = \lambda_i^G \nu_j^x\}_{i,j}$.
358 The eigenvalues of the normalized matrix \mathbf{K}_T/T approximate these operator eigenvalues¹.

359 In particular, we obtain the following approximate upper bound on the information gain γ_T :

$$362 \quad \gamma_T = \log \det(\mathbf{I} + \lambda^{-1} \mathbf{K}_T) \lesssim \sum_{i=1}^n \sum_{j=1}^\infty \log \left(1 + \frac{T}{\lambda} \lambda_i^G \nu_j^x \right) = \sum_{i=1}^n \Psi \left(\frac{T \lambda_i^G}{\lambda} \right), \quad (12)$$

363 where $\Psi(s) := \sum_{j=1}^\infty \log(1 + s \nu_j^x)$ represents the information gain of a single-user problem with
364 effective signal strength s . We know that $\Psi(s)$ is concave and sublinear; e.g., for the squared
365 exponential kernel on \mathbb{R}^d , $\Psi(s) \lesssim (\log s)^{d+1}$ (Srinivas et al., 2009, Theorem 5)), hence as a function
366 of T , γ_T grows slowly in T . What is interesting then is the dependence on n .

367 While informative, the bound in equation 12 can be conservative for finite T (see Figure 1). A
368 sharper bound in a similar vein can be obtained by considering a *regular design*: assume we observe
369 each user exactly $m := T/n$ times, choosing the same set of actions $\{\mathbf{x}_1, \dots, \mathbf{x}_m\}$ for all users.
370 By permuting round indices such that all observations for user 1 appear first, followed by user 2,
371 etc., the eigenvalues of \mathbf{K}_T remain invariant. Under this setup, $\mathbf{K}_T = \mathbf{K}_G \otimes \mathbf{K}_x^{\text{base}}$, where \otimes is the
372 matrix Kronecker product and $\mathbf{K}_x^{\text{base}}$ is the $m \times m$ kernel matrix evaluated on the common action
373 set. Let $\{\hat{\nu}_j^x\}_{j=1}^m$ be the eigenvalues of $\mathbf{K}_x^{\text{base}}/m$. The normalization by m ensures that $\hat{\nu}_j^x$ stabilize
374 around the population eigenvalues ν_j^x for large m .

375 ¹This holds asymptotically as $T \rightarrow \infty$ under i.i.d. sampling Koltchinskii & Giné (2000); results from
376 (Srinivas et al., 2009, Theorem 5) suggest a similar approximation holds for worst-case sequences.

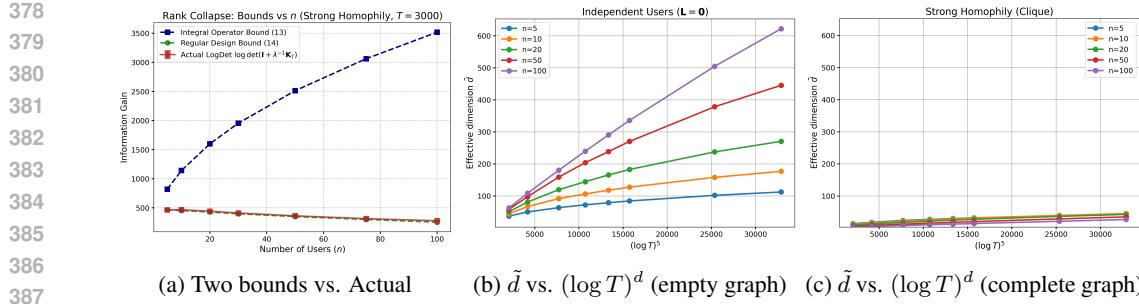


Figure 1: **Rank Collapse:** (a) Comparing the growth of the actual information gain γ_T vs n in i.i.d. design (red) versus the two bounds equation 12 (blue; crude) and equation 13 (green; nearly exact) in a complete graph. The kernel is $\exp(-\|x - y\|^2/2)$, $u_i \sim \text{Unif}([n])$ and $x_i \sim \text{Unif}[0, 1]^d$ where $d = 5$. Panels (b) and (c) show the growth of \tilde{d} vs. $(\log T)^d$ under empty and complete graphs, respectively. Note that under the complete graph, \tilde{d} slightly decreases as n increases.

Consequently, the eigenvalues of \mathbf{K}_T/T are given by $\lambda_i^G \hat{\nu}_j^x/n$, yielding the exact expression:

$$\gamma_T = \sum_{i=1}^n \sum_{j=1}^m \log \left(1 + \frac{T}{n\lambda} \lambda_i^G \hat{\nu}_j^x \right) = \sum_{i=1}^n \hat{\Psi} \left(\frac{T}{n\lambda} \lambda_i^G \right), \quad (13)$$

where $\hat{\Psi}(s) := \sum_{j=1}^m \log(1 + s\hat{\nu}_j^x)$ represents the ‘‘empirical’’ information gain of a single-user problem with common actions. For large enough $m = T/n$, we have $\hat{\nu}_j^x \approx \nu_j^x$ and $\hat{\Psi}(s) \approx \Psi(s)$. Expression equation 13 is exact for regular designs and, as shown in Figure 1, provides a sharp approximation for the i.i.d. sampling case. We use equation 13 to analyze \tilde{d} across graph structures.

Case 1: Independent Users (Worst Case). If $\mathbf{L} = \mathbf{0}$, then $\mathbf{K}_G = \rho^{-1} \mathbf{I}$, and $\lambda_i^G = \rho^{-1}$ for all $i \in [n]$. The gain sums linearly: $\gamma_T^{\text{indep}} = \sum_{i=1}^n \hat{\Psi} \left(\frac{T}{n\rho\lambda} \right) = n \cdot \hat{\Psi} \left(\frac{T}{n\rho\lambda} \right)$. Thus, the effective dimension scales as n times the single-user effective dimension. For example, with an SE kernel, $\tilde{d} = \mathcal{O}(n(\log(T/n))^d)$, which remains sublinear in T .

Case 2: Strong Homophily (Complete Graph). To isolate the effect of an extremely dense user graph under a homophilous prior, consider a complete graph with edge weights $w_{ij} = 1$. The Laplacian eigenvalues are 0 (multiplicity 1) and n (multiplicity $n - 1$). The kernel eigenvalues invert this structure, with $\lambda_1^G = 1/\rho$ and $\lambda_i^G = 1/(n + \rho)$ for $i \geq 2$. For large n , this yields a nearly rank-1 matrix. Substituting into equation 13 provides a ‘‘Head + Tail’’ decomposition:

$$\gamma_T^{\text{clique}} = \hat{\Psi} \left(\frac{T}{n\rho\lambda} \right) + (n - 1) \hat{\Psi} \left(\frac{T}{n(n + \rho)\lambda} \right). \quad (14)$$

This leads to the following consequence:

Proposition 4.1. *Consider the regime where $T \leq Cn$ for some constant C . Then, under a regular design: $\gamma_T^{\text{clique}} \lesssim \frac{C}{\lambda} \left(\frac{1}{\rho} + 1 \right) = \mathcal{O}(1)$.*

Proof. Using $\log(1 + x) \leq x$ for $x \geq 0$, we have $\hat{\Psi}(s) \leq s(\sum_{j=1}^m \hat{\nu}_j^x)$. Then, for $T \leq Cn$,

$$(n - 1) \hat{\Psi} \left(\frac{T}{n(n + \rho)\lambda} \right) \leq n \hat{\Psi} \left(\frac{C}{(n + \rho)\lambda} \right) \leq n \cdot \frac{C}{(n + \rho)\lambda} \sum_{j=1}^m \hat{\nu}_j^x \lesssim \frac{C}{\lambda},$$

since $\sum_{j=1}^m \hat{\nu}_j^x = \mathcal{O}(\sum_{j=1}^{\infty} \nu_j^x) = \mathcal{O}(1)^2$. Similarly, for the first term, $\hat{\Psi} \left(\frac{T}{n\rho\lambda} \right) \lesssim \frac{C}{\rho\lambda}$. \square

²This bound holds for any kernel whose integral operator is trace class. For a uniformly bounded kernel as in Assumption 2, we have the more straightforward bound $\sum_{j=1}^m \hat{\nu}_j^x = \text{tr}(\mathbf{K}_x^{\text{base}})/m \leq \alpha^2$.

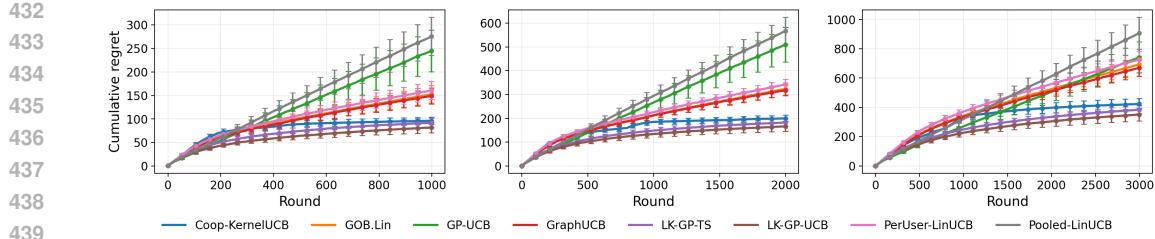


Figure 2: Cumulative Regret under *Linear-GOB* regime. From left to right are tasks of easy level, medium level, to hard level.

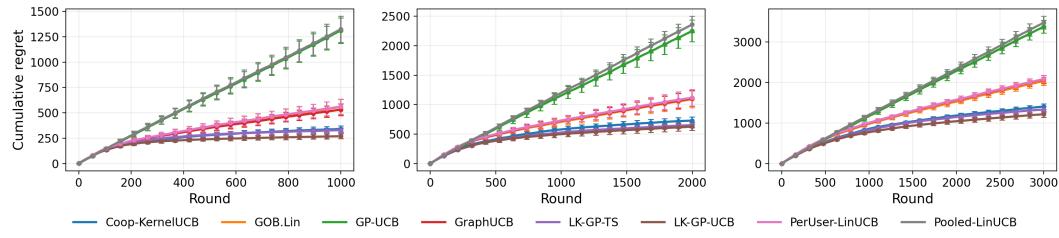


Figure 3: Cumulative Regret under *Laplacian-Kernel* regime using GP draw. From left to right are tasks of easy level, medium level, to hard level.

This result is significant: in the regime $T \leq Cn$, the information gain grows with neither n nor T , implying $\tilde{d} = \mathcal{O}(1/\log T)$ (slowly decreasing). This behavior has no counterpart in the single-user setting and confirms that under strong homophily, regret is independent of n . These theoretical findings are corroborated by our empirical plots in Figure 1.

Generalization to Clusters. If the graph contains k disjoint clusters with high internal connectivity, \mathbf{K}_G will have k eigenvalues of magnitude $\mathcal{O}(1)$ and $n-k$ of magnitude $\mathcal{O}(1/n)$. A similar argument implies that $\tilde{d} = \mathcal{O}(k/\log T)$ when $T \leq Cn$. Thus, \tilde{d} essentially counts the number of significant eigenvalues of the normalized kernel \mathbf{K}_G , serving as a soft proxy for the number of distinct user clusters.

Comparison with Independent Bandits. It is instructive to compare this with independent learners that share no information. Since each user generates T/n observations on average, the regret for learning each function is at best $\sqrt{T/n}$, yielding an overall regret of $\sum_{u=1}^n \sqrt{T/n} = \sqrt{nT}$. In the worst case (Case 1), our bound $\tilde{d}\sqrt{T}$ scales as $n\sqrt{T}$ (ignoring log factors), which is a factor of \sqrt{n} looser than the independent baseline. However, had we assumed a uniformly finite action space, we could achieve a regret bound of $\sqrt{\tilde{d}T} \asymp \sqrt{nT}$, matching the optimal independent rate.

The advantage of our approach becomes evident under strong homophily. For independent learners in the regime $T \asymp n$, the regret scales as $\sqrt{nT} \asymp T$, meaning no learning occurs. In contrast, we showed that our Laplacian Kernelized Bandit achieves regret of $\mathcal{O}(\sqrt{T})$ in this regime (up to log factors). A similar improvement holds when there are $k = \mathcal{O}(1)$ strong clusters.

5 EXPERIMENTS

We evaluate Laplacian Kernelized bandit algorithms, LK-GP-UCB and LK-GP-TS on several synthetic data environments that capture user-user homophily on a known graph while varying reward structure (linear vs. nonlinear) and problem difficulty. Baseline algorithms include GraphUCB Yang et al. (2020), GoB.Lin Cesa-Bianchi et al. (2013), COOP-KernelUCB Dubey et al. (2020), GP-UCB Chowdhury & Gopalan (2017), Pooled LinUCB and Per-User LinUCB. Full implementation details are provided in Appendix F.

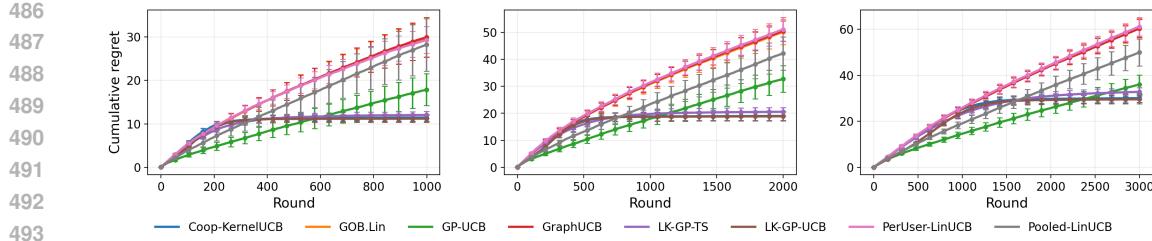


Figure 4: Cumulative Regret under *Laplacian–Kernel* regime using representer draw. From left to right are tasks of easy level, medium level, to hard level.

Environments. We draw a context pool \mathcal{D} by sampling from $\mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ first and then normalize the context vectors. At round t we present \mathcal{D}_t by sampling M_t distinct items from \mathcal{D} without replacement. We generate the user graphs by Erdős–Rényi (ER) random graph model or Radial basis function(RBF) random graph model. After giving the generated graph, we consider one linear regime and two kernelized(nonlinear) regimes for synthetic data simulation. First synthetic data environment is called *Linear–GOB*. We consider simulating the true graph graph-smooth user parameters $\Theta = (\mathbf{I} + \eta \mathbf{L})^{-1} \Theta_0$, which enforce graph homophily on the random initial parameters $\Theta_0 \in \mathbb{R}^{n \times d}$ Yang et al. (2020). The homophily strength is controlled by η in *Linear–GOB* regime. We also generate the true reward functions by simulating *multi-user kernel*, which is called the *Laplacian–Kernel* regime. We first use *Squared Exponential* as our base kernel K_x over arms \mathcal{U} and construct the *multi-user kernel* using equation 2. Next, we design two choices to generate f , including a GP draw and a representer draw. We leave all the details for data simulation in Appendix F.1.

Task Design. Our experiment has following design of the bandit tasks for a general comparison. In these tasks, the noise of reward is set as $\sigma = 0.1$ and the number of users is $n = 20$. The simplest level task is a 10-arm bandit problem ($m = 10$) with 50% viewability ($M_t = 5$) at each round for all users, under $T = 1000$ interaction rounds. Medium level task is a 20-arm bandit problem ($m = 20$) with 25% viewability ($M_t = 5$) at each round for all users, under $T = 3000$ interaction rounds. The hard task is a 50-arm bandit problem ($m = 50$) with 10% viewability ($M_t = 5$) at each round for all users, under $T = 5000$ interaction rounds. In our figures (2, 3 and 4), from left to right are tasks of easy level, medium level, to hard level.

Algorithms Configurations. Our proposals LK–GP–UCB and LK–GP–TS are given in Algorithm 1 and Algorithm 2 in Appendix E.1. We implement the hybrid updates using practical recursive update in equation 8 and exact update in equation 3 with Cholesky decomposition. Details are in Appendix F.4. Hyperparameters ν and β are tuned. For Coop–KernelUCB, we initially set five choices of similarity kernel K_z and conduct an experiment (Figure in Appendix) to verify that the inverse Laplacian \mathbf{L}_ρ^{-1} is the optimal choice while the empirical maximum mean discrepancy method is close to the best choice. In the experiment, K_z is set as the empirical MMD method to learn the similarity kernel K_z unless otherwise stated. The classical baselines for GOB problem, GoB.Lin, GraphUCB, and all the remaining baselines, Pooled LinUCB, Per-User LinUCB and GP-UCB, are all UCB-based algorithms. We also tune their hyperparameter for the confidence bound. The regularization parameter λ is designed as a scheduling $\lambda_t = \lambda_{\text{base}} \cdot S_{\text{spec}} \cdot \frac{T}{T+t}$ where S_{spec} is the ratio of the smallest non-zero eigenvalue to the max eigenvalue and λ_{base} is tuned. Appendix F.5 discusses hyperparameter tuning. All methods run in a centralized, no-delay setting.

Main Findings. Our proposals LK–GP–UCB and LK–GP–TS have robust performance in all the 9 data environments. In the *Linear–GOB* regime, which is the preferred setting for linear bandit algorithms, our proposals can beat the most baselines with clear gaps. In the *Laplacian–Kernel* regime, our proposals are consistently the best choices. For the GP draw setting, our proposals are always the top algorithms in our experiment. For setting using representer draw, LK–GP–UCB and LK–GP–TS are sublinear while most baselines are hard to achieve sublinear regret. We believe our proposed algorithms can clearly outperform others in a long-term manner due to the achievement of the clear sublinear regret. Lastly, even though we conduct an empirical study on the choice for Coop–KernelUCB and pick a best one in the comparison, leading to the top performances(close to our proposal) of Coop–KernelUCB, our LK–GP–UCB are consistently better than Coop–KernelUCB.

540 REFERENCES
541

542 Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
543 bandits. *Advances in neural information processing systems*, 24, 2011.

544 Noga Alon, Nicolo Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. From bandits to experts:
545 A tale of domination and independence. *Advances in Neural Information Processing Systems*, 26,
546 2013.

547 Noga Alon, Nicolo Cesa-Bianchi, Claudio Gentile, Shie Mannor, Yishay Mansour, and Ohad
548 Shamir. Nonstochastic multi-armed bandits with graph-structured feedback. *SIAM Journal on
549 Computing*, 46(6):1785–1826, 2017.

550 Mauricio A Alvarez, Lorenzo Rosasco, Neil D Lawrence, et al. Kernels for vector-valued functions:
551 A review. *Foundations and Trends® in Machine Learning*, 4(3):195–266, 2012.

552 Raman Arora, Teodor Vanislavov Marinov, and Mehryar Mohri. Bandits with feedback graphs and
553 switching costs. *Advances in Neural Information Processing Systems*, 32, 2019.

554 Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
555 work for learning from labeled and unlabeled examples. *Journal of machine learning research*, 7
556 (11), 2006.

557 Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. *Advances in Neural
558 Information Processing Systems*, 32, 2019.

559 David Blanco-Mulero, Markus Heinonen, and Ville Kyrki. Evolving-graph gaussian processes.
560 *arXiv preprint arXiv:2106.15127*, 2021.

561 Sébastien Bubeck, Ronen Eldan, and Yin Tat Lee. Kernel-based methods for bandit convex opti-
562 mization. *Journal of the ACM (JACM)*, 68(4):1–35, 2021.

563 Nicolo Cesa-Bianchi, Claudio Gentile, and Giovanni Zappella. A gang of bandits. *Advances in
564 neural information processing systems*, 26, 2013.

565 Ronshee Chawla, Daniel Vial, Sanjay Shakkottai, and R Srikant. Collaborative multi-agent hetero-
566 geneous multi-armed bandits. In *International Conference on Machine Learning*, pp. 4189–4217.
567 PMLR, 2023.

568 Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In *International
569 Conference on Machine Learning*, pp. 844–853. PMLR, 2017.

570 Konstantina Christakopoulou and Arindam Banerjee. Learning to interact with users: A
571 collaborative-bandit approach. In *Proceedings of the 2018 SIAM International Conference on
572 Data Mining*, pp. 612–620. SIAM, 2018.

573 Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. Stochastic linear optimization under bandit
574 feedback. In *Proceedings of the 21st Annual Conference on Learning Theory (COLT)*, pp. 355–
575 366. Omnipress, 2008.

576 Yihan Du, Wei Chen, Yuko Kuroki, and Longbo Huang. Collaborative pure exploration in kernel
577 bandit. *arXiv preprint arXiv:2110.15771*, 2021.

578 Abhimanyu Dubey et al. Kernel methods for cooperative multi-agent contextual bandits. In *Inter-
579 national Conference on Machine Learning*, pp. 2740–2750. PMLR, 2020.

580 Xueping Gong and Jiheng Zhang. Efficient graph bandit learning with side-observations and switch-
581 ing constraints. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp.
582 16871–16879, 2025.

583 Tomáš Kocák, Rémi Munos, Branislav Kveton, Shipra Agrawal, and Michal Valko. Spectral bandits.
584 *Journal of Machine Learning Research*, 21(218):1–44, 2020.

585 Ravi Kumar Kolla, Krishna Jagannathan, and Aditya Gopalan. Collaborative learning of stochastic
586 bandits over a social network. *IEEE/ACM Transactions on Networking*, 26(4):1782–1795, 2018.

594 Vladimir Koltchinskii and Evarist Giné. Random matrix approximation of spectra of integral operators. *Bernoulli*, 6(1):113–167, 2000.
 595
 596

597 Andreas Krause and Cheng Ong. Contextual gaussian process bandit optimization. *Advances in*
 598 *neural information processing systems*, 24, 2011.

599 Branislav Kveton, Csaba Szepesvari, Mohammad Ghavamzadeh, and Craig Boutilier. Perturbed-
 600 history exploration in stochastic linear bandits. *arXiv preprint arXiv:1903.09132*, 2019.
 601

602 Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. On distributed cooperative
 603 decision-making in multiarmed bandits. In *2016 European Control Conference (ECC)*, pp. 243–
 604 248. IEEE, 2016.

605 Chuanhao Li, Huazheng Wang, Mengdi Wang, and Hongning Wang. Communication efficient dis-
 606 tributed learning for kernelized contextual bandits. *Advances in Neural Information Processing*
 607 *Systems*, 35:19773–19785, 2022.

608

609 Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. Collaborative filtering bandits. In *Proceed-
 610 ings of the 39th International ACM SIGIR conference on Research and Development in Infor-
 611 mation Retrieval*, pp. 539–548, 2016.

612 Fang Liu, Swapna Buccapatnam, and Ness Shroff. Information directed sampling for stochastic
 613 bandits with graph feedback. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 614 volume 32, 2018a.

615

616 Fang Liu, Zizhan Zheng, and Ness Shroff. Analysis of thompson sampling for graphical bandits
 617 without the graphs. *arXiv preprint arXiv:1805.08930*, 2018b.

618 Shiyin Lu, Yao Hu, and Lijun Zhang. Stochastic bandits with graph feedback in non-stationary
 619 environments. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp.
 620 8758–8766, 2021.

621

622 Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
 623 thompson sampling. *Foundations and Trends® in Machine Learning*, 11(1):1–96, 2018.

624

625 Alexander J. Smola and Risi Kondor. Kernels and regularization on graphs. In *Computational
 626 Learning Theory and Kernel Machines*, volume 2777 of *Lecture Notes in Computer Science*, pp.
 627 144–158. Springer, 2003. doi: 10.1007/978-3-540-45167-9_12.

628

629 Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian pro-
 630 cess optimization in the bandit setting: No regret and experimental design. *arXiv preprint
 arXiv:0912.3995*, 2009.

631

632 Balázs Szorenyi, Róbert Busa-Fekete, István Hegedus, Róbert Ormándi, Márk Jelasity, and Balázs
 633 Kégl. Gossip-based distributed stochastic bandit algorithms. In *International conference on
 machine learning*, pp. 19–27. PMLR, 2013.

634

635 William R Thompson. On the likelihood that one unknown probability exceeds another in view of
 636 the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.

637

638 Sattar Vakili, Kia Khezeli, and Victor Picheny. On information gain and regret bounds in gaussian
 639 process bandits. In *International Conference on Artificial Intelligence and Statistics*, pp. 82–90.
 640 PMLR, 2021.

641

642 Michal Valko, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini. Finite-time
 643 analysis of kernelised contextual bandits. *arXiv preprint arXiv:1309.6869*, 2013.

644

645 Sharan Vaswani, Mark Schmidt, and Laks Lakshmanan. Horde of bandits using gaussian markov
 646 random fields. In *Artificial Intelligence and Statistics*, pp. 690–699. PMLR, 2017.

647

648 Arun Venkitaraman, Saikat Chatterjee, and Peter Handel. Gaussian processes over graphs. In
 649 *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
 (ICASSP)*, pp. 5640–5644. IEEE, 2020.

648 Huazheng Wang, Qingyun Wu, and Hongning Wang. Factorization bandits for interactive recom-
 649 mendation. In *Proceedings of the AAAI conference on artificial intelligence*, volume 31, 2017.
 650

651 Yao Wang, Jiannan Li, Yue Kang, Shanxing Gao, and Zhenxin Xiao. Generalized low-rank matrix
 652 contextual bandits with graph information. *arXiv preprint arXiv:2507.17528*, 2025.

653 Qingyun Wu, Huazheng Wang, Quanquan Gu, and Hongning Wang. Contextual bandits in a collabo-
 654 rative environment. In *Proceedings of the 39th International ACM SIGIR conference on Research*
 655 *and Development in Information Retrieval*, pp. 529–538, 2016.

656

657 Shuang Wu and Arash A Amini. Graph neural thompson sampling. *arXiv preprint*
 658 *arXiv:2406.10686*, 2024.

659 Shuang Wu, Chi-Hua Wang, Yuantong Li, and Guang Cheng. Residual bootstrap exploration for
 660 stochastic linear bandit. In *Uncertainty in Artificial Intelligence*, pp. 2117–2127. PMLR, 2022.

661

662 Kaige Yang, Laura Toni, and Xiaowen Dong. Laplacian-regularized graph bandits: Algorithms
 663 and theoretical analysis. In *International Conference on Artificial Intelligence and Statistics*, pp.
 664 3133–3143. PMLR, 2020.

665 Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels, and
 666 regret bound. In *International Conference on Machine Learning*, pp. 10746–10756. PMLR, 2020.

667

668 Yael Yankelevsky and Michael Elad. Dual graph regularized dictionary learning. *IEEE Transactions*
 669 *on Signal and Information Processing over Networks*, 2(4):611–624, 2016.

670

671 Mengxiao Zhang, Yuheng Zhang, Olga Vrusgou, Haipeng Luo, and Paul Mineiro. Practical con-
 672 textual bandits with feedback graphs. *Advances in Neural Information Processing Systems*, 36:
 673 30592–30617, 2023.

674 Yin-Cong Zhi, Yin Cheng Ng, and Xiaowen Dong. Gaussian processes on graphs via spectral kernel
 675 learning. *IEEE Transactions on Signal and Information Processing over Networks*, 9:304–314,
 676 2023.

677 Xingyu Zhou and Bo Ji. On kernelized multi-armed bandits with constraints. *Advances in neural*
 678 *information processing systems*, 35:14–26, 2022.

679

681 A RELATED WORK

682

683 **Gaussian Processes on Graphs** Our kernel construction builds upon foundational work in graph
 684 regularization. Smola & Kondor (2003) originally established that penalizing the discrete graph
 685 norm $\|f\|_L^2 = f^\top \mathbf{L} f$ induces a Reproducing Kernel Hilbert Space (RKHS) where the kernel is the
 686 pseudoinverse of the Laplacian. Our Theorem 2.1 formalizes this duality for the vector-valued case
 687 via a tensor product RKHS. We note that this structural result can essentially be inferred from the
 688 comprehensive review of vector-valued functions by Alvarez et al. Alvarez et al. (2012).

689 Following Smola & Kondor (2003), any positive semi-definite kernel on the vertices that is a func-
 690 tion of the Laplacian can be written in the eigenbasis of \mathbf{L} as $\mathbf{K}_G = \sum_{i=1}^n r(\lambda_i) \mathbf{q}_i \mathbf{q}_i^\top$ where
 691 $\{(\lambda_i, \mathbf{q}_i)\}_{i=1}^n$ are the eigenpairs of \mathbf{L} and $r(\cdot) \geq 0$ is a spectral transfer function. Our choice
 692 $\mathbf{K}_G = (\mathbf{L} + \rho \mathbf{I})^{-1}$ corresponds to $r(\lambda) = 1/(\lambda + \rho)$, which is monotone decreasing and there-
 693 fore shrinks high-frequency components more strongly, enforcing a smooth/homophilous prior. In
 694 principle, non-monotone or band-pass transfer functions r can encode more complex, possibly non-
 695 smooth or heterophilous relations between users; analyzing such priors in the bandit setting is an
 696 interesting direction for future work.

697 More recent works in graph signal processing adopt related Laplacian-based constructions but do
 698 not use the induced RKHS norm as the main vehicle for analysis. Venkitaraman et al. (2020) obtain
 699 Gaussian Processes over graphs from a Laplacian prior, and Zhi et al. (2023) further generalize
 700 this by learning a spectral filter $g(\mathbf{L})$ applied directly to the Laplacian. In both cases, the focus is on
 701 batch regression and signal reconstruction; the underlying regularizer can be characterized spectrally
 in terms of the transfer function associated with g , in the sense of Smola & Kondor (2003), but it is

702 not the primary object of study. By contrast, in our work we commit to the specific Green’s-function
 703 kernel $\mathbf{K}_G = (\mathbf{L} + \rho\mathbf{I})^{-1}$, which corresponds to the classical Dirichlet energy regularizer and
 704 enforces a homophilous prior. This choice yields a simple, explicit RKHS norm that we can track
 705 throughout the analysis and directly tie to the effective dimension and regret in the multi-user bandit
 706 setting.

707
Graph-structure Bandits Graph-based bandit models are also relevant but conceptually distinct.
 708 In nonstochastic bandits with graph-structured feedback, a learner chooses an arm (node) and ob-
 709 serves the losses of that arm and its neighbors in a feedback graph, interpolating between full-
 710 information and standard bandits Alon et al. (2017). Regret bounds in this line of work typically
 711 scale with graph-theoretic quantities such as the independence number $\alpha(G)$ or related observabil-
 712 ity parameters Alon et al. (2013). Follow-up studies on bandits with feedback graphs and graphical
 713 bandits refine these guarantees and extend them to stochastic settings, switching costs, adversarial
 714 corruptions, non-stationary environments, and contextual bandits, with regret controlled by parame-
 715 ters such as domination and weak-domination numbers, clique-cover and independence numbers, or
 716 maximum acyclic subgraph-type quantities Liu et al. (2018a;b); Arora et al. (2019); Lu et al. (2021);
 717 Zhang et al. (2023). In our setting, the user graph instead encodes prior correlation across user value
 718 functions through a Laplacian kernel; feedback remains strictly bandit (we only observe the reward
 719 of the chosen user-arm pair). Consequently, the graph enters our analysis only via the spectrum of
 720 the user kernel and the resulting effective dimension, rather than via such side-information parame-
 721 ters used in graphical bandit regret bounds.

722
Collaborative Bandits Our approach is related to collaborative contextual bandits on graph,
 723 which exploit relations among users to accelerate learning. The collaborative contextual bandit Wu
 724 et al. (2016) uses a user adjacency graph to share context and reward information online, effectively
 725 adding a Laplacian-type regularizer to a linear contextual bandit model. Other works consider low-
 726 rank or factorization-based collaborative bandits, such as matrix-factorization bandits for interactive
 727 recommendation Wang et al. (2017) and collaborative filtering bandits that co-cluster users and items
 728 in a bandit framework Li et al. (2016). A complementary line of work studies multi-agent bandits
 729 over social networks, where multiple players observe or share each other’s actions and rewards to
 730 reduce regret Kolla et al. (2018); Chawla et al. (2023); Christakopoulou & Banerjee (2018). These
 731 methods typically either (i) impose linear models with manually chosen regularizers, or (ii) model
 732 collaboration via latent factors, clustering, or message passing, without an explicit multi-output
 733 RKHS / GP interpretation. By contrast, our Laplacian-kernelized construction provides a principled
 734 kernel view of collaboration: the known user graph defines a positive-definite user kernel that is
 735 combined with a flexible context kernel, leading to algorithms whose uncertainty quantification and
 736 regret depend explicitly on the joint spectrum of the graph Laplacian and the base kernel, rather than
 737 on the number of users, clusters, or latent dimensions.

738
Cooperative Multi-Agent Kernelized Bandits Dubey et al. (2020) study a cooperative multi-
 739 agent kernelized contextual bandit with delayed communication over a fixed graph $G = (V, E)$. In
 740 their model, every agent $v \in V$ acts at every round t , selecting an action $x_{v,t}$ and receiving a reward
 741 $y_{v,t}$, so that after T rounds there are $|V|T$ observations; the graph G is used solely to constrain
 742 message passing and appears in the regret via graph-theoretic quantities (e.g., clique numbers of
 743 graph powers), but it does *not* enter the construction of the similarity kernel between agents or
 744 the modeling of the reward functions themselves. Instead, Dubey et al. posit a latent “network
 745 context” z_v for each agent and assume a global function $F(x, z)$ in the RKHS of a product kernel
 746 $K((x, z), (x', z')) = K_x(x, x')K_z(z, z')$. When the network contexts (or the kernel K_z) are not
 747 available, they propose to *estimate* them from the contexts $x_{v,t}$ by embedding each agent’s context
 748 distribution P_v into the RKHS of K_x and defining K_z as an RBF kernel on these mean embeddings.
 749 Thus, the agent kernel is ultimately a learned similarity over (estimated) context distributions, and
 750 the underlying communication graph plays no direct role in defining task similarity or a smoothness
 751 penalty on $(f_v)_{v \in V}$.

752 By contrast, our setting follows the Gang-of-Bandits model: at each time step a single user is drawn
 753 at random, we choose one action for that user, and we observe only one reward, so that after T
 754 rounds we have T observations rather than $|V|T$. We also behave as a centralized learner rather
 755 than a decentralized network of bandits. Most importantly, we do not introduce or estimate any
 latent network contexts; instead, we assume a given user graph and *fix* the agent kernel to the inverse

756 regularized Laplacian,

$$757 \quad K_z(u, v) = [\mathbf{L}_\rho^{-1}]_{u,v}.$$

758 This kernel is tightly coupled to the global homophily penalty on the vector of reward functions and
 759 yields an explicit RKHS norm with a clear smoothness interpretation. This principled graph-based
 760 construction allows us to carry out a spectral analysis of the resulting multi-user kernel, relate the
 761 regret to the spectrum of \mathbf{L}_ρ , and highlight how the effective dimension adapts to the cluster structure
 762 of the user graph, rather than reducing network information to ad hoc latent features inferred from
 763 context distributions.

764 B PROOF OF THEOREM 2.1

765 *Proof.* The proof proceeds in three main steps: (1) We construct the Hilbert space for our multi-
 766 user problem as the tensor product of the user space and the context space; (2) We define a feature
 767 map into this space and show that its inner product yields the kernel K . This establishes that our
 768 constructed space is indeed the RKHS \mathcal{H} ; (3) We characterize the elements of \mathcal{H} and derive the
 769 expression for their norm.

770 **Step 1: Constructing the Hilbert Space via Tensor Product.** Let $\mathcal{H}_G = \mathbb{R}^n$ be the finite-
 771 dimensional Hilbert space for the users, equipped with the standard Euclidean inner product
 772 $\langle \mathbf{u}, \mathbf{v} \rangle_{\mathcal{H}_G} = \mathbf{u}^\top \mathbf{v}$. $\{\mathbf{e}_i\}_{i=1}^n$ forms the standard orthonormal basis for \mathcal{H}_G . Our *multi-user RKHS* \mathcal{H}
 773 is the tensor product of \mathcal{H}_G and \mathcal{H}_x :

$$774 \quad \mathcal{H} := \mathcal{H}_G \otimes \mathcal{H}_x = \mathbb{R}^n \otimes \mathcal{H}_x.$$

775 The elements of \mathcal{H} are (limits of) finite linear combinations of elementary tensors of the form $\mathbf{u} \otimes h$,
 776 where $\mathbf{u} \in \mathcal{H}_G$ and $h \in \mathcal{H}_x$. The inner product in \mathcal{H} is defined on these elementary tensors and
 777 extended by linearity:

$$778 \quad \langle \mathbf{u}_1 \otimes h_1, \mathbf{u}_2 \otimes h_2 \rangle_{\mathcal{H}} := \langle \mathbf{u}_1, \mathbf{u}_2 \rangle_{\mathcal{H}_G} \langle h_1, h_2 \rangle_{\mathcal{H}_x}.$$

779 **Step 2: Defining the Feature Map and Verifying the Kernel.** Let $\mathbf{L}_\rho^{1/2}$ be the unique symmetric
 780 positive definite square root of \mathbf{L}_ρ . We define the feature map $\phi : (\mathcal{U} \times \mathcal{D}) \rightarrow \mathcal{H}$ as:

$$781 \quad \phi(\mathbf{x}, u) := \left(\mathbf{L}_\rho^{-1/2} \mathbf{e}_i \right) \otimes \varphi(\mathbf{x}).$$

782 This is a valid element of \mathcal{H} since $\mathbf{L}_\rho^{-1/2} \mathbf{e}_i \in \mathbb{R}^n = \mathcal{H}_G$ and $\varphi(\mathbf{x}) \in \mathcal{H}_x$. Let's compute the inner
 783 product of two such feature mappings in \mathcal{H} :

$$784 \quad \begin{aligned} \langle \phi(\mathbf{x}, i), \phi(\mathbf{y}, j) \rangle_{\mathcal{H}} &= \langle (\mathbf{L}_\rho^{-1/2} \mathbf{e}_i) \otimes \varphi(\mathbf{x}), (\mathbf{L}_\rho^{-1/2} \mathbf{e}_j) \otimes \varphi(\mathbf{y}) \rangle_{\mathcal{H}} \\ 785 &= \langle \mathbf{L}_\rho^{-1/2} \mathbf{e}_i, \mathbf{L}_\rho^{-1/2} \mathbf{e}_j \rangle_{\mathcal{H}_G} \cdot \langle \varphi(\mathbf{x}), \varphi(\mathbf{y}) \rangle_{\mathcal{H}_x} \\ 786 &= \mathbf{e}_i^\top \mathbf{L}_\rho^{-1} \mathbf{e}_j \cdot K_x(\mathbf{x}, \mathbf{y}) \\ 787 &= [\mathbf{L}_\rho^{-1}]_{ij} \cdot K_x(\mathbf{x}, \mathbf{y}) = K((\mathbf{x}, i), (\mathbf{y}, j)). \end{aligned}$$

788 By the fundamental property of RKHS, since the kernel K is generated by the inner product of the
 789 feature map ϕ in the Hilbert space \mathcal{H} , \mathcal{H} is the unique RKHS associated with K .

790 **Step 3: Characterizing Functions in \mathcal{H} and their Norms.** An element of \mathcal{H} is a function $f :
 791 (\mathcal{U} \times \mathcal{D}) \rightarrow \mathbb{R}$. By the Riesz representation theorem, for each $f \in \mathcal{H}$, there exists a unique
 792 element $\boldsymbol{\theta} \in \mathcal{H}$ such that $f(\cdot, \cdot) = \langle \boldsymbol{\theta}, \phi(\cdot, \cdot) \rangle_{\mathcal{H}}$ and $\|f\|_{\mathcal{H}} = \|\boldsymbol{\theta}\|_{\mathcal{H}}$. For some component functions
 793 $\{g_k\}_{k=1}^n \subset \mathcal{H}_x$, we can uniquely express $\boldsymbol{\theta}$ as

$$794 \quad \boldsymbol{\theta} = \sum_{k=1}^n \mathbf{e}_k \otimes g_k$$

795 and the squared norm of $\boldsymbol{\theta}$ in \mathcal{H} is then:

$$796 \quad \|\boldsymbol{\theta}\|_{\mathcal{H}}^2 = \left\langle \sum_k \mathbf{e}_k \otimes g_k, \sum_l \mathbf{e}_l \otimes g_l \right\rangle_{\mathcal{H}} = \sum_{k,l} \langle \mathbf{e}_k, \mathbf{e}_l \rangle_{\mathcal{H}_G} \langle g_k, g_l \rangle_{\mathcal{H}_x} = \sum_{k=1}^n \|g_k\|_{\mathcal{H}_x}^2.$$

Then we can relate our reward functions $f_{1:n}$ to the component functions $\{g_k\}_{k=1}^n$:

$$\begin{aligned}
f_i(\mathbf{x}) &= \langle \theta, \phi((\mathbf{x}, i)) \rangle_{\mathcal{H}} \\
&= \langle \sum_{k=1}^n e_k \otimes g_k, (\mathbf{L}_\rho^{-1/2} e_i) \otimes \varphi(\mathbf{x}) \rangle_{\mathcal{H}} \\
&= \sum_{k=1}^n \langle e_k, \mathbf{L}_\rho^{-1/2} e_i \rangle_{\mathcal{H}_G} \cdot \langle g_k, \varphi(\mathbf{x}) \rangle_{\mathcal{H}_x} \\
&= \sum_{k=1}^n [\mathbf{L}_\rho^{-1/2}]_{ki} \cdot \langle g_k, \varphi(\mathbf{x}) \rangle_{\mathcal{H}_x} \\
&= \sum_{k=1}^n [\mathbf{L}_\rho^{-1/2}]_{ki} g_k(\mathbf{x}) \quad (\text{since } \langle g, \varphi(\mathbf{x}) \rangle_{\mathcal{H}_x} = g(\mathbf{x}))
\end{aligned}$$

which leads to

$$g_k(\mathbf{x}) = \sum_{j=1}^n [\mathbf{L}_\rho^{1/2}]_{kj} f_j(\mathbf{x}).$$

This equality holds for the functions as elements of \mathcal{H}_κ : $g_k = \sum_{j=1}^n [L_\rho^{1/2}]_{kj} f_j$.

Finally, we compute the norm of f in \mathcal{H} :

$$\begin{aligned}
\|f\|_{\mathcal{H}}^2 &= \|\theta\|_{\mathcal{H}}^2 = \sum_{k=1}^n \|g_k\|_{\mathcal{H}_x}^2 \\
&= \sum_{k=1}^n \left\| \sum_{j=1}^n [\mathbf{L}_\rho^{1/2}]_{kj} f_j \right\|_{\mathcal{H}_x}^2 \\
&= \sum_{k=1}^n \left\langle \sum_{j=1}^n [\mathbf{L}_\rho^{1/2}]_{kj} f_j, \sum_{l=1}^n [\mathbf{L}_\rho^{1/2}]_{kl} f_l \right\rangle_{\mathcal{H}_x} \\
&= \sum_{k=1}^n \sum_{j,l=1}^n [\mathbf{L}_\rho^{1/2}]_{kj} [\mathbf{L}_\rho^{1/2}]_{kl} \langle f_j, f_l \rangle_{\mathcal{H}_x} \\
&= \sum_{j,l=1}^n \left(\sum_{k=1}^n [\mathbf{L}_\rho^{1/2}]_{kj} [\mathbf{L}_\rho^{1/2}]_{kl} \right) \langle f_j, f_l \rangle_{\mathcal{H}_x} \\
&= \sum_{j,l=1}^n [\mathbf{L}_\rho]_{jl} \langle f_j, f_l \rangle_{\mathcal{H}_x}
\end{aligned}$$

where the last step is because the term in parentheses is the (j, l) -th element of the matrix product $(\mathbf{L}_\rho^{1/2})^\top \mathbf{L}_\rho^{1/2} = \mathbf{L}_\rho^{1/2} \mathbf{L}_\rho^{1/2} = \mathbf{L}_\rho$. By polarization identity, the associated inner product in \mathcal{H} is:

$$\langle f, g \rangle_{\mathcal{H}} := \sum_{i,j=1}^n [\mathbf{L}_\rho]_{ij} \langle f_i, g_j \rangle_{\mathcal{H}_x}.$$

To see that $\|f\|_2^2$ is exactly the penalty in equation 1, we expand $L_2 = \rho I_n + L$:

$$\begin{aligned}\|f\|_{\mathcal{H}}^2 &= \sum_{j,l=1}^n (\rho \mathbb{I}\{j=l\} + [\mathbf{L}]_{jl}) \langle f_j, f_l \rangle_{\mathcal{H}_x} \\ &= \rho \sum_{j=1}^n \|f_j\|_{\mathcal{H}_x}^2 + \sum_{j,l=1}^n [\mathbf{L}]_{jl} \langle f_j, f_l \rangle_{\mathcal{H}_x}.\end{aligned}$$

Using the standard identity for the Laplacian quadratic form, the second term in the above equation is exactly $\frac{1}{2} \sum_{i,j} w_{ij} \|f_i - f_j\|_{\mathcal{H}_x}^2$, we get:

$$\|f\|_{\mathcal{H}}^2 = \rho \sum_{j=1}^n \|f_j\|_{\mathcal{H}_x}^2 + \frac{1}{2} \sum_{i,j} w_{ij} \|f_i - f_j\|_{\mathcal{H}_x}^2.$$

This completes the proof. \square

C PROOFS IN ANALYSIS

We first define following additional notations

$$\Phi_t := [\phi(\mathbf{x}_1, u_1), \dots, \phi(\mathbf{x}_t, u_t)]^\top \quad (15)$$

$$\mathbf{J}_t := \Phi_t^\top \Phi_t \quad (16)$$

$$\mathbf{\Gamma}_t := \mathbf{J}_t + \lambda \mathbf{I}_\infty \quad (17)$$

$$\Sigma_t := \mathbf{K}_t + \lambda \mathbf{I}_t \quad (18)$$

Here we have $\Phi_t \in \mathbb{R}^{t \times \infty}$ and $\mathbf{J}_t, \mathbf{\Gamma}_t$ are from $\mathbb{R}^{\infty \times \infty}$.

Then we define some useful events for concentration:

$$\mathcal{E}_t^{\text{ts}} = \{ |z_t(\mathbf{x})| \leq \sqrt{2 \log(t^2 |\mathcal{D}_t|)}, \text{ for all } \mathbf{x} \in \mathcal{D}_t \}$$

$$\mathcal{E}_t^a = \{ \mu_{u_t, t-1}(\mathbf{x}_t^*) + \beta_t z_t(\mathbf{x}_t^*) \sigma_{u_t, t-1}(\mathbf{x}_t^*) > f(\mathbf{x}_t^*, u_t) \}$$

where $z_t(\mathbf{x}) \sim \mathcal{N}(0, 1)$ stands for the resampling randomness in Thompson Sampling. We also define the confidence set at round t :

$$\mathcal{C}_t := \{ |\mu_{u_t, t-1}(\mathbf{x}_t) - f(\mathbf{x}_t, u_t)| \leq \beta_t \cdot \sigma_{u_t, t-1}(\mathbf{x}_t) \} \quad (19)$$

where

$$\beta_t := \left(B_\rho + \sqrt{\frac{\sigma^2}{\lambda} \cdot \log \det(\mathbf{I}_{t-1} + \lambda^{-1} \mathbf{K}_{t-1}) + \frac{2\sigma^2}{\lambda} \log \frac{1}{\delta}} \right).$$

In addition, recall the following effective dimension

$$\tilde{d} := \frac{\log \det(\mathbf{I}_T + \mathbf{K}_T / \lambda)}{\log(1 + T K_{\max} / \lambda)}$$

and the upper bound of the optimality gap:

$$|\Delta_t| \leq B_\Delta := 2B_\rho K_{\max}^{1/2}.$$

Lastly, we provide the following Lemmas, which are commonly required in regret analysis.

Lemma C.1 (Concentrations for TS). *For all $t \in [T]$, we have $\mathbb{P}_t(\bar{\mathcal{E}}_t^{\text{ts}}) \leq t^{-2}$ and $\mathbb{P}_t(\mathcal{E}_t^a | \mathcal{C}_t) \geq (4e\sqrt{\pi})^{-1}$.*

Lemma C.2 (One Step Regret Bound for TS). *Suppose $\mathbb{P}_t(\mathcal{E}_t^a) - \mathbb{P}_t(\bar{\mathcal{E}}_t^{\text{ts}}) > 0$. Then for any t , almost surely,*

$$\mathbb{E}_t[\Delta_t \mathbb{I}_{\mathcal{C}_t}] \leq \mathbb{I}_{\mathcal{C}_t} \cdot \left\{ \left(\frac{2}{\mathbb{P}_t(\mathcal{E}_t^a) - \mathbb{P}_t(\bar{\mathcal{E}}_t^{\text{ts}})} + 1 \right) \cdot \mathbb{E}_t[\gamma_t \sigma_{u_t, t-1}(\mathbf{x}_t)] + B_\Delta \cdot \mathbb{P}_t(\bar{\mathcal{E}}_t^{\text{ts}}) \right\}$$

where $\gamma_t := \beta_t + \beta_t \sqrt{2 \log(t^2 |\mathcal{D}_t|)}$ and $B_\Delta := 2B_\rho K_{\max}^{1/2}$

Lemma C.3 (Cumulative Uncertainty Bound). *We have the upper bound for the cumulative estimated uncertainty:*

$$\sum_{t=1}^T \sigma_{u_t, t-1}(\mathbf{x}_t) \leq \sqrt{2T \max\{1, K_{\max}\} \cdot \log \det(\mathbf{I}_T + \lambda^{-1} \mathbf{K}_T)}$$

Lemma C.4 (Dual Identities). *With the defined notations in equation 15, we have two key identities:*

$$\Sigma_t^{-1} \Phi_t = \Phi_t \Gamma_t^{-1}, \text{ and } \sigma_{u,t}^2(\mathbf{x}) = \lambda \|\phi(\mathbf{x}, u)\|_{\Gamma_t^{-1}}^2.$$

918 C.1 PROOF OF CONFIDENCE SET
919920 *Proof of Theorem 4.1.* We first decompose

921
$$\begin{aligned} 922 \mu_{u,t}(\mathbf{x}) - f(\mathbf{x}, u) &= \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} (\Phi_t \boldsymbol{\theta} + \boldsymbol{\epsilon}_t) - \boldsymbol{\theta}^\top \phi(\mathbf{x}, u) \\ 923 &= (\Phi_t^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u))^\top \boldsymbol{\theta} + \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \boldsymbol{\epsilon}_t - \boldsymbol{\theta}^\top \phi(\mathbf{x}, u) \\ 924 &= \underbrace{\langle \boldsymbol{\theta}, \delta_t(\mathbf{x}, u) \rangle}_{\text{bias}_t(\mathbf{x}, u)} + \underbrace{\mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \boldsymbol{\epsilon}_t}_{\text{noise}_t(\mathbf{x}, u)} \end{aligned}$$

925

926 where $\delta_t(\mathbf{x}, u) = \Phi_t^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u) - \phi(\mathbf{x}, u) \in \ell^2$. Our target is to bound the $\text{bias}_t(\mathbf{x}, u)$ and
927 $\text{noise}_t(\mathbf{x}, u)$. We state the following Lemmas:928
929 **Lemma C.5** (Bias Identity). *The squared bias is the degraded variance for noise:*

930
$$\|\delta_t(\mathbf{x}, u)\|_{\ell^2}^2 = \sigma_{u,t}^2(\mathbf{x}) - \lambda \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-2} \mathbf{k}_t(\mathbf{x}, u) \quad (20)$$

931

932 In particular, we have $\|\delta_t(\mathbf{x}, u)\|_{\ell^2} \leq \sigma_{u,t}(\mathbf{x})$ and $\lambda \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-2} \mathbf{k}_t(\mathbf{x}, u) < \sigma_{u,t}^2(\mathbf{x})$.933
934 **Lemma C.6** (Noise Bound). *With high probability, we have the upper bound for the following norm
935 of noise vector $\boldsymbol{\epsilon}_t$:*

936
$$\|\Phi_t \boldsymbol{\epsilon}_t\|_{\Gamma_t^{-1}} \leq \sqrt{\sigma^2 \log \det(\mathbf{I}_t + \lambda^{-1} \mathbf{K}_t) + 2\sigma^2 \log \frac{1}{\delta}}$$

937

938 From Lemma C.5, we could bound the bias by
939

940
$$\text{bias}_t(\mathbf{x}, u) \leq \|\boldsymbol{\theta}\|_{\ell^2} \|\delta_t(\mathbf{x}, u)\|_{\ell^2} \leq B_\rho \sigma_{u,t}(\mathbf{x}). \quad (21)$$

941

942 Using the identities in above Lemma C.4, we note that

943
$$\begin{aligned} 944 \text{noise}_t(\mathbf{x}, u) &= \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \boldsymbol{\epsilon}_t \\ 945 &= \phi(\mathbf{x}, u)^\top \Gamma_t^{-1} \Phi_t \boldsymbol{\epsilon}_t \\ 946 &= \langle \phi(\mathbf{x}, u), \Phi_t \boldsymbol{\epsilon}_t \rangle_{\Gamma_t^{-1}} \\ 947 &\leq \|\phi(\mathbf{x}, u)\|_{\Gamma_t^{-1}} \cdot \|\Phi_t \boldsymbol{\epsilon}_t\|_{\Gamma_t^{-1}} \\ 948 &= \frac{\sigma_{u,t}(\mathbf{x})}{\sqrt{\lambda}} \cdot \|\Phi_t \boldsymbol{\epsilon}_t\|_{\Gamma_t^{-1}} \end{aligned}$$

949

950 where the inequality is from the Cauchy-Schwarz inequality for the inner product $\langle \cdot, \cdot \rangle_{\Gamma_t^{-1}}$.
951952 Our Lemma C.6 gives the high probability upper bound for the norm $\|\Phi_t \boldsymbol{\epsilon}_t\|_{\Gamma_t^{-1}}$, leading to
953

954
$$\text{noise}_t(\mathbf{x}, u) \leq \frac{\sigma_{u,t}(\mathbf{x})}{\sqrt{\lambda}} \cdot \sqrt{\sigma^2 \log \det(\mathbf{I}_t + \lambda^{-1} \mathbf{K}_t) + 2\sigma^2 \log \frac{1}{\delta}} \quad (22)$$

955

956 Now combine equation 21 and equation 22 together, we have
957

958
$$\begin{aligned} 959 |\mu_{u,t}(\mathbf{x}) - f(\mathbf{x}, u)| &\leq |\text{bias}_t(\mathbf{x}, u)| + |\text{noise}_t(\mathbf{x}, u)| \\ 960 &\leq \sigma_{u,t}(\mathbf{x}) \left(B_\rho + \sqrt{\frac{\sigma^2}{\lambda} \cdot \log \det(\mathbf{I}_t + \lambda^{-1} \mathbf{K}_t) + \frac{2\sigma^2}{\lambda} \log \frac{1}{\delta}} \right). \end{aligned}$$

961

962 \square
963964 C.2 PROOF OF REGRET BOUND OF LK-GP-UCB
965966 *Proof of Theorem 4.2.* Recall the instantaneous regret at time t is $\Delta_t = f(\mathbf{x}_t^*, u_t) - f(\mathbf{x}_t, u_t)$ and
967 the cumulative regret in a time horizon T is $\mathcal{R}_T = \sum_{t=1}^T \Delta_t$. We note event $\mathcal{C}_t := \{|\mu_{u,t,t-1}(\mathbf{x}_t) -$
968 $f(\mathbf{x}_t, u_t)| \leq \beta_t \cdot \sigma_{u,t,t-1}(\mathbf{x}_t)\}$ happens with high probability $(1 - \delta)$, according to Theorem 4.1,
969

970
$$\beta_t := \left(B_\rho + \sqrt{\frac{\sigma^2}{\lambda} \cdot \log \det(\mathbf{I}_{t-1} + \lambda^{-1} \mathbf{K}_{t-1}) + \frac{2\sigma^2}{\lambda} \log \frac{1}{\delta}} \right) \quad (23)$$

971

972 By Theorem 4.1, for all $t \geq 2$ with probability at least $1 - \delta$,

$$\begin{aligned} 974 \Delta_t &= f(\mathbf{x}_t^*, u_t) - f(\mathbf{x}_t, u_t) \leq \mu_{u_t, t-1}(\mathbf{x}_t^*) + \beta_t \sigma_{u_t, t-1}(\mathbf{x}_t^*) - f(\mathbf{x}_t, u_t) \\ 975 &\leq \mu_{u_t, t-1}(\mathbf{x}_t) + \beta_t \sigma_{u_t, t-1}(\mathbf{x}_t) - f(\mathbf{x}_t, u_t) \\ 976 &\leq 2\beta_t \sigma_{u_t, t-1}(\mathbf{x}_t). \\ 977 \end{aligned}$$

978 Thus we have high probability bound for the cumulative regret

$$\begin{aligned} 980 \mathcal{R}_T &\leq 2\mathbb{E}\left[\beta_t \sum_{t=2}^T \sigma_{u_t, t-1}(\mathbf{x}_t)\right] + B_\Delta. \\ 981 \\ 982 \end{aligned}$$

983 Then we apply Lemma C.3 and the definition of effective dimension in equation 11

$$\begin{aligned} 985 \sum_{t=1}^T \sigma_{u_t, t-1}(\mathbf{x}_t) &\leq \sqrt{2T \max\{1, K_{\max}\} \cdot \log \det(\mathbf{I}_T + \lambda^{-1} \mathbf{K}_T)} \\ 986 &= \sqrt{2T \max\{1, K_{\max}\} \cdot \tilde{d} \log(1 + T\lambda^{-1} K_{\max})}. \\ 987 \\ 988 \end{aligned}$$

990 Therefore, we have the final high probability upper bound for regret:

$$992 \mathcal{R}_T \leq 2\mathbb{E}[\beta_T] \sqrt{2T \max\{1, K_{\max}\} \cdot \tilde{d} \log(1 + T\lambda^{-1} K_{\max})} + B_\Delta.$$

995 The next step is to analyze the order of the upper bound. By using the effective dimension \tilde{d} again
996 and dropping constants, we have

$$\begin{aligned} 998 \beta_t &\leq B_\rho + \sqrt{\frac{\sigma^2}{\lambda} \cdot \tilde{d} \log(1 + T\lambda^{-1} K_{\max}) + \frac{2\sigma^2}{\lambda} \log \frac{1}{\delta}} = \mathcal{O}(\sqrt{\tilde{d} \log(T)}) \\ 999 \\ 1000 \Rightarrow \mathcal{R}_T &= \mathcal{O}(\tilde{d} \log(T) \sqrt{T}) = \tilde{\mathcal{O}}(\tilde{d} \sqrt{T}). \\ 1001 \\ 1002 \\ 1003 \end{aligned}$$

□

1004 C.3 PROOF OF REGRET BOUND OF LK-GP-TS

1005 *Proof of Theorem 4.3.* We start from the decomposition of the cumulative regret

$$1008 \mathcal{R}_T = \sum_{t=1}^T \mathbb{E}[\Delta_t] = \sum_{t=1}^T \mathbb{E}[\Delta_t \mathbb{I}_{\mathcal{C}_t}] + \sum_{t=1}^T \mathbb{E}[\Delta_t \mathbb{I}_{\bar{\mathcal{C}}_t}].$$

1010 By Theorem 4.1 and the upper bound for the optimality gap, we know the second term is bounded:

$$1012 \sum_{t=1}^T \mathbb{E}[\Delta_t \mathbb{I}_{\bar{\mathcal{C}}_t}] \leq \delta B_\Delta$$

1016 by letting $\mathbb{P}(\mathcal{C}_t) \leq \delta/T$ for all t in Theorem 4.1.

1017 For the regret on the event \mathcal{C}_t , by Lemma C.2, almost surely, we have

$$1019 \mathbb{E}_t[\Delta_t \mathbb{I}_{\mathcal{C}_t}] \leq \mathbb{I}_{\mathcal{C}_t} \cdot \left\{ \left(\frac{2}{\mathbb{P}_t(\mathcal{E}_t^a) - \mathbb{P}_t(\bar{\mathcal{E}}_t^{\text{ts}})} + 1 \right) \cdot \mathbb{E}_t[\gamma_t \sigma_{u_t, t-1}(\mathbf{x}_t)] + B_\Delta \cdot \mathbb{P}_t(\bar{\mathcal{E}}_t^{\text{ts}}) \right\}$$

1022 where $\gamma_t := \beta_t + \beta_t \sqrt{2 \log(t^2 |\mathcal{D}_t|)}$. Note that $\mathbb{P}_t(\mathcal{E}_t^a) - \mathbb{P}_t(\bar{\mathcal{E}}_t^{\text{ts}}) \geq \frac{1}{4e\sqrt{\pi}} - \frac{1}{t^2} \geq \frac{1}{20e\sqrt{\pi}}$ by
1023 Lemma C.1 and the fact that $t^2 \geq 5e\sqrt{\pi}$ for all $t \geq 5$. Thus we have

$$1025 \mathbb{E}_t[\Delta_t \mathbb{I}_{\mathcal{C}_t}] \leq \mathbb{I}_{\mathcal{C}_t} \cdot \left\{ 194 \mathbb{E}_t[\gamma_t \sigma_{u_t, t-1}(\mathbf{x}_t)] + B_\Delta t^{-2} \right\}$$

1026 by using $40e\sqrt{\pi} + 1 \leq 194$. Taking summation on both side for our target cumulative regret, we get
1027

$$\begin{aligned}
1028 \quad & \sum_{t=1}^T \mathbb{E}[\Delta_t \mathbb{I}_{\mathcal{C}_t}] = \mathbb{E}[\sum_{t=1}^T \mathbb{E}_t[\Delta_t \mathbb{I}_{\mathcal{C}_t}]] \\
1029 \quad & \leq \mathbb{E}[\sum_{t=5}^T (194\mathbb{E}_t[\gamma_t \sigma_{u_t, t-1}(\mathbf{x}_t)] + B_\Delta t^{-2}) + 4B_\Delta] \\
1030 \quad & \leq \mathbb{E}[194 \sum_{t=5}^T \mathbb{E}_t[\gamma_t \sigma_{u_t, t-1}(\mathbf{x}_t)] + (4 + \frac{\pi^2}{6})B_\Delta] \\
1031 \quad & \leq \mathbb{E}[194\gamma_T \mathbb{E}_t[\sum_{t=1}^T \sigma_{u_t, t-1}(\mathbf{x}_t)] + (4 + \frac{\pi^2}{6})B_\Delta]
\end{aligned}$$

1032 where the second equality is using $\sum_{t=1}^{\infty} t^{-2} = \pi^2/6$ and the last step is from the monotonicity of
1033 the γ_t and the nonnegative of $\sigma_{u_t, t-1}(\mathbf{x})$. Our next focus is bounding the summation of uncertainty. As
1034 the same approach in the proof of Theorem 4.2, we apply Lemma C.3 and the definition of effective
1035 dimension in equation 11

$$\begin{aligned}
1036 \quad & \sum_{t=1}^T \sigma_{u_t, t-1}(\mathbf{x}_t) \leq \sqrt{2T \max\{1, K_{\max}\} \cdot \log \det(\mathbf{I}_T + \lambda^{-1} \mathbf{K}_T)} \\
1037 \quad & = \sqrt{2T \max\{1, K_{\max}\} \cdot \tilde{d} \log(1 + T\lambda^{-1}K_{\max})}.
\end{aligned}$$

1038 Thus we have

$$1039 \quad \sum_{t=1}^T \mathbb{E}[\Delta_t \mathbb{I}_{\mathcal{C}_t}] \leq 194\mathbb{E}[\gamma_T] \sqrt{2T \max\{1, K_{\max}\} \cdot \tilde{d} \log(1 + T\lambda^{-1}K_{\max})} + (4 + \frac{\pi^2}{6})B_\Delta$$

1040 leading to the high probability $(1 - \delta)$ regret upper bound:
1041

$$1042 \quad \mathcal{R}_T \leq 194\mathbb{E}[\gamma_T] \sqrt{2T \max\{1, K_{\max}\} \cdot \tilde{d} \log(1 + T\lambda^{-1}K_{\max})} + (4 + \frac{\pi^2}{6})B_\Delta + \delta B_\Delta.$$

1043 For the order of the upper bound, we first analyze $\mathbb{E}[\gamma_T]$, by using the definition of effective dimension \tilde{d} again and dropping constants
1044

$$\begin{aligned}
1045 \quad & \gamma_T \leq \left(1 + \sqrt{2 \log(T^2 M)}\right) \cdot \left(B_\rho + \sqrt{\frac{\sigma^2}{\lambda} \cdot \tilde{d} \log(1 + T\lambda^{-1}K_{\max}) + \frac{2\sigma^2}{\lambda} \log \frac{1}{\delta}}\right) \\
1046 \quad & = \mathcal{O}(\log(T) \sqrt{\tilde{d}}).
\end{aligned}$$

1047 where M is the upper bound for the size of action set at time t , i.e. $|\mathcal{D}_t| \leq M$ for all $t \leq T$.
1048 Therefore,
1049

$$1050 \quad \mathcal{R}_T = \mathcal{O}(\tilde{d} \log(T)^{3/2} \sqrt{T}) = \tilde{\mathcal{O}}(\tilde{d} \sqrt{T}).$$

1051 \square

1052 D PROOF OF LEMMAS

1053 D.1 PROOF OF LEMMA C.1

1054 *Proof.* Using the standard Gaussian tail bound and the classical union bound, we have
1055

$$1056 \quad \mathbb{P}_t(|z_t(\mathbf{x})| > u) \leq |\mathcal{D}_t| e^{-u^2/2}.$$

1057 By letting $u = \sqrt{2 \log(t^2 |\mathcal{D}_t|)}$, we obtain $\mathbb{P}_t(\bar{\mathcal{E}}_t^{ts}) \leq t^{-2}$.
1058

1080 For the result of event \mathcal{E}_t^a , we have
 1081

$$\begin{aligned} \mathbb{P}_t\left(\mu_{u_t, t-1}(\mathbf{x}_t^*) + \beta_t z_t(\mathbf{x}_t^*) \sigma_{u_t, t-1}(\mathbf{x}_t^*) > f(\mathbf{x}_t^*, u_t) \mid \mathcal{C}_t\right) &= \mathbb{P}_t\left(z_t(\mathbf{x}_t^*) > \frac{f(\mathbf{x}_t^*, u_t) - \mu_{u_t, t-1}(\mathbf{x}_t^*)}{\beta_t \sigma_{u_t, t-1}(\mathbf{x}_t^*)} \mid \mathcal{C}_t\right) \\ &\geq \mathbb{P}_t(z_t(\mathbf{x}_t^*) > 1) \\ &\geq (4e\sqrt{\pi})^{-1} \end{aligned}$$

1087 where the first inequality is from the fact that \mathcal{C}_t holds and the last step is directly obtain by the fact
 1088 that $\mathbb{P}(Z \geq 1) \geq (4e\sqrt{\pi})^{-1}$ for $Z \sim \mathcal{N}(0, 1)$.
 1089 \square
 1090

1091 D.2 PROOF OF LEMMA C.2 1092

1093 *Proof.* This proof is following the classical analysis for Thompson Sampling algorithms Kveton
 1094 et al. (2019); Wu et al. (2022); Wu & Amini (2024).

1095 We first recall $\mathbb{E}_t[\cdot] = \mathbb{E}[\cdot \mid \mathcal{F}_t]$. Given the randomness from the history \mathcal{F}_t , event \mathcal{C}_t becomes deter-
 1096 ministic and the randomness is only from the resampling step. So we have
 1097

$$\begin{aligned} \mathbb{E}_t[\Delta_t \mathbb{I}_{\mathcal{C}_t}] &= \mathbb{I}_{\mathcal{C}_t} \cdot \mathbb{E}_t[\Delta_t] \\ &= \mathbb{I}_{\mathcal{C}_t} \cdot (\mathbb{E}_t[\Delta_t \mathbb{I}_{\mathcal{E}_t^{\text{ts}}}] + \mathbb{E}_t[\Delta_t \mathbb{I}_{\bar{\mathcal{E}}_t^{\text{ts}}}]]) \\ &\leq \mathbb{I}_{\mathcal{C}_t} \cdot (\mathbb{E}_t[\Delta_t \mathbb{I}_{\mathcal{E}_t^{\text{ts}}}] + B_\Delta \cdot \mathbb{P}_t(\bar{\mathcal{E}}_t^{\text{ts}})) \end{aligned}$$

1102 where the last step is from the boundness of the optimality gap $\Delta_t \leq B_\Delta$. Our following focus is
 1103 bounding $\mathbb{E}_t[\Delta_t \mathbb{I}_{\mathcal{E}_t^{\text{ts}}}]$, indicating \mathcal{C}_t holds in the remaining part of proof.
 1104

1105 We then define the concept of "least uncertain undersampled" action, which is called unsaturated
 1106 actions, defined as
 1107

$$\mathcal{U}_t := \{\mathbf{x} \in \mathcal{D}_t : f(\mathbf{x}_t^*, u_t) < f(\mathbf{x}, u_t) + \gamma_t \sigma_{u_t, t-1}(\mathbf{x})\}$$

1108 where
 1109

$$\gamma_t := \beta_t + \beta_t \sqrt{2 \log(t^2 |\mathcal{D}_t|)}$$

1111 and let $\bar{\mathbf{x}}_t$ be the least uncertain unsaturated action at time t :
 1112

$$\bar{\mathbf{x}}_t = \arg \min_{\mathbf{x} \in \mathcal{U}_t} \gamma_t \sigma_{u_t, t-1}(\mathbf{x}).$$

1115 Recall the notation for the resampled index is $\tilde{\mu}_t(\mathbf{x}) = \mu_{u_t, t-1}(\mathbf{x}) + \beta_t z_t(\mathbf{x}) \sigma_{u_t, t-1}(\mathbf{x})$. On the
 1116 good situation $\mathcal{C}_t \cap \mathcal{E}_t^{\text{ts}}$, we have
 1117

$$|\tilde{\mu}_t(\mathbf{x}) - f(\mathbf{x}, u_t)| \leq |\tilde{\mu}_t(\mathbf{x}) - \mu_{u_t, t-1}(\mathbf{x})| + |\mu_{u_t, t-1}(\mathbf{x}) - f(\mathbf{x}, u_t)| \leq \gamma_t \sigma_{u_t, t-1}(\mathbf{x}).$$

1119 Thus we can provide an initial upper bound for regret
 1120

$$\begin{aligned} \Delta_t &= f(\mathbf{x}_t^*, u_t) - f(\mathbf{x}_t, u_t) \\ &= f(\mathbf{x}_t^*, u_t) - f(\bar{\mathbf{x}}_t, u_t) + f(\bar{\mathbf{x}}_t, u_t) - f(\mathbf{x}_t, u_t) \\ &\leq \gamma_t \sigma_{u_t, t-1}(\bar{\mathbf{x}}_t) + f(\bar{\mathbf{x}}_t, u_t) - f(\mathbf{x}_t, u_t) + \tilde{\mu}_t(\mathbf{x}_t) - \tilde{\mu}_t(\mathbf{x}_t) \quad (\text{by } \bar{\mathbf{x}}_t \in \mathcal{U}_t) \quad (24) \\ &\leq 2\gamma_t \sigma_{u_t, t-1}(\bar{\mathbf{x}}_t) + \gamma_t \sigma_{u_t, t-1}(\mathbf{x}_t) + \tilde{\mu}_t(\bar{\mathbf{x}}_t) - \tilde{\mu}_t(\mathbf{x}_t) \quad (\text{since } \mathcal{C}_t \cap \mathcal{E}_t^{\text{ts}}) \\ &\leq 2\gamma_t \sigma_{u_t, t-1}(\bar{\mathbf{x}}_t) + \gamma_t \sigma_{u_t, t-1}(\mathbf{x}_t) \quad (\text{by } \tilde{\mu}_t(\bar{\mathbf{x}}_t) < \tilde{\mu}_t(\mathbf{x}_t)). \end{aligned}$$

1127 Note that
 1128

$$\gamma_t \sigma_{u_t, t-1}(\bar{\mathbf{x}}_t) \mathbb{I}\{\mathbf{x}_t \in \mathcal{U}_t\} \leq \gamma_t \sigma_{u_t, t-1}(\mathbf{x}_t)$$

1130 and by taking $\mathbb{E}_t[\cdot]$ after multiplying both sides by $\mathbb{I}_{\mathcal{E}_t^{\text{ts}}}$, we have
 1131

$$\sigma_{u_t, t-1}(\bar{\mathbf{x}}_t) \mathbb{P}_t(\{\mathbf{x}_t \in \mathcal{U}_t\} \cap \mathcal{E}_t^{\text{ts}}) \leq \mathbb{E}_t[\sigma_{u_t, t-1}(\mathbf{x}_t) \mathbb{I}_{\mathcal{E}_t^{\text{ts}}}].$$

1132 Thus it remains to bound the probability $\mathbb{P}_t(\{\mathbf{x}_t \in \mathcal{U}_t\} \cap \mathcal{E}_t^{\text{ts}})$ from below.
 1133

1134 We notice the following two facts. First, if $\tilde{\mu}_t(\mathbf{x}_t^*) > \tilde{\mu}_t(\mathbf{x})$ for all $\mathbf{x} \in \bar{\mathcal{U}}_t$, then \mathbf{x}_t must belong to
 1135 \mathcal{U}_t , which means $\{\tilde{\mu}_t(\mathbf{x}_t^*) > \max_{\mathbf{x} \in \bar{\mathcal{U}}_t} \tilde{\mu}_t(\mathbf{x})\} \subseteq \{\mathbf{x}_t \in \mathcal{U}_t\}$. Second, for any $\mathbf{x} \in \bar{\mathcal{U}}_t$, on the good
 1136 situation $\mathcal{C}_t \cap \mathcal{E}_t^{\text{ts}} \cap \mathcal{E}_t^a$, we have
 1137

$$1138 \tilde{\mu}_t(\mathbf{x}) \leq f(\mathbf{x}, u_t) + \gamma_t \sigma_{u_t, t-1}(\mathbf{x}) \leq f(\mathbf{x}_t^*, u_t) < \tilde{\mu}_t(\mathbf{x}^*)$$

1139 which leads to $\mathcal{E}_t^a \subseteq \{\tilde{\mu}_t(\mathbf{x}_t^*) > \max_{\mathbf{x} \in \bar{\mathcal{U}}_t} \tilde{\mu}_t(\mathbf{x})\}$

1140 Therefore, on event \mathcal{C}_t , we have
 1141

$$\begin{aligned} 1142 \mathbb{P}_t(\{\mathbf{x}_t \in \mathcal{U}_t\} \cap \mathcal{E}_t^{\text{ts}}) &\geq \mathbb{P}_t(\{\tilde{\mu}_t(\mathbf{x}_t^*) > \max_{\mathbf{x} \in \bar{\mathcal{U}}_t} \tilde{\mu}_t(\mathbf{x})\} \cap \mathcal{E}_t^{\text{ts}}) \\ 1143 &\geq \mathbb{P}_t(\mathcal{E}_t^a \cap \mathcal{E}_t^{\text{ts}}) \\ 1144 &\geq \mathbb{P}_t(\mathcal{E}_t^a) - \mathbb{P}_t(\bar{\mathcal{E}}_t^{\text{ts}}) \\ 1145 \end{aligned}$$

1146 Now we have an upper bound for $\sigma_{u_t, t-1}(\bar{\mathbf{x}}_t)$:
 1147

$$\begin{aligned} 1148 \sigma_{u_t, t-1}(\bar{\mathbf{x}}_t) &\leq \frac{\mathbb{E}_t[\sigma_{u_t, t-1}(\mathbf{x}_t) \mathbb{I}_{\mathcal{E}_t^{\text{ts}}}] }{\mathbb{P}_t(\{\mathbf{x}_t \in \mathcal{U}_t\} \cap \mathcal{E}_t^{\text{ts}})} \leq \frac{\mathbb{E}_t[\sigma_{u_t, t-1}(\mathbf{x}_t)]}{\mathbb{P}_t(\mathcal{E}_t^a) - \mathbb{P}_t(\bar{\mathcal{E}}_t^{\text{ts}})} \\ 1149 \end{aligned}$$

1150 which gives the upper bound for instantaneous regret by plugging above result in equation 24:
 1151

$$1152 \mathbb{E}_t[\Delta_t \mathbb{I}_{\mathcal{E}_t^{\text{ts}}}] \leq \left(\frac{2}{\mathbb{P}_t(\mathcal{E}_t^a) - \mathbb{P}_t(\bar{\mathcal{E}}_t^{\text{ts}})} + 1 \right) \cdot \mathbb{E}_t[\gamma_t \sigma_{u_t, t-1}(\mathbf{x}_t)].$$

1153 Therefore,
 1154

$$1155 \mathbb{E}_t[\Delta_t \mathbb{I}_{\mathcal{C}_t}] \leq \mathbb{I}_{\mathcal{C}_t} \cdot \left\{ \left(\frac{2}{\mathbb{P}_t(\mathcal{E}_t^a) - \mathbb{P}_t(\bar{\mathcal{E}}_t^{\text{ts}})} + 1 \right) \cdot \mathbb{E}_t[\gamma_t \sigma_{u_t, t-1}(\mathbf{x}_t)] + B_\Delta \cdot \mathbb{P}_t(\bar{\mathcal{E}}_t^{\text{ts}}) \right\}$$

1156 \square

1161 D.3 PROOF OF LEMMA C.3

1162 *Proof.* We first apply Cauchy-Schwartz inequality and obtain
 1163

$$1164 \sum_{t=1}^T \sigma_{u_t, t-1}(\mathbf{x}_t) \leq \sqrt{T \sum_{t=1}^T \sigma_{u_t, t-1}^2(\mathbf{x}_t)} = \sqrt{\lambda T \sum_{t=1}^T \frac{\sigma_{u_t, t-1}^2(\mathbf{x}_t)}{\lambda}}.$$

1165 If $\lambda \geq K_{\max}$, using $\sigma_{u_t, t-1}^2(\mathbf{x}_t) \leq |K((\mathbf{x}_t, u_t)(\mathbf{x}_t, u_t))| \leq K_{\max}$, we know $\frac{\sigma_{u_t, t-1}^2(\mathbf{x}_t)}{\lambda} \leq 1$, which
 1166 leads to
 1167

$$\sum_{t=1}^T \frac{\sigma_{u_t, t-1}^2(\mathbf{x}_t)}{\lambda} \leq 2 \sum_{t=1}^T \log \left(1 + \frac{1}{\lambda} \sigma_{u_t, t-1}^2(\mathbf{x}_t) \right) \leq \frac{2K_{\max}}{\lambda} \sum_{t=1}^T \log \left(1 + \frac{1}{\lambda} \sigma_{u_t, t-1}^2(\mathbf{x}_t) \right)$$

1168 by applying the fact that $x \leq 2 \log(1 + x)$ if $x \leq 1$.
 1169

1170 If $\lambda \leq K_{\max}$, still using $\sigma_{u_t, t-1}^2(\mathbf{x}_t) \leq |K((\mathbf{x}_t, u_t)(\mathbf{x}_t, u_t))| \leq K_{\max}$, we know
 1171

$$\frac{\sigma_{u_t, t-1}^2(\mathbf{x}_t)}{\lambda} \leq \min \left\{ \frac{K_{\max}}{\lambda}, \frac{\sigma_{u_t, t-1}^2(\mathbf{x}_t)}{\lambda} \right\} \leq \frac{K_{\max}}{\lambda} \min \left\{ 1, \frac{\sigma_{u_t, t-1}^2(\mathbf{x}_t)}{\lambda} \right\}$$

1172 which leads to
 1173

$$\sum_{t=1}^T \frac{\sigma_{u_t, t-1}^2(\mathbf{x}_t)}{\lambda} \leq \frac{K_{\max}}{\lambda} \sum_{t=1}^T \min \left\{ 1, \frac{1}{\lambda} \sigma_{u_t, t-1}^2(\mathbf{x}_t) \right\} \leq \frac{2K_{\max}}{\lambda} \sum_{t=1}^T \log \left(1 + \frac{1}{\lambda} \sigma_{u_t, t-1}^2(\mathbf{x}_t) \right).$$

1174 by applying the fact that $\min\{1, x\} \leq 2 \log(1 + x)$ for $x \geq 0$.
 1175

1176 We can summarize the above two conditions for λ together and achieve
 1177

$$1178 \sum_{t=1}^T \sigma_{u_t, t-1}(\mathbf{x}_t) \leq \sqrt{2T \max\{1, K_{\max}\} \sum_{t=1}^T \log \left(1 + \frac{1}{\lambda} \sigma_{u_t, t-1}^2(\mathbf{x}_t) \right)}. \quad (25)$$

1188 Now we can use the property of the Shur complement for K_t :
 1189

$$\begin{aligned} 1190 \det\left(\mathbf{I}_t + \frac{1}{\lambda} \mathbf{K}_t\right) &= \det\left(\mathbf{I}_{t-1} + \frac{1}{\lambda} \mathbf{K}_{t-1}\right) \\ 1191 &\quad \times \left[1 + \frac{1}{\lambda} \left(\underbrace{K((\mathbf{x}_t, u_t), (\mathbf{x}_t, u_t)) - \mathbf{k}_{t-1}(\mathbf{x}_t, u_t)^\top (\mathbf{K}_{t-1} + \lambda \mathbf{I})^{-1} \mathbf{k}_{t-1}(\mathbf{x}_t, u_t)}_{\sigma_{u_t, t-1}^2(\mathbf{x}_t)}\right)\right] \\ 1192 &\quad \sigma_{u_t, t-1}^2(\mathbf{x}_t) \\ 1193 &\quad \sigma_{u_t, t-1}^2(\mathbf{x}_t) \end{aligned}$$

1194 which leads to
 1195

$$1196 \sum_{t=1}^T \log\left(1 + \frac{1}{\lambda} \sigma_{u_t, t-1}^2(\mathbf{x}_t)\right) = \sum_{t=1}^T \log \frac{\det(\mathbf{I}_t + \frac{1}{\lambda} \mathbf{K}_t)}{\det(\mathbf{I}_{t-1} + \frac{1}{\lambda} \mathbf{K}_{t-1})} = \log \det(\mathbf{I}_T + \lambda^{-1} \mathbf{K}_T).$$

1197 Therefore, we combine above result with equation 25 and obtain
 1198

$$1201 \sum_{t=1}^T \sigma_{u_t, t-1}(\mathbf{x}_t) \leq \sqrt{2T \max\{1, K_{\max}\} \cdot \log \det(\mathbf{I}_T + \lambda^{-1} \mathbf{K}_T)}$$

1202

□

1206 D.4 PROOF OF LEMMA C.5

1207

1208 *Proof.* We note that

$$1209 \|\delta_t(\mathbf{x}, u)\|_{\ell^2}^2 = \|\phi((\mathbf{x}, u))\|_{\ell^2}^2 + \|\Phi_t^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u)\|_{\ell^2}^2 - 2\langle \phi((\mathbf{x}, u)), \Phi_t^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u) \rangle_{\ell^2}$$

1210 and we have

$$\begin{aligned} 1211 \|\Phi_t^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u)\|_{\ell^2}^2 &= \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \Phi_t \Phi_t^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u) \\ 1212 &= \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \mathbf{K}_t \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u) \\ 1213 &= \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \Sigma_t \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u) - \lambda \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-2} \mathbf{k}_t(\mathbf{x}, u) \\ 1214 &= \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u) - \lambda \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-2} \mathbf{k}_t(\mathbf{x}, u) \\ 1215 &= \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u) - \lambda \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-2} \mathbf{k}_t(\mathbf{x}, u) \\ 1216 &= \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u) - \lambda \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-2} \mathbf{k}_t(\mathbf{x}, u) \\ 1217 &= \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u) - \lambda \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-2} \mathbf{k}_t(\mathbf{x}, u) \end{aligned}$$

1218 and

$$1219 \langle \phi((\mathbf{x}, u)), \Phi_t^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u) \rangle_{\ell^2} = \phi((\mathbf{x}, u))^\top \Phi_t^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u) = \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u).$$

1220 Putting above equalities together, we have
 1221

$$\begin{aligned} 1222 \|\delta_t(\mathbf{x}, u)\|_{\ell^2}^2 &= \|\phi((\mathbf{x}, u))\|_{\ell^2}^2 - \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u) - \lambda \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-2} \mathbf{k}_t(\mathbf{x}, u) \\ 1223 &= K((\mathbf{x}, u), (\mathbf{x}, u)) - \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u) - \lambda \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-2} \mathbf{k}_t(\mathbf{x}, u) \\ 1224 &= \sigma_{u, t}^2(\mathbf{x}) - \lambda \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-2} \mathbf{k}_t(\mathbf{x}, u) \\ 1225 &= \sigma_{u, t}^2(\mathbf{x}) - \lambda \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-2} \mathbf{k}_t(\mathbf{x}, u) \\ 1226 &\leq \sigma_{u, t}^2(\mathbf{x}) \\ 1227 \end{aligned}$$

1228 since Σ_t^{-1} is positive semidefinite.
 1229

□

1230

1231 D.5 PROOF OF LEMMA C.6

1232

1233 *Proof.* We first define

$$1234 \mathbf{s}_t = \Phi_t \boldsymbol{\epsilon}_t = \sum_{s=1}^t \phi(\mathbf{x}_s, u_s) \boldsymbol{\epsilon}_s.$$

1235

1236 Note that \mathbf{s}_t is a martingale w.r.t \mathcal{F}_t .
 1237

1238

1239 Also we define a supermartingale

$$1240 M_t(\mathbf{g}) = \exp\left(\sum_{s=1}^t \frac{1}{\sigma} \langle \mathbf{g}, \mathbf{s}_s \rangle - \frac{1}{2} \|\mathbf{g}\|^2\right)$$

1241

1242 which has an alternative form
 1243

$$1244 M_t(\mathbf{g}) = \exp\left(\sum_{s=1}^t \frac{1}{\sigma} \langle \mathbf{g}, \phi(\mathbf{x}_s, u_s) \rangle \epsilon_s - \frac{1}{2} \|\mathbf{g}\|^2\right)$$

1245 where \mathbf{g} is the function vector with elements
 1246

1247 We follow the approach from classical linear bandit Abbasi-Yadkori et al. (2011), which is averaging
 1248 $M_t(\mathbf{g})$ w.r.t a Gaussian distribution on \mathbf{g} . The key technical issue is the infinite dimension of the
 1249 function vector \mathbf{g} . We will first perform the truncated version which can precisely match the classical
 1250 result. Let d be the dimension of the feature map. Our target is the obtain the limiting result when
 1251 $d \rightarrow \infty$. Now assume $\mathbf{g}^d \sim \mathcal{N}(\mathbf{0}, \frac{1}{\lambda} \mathbf{I}_d)$, independent of everything else, and define
 1252

$$1253 M_t^{(d)} = \mathbb{E}_{\mathbf{g}^d}[M_t(\mathbf{g}^d)] = \int M_t^{(d)}(\mathbf{g}) d\rho^d(\mathbf{g})$$

1254 and by iterated expectation (i.e Fubini's theorem), we have
 1255

$$1256 \mathbb{E}[M_t^{(d)} | \mathcal{F}_t] \leq M_{t-1}$$

1257 which shows that M_t is a supermartingale.
 1258

1259 Then we define $\Psi : \ell^2 \rightarrow \mathbb{R}^d$ as the truncation projection onto the first d coordinates: $\Psi_d \boldsymbol{\theta} =$
 1260 $[\Theta_1, \dots, \Theta_d]^\top$ for any $\boldsymbol{\theta} \in \ell^2$. We further denote
 1261

$$1261 \Psi_d \Phi_t^\top = [\Psi_d \phi(\mathbf{x}_1, u_1), \dots, \Psi_d \phi(\mathbf{x}_t, u_t)] \in \mathbb{R}^{d \times t}$$

1262 and

$$1263 \Psi_d \mathbf{J}_t \Psi_d^\top = \Psi_d \Phi_t^\top \Phi_t \Psi_d.$$

1264 We notices that
 1265

$$1266 \frac{\det(\lambda \mathbf{I}_d)}{\det(\lambda \mathbf{I}_d + \Psi_d \mathbf{J}_t \Psi_d^\top)} = \frac{1}{\det(\mathbf{I}_d + \lambda^{-1} \Psi_d \mathbf{J}_t \Psi_d^\top)}$$

1268 which leads to

$$1269 M_t^{(d)} = \left(\frac{\det(\lambda \mathbf{I}_d)}{\det(\lambda \mathbf{I}_d + \Psi_d \mathbf{J}_t \Psi_d^\top)} \right)^{1/2} \exp\left(\frac{1}{2\sigma^2} \|\Psi_d \Phi_t \epsilon_t\|_{(\lambda \mathbf{I}_d + \Psi_d \mathbf{J}_t \Psi_d^\top)^{-1}}^2\right)$$

$$1270 = \det(\mathbf{I}_d + \lambda^{-1} \Psi_d \mathbf{J}_t \Psi_d^\top)^{-1/2} \exp\left(\frac{1}{2\sigma^2} \|\Psi_d \Phi_t \epsilon_t\|_{(\lambda \mathbf{I}_d + \Psi_d \mathbf{J}_t \Psi_d^\top)^{-1}}^2\right).$$

1274 Let M_t be the limit of $M_t^{(d)}$ as $d \rightarrow \infty$, we have

$$1275 M_t = \det(\mathbf{I}_\infty + \lambda^{-1} \mathbf{J}_t)^{-1/2} \exp\left(\frac{1}{2\sigma^2} \|\Phi_t \epsilon_t\|_{(\lambda \mathbf{I}_\infty + \mathbf{J}_t)^{-1}}^2\right)$$

$$1276 = \det(\mathbf{I}_t + \lambda^{-1} \mathbf{K}_t)^{-1/2} \exp\left(\frac{1}{2\sigma^2} \|\Phi_t \epsilon_t\|_{\Gamma_t^{-1}}^2\right)$$

1278 where the second step is from (Slyvestr) or Weinstein–Aronszajn identity.
 1279

1280 By Ville's inequality,
 1281

$$1282 \mathbb{P}\left(\sup_{t=0,1,2,\dots} M_t \geq \frac{1}{\delta}\right) \leq \mathbb{E}[M_0] \cdot \delta$$

1284 and $M_0 = 1$. Thus we know that, with probability at least $1 - \delta$, for all $t = 0, 1, 2, \dots$
 1285

$$1286 \log(M_t) \leq \log\left(\frac{1}{\delta}\right)$$

1288 which leads to

$$1289 -\frac{1}{2} \log \det(\mathbf{I}_t + \lambda^{-1} \mathbf{K}_t) + \frac{1}{2\sigma^2} \|\Phi_t \epsilon_t\|_{\Gamma_t^{-1}}^2 \leq \log\left(\frac{1}{\delta}\right).$$

1291 After re-arranging, we get
 1292

$$1293 \|\Phi_t \epsilon_t\|_{\Gamma_t^{-1}}^2 \leq 2\sigma^2 \log \frac{\sqrt{\det(\mathbf{I}_t + \lambda^{-1} \mathbf{K}_t)}}{\delta}.$$

1294 which shows our result.
 1295

□

1296 D.6 PROOF OF LEMMA C.4
12971298 *Proof.* Let us write $\Phi_t = \mathbf{U}_t \Lambda_t \mathbf{V}_t^\top$ as the singular value decomposition(SVD) of Φ_t . We have
1299 $\Lambda_t = [\Lambda_{1,t}, \mathbf{0}]$ where $\Lambda_{1,t}$ is a $t \times t$ diagonal matrix with singular values of Φ_t . We also note that
1300 $\Sigma_t \in \mathbb{R}^{t \times t}$ and $\mathbf{U}_t \in \mathbb{R}^{t \times t}$. We also have

1301
$$\mathbf{J}_t = \Phi_t^\top \Phi_t = \mathbf{V}_t \begin{bmatrix} \Lambda_{1,t}^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{V}_t^\top$$

1302
1303

1304 and similarly

1305
$$\mathbf{K}_t = \Phi_t \Phi_t^\top = \mathbf{U}_t \Lambda_{1,t}^2 \mathbf{U}_t^\top.$$

1306

1307 Then, we have

1308
$$\mathbf{\Gamma}_t = \mathbf{V}_t \begin{bmatrix} \Lambda_{1,t}^2 + \lambda \mathbf{I}_t & \mathbf{0} \\ \mathbf{0} & \lambda \mathbf{I}_\infty \end{bmatrix} \mathbf{V}_t^\top, \quad \Sigma_t = \mathbf{U}_t (\Lambda_{1,t}^2 + \lambda \mathbf{I}_t) \mathbf{U}_t^\top.$$

1309
1310

1311 It is clear to have the identity:

1312
$$\Sigma_t^{-1} \Phi_t = \Phi_t \mathbf{\Gamma}_t^{-1}$$

1313

1314 since both side equal $\mathbf{U}_t [\mathbf{D}_t, \mathbf{0}] \mathbf{V}_t^\top$ where $\mathbf{D}_t = \Lambda_{1,t} (\Lambda_{1,t}^2 + \lambda \mathbf{I}_t)^{-1}$, which is a diagonal matrix.
1315

1316 Next, we note that

1317
$$\begin{aligned} \sigma_{u,t}^2(\mathbf{x}) &= K((\mathbf{x}, u), (\mathbf{x}, u)) - \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}, u) \\ &= \phi(\mathbf{x}, u)^\top (\mathbf{I}_\infty - \Phi_t^\top \Sigma_t^{-1} \Phi_t) \phi(\mathbf{x}, u) \\ &= \phi(\mathbf{x}, u)^\top (\mathbf{I}_\infty - \Phi_t^\top \Phi_t \mathbf{\Gamma}_t^{-1}) \phi(\mathbf{x}, u) \end{aligned}$$

1318
1319
1320
1321

1322 which is a norm of $\phi(\mathbf{x}, u)$ induced by matrix

1323
$$\begin{aligned} \mathbf{I}_\infty - \Phi_t^\top \Phi_t \mathbf{\Gamma}_t^{-1} &= \mathbf{I}_\infty - \mathbf{J}_t \mathbf{\Gamma}_t^{-1} \\ &= \mathbf{V}_t \begin{bmatrix} \lambda \mathbf{I}_t (\Lambda_{1,t}^2 + \lambda \mathbf{I}_t)^{-1} & \mathbf{0} \\ \mathbf{0} & \lambda \mathbf{I}_\infty \end{bmatrix} \mathbf{V}_t^\top \\ &= \lambda \mathbf{V}_t \begin{bmatrix} (\Lambda_{1,t}^2 + \lambda \mathbf{I}_t)^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_\infty \end{bmatrix} \mathbf{V}_t^\top \\ &= \lambda \mathbf{\Gamma}_t^{-1}. \end{aligned}$$

1324
1325
1326
1327
1328
1329
1330

1331 Therefore, we have the other identity

1332
$$\sigma_{u,t}^2(\mathbf{x}) = \lambda \|\phi(\mathbf{x}, u)\|_{\mathbf{\Gamma}_t^{-1}}^2.$$

1333

□

1336 E MISCELLANEOUS
13371338 E.1 ALGORITHMS
13391340 **Algorithm 1** LK-GP-UCB
1341

- 1: **Input:** $T, \lambda, \{\beta_t\}_{t=1}^T$
- 2: **Initialization:** $\mu_{u,0}(\mathbf{x}), \sigma_{u,0}(\mathbf{x})$
- 3: **for** $t = 1, \dots, T$ **do**
- 4: Observe user u_t and arm set \mathcal{D}_t .
- 5: Select arm $\mathbf{x}_t = \arg \max_{\mathbf{x} \in \mathcal{D}_t} \mu_{u_t, t-1}(\mathbf{x}) + \beta_t \sigma_{u_t, t-1}(\mathbf{x})$.
- 6: Receive feedback $y_t = f(\mathbf{x}_t, u_t) + \epsilon_t$.
- 7: Update $\mu_{u_t, t}(\mathbf{x})$ and $\sigma_{u_t, t}^2(\mathbf{x})$.
- 8: **end for**

1350

Algorithm 2 LK-GP-TS

1351
1352 1: **Input:** $T, \lambda, \{\nu_t\}_{t=1}^T$
1353 2: **Initialization:** $\mu_{u,0}(\mathbf{x}), \sigma_{u,0}(\mathbf{x})$
1354 3: **for** $t = 1, \dots, T$ **do**
1355 4: Observe user u_t and arm set \mathcal{D}_t .
1356 5: Sample $\tilde{\mu}_t(\mathbf{x})$ from $\mathcal{N}(\mu_{u_t,t-1}(\mathbf{x}), \nu_t^2 \sigma_{u_t,t-1}^2(\mathbf{x}))$ for all $\mathbf{x} \in \mathcal{D}_t$
1357 6: Select arm $\mathbf{x}_t = \arg \max_{\mathbf{x} \in \mathcal{D}_t} \tilde{\mu}_t(\mathbf{x})$.
1358 7: Receive feedback $y_t = f(\mathbf{x}_t, u_t) + \epsilon_t$.
1359 8: Update $\mu_{u_t,t}(\mathbf{x})$ and $\sigma_{u_t,t}^2(\mathbf{x})$.
1360 9: **end for**

1360

1361

E.2 RECURSIVE UPDATE OF POSTERIOR MEAN AND VARIANCE

1362

This sections refers to the derivation of incremental update of the posterior mean and posterior variance Chowdhury & Gopalan (2017), via the properties of Schur complement. Recall that we need to handle the inversion of $\Sigma_t = \mathbf{I} + \lambda \mathbf{K}_t \in \mathbb{R}^{t \times t}$ which grows with the number of rounds. To compute the inversion of Σ_t efficiently, we use the recursive formula from Σ_{t-1} by block matrix inverse formula

1363

1364

1365

1366

1367

1368

1369

1370

1371

where

$$\Sigma_t^{-1} = \begin{bmatrix} \mathbf{M}_{11,t} & \mathbf{M}_{12,t} \\ \mathbf{M}_{12,t}^\top & d_t^{-1} \end{bmatrix} \quad (26)$$

$$\begin{aligned} \mathbf{M}_{11,t} &= \Sigma_{t-1}^{-1} + d_t^{-1} \mathbf{G}_t \\ \mathbf{M}_{12,t} &= -d_t^{-1} \Sigma_{t-1}^{-1} \mathbf{k}_{t-1}(\mathbf{x}_t, u_t) \end{aligned} \quad (27)$$

1372

and

1373

1374

1375

1376

1377

1378

$$\begin{aligned} d_t &= K((\mathbf{x}_t, u_t), (\mathbf{x}_t, u_t)) - \mathbf{k}_{t-1}(\mathbf{x}_t, u_t)^\top \Sigma_{t-1}^{-1} \mathbf{k}_{t-1}(\mathbf{x}_t, u_t) + \lambda = \sigma_{u_t,t-1}^2(\mathbf{x}_t) + \lambda \\ \mathbf{G}_t &= \Sigma_{t-1}^{-1} \mathbf{k}_{t-1}(\mathbf{x}_t, u_t) \mathbf{k}_{t-1}(\mathbf{x}_t, u_t)^\top \Sigma_{t-1}^{-1} \end{aligned}$$

1379

Here d_t is the Schur complement.

1380

1381

Thus we have the posterior mean using equation 26

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

where

1392

1393

1394

1395

1396

1397

1398

$$\begin{aligned} \mu_{u,t}(\mathbf{x}) &= \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \mathbf{y}_t \\ &= [\mathbf{k}_{t-1}(\mathbf{x}, u)^\top \ K((\mathbf{x}, u), (\mathbf{x}_t, u_t))] \begin{bmatrix} \mathbf{M}_{11,t} & \mathbf{M}_{12,t} \\ \mathbf{M}_{12,t}^\top & d_t^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{t-1} \\ y_t \end{bmatrix} \\ &= \mathbf{k}_{t-1}(\mathbf{x}, u)^\top \mathbf{M}_{11,t} \mathbf{y}_{t-1} + K((\mathbf{x}, u), (\mathbf{x}_t, u_t)) \mathbf{M}_{12,t}^\top \mathbf{y}_{t-1} \\ &\quad + \mathbf{k}_{t-1}(\mathbf{x}, u)^\top \mathbf{M}_{12,t} y_t + K((\mathbf{x}, u), (\mathbf{x}_t, u_t)) d_t^{-1} y_t \\ &= \underbrace{\mathbf{k}_{t-1}(\mathbf{x}, u)^\top \Sigma_{t-1}^{-1} \mathbf{y}_{t-1}}_{\mu_{u,t-1}(\mathbf{x})} + d_t^{-1} (\beta_1 \mathbf{y}_{t-1} - \beta_2 \mathbf{y}_{t-1} - \beta_3 y_t + \beta_4 y_t) \end{aligned}$$

1392

1393

1394

1395

1396

1397

1398

Thus we have the recursive update of posterior mean

1399

1400

1401

1402

1403

$$\begin{aligned} \mu_{u,t}(\mathbf{x}) &= \mu_{u,t-1}(\mathbf{x}) + d_t^{-1} \\ &\quad \times \left(\mathbf{k}_{t-1}(\mathbf{x}, u)^\top \Sigma_{t-1}^{-1} \mathbf{k}_{t-1}(\mathbf{x}_t, u_t) (\mu_{u,t-1}(\mathbf{x}_t) - y_t) + K((\mathbf{x}, u), (\mathbf{x}_t, u_t)) (y_t - \mu_{u,t-1}(\mathbf{x}_t)) \right) \\ &= \mu_{u,t-1}(\mathbf{x}) + d_t^{-1} q_{t-1}((\mathbf{x}, u), (\mathbf{x}_t, u_t)) (y_t - \mu_{u,t-1}(\mathbf{x}_t)) \end{aligned}$$

1404 where $q_{t-1}((\mathbf{x}, u), (\mathbf{x}_t, u_t))$ is defined from
 1405
$$q_t((\mathbf{x}, u), (\mathbf{x}', u')) = K((\mathbf{x}, u), (\mathbf{x}', u')) - \mathbf{k}_t(\mathbf{x}, u)^\top \Sigma_t^{-1} \mathbf{k}_t(\mathbf{x}', u')$$

 1406 which can be transferred into a recursive form using equation 26
 1407
$$q_t((\mathbf{x}, u), (\mathbf{x}', u'))$$

 1408
$$= K((\mathbf{x}, u), (\mathbf{x}', u')) - \left(\mathbf{k}_{t-1}(\mathbf{x}, u)^\top \Sigma_{t-1}^{-1} \mathbf{k}_{t-1}(\mathbf{x}', u') \right.$$

 1409
$$+ d_t^{-1} (\beta_1 \mathbf{k}_{t-1}(\mathbf{x}', u') - \beta_2 \mathbf{k}_{t-1}(\mathbf{x}', u') - \beta_3 K((\mathbf{x}_t, u_T), (\mathbf{x}', u')) + \beta_4 K((\mathbf{x}_t, u_T), (\mathbf{x}', u'))) \Big)$$

 1410
$$= q_{t-1}((\mathbf{x}, u), (\mathbf{x}', u')) - d_t^{-1} q_{t-1}((\mathbf{x}, u), (\mathbf{x}_t, u_t)) q_{t-1}((\mathbf{x}_t, u_t), (\mathbf{x}', u')).$$

1411 Now using the incremental update of the posterior covariance, we can easily obtain the recursive
 1412 update for the posterior variance
 1413
$$\sigma_{u,t}^2(\mathbf{x}) = \sigma_{u,t-1}^2(\mathbf{x}) - d_t^{-1} q_{t-1}^2((\mathbf{x}, u), (\mathbf{x}_t, u_t)).$$

1414 Now replace d_t by $\sigma_{u,t-1}^2(\mathbf{x}_t) + \lambda$ and we achieve the recursive updates in equation 8.
 1415

1416 F SUPPLEMENT TO EXPERIMENTS

1417 This appendix provides full details of our synthetic environments, algorithm configurations, hyper-
 1418 parameter selection, implementation choices, ablations, and reporting protocol.
 1419

1420 F.1 SYNTHETIC ENVIRONMENTS

1421 Let $\mathcal{U} = \{1, \dots, n\}$ denote users, $\mathcal{D} \subset \mathbb{R}^d$ the arm (context) space, and $M_t := |\mathcal{D}_t|$ the number of
 1422 candidates shown at round t . We draw a global normalized context pool $\mathcal{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\}$ with
 1423 $\mathbf{x}^{(i)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ and $\mathbf{x}^{(i)} \leftarrow \mathbf{x}^{(i)} / \|\mathbf{x}^{(i)}\|$. At round t we present \mathcal{D}_t by sampling M_t distinct items
 1424 from \mathcal{D} without replacement. One user u_t is served per round, drawn uniformly from \mathcal{U} unless stated
 1425 otherwise. Rewards are observed with additive noise $y_t = f(\mathbf{x}_t, u_t) + \epsilon_t$. We generate graphs, con-
 1426 texts, and ground-truth rewards under one linear regime (*Linear-*GOB**) and two kernelized regimes
 1427 (*Laplacian-Kernel* using GP draw and representer draw).

1428 **User graph.** We consider two graph random generators on \mathcal{U} . First random graph family is Erdős-
 1429 Rényi (ER) random graphs: each (undirected) edge is present with probability p and weights $w_{ij} =$
 1430 1. We set $p = 0.2$ in our experiment. Second one is Radial basis function(RBF) random graphs:
 1431 sample latent $\mathbf{z}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_q)$, set $w_{ij} = \exp(-\rho_L \|\mathbf{z}_i - \mathbf{z}_j\|_2^2)$, and sparsify by keeping edges with
 1432 $w_{ij} \geq s$. We choose $s = 0.1$, $\rho_L = 0.1$ and $q = 4$ in our simulation.

1433 **Task Design.** We design different level of the task. The simplest case is $(M, M_t, n, d, T) =$
 1434 $(10, 5, 20, 5, 1000)$. This is a 10-arm bandit problem with 50% viewability at each round for all
 1435 users. The medium level is $(M, M_t, n, d, T) = (20, 5, 20, 10, 3000)$ which leads to a 20-arm bandit
 1436 problem with 25% viewability at each round for all users. We also have the toughest case using
 1437 $(M, M_t, n, d, T) = (50, 5, 20, 20, 3000)$ which leads to a 50-arm bandit problem with 10% view-
 1438 ability at each round for all users. σ is set as 0.1 unless additional specification.

1439 **Practical scenarios.** Although our empirical study uses synthetic environments, the multi-user,
 1440 graph-based bandit setting we consider is motivated by several practical applications. Examples
 1441 include recommendation systems, where users are connected via social or similarity graphs and re-
 1442 peatedly interact with a common catalog of items; regional personalization problems, where stores
 1443 or geographic areas form a graph and the arms correspond to assortments or pricing actions; and
 1444 applications in healthcare or education, where patients or students are linked through similarity net-
 1445 works while treatments or exercises constitute the arm set. In such domains, the proposed Laplacian
 1446 kernelized bandits can leverage the user graph to share statistical strength while capturing non-linear
 1447 context effects.

1448 F.1.1 REGIME 1: *Linear-*GOB** (GRAPH-SMOOTH LINEAR REWARDS)

1449 Sample initial user parameters $\Theta_0 \in \mathbb{R}^{n \times d}$ with rows $\Theta_{0,i} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$. Enforce the graph ho-
 1450 mophily via Tikhonov smoothing Yankelevsky & Elad (2016):

$$\Theta = \arg \min_{\tilde{\Theta}} \|\tilde{\Theta} - \Theta_0\|_F^2 + \eta \text{tr}(\tilde{\Theta}^\top \mathbf{L} \tilde{\Theta}) = (\mathbf{I}_n + \eta \mathbf{L})^{-1} \Theta_0.$$

1458 Thus $f(\mathbf{x}, u) = \mathbf{x}^\top \boldsymbol{\theta}_u$, where $\boldsymbol{\theta}_u$ is row u of $\boldsymbol{\Theta}$. The strength of the graph homophily η is set as 1.0
 1459 as default.
 1460

1461 F.1.2 REGIME 2: *Laplacian-Kernel*

1462 Our choice of the base kernel K_x over arms is *Squared Exponential* which are defined as
 1463

$$1464 \quad 1465 \quad K_{\text{SE}}(\mathbf{x}, \mathbf{x}') = \exp\left(-\|\mathbf{x} - \mathbf{x}'\|^2/2\ell^2\right)$$

1466 where length-scale $\ell > 0$ and is set to be 1.0 in our experiment. Then we construct the *multi-user*
 1467 *kernel* by the definition:
 1468

$$1469 \quad K((\mathbf{x}, u), (\mathbf{x}', u')) = [\mathbf{L}_\rho^{-1/2}]_{u, u'} K_x(\mathbf{x}, \mathbf{x}')$$

1470 where we set $\rho = 0.01$ in our experiment.
 1471

1472 Option A: *Laplacian-Kernel* with GP draw

1473 We draw the joint values $\{f(\mathbf{x}, u)\}_{u \in \mathcal{U}, \mathbf{x} \in \mathcal{D}}$ from the zero-mean GP with covariance induced by K
 1474 and fix f by interpolation on $\mathcal{D} \times \mathcal{U}$. Noise is $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$ with $\sigma = 0.01 \cdot \text{range}(f)$.
 1475

1476 **Option B: *Laplacian-Kernel* with representer draw** We consider the representer theorem for
 1477 RKHS and sample the i.i.d. coefficients via $\alpha_{\mathbf{x}, u} \sim \mathcal{N}(0, 1)$ on $\mathcal{D} \times \mathcal{U}$ and set
 1478

$$1479 \quad f(\mathbf{x}, u) = \sum_{u' \in \mathcal{U}, \mathbf{x}' \in \mathcal{D}} \alpha_{\mathbf{x}, u} K((\mathbf{x}, u), (\mathbf{x}', u')).$$

1481 F.2 BASELINES

1482 All methods face the *same* sequence $\{u_t, \mathcal{D}_t, \epsilon_t\}_{t=1}^T$ in each trial of each synthetic environment to
 1483 ensure a fair comparison. Our experiment include the following baselines.
 1484

1485 **Per-User LinUCB(no graph):** We implement Per-User LinUCB, which ignores the whole
 1486 graph and perform the linear bandit algorithm independently on each user.
 1487

1488 **Pooled LinUCB(no graph):** We implement Pooled LinUCB, which ignores graph and person-
 1489 alization by treating the multi-user problem as a single agent bandit problem. Simply speaking,
 1490 there is global linear UCB algorithm to solve the problem.
 1491

1492 **GP-UCB(no graph).** We implement GP-UCBChowdhury & Gopalan (2017), which is the
 1493 IGP-UCB from the previous study on GP and UCB Chowdhury & Gopalan (2017). This is a
 1494 kernelized baseline using K_x on arms only, ignoring the similarities across users (the Laplacian).
 1495

1496 **GoB.Lin.** We implement GoB.Lin, which is the classical methods in gang-og-bandits prob-
 1497 lem Cesa-Bianchi et al. (2013). This is a Laplacian-regularized linear UCB algorithm on graph-
 1498 whitened features (equivalent to GraphUCB with $\rho = 1$ i.e $\mathbf{A} = \mathbf{I} + \mathbf{L}$). The confidence scale in
 1499 the algorithm is tuned from the table.
 1500

1501 **GraphUCB.** We implement GraphUCBYang et al. (2020), the Laplacian-regularized LinUCB.
 1502 Also, the confidence scale in the algorithm is tuned from the table.
 1503

1504 **COOP-KernelUCB.** We implement COOP-KernelUCBDubey et al. (2020), which utilizes the
 1505 product kernel over agents \times arms. Here we borrow the notations from their work. We consider five
 1506 choices of K_z (presented below); the full kernel is $K = K_z \otimes K_x$ and we apply the same UCB rule
 1507 in LK-GP-UCB.
 1508

1509 The five PSD options for the agent kernel K_z :
 1510

- 1511 1. **laplacian.inv:** $K_z = (L + \rho I)^{-1}$, $\rho > 0$.
- 1512 2. **heat:** $K_z = \exp(-\tau L)$ via the spectral decomposition of L .
- 1513 3. **spectral.rbf:** embed nodes using the k lowest nontrivial Laplacian eigenvectors $Z \in \mathbb{R}^{n \times k}$
 1514 and set

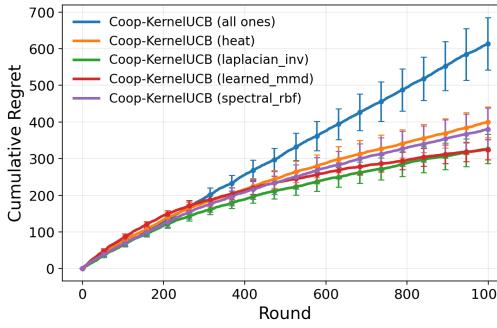
$$1515 \quad K_z[u, u'] = \exp\left(-\frac{\|Z_u - Z_{u'}\|^2}{2\sigma_z^2}\right).$$

1512 4. **all ones**: full cooperation, $K_z = \mathbf{1}\mathbf{1}^\top$.
 1513 5. **learned_mmd** (*network contexts*, faithful to Dubey et al. (2020)): define per-user kernel
 1514 mean embeddings Ψ_u of the observed arm-context distribution in \mathcal{H}_x , and let

$$1516 K_{z,t}(u, u') = \exp\left(-\frac{\|\hat{\Psi}_u(t) - \hat{\Psi}_{u'}(t)\|^2}{2\sigma_z^2}\right),$$

1518 where $\hat{\Psi}_u(t)$ is the empirical mean embedding of contexts observed for user u up to time
 1519 t . In our implementation we use an efficient random Fourier feature approximation for K_x
 1520 and update $K_{z,t}$ on a fixed schedule; users with fewer than a small threshold of observations
 1521 cooperate only with themselves (diagonal entries).

1522 For time-varying K_z (learned_mmd), the GP state is rebuilt at K_z refresh points using the algo-
 1523 rithm's own history, ensuring consistency of the Gram matrix with the current kernel. Figure shows
 1524 the comparison of the choice of K_z for COOP-KernelUCB.



1538 Figure 5: Comparison of the choice of user-similarity kernel for COOP-KernelUCB.

1540 F.3 CENTRALIZED PROTOCOL

1541 At each t : sample $u_t \sim \text{Unif}(\mathcal{U})$, present \mathcal{D}_t (size M_t), select $\mathbf{x}_t \in \mathcal{D}_t$ per the algorithm, observe
 1542 y_t , update our decision policy(model), and record $\Delta_t = \max_{\mathbf{x} \in \mathcal{D}_t} f(\mathbf{x}, u_t) - f(\mathbf{x}_t, u_t)$. Each
 1543 configuration is repeated for R trials (final results use $R = 20$; preliminary/pilot tuning uses $R \in$
 1544 $[5, 10]$).

1546 F.4 POSTERIOR UPDATES AND NUMERICAL DETAILS

1548 **Motivation.** For the original update equation 3 at round t , the inversion takes $\mathcal{O}(t^3|\mathcal{D}_t|)$ time.
 1549 The practical updates is efficient for each pair (\mathbf{x}, u) while it requires the updates for all pairs,
 1550 leading to $\mathcal{O}(|\mathcal{D}_t|n)$ time. Therefore, high-level idea is to perform original updates equation 3 when
 1551 $t \leq n^{1/3}$ and perform practical updates equation 8 when $t \leq n^{1/3}$. Therefore, for our GP-
 1552 based methods we use a hybrid implementation, which is described as below.

1553 **Exact (Cholesky) phase:** maintain $\Sigma_t = K_t + \lambda \mathbf{I}$ and update via rank-one Cholesky for $t < t_*$
 1554 (cost $\mathcal{O}(t^2)$ per step; initial inversion $\mathcal{O}(t^3)$).

1555 **Recursive phase:** switch to the rank-one recursions in equation 8, with $q_0 = K$ restricted to $\mathcal{D} \times \mathcal{U}$.
 1556 This costs $\mathcal{O}(n|\mathcal{D}_t|)$ per update when applied to the whole grid $\mathcal{D} \times \mathcal{U}$.

1558 By default we take $t_* = \min\{1500, \lfloor n^{1/3} \rfloor |\mathcal{D}| \}$ as the phase switch. We use Cholesky jitter 10^{-8} ,
 1559 clip negative variances to zero, and cache $K_x(\mathcal{D}, \mathcal{D})$. For large n we optionally apply graph spectral
 1560 truncation $\mathbf{L}_\rho \approx \mathbf{U}_r \Lambda_r \mathbf{U}_r^\top$ (top- r eigenpairs), yielding $K \approx (\mathbf{U}_r \Lambda_r^{-1} \mathbf{U}_r^\top) \otimes K_x$.

1561 F.5 HYPERPARAMETERS AND TUNING

1563 **What is fixed across algorithms.** For fairness, *base-kernel* hyperparameters are fixed inside each
 1564 environment: the length-scale ℓ uses the median heuristic on \mathcal{D} , and the Laplacian ridge $\rho = 0.1$ is
 1565 fixed. For K_z , *laplacian_inv* uses $\rho = 0.1$; *heat* uses $\tau = 1.0$; *spectral_rbf* uses $k = 8$ and median
 bandwidth; *learned_mmd* uses random-feature dimension 256, a median bandwidth heuristic, update

1566 interval around 200 rounds, and a minimum count of 5 observations before a user participates in
 1567 cooperation.

1568 **What is design.** To avoid using unknown noise scale as a prior, all GP-style methods use a graph-
 1569 and time-aware ridge schedule

$$1571 \quad \lambda_t = \lambda_{\text{base}} \cdot S_{\text{spec}} \cdot \frac{T}{T+t}, \quad S_{\text{spec}} = \frac{\lambda_2(L)}{\lambda_{\max}(L)} \in [0, 1],$$

1573 where $\lambda_{\text{Fiedler}}(L)$ is the Fiedler value (smallest non-zero eigenvalue). We clip λ_t to $[\lambda_{\min}, \lambda_{\max}]$
 1574 with $\lambda_{\min} = 10^{-6}$ and $\lambda_{\max} = 10^{-1}$. To limit refactorizations, we update λ on a doubling epoch
 1575 schedule (approximately at $t \approx 200, 400, 800, \dots$) and only rebuild if the change exceeds 20%.

1577 **What is tuned.** Only the exploration scales are tuned by grid search on a pilot horizon ($T_{\text{pilot}} = 1500$
 1578 for medium/hard; $T_{\text{pilot}} = 1000$ for simple) using $R_{\text{pilot}} \in \{5, 10\}$:

1580	Algorithm	Grid (pilot)
1581	LK-GP-UCB, GP-UCB, Coop-KernelUCB	$\beta \in \{0.5, 1, 2, 4\}$
1582	LK-GP-TS	$\nu \in \{0.5, 1, 2, 4\}$
1583	GOB.Lin, GraphUCB, LinUCB variants	$\alpha \in \{0.5, 1, 2, 4\}$

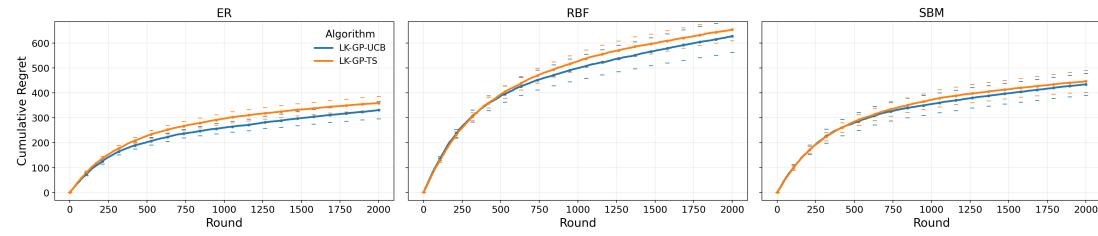
1585 The best pilot setting (by mean pilot cumulative regret) is then *frozen* for the full-horizon evaluation.
 1586 Noise/ridge λ_{base} in GP updates uses $\lambda_{\text{base}} \in \{0.001, 0.005, 0.01, 0.05, 0.1\}$ on the pilot.

1588 F.6 ABLATIONS AND STRESS TESTS

1590 We report two ablation studies. One is an ablation under the *medium, Laplacian-Kernel with GP*
 1591 *Draw* environment (ER graph, fixed ℓ and ρ) on **Scalability in users (n):** $n \in \{20, 50, 100, 200\}$
 1592 with fixed (M, M_t, d, T) and graph generator. We provide the final cumulative regret vs. n in report
 1593 the last step cumulative regret in Table 1. Another study is on the effect of random graph models.
 1594 Our standard experiment uses two graph random generators: Erdős-Rényi (ER) random graphs
 1595 and the Radial basis function(RBF) random graphs, mentioned in F.1. We add the stochastic block
 1596 models(SBM) in this ablation study. We still keep the *medium, Laplacian-Kernel with GP Draw*
 1597 environment. The result is shown in Figure 6.

1598 Table 1: Ablation over number of users n (final cumulative regret; mean \pm SE).

1599	Algorithm	$n = 20$	$n = 50$	$n = 100$	$n = 200$
1601	LK-GP-UCB	627.22 ± 32.98	892.43 ± 21.73	1062.69 ± 18.29	1157.74 ± 23.02
1602	LK-GP-TS	634.46 ± 22.78	943.41 ± 19.56	1176.23 ± 15.77	1260.35 ± 16.23
1603	Coop-KernelUCB	730.06 ± 31.02	1015.35 ± 22.18	1273.28 ± 17.36	1358.48 ± 14.22
1604	GOB.Lin	1092.86 ± 71.70	1203.32 ± 18.57	1370.51 ± 16.78	1432.48 ± 18.72
1605	GraphUCB	1105.20 ± 68.54	1192.30 ± 22.12	1360.02 ± 15.32	1453.21 ± 17.81
1606	GP-UCB	2222.20 ± 90.26	1964.65 ± 61.40	1641.43 ± 37.43	1444.83 ± 36.33
1607	Pooled-LinUCB	2360.95 ± 70.55	1909.81 ± 49.49	1723.27 ± 40.23	1438.74 ± 26.44
1608	PerUser-LinUCB	1117.87 ± 72.04	1221.99 ± 22.03	1432.89 ± 18.81	1527.04 ± 17.61



1618 Figure 6: Comparison of the choice of random graph models.
 1619