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ABSTRACT

We study multi-user contextual bandits where users are related by a graph and
their reward functions exhibit both non-linear behavior and graph homophily. We
introduce a principled joint penalty for the collection of user reward functions
{fu}, combining a graph smoothness term based on RKHS distances with an in-
dividual roughness penalty. Our central contribution is proving that this penalty
is equivalent to the squared norm within a single, unified multi-user RKHS. We
explicitly derive its reproducing kernel, which elegantly fuses the graph Laplacian
with the base arm kernel. This unification allows us to reframe the problem as
learning a single “lifted” function, enabling the design of principled algorithms,
LK-GP-UCB and LK-GP~-TS, that leverage Gaussian Process posteriors over this
new kernel for exploration. We provide high-probability regret bounds that scale
with an effective dimension of the multi-user kernel, replacing dependencies on
user count or ambient dimension. Empirically, our methods outperform strong
linear and non-graph-aware baselines in non-linear settings and remain compet-
itive even when the true rewards are linear. Our work delivers a unified, theo-
retically grounded, and practical framework that bridges Laplacian regularization
with kernelized bandits for structured exploration.

1 INTRODUCTION

Graphs are pervasive in modern sequential decision-making, encoding similarity or interaction
among entities like users, items, or sensors. In a multi-user contextual bandit setting, this graph
structure is informative since it provides a pathway to share information, allowing an algorithm to
learn more efficiently than if it treated each user in isolation. We study the problem where a known
user graph promotes homophily, meaning connected users tend to have similar reward functions. At
each round ¢, a learner observes a user u; and a set of available arms (contexts) D; C R9, selects
an arm x; € Dy, and receives a noisy reward y;. Naively learning a separate model for each user
is inefficient, leading to regret that scales with the number of users. Exploiting the graph structure,
however, can yield dramatic improvements in both sample efficiency and performance [Szorenyi
et al. (2013); Landgren et al.|(2016);|Gong & Zhang|(2025); Wang et al.| (2025).

This problem was first formalized as the Gang of Bandits (GOB) |Cesa-Bianchi et al.|(2013)), which
models the collection of user reward functions { f,,(-)}?_; as a smooth signal on the graph. Seminal
works like GoB. Lin [Cesa-Bianchi et al.| (2013)) assume linear reward functions, f, () = QJ x,
and penalize roughness via the graph Laplacian, leading to the effective linear bandit solution. Sub-
sequent research has extended this approach with improved computational scaling Vaswani et al.
(2017);|Yang et al.| (2020), but has largely remained within the linear paradigm. Yet, in many appli-
cations, from recommendation systems to personalized medicine, reward functions exhibit complex,
non-linear behavior. While a rich literature on kernelized bandits exists to handle non-linear rewards
for a single agent (Chowdhury & Gopalan| (2017); Du et al.| (2021)); |Bubeck et al.| (2021)); |Li et al.
(2022); [Zhou & Ji| (2022), principled methods for the multi-user graph setting are less developed.
Existing approaches construct a multi-user kernel heuristically as a product of user and arm ker-
nels|Dubey et al.|(2020), leaving a gap between the intuitive modeling goal and the final algorithm.
We refer to Appendix [A]for further discussion of the related work.

Our work bridges this gap, starting from a natural first principle for this problem. A desirable
collection of reward functions { f,, }"_,, where each f, lies in a Reproducing Kernel Hilbert Space
(RKHS) H,., should be jointly regularized: they should be smooth across the graph (homophily)
and individually well-behaved (low complexity). We formalize this via an intuitive, additive penalty
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that combines a graph smoothness term with a standard ridge penalty. In the scalar case without arm
features, this type of Laplacian-based regularization is known to induce a kernel whose matrix is the
(regularized) Green’s function of the graph|Smola & Kondor| (2003). Building on this connection,
we show that the same principle extends to the multi-user contextual setting: the joint penalty defines
the squared norm of a single, lifted function f(x,u) := f,(x) in a unified multi-user RKHS. We
explicitly derive the reproducing kernel for this space, which elegantly fuses the graph Laplacian L
and the base arm kernel K, K ((,u), (x',u')) = [L, ]y,u K.(®,2'), where L, = L+ pI is the
regularized Laplacian.

This unifying perspective transforms the problem of learning n related functions into the elegant
problem of learning a single function in a well-defined kernel space. It allows us to directly apply
the powerful machinery of Gaussian Process (GP) bandits |Srinivas et al.| (2009); Krause & Ong
(2011);Vakili et al.| (2021). We develop LK—GP-UCB and LK—-GP-TS, algorithms whose principled
uncertainty estimates are derived from the GP posterior of this unified kernel, enabling them to
naturally and jointly leverage non-linear arm structure and Laplacian homophily. We provide regret
guarantees for these algorithms in terms of an effective dimension that captures the spectral interplay
between the graph and the kernel. Our experiments show that our methods are competitive in linear
regimes and substantially outperform both linear and non-graph-aware baselines when rewards are
non-linear yet graph-smooth.

Our main contributions are:

* We formalize the generalized gang-of-bandits problem with a principled joint penalty
combining graph smoothness and RKHS regularity for the collection of reward functions

{fuli=1-
* We prove that this penalty is equivalent to the squared norm in a single multi-user RKHS
and explicitly derive its reproducing kernel, unifying the graph and arm structures.

* We develop LK-GP-UCB and LK-GP-TS, GP-based bandit algorithms that leverage this
unified kernel for principled and effective exploration.

* We provide novel regret bounds in terms of an effective dimension that depends on the
spectral properties of both the kernel and the graph Laplacian.

* We empirically validate our approach, demonstrating significant performance gains over
strong baselines in settings with non-linear, graph-smooth reward structures.

Notations. Let [n] be set {1,2, ...,n}. For a set or event £, we denote its complement as €. Vectors
are assumed to be column vectors. e; is the i-th canonical basis vector in R™. I is the identity matrix.
Amin (A) represents the minimum eigenvalue of matrix A. ® is the Kronecker product. Denote the
history of randomness up to (but not including) round ¢ as F; and write P;(-) := P(-|F;) and
E.(-) := E[-|F] for the conditional probability and expectation given F;. We use O for big-O
notation up to logarithmic factor and < to represent asymptotically equivalence in rate of growth for
any two functions.

2 PROBLEM FORMULATION

2.1 GANG OF BANDITS WITH NON-LINEAR REWARDS

We consider a multi-user contextual bandit problem, often called Gang of Bandits (GOB) [Cesa-
Bianchi et al.| (2013)), with n users and a potentially infinite set of arms. We denote the set of users
asU = {1,...,n} and the arm set as D C R%, where each arm is represented by a feature vector
@ € D. The users are connected by a known undirected graph G = (U, E), where £ is the set of
edges. Let W € R™*" be the matrix of non-negative edge weights w;;, and D be the diagonal
degree matrix with entries d; 1= ; Wi The corresponding graph Laplacianis L := D — W.

The learning process unfolds over 7" rounds. At each round ¢t € {1,...,T}, the environment
presents a user uy € U (for example, randomly/uniformly pick one) and a finite subset of avail-
able arms Dy C D. The learner selects an arm x; € D, following some decision policy 7 and
observes a noisy reward: y; = fy, () + €; where {f, : D — R}?_, is a collection of unknown
reward functions, one for each user. The noise term ¢, is assumed to be conditionally zero-mean
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and sub-Gaussian with variance proxy o2, given the history of interactions F;. For the illustrative
purpose, we use f1., := {fu}"_; as the collection of the user-level reward functions.

The learner’s objective is to minimize cumulative regret. The instantaneous regret incurred at time
tis Ay = fu,(x}) — fu, (%) Where i = argmax,cp, fu, () and and cumulative regret over

T rounds is defined as Ry = Zthl A;. A successful algorithm must achieve sub-linear regret,
Rr/T — 0as T — oo, ensuring that the average per-round regret vanishes.

2.2 A PRINCIPLED REGULARITY MODEL FOR GRAPH HOMOPHILY

To make learning tractable, we need to impose regularity on the unknown functions f;.,. We make
two core assumptions. First, we assume that each function f, is individually well-behaved, be-
longing to a common Reproducing Kernel Hilbert Space (RKHS), denoted H,, with a positive
semi-definite kernel K, : D x D — R. The associated feature map is denoted as ¢ such that
K.(z,z') = {(p(x), p(a’))ga. This captures the non-linear structure of rewards with respect to
arm features.

Second, we formalize the notion of graph homophily by assuming that users connected by an edge
in G have similar reward functions. This user similarity is measured by the squared distance be-
tween functions in the RKHS, || f; — f;]|5,. . Combining these principles, we model the true reward
functions as having a small joint penalty that balances graph smoothness with individual function
complexity:
1 n n n
PEN(fimip) =5 D wiglfi = fill3, +p DI fillde, = Y [Lolitfi fidow (1)
i=1

i,j=1 4,J=1

S
PENg'r‘aph(flzn) PEN'r'idge(fl:n)

where p > 0 is a regularization hyperparameter and L, := L + plI is the regularized graph Lapla-
cian. This penalty is central to our framework, as it provides a clear, interpretable objective for
modeling related, non-linear functions.

2.3 FROM JOINT PENALTY TO A UNIFIED MULTI-USER KERNEL

Our key theoretical insight is that the intuitive, additive penalty in equation [1|is not merely an ad-
hoc regularizer. It is, in fact, the squared norm in a single, unified Hilbert space over the user-arm
product domain &/ x D. This allows us to reframe the problem from learning n related functions
to learning one lifted” function, f(x,u) := f,(x), in this new space. We show that it is the
squared RKHS norm for the product space H = Hg ® H, where Hg is the RKHS with kernel

Ka(u,u') = [L; ']y, in the following theorem.

Theorem 2.1 (Multi-user Kernel). Let H, be an RKHS of functions on D with kernel K,. The
vector space of function collections H = {(f1,..., fn) : fu € Hz,Yu € U} equipped with the

inner product
n

i,j=1
is a Reproducing Kernel Hilbert Space of functions on U x D. The associated squared RKHS norm
is precisely the penalty in equation and its reproducing kernel K : (D x U)? — R is given by:
K((x,u), (@' ")) = [L, Juu Ky (2, 2"). 2
This result is powerful: it provides a direct, canonical construction for a multi-user kernel that fuses
graph and feature information. The kernel K, captures similarity between arms, while the matrix
ijl (the graph Green’s function) captures similarity between users, with [Lp_l]uyu/ measuring the

strength of connection between users u and v’ through all paths in the graph. See Appendix |A| for
more background.

This unification allows us to represent the lifted reward function f(a, ) via a feature map ¢(x, u)
such that f(xz,u) = (0, ¢(x,u)) for some (potentially infinite-dimensional) parameter 6, and
K((x,u),(2',v)) = (p(x,u), (' ,u)). Formally, for a context-user pair (x,u) € D x U,
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the feature map ¢ is defined as ¢(x, u) := L;l/Qeu ® ¢(x). The problem is now cast as learning a
single function in the multi-user RKHS H. This insight paves the way for a principled algorithmic
approach based on Gaussian processes, which we detail next.

3 LAPLACIAN KERNELIZED BANDIT ALGORITHMS

The identification of the multi-user RKHS with its explicit kernel K provides a powerful, unified
framework for the GOB problem. It allows us to model the entire system—across all users and
arms—with a single Gaussian Process (GP), sidestepping the complexity of managing n separate
but correlated models.

3.1 A GAUSSIAN PROCESS PERSPECTIVE

We propose algorithms based on the Gaussian process (GP), motivated by the kernelized bandit
literature (Chowdhury & Gopalan|(2017). Our Bayesian modeling is only assumed for derivation of
our estimators and it is not necessarily the true model. We place a GP prior over the unknown lifted
reward function f : D x U — R, denoted as

[F10) - Fn ()] ~ GP(0, K (-, )

where K is the multi-user kernel defined in equation 2} For any finite set of user-arm pairs
{(=;,u;)}t_;, This proir implies that f; :=[fy, (z1), -, fu,(®:)]T ~ N(0, K;) where K; €
R*** with entries [K;);; = K ((@;,u;), (x;,u;)) is the kernel matrix.

At round ¢, given user u; and selected arm x,, the Bayesian model assume a reward model y; =
f(xy,uy) + € where e, ~ N(0, ) is the noise. Therefore, conditioned on the history F, the
posterior distribution for f,, (2) is N (ft,t—1(2), 02 ;1 (2)), with the posterior mean and variance:

fut () = k(@ u) T (K + M) "y

2 T 1 3)
g t(m) = K((:I?, ’LL), (a:a U)) - kt<wv u) (Kt + )\It) kt(xv u)
Here ki(x,u) := [K((z1,u1), (z,u)),..., K((x¢,us), (z,u))]T € Rt is the kernel vector be-
tween past selected user-action pairs {(z, us)}%_; and new pair (z,u), and y; = [y1,...,y] €
R? is the observed reward.

Remark 1. When {(us, z;)}L_, is a fixed (deterministic) sequence, under this model we have
ye | fr ~ N(fi,\I}) and f; ~ N(0,K;). Then, the mutual information between y, and f is
given by: 1(ys; f) = %log det (It + A‘th), which is often referred as the information gain of
the Bayesian model (Srinivas et al.| 2009, Section 2.1). For convenience, we write

i = logdet(It + /\7th)’ @

and refer to it as the information gain at round t, although it is twice what is usually called the
information gain in the literature. Moreover, ~y; in our notation depends on the sequence, although
in the literature, this symbols is often used for the maximum information gain over all sequence
{(ug, 24) Y1, of length T.

Connection to Regularized Regression. It is worth noting that the GP posterior mean estimator
in equation [3]is equivalent to the solution of an offline Kernel Laplacian Regularized Regression
(KLRR) problem. Specifically, the function f € 7 that minimizes the regularized least-squares
objective

min > (f(@s, us) — ys)® + M £11%, ®)

s=1

is precisely the posterior mean function p;—1 (x, u). This equivalence confirms that our online, GP-
based algorithm is deeply connected to the batch learning principle of minimizing prediction error
regularized by our proposed multi-user RKHS norm from equation [T}
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3.2 DECISION STRATEGIES: UCB AND THOMPSON SAMPLING

With these posterior estimates, we can design bandit algorithms that effectively balance exploration
and exploitation. We propose two algorithms based on common and powerful heuristics: Upper
Confidence Bound (UCB) and Thompson Sampling (TS). The complete procedures are described in

Appendix [E.T|

Laplacian Kernelized GP-UCB (LK—-GP-UCB). Following the principle of “optimism in the face of
uncertainty,” our UCB algorithm selects the arm with the highest optimistic estimate of the reward.
At round ¢, upon observing user u; and arm set D, it chooses:

Ty = arg max (Hut,t—l(m) + 6taut,t—1(m))7 6)
xcD,

where [, is the hyperparameter that ensures the appropriate scale of exploration via confidence width

Ou,,t—1(x). Our theoretical analysis provides an explicit form for 3, in Theorem [4.2|to guarantee

low regret, though in practice it is often treated as a tunable hyperparameter.

Laplacian Kernelized GP-TS (LK-GP-TS). Thompson Sampling Thompson| (1933); Russo et al.
(2018)) operates on the principle of ”probability matching.” At each round, it draws a random func-
tion from the posterior distribution and acts greedily with respect to this sample. A practical way to
implement this is to select the arm that maximizes a sample from the posterior predictive distribution
for the reward:

Ty = arg max (Mut,t—1(ﬁﬂ) + Vtzt(a:)ouht_l(:n)), (7
x€Dy

where v; is the scale hyparameter for exploration and z;(x) ~ N(0, 1) is the Gaussian perturba-
tion. Aligned with common Thompson Sampling literature, our decision strategy in equation [7|can
be separated into two steps: sampling fi;(x) from N (piy, 1—1(), V702, ;1 (x)) for all & € D,
and choosing an arm by x; = arg max,cp, fi¢(x). Similarly to the UCB algorithm, we also use
the explicit theoretical choice for 14 in Theorem {£.3] while it is a tuning hyperparameter in a real
application.

3.3 PRACTICAL IMPLEMENTATION

A naive implementation of the posterior updates in equation [3|is computationally expensive, requir-
ing an O(t3) matrix inversion at each step. To ensure practical scalability, we can use recursive
formulas to update the posterior mean and variance in O(¢?) or, for a fixed grid of points, even more
efficiently. Specifically, we can maintain and update the inverse matrix (K; + A\I;)~! or use the
following recursive updates for the posterior estimators Chowdhury & Gopalan| (2017):

gi—1((z, u), (24, ur))
A+ Ugt,t—1($t)

_ qe—1((x, ), (2, ue))qe—1 (2, ut), (2, u"))
A+ Oit,t—l(wt)

ot (T) = pu—1(x) + (Yt — tuy t—1(21))

qt((mvu)v(mlvul)) = Qt—l((mvu)v(mlvul» )]

2

72 (@) = 0%y () — Hm1(@ ) (@0 1)

A+ Uzt,tfl(mt)

where q;((x,u), (x’,u')) is the estimated posterior covariance at round ¢. We explain how to obtain
the updates in Appendix[E.2] A hybrid approach that uses exact inversion for small ¢ and switches to
recursive updates for larger ¢ can balance numerical stability and computational efficiency. Further
details on our implementation are provided in Appendix [F.4]

4 REGRET ANALYSIS

We now provide theoretical guarantees for our proposed algorithms. Our analysis is built upon a
high-probability confidence bound for our GP posterior estimates, which in turn leads to sub-linear
regret bounds for both LK-GP-UCB and LK-GP-TS.
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4.1 ASSUMPTIONS

Our results rely on the following standard assumptions.

Assumption 1 (Sub-Gaussian Noise). The noise process {€;}_, is a F;-measurable stochastic
process and is conditionally sub-Gaussian with constant o*.

Assumption 2 (Bounded Base Kernel). The base arm kernel K, (-,-) is positive semi-definite and
its diagonal is uniformly bounded: sup,cp K, (x, ) < a? for some o > 0.

Assumption 3 (Bounded Multi-User RKHS Norm). The true lifted reward function f has a bounded
norm in the multi-user RKHS #: || f||5, = PEN(f1.n; p) < B}, for some constant B, > 0.

Assumption [T] is common assumption in bandit literature. Assumption [2] and [3] indirectly align
with the regularity assumptions in kernelized bandit and graph smoothness literatures [Belkin et al.
(2006); [Kocak et al.| (2020). These assumptions imply that the rewards and the multi-user kernel are
bounded. Formally, we have

sup K((:&u), (w,u)) < Kmax = a2 : maX[Lgl]%u.
(z,u)EDXU ueld

4.2 HIGH PROBABILITY CONFIDENCE BOUND

The core of our regret analysis is the confidence bound that relates the true function f to our pos-
terior mean estimator yi;. This result quantifies the model’s uncertainty and justifies the exploration
strategy of the UCB algorithm.

Theorem 4.1 (Confidence Bound). Suppose Assumptions|[I}[2} and[3|hold. Let { (., u.)}2, be the
Fi—1-measurable discrete time stochastic process. Then, using the posterior estimators [i,, ; (x) and
ou,t(x) in equation yields to a high probability upper bound: for any 6 € (0,1), with probability
atleast 1 — 6, forallt > 1 and all (x,u) € D X U:

[ut(x) — fl@, )] < B - out() ©)

where the confidence parameter [ is given by

2
B =B, + \/0'A (QIOg% +logdet(I + A~ K,) ). (10)
This confidence bound follows a structure similar to those in the kernelized bandit literature (Chowd-
hury & Gopalan| (2017); [Valko et al.| (2013)); Dubey et al.| (2020), but our analysis offers two key
distinctions. First, our proof does not require the constraint A > 1 found in some prior work.
More significantly, we retain the term log det (I; + A~ K}) directly within our confidence width
B:. This contrasts with classical approaches that often proceed by further bounding this term using
information-theoretic quantities, which can result in looser bounds. By keeping the exact term, we
set the stage for a tighter, data-dependent analysis via the effective dimension.

4.3 REGRET BOUNDS VIA EFFECTIVE DIMENSION

To obtain concrete regret rates, we characterize the growth of the log det term using the notion of an
effective dimension.

Definition 4.1 (Effective Dimension). The effective dimension d of the learning problem, given the
sequence of actions up to time T, is defined as:
= logdet(Ir + K1 /\)

This quantity, inspired by recent work in kernel methods and overparameterized models Wu &
Amini| (2024)); Bietti & Mairal| (2019); |Yang & Wang| (2020), measures the intrinsic complexity of
the learning problem. It can be interpreted as the ratio of the sum of log-eigenvalues of the matrix
Ir + K7/ to abound on the maximum possible log-eigenvalue (T K.« is an upper bound on the
largest eigenvalue of K7). As such, it serves as a robust, graph-dependent measure of the matrix’s
rank, capturing the ”dimensionality” of the function space actually explored by the algorithm.

Using the confidence bound in Theorem and d in Definition we provide the regret upper
bound for LK-GP-UCB and LK—-GP~-TS as follow.
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Theorem 4.2 (Regret Bound of LK-GP-UCB). Suppose Assumptions]] [2| and [3| hold, with no as-
sumption on the number of arms. By setting the exploration parameter B; in LK—GP-UCB to (;
Jfrom Theoremd.1} the cumulative regret is bounded with high probability as:

Ry = O(dlog(T)WT) = O(dVT)
Theorem 4.3 (Regret Bound of LK—GP-TS). Suppose Assumptiondl} 2land[3|hold, and the decision

sets D; are uniformly finite. By setting the exploration parameter vy in LK—GP-TS to B from
Theorem[{.1) the cumulative regret is bounded with high probability as:

Ry = O(dlog(T)**VT) = O(dVT)

These bounds demonstrate the efficiency of our approach. The regret scales not with the number of
users n or the ambient feature dimension, but with the effective dimension d. For problems where
the graph and kernel structure lead to a rapid spectral decay, d can be significantly smaller, resulting
in substantial gains in sample efficiency.

In the notation of Remark m the effective dimension d scales as: d = yp/log(1 + TKpax/\) =
% where the approximation assumes A = ©(1). The interpretation of d as a dimension is evident

in the linear setting (n = 1 with linear kernel on R%), where 7 = O(dlog T') (Srinivas et al., 2009,
Theorem 5), yielding d = O(d). This example demonstrates that our bound O(df ) is tight up to
logarithmic factors for infinite action spaces, matching the minimax optimal rate (’)(df ) for linear

bandits (2008).

For uniformly finite action spaces (|D;| < M for all t), it is possible to achieve a tighter regret

bound of @(\/ﬁ ) using algorithms such as SupKernelUCB |Valko et a1.| (120131). This improvement
relies on scaling the exploration parameter as 3; o 1/ /X rather than using equation effectively
removing a factor of /7. Since our primary contribution is the construction of the unified multi-
user kernel, such algorithmic refinements from the kernel bandit literature are directly applicable to
our framework.

4.4 SPECTRAL ANALYSIS OF THE MULTI-USER KERNEL

To interpret the effective dimension d, we analyze the spectrum of the multi-user kernel K. By
Theorem@ K = Kg®K,, the tensor product of the user kernel K associated with matrix K =
L, I and the arm kernel K. Consequently, the eigenvalues of the integral operator associated with

K are the pairwise products of the marginal eigenvalues. Let {\{'}"_, be the eigenvalues of L » !
and {v7}52, be the eigenvalues of K. The operator eigenvalues for K are then {y;; = A7v7}; ;.
The eigenvalues of the normalized matrix K /T approximate these operator eigenvalue

In particular, we obtain the following approximate upper bound on the information gain y7:

n

e
yr = logdet (I + A~ 1KT ZZlog (1+ — N x) Z‘I’ (T/\ ), (12)

i=1 j=1

where ¥(s) := Z]Oil 1og(1 + svy ) represents the information gain of a single-user problem with
effective signal strength s. We know that W(s) is concave and sublinear; e.g., for the squared
exponential kernel on R?, () < (log s)?*! (Srinivas et al., 2009, Theorem 5)), hence as a function
of T', v grows slowly in 7. What is interesing then is the dependence on n.

While informative, the bound in equation @ can be conservative for finite 7' (see Figure |I|) A
sharper bound in a similar vein can be obtained by considering a regular design: assume we observe
each user exactly m := T'/n times, choosing the same set of actions {@1,- - ,x,,} for all users.
By permuting round indices such that all observations for user 1 appear first, followed by user 2,
etc., the eigenvalues of K7 remain invariant. Under this setup, K = Kg ® K, g‘m, where ® is the
matrix Kronecker product and K™ is the m x m kernel matrix evaluated on the common action
set. Let {7 }7" be the elgenvalues of K¢ /m. The normalization by m ensures that 7 stabilize
around the populatlon eigenvalues v for large m.

'This holds asymptotically as T — oo under i.i.d. sampling [Koltchinskii & Ging| (2000); results from
(Srin1vas et aLL 2009L Theorem 5) suggest a similar approximation holds for worst-case sequences.
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Figure 1: Rank Collapse: (a) Comparing the growth of the actual information gain y vs n in i.i.d.
des1gn (red) versus the two bounds equation [I2] (blue crude) and equation [T3] (green; nearly exact)
in a complete graph. The kernel is exp (—||z — y|| /2), u; ~ Unif([n]) and z; ~ Unif[0, 1] where

d = 5. Panels (b) and (c) show the growth of d vs. (log T')? under empty and complete graphs,
respectively. Note that under the complete graph, d slightly decreases as n increases.

Consequently, the eigenvalues of K1 /T are given by )\Z-G vy /n, yielding the exact expression:

n

S it () B 1 N

i=1 j=1

where U(s) := Z’” log(1 + sUF *) represents the “empirical” information gain of a single-user

problem with common actions. For large enough m = 7'/n, we have 7/ ~ v and WU(s) ~ U(s).

Expression equation [T3] is exact for regular designs and, as shown in Figure m provides a sharp
approximation for the i.i.d. sampling case. We use equatlon.to analyze d across graph structures.

Case 1: Independent Users (Worst Case). If L = 0, then Ko = pflI and \{ = p~! for
all i € [n]. The gain sums linearly: ¥’ = S \I/(nlp/\) =n- \I/( 5 ). Thus, the effective
dimension scales as n times the single-user effective dimension. For example with an SE kernel,
d = O(n (log(T/n))?), which remains sublinear in 7".

Case 2: Strong Homophily (Complete Graph). To isolate the effect of an extremely dense user
graph under a homophilous prior, consider a complete graph with edge weights w;; = 1. The
Laplacian eigenvalues are 0 (multiplicity 1) and n (multiplicity » — 1). The kernel eigenvalues
invert this structure, with A = 1/p and \¥ = 1/(n + p) fori > 2.. For large n, this yields a nearly
rank-1 matrix. Substituting into equation[I3]provides a “Head + Tail” decomposition:

clique _ 7 i o > T
=Y (npk) tn-DY (n(n+p)/\> ' (o

This leads to the following consequence:

Proposition 4.1. Consider the regime where T' < Cn for some constant C. Then, under a regular
design: 54" < C( +1) =0(1).

Proof. Using log(1 + z) < x for 2 > 0, we have W(s) < s(3.7", &%). Then, for T < Cn,

j=1Yj
. T - C -
- | ——x | SV | ——5 ] <
oy (n(mpm)—” (o) = e
since Z;”: \DF = (’)(Z]oo ) 1] Similarly, for the first term, \I/( 5) S p%. O

2This bound holds for any kernel whose integral operator is trace class. For a unifromly bounded kernel as

in Assumption we have the more straightforward bound 377" | 77 = tr (K2) /m < o
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Figure 2: Cumulative Regret under Linear-GOB regime. From left to right are tasks of easy level,
medium level, to hard level.
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Figure 3: Cumulative Regret under Laplacian—Kernel regime using GP draw. From left to right are
tasks of easy level, medium level, to hard level.

This result is significant: in the regime 7" < Cn, the information gain grows with neither n nor
T, implying d = O(1/logT) (slowly decreasing). This behavior has no counterpart in the single-
user setting and confirms that under strong homophily, regret is independent of n. These theoretical
findings are corroborated by our empirical plots in Figure[T]

Generalization to Clusters. If the graph contains & disjoint clusters with high internal connectivity,
K¢ will have k eigenvalues of magnitude O(1) and n— k of magnitude O(1/n). A similar argument
implies that d = O(k/log T) when T' < Cn. Thus, d essentially counts the number of significant
eigenvalues of the normalized kernel K¢, serving as a soft proxy for the number of distinct user
clusters.

Comparison with Independent Bandits. It is instructive to compare this with independent learn-
ers that share no information. Since each user generates 7'/n observations on average, the regret for
learning each function is at best /7"/n, yielding an overall regret of > "', \/T/n = VnT. In the
worst case (Case 1), our bound dv/T scales as nv/T' (ignoring log factors), which is a factor of v/n
looser than the independent baseline. However, had we assumed a uniformly finite action space, we

could achieve a regret bound of V/ dT = /nT, matching the optimal independent rate.

The advantage of our approach becomes evident under strong homophily. For independent learners
in the regime 7' < n, the regret scales as vnI' < T', meaning no learning occurs. In contrast, we

showed that our Laplacian Kernelized Bandit achieves regret of O(+/T) in this regime (up to log
factors). A similar improvement holds when there are k = O(1) strong clusters.

5 EXPERIMENTS

We evaluate Laplacian Kernelized bandit algorithms, LK-GP-UCB and LK—GP~TS on several syn-
thetic data environments that capture user—user homophily on a known graph while varying reward
structure (linear vs. nonlinear) and problem difficulty. Baseline algorithms include GraphUCEYang|
et al| (2020), GoB.LinCesa-Bianchi et al| (2013), cOOP-KernelUCEDubey et al| (2020),
GP-UCBChowdhury & Gopalan| (2017), Pooled LinUCB and Per-User LinUCB. Full im-
plementation details are Provided in Appendix [F}




Under review as a conference paper at ICLR 2026

N w
S} S

Cumulative regret
=
S

o

0 200 400 600 800 1000 0 500 1000 1500 2000 0 500 1000 1500 2000 2500 3000
Round Round Round

—— Coop-KernelUCB GOB.Lin —— GP-UCB —— GraphUCB —— LK-GP-TS —— LK-GP-UCB PerUser-LinUCB  —— Pooled-LinUCB

Figure 4: Cumulative Regret under Laplacian—Kernel regime using representer draw. From left to
right are tasks of easy level, medium level, to hard level.

Environments. We draw a context pool D by sampling from N(0, I;) first and then normalize
the context vectors. At round ¢ we present D, by sampling M, distinct items from D without
replacement. We generate the user graphs by Erd6s—Rényi (ER) random graph model or Radial
basis function(RBF) random graph model. After giving the generated graph, we consider one lin-
ear regime and two kernelized(nonlinear) regimes for synthetic data simulation. First synthetic data
environment is called Linear—GOB. We consider simulating the true graph graph-smooth user pa-
rameters ® = (I + nL)~ '@, which enforce graph homophily on the random initial parameters
©, € R"*4|Yang et al. (2020). The homophily strength is controlled by 7 in Linear-GOB regime.
We also generate the true reward functions by simulating multi-user kernel, which is called the
Laplacian—Kernel regime. We first use Squared Exponential as our base kernel K, over arms ¢/ and
construct the multi-user kernel using equation 2] Next, we design two choices to generate f, includ-
ing a GP draw and a representer draw. We leave all the details for data simulation in Appendix

Task Design. Our experiment has following design of the bandit tasks for a general comparison. In
these tasks, the noise of reward is set as ¢ = 0.1 and the number of users is n = 20. The simplest
level task is a 10-arm bandit problem (m = 10) with 50% viewability (M; = 5) at each round for all
users, under 7" = 1000 interaction rounds. Medium level task is a 20-arm bandit problem (m = 20)
with 25% viewability (M; = 5) at each round for all users, under 7' = 3000 interaction rounds. The
hard task is a 50-arm bandit problem (m = 50) with 10% viewability (M; = 5) at each round for
all users, under 7" = 5000 interaction rounds. In our figures (2} [3]and @), from left to right are tasks
of easy level, medium level, to hard level.

Algorithms Configurations. Our proposals LK—GP-UCB and LK-GP—TS are given in Algorithm[I]
and Algorithm 2]in Appendix [E-I] We implement the hybrid updates using practical recursive up-
date in equation [§] and exact update in equation [3] with Cholesky decomposition. Details are in
Appendix Hyperparameters v and (3 are tuned. For Coop—KernelUCB, we initially set five
choices of similarity kernel K, and conduct an experiment (Figure in Appendix) to verify that
the inverse Laplacian L;l is the optimal choice while the empirical maximum mean discrepancy
method is close to the best choice. In the experiment, K, is set as the empirical MMD method
to learn the similarity kernel K, unless otherwise stated. The classical baselines for GOB problem,
GoB.Lin, GraphUCB, and all the remaining baselines, Pooled LinUCB,Per-User LinUCB
and GP-UCB, are all UCB-based algorithms. We also tune their hyperparameter for the confidence
bound. The regularization parameter A is is designed as a scheduling Ay = Apase = Sspec - TLH
where Sgpec is the ratio of the smallest non-zero eigenvalue to the max eigenvalue and Ay is tuned.
Appendix [F-3|discusses hyperparameter tuning. All methods run in a centralized, no-delay setting.

Main Findings. Our proposals LK-GP-UCB and LK-GP-TS have robust performance in all the
9 data environments. In the Linear-GOB regime, which is the preferred setting for linear bandit
algorithms, our proposals can beat the most baselines with clear gaps. In the Laplacian-Kernel
regime, our proposals are consistently the best choices. For the GP draw setting, our proposals
are always the top algorithms in our experiment. For setting using representer draw, LK—GP—-UCB
and LK-GP-TS are sublinear while most baselines are hard to achieve sublinear regret. We be-
lieve our proposed algorithms can clearly outperform others in a long-term manner due to the
achievement of the clear sublinear regret. Lastly, even though we conduct an empirical study on
the choice for Coop—KernelUCB and pick a best one in the comparison, leading to the top per-
formances(close to our proposal) of Coop-KernelUCB, our LK—GP-UCB are consistently better
than Coop-KernelUCB.

10
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A RELATED WORK

Gaussian Processes on Graphs Our kernel construction builds upon foundational work in graph
regularization. |Smola & Kondor| (2003) originally established that penalizing the discrete graph
norm || f||3 = f'Lf induces a Reproducing Kernel Hilbert Space (RKHS) where the kernel is the
pseudoinverse of the Laplacian. Our Theorem 2.1]formalizes this duality for the vector-valued case
via a tensor product RKHS. We note that this structural result can essentially be inferred from the
comprehensive review of vector-valued functions by Alvarez et al. Alvarez et al.| (2012).

Following |[Smola & Kondor| (2003), any positive semi-definite kernel on the vertices that is a func-
tion of the Laplacian can be written in the eigenbasis of L as K¢ = Y ., 7(\;) q:q; where
{(N\i, i)}, are the eigenpairs of L and r(-) > 0 is a spectral transfer function. Our choice
K¢ = (L + pI)~! corresponds to 7(A) = 1/(X + p), which is monotone decreasing and there-
fore shrinks high-frequency components more strongly, enforcing a smooth/homophilous prior. In
principle, non-monotone or band-pass transfer functions r can encode more complex, possibly non-
smooth or heterophilous relations between users; analyzing such priors in the bandit setting is an
interesting direction for future work.

More recent works in graph signal processing adopt related Laplacian-based constructions but do
not use the induced RKHS norm as the main vehicle for analysis. [Venkitaraman et al.|(2020) obtain
Gaussian Processes over graphs from a Laplacian prior, and [Zhi et al.| (2023)) further generalize
this by learning a spectral filter g(L) applied directly to the Laplacian. In both cases, the focus is on
batch regression and signal reconstruction; the underlying regularizer can be characterized spectrally
in terms of the transfer function associated with g, in the sense of |Smola & Kondor|(2003), but it is
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not the primary object of study. By contrast, in our work we commit to the specific Green’s-function
kernel K¢ = (L + pI)~!, which corresponds to the classical Dirichlet energy regularizer and
enforces a homophilous prior. This choice yields a simple, explicit RKHS norm that we can track
throughout the analysis and directly tie to the effective dimension and regret in the multi-user bandit
setting.

Graph-structure Bandits Graph-based bandit models are also relevant but conceptually distinct.
In nonstochastic bandits with graph-structured feedback, a learner chooses an arm (node) and ob-
serves the losses of that arm and its neighbors in a feedback graph, interpolating between full-
information and standard bandits |Alon et al.| (2017). Regret bounds in this line of work typically
scale with graph-theoretic quantities such as the independence number «(G) or related observabil-
ity parameters Alon et al.[(2013)). Follow-up studies on bandits with feedback graphs and graphical
bandits refine these guarantees and extend them to stochastic settings, switching costs, adversarial
corruptions, non-stationary environments, and contextual bandits, with regret controlled by parame-
ters such as domination and weak-domination numbers, clique-cover and independence numbers, or
maximum acyclic subgraph—type quantities|Liu et al.[(2018a}b); Arora et al.|(2019);|Lu et al.[(2021);
Zhang et al.|(2023). In our setting, the user graph instead encodes prior correlation across user value
functions through a Laplacian kernel; feedback remains strictly bandit (we only observe the reward
of the chosen user—arm pair). Consequently, the graph enters our analysis only via the spectrum of
the user kernel and the resulting effective dimension, rather than via such side-information parame-
ters used in graphical bandit regret bounds.

Collaborative Bandits Our approach is related to collaborative contextual bandits on graph,
which exploit relations among users to accelerate learning. The collaborative contextual bandit[Wu
et al.|(2016) uses a user adjacency graph to share context and reward information online, effectively
adding a Laplacian-type regularizer to a linear contextual bandit model. Other works consider low-
rank or factorization-based collaborative bandits, such as matrix-factorization bandits for interactive
recommendation|Wang et al.|(2017)) and collaborative filtering bandits that co-cluster users and items
in a bandit framework |Li et al.| (2016). A complementary line of work studies multi-agent bandits
over social networks, where multiple players observe or share each other’s actions and rewards to
reduce regretKolla et al.[(2018)); |Chawla et al.| (2023); |Christakopoulou & Banerjee (2018). These
methods typically either (i) impose linear models with manually chosen regularizers, or (ii) model
collaboration via latent factors, clustering, or message passing, without an explicit multi-output
RKHS / GP interpretation. By contrast, our Laplacian-kernelized construction provides a principled
kernel view of collaboration: the known user graph defines a positive-definite user kernel that is
combined with a flexible context kernel, leading to algorithms whose uncertainty quantification and
regret depend explicitly on the joint spectrum of the graph Laplacian and the base kernel, rather than
on the number of users, clusters, or latent dimensions.

Cooperative Multi-Agent Kernelized Bandits |[Dubey et al. (2020) study a cooperative multi-
agent kernelized contextual bandit with delayed communication over a fixed graph G = (V, E). In
their model, every agent v € V acts at every round ¢, selecting an action x, ; and receiving a reward
Yu 1, SO that after T rounds there are |V |T observations; the graph G is used solely to constrain
message passing and appears in the regret via graph-theoretic quantities (e.g., clique numbers of
graph powers), but it does not enter the construction of the similarity kernel between agents or
the modeling of the reward functions themselves. Instead, Dubey et al. posit a latent “network
context” z, for each agent and assume a global function F(x, z) in the RKHS of a product kernel
K((z,2),(2',2") = Ky(x,2')K,.(2,2"). When the network contexts (or the kernel K,) are not
available, they propose to estimate them from the contexts x,, ; by embedding each agent’s context
distribution P, into the RKHS of K, and defining K, as an RBF kernel on these mean embeddings.
Thus, the agent kernel is ultimately a learned similarity over (estimated) context distributions, and
the underlying communication graph plays no direct role in defining task similarity or a smoothness

penalty on (f,)vev-

By contrast, our setting follows the Gang-of-Bandits model: at each time step a single user is drawn
at random, we choose one action for that user, and we observe only one reward, so that after T’
rounds we have T' observations rather than |V|T. We also behave as a centralized learner rather
than a decentralized network of bandits. Most importantly, we do not introduce or estimate any
latent network contexts; instead, we assume a given user graph and fix the agent kernel to the inverse

14



Under review as a conference paper at ICLR 2026

regularized Laplacian,

K. (u,0) = (L, Yoo

This kernel is tightly coupled to the global homophily penalty on the vector of reward functions and
yields an explicit RKHS norm with a clear smoothness interpretation. This principled graph-based
construction allows us to carry out a spectral analysis of the resulting multi-user kernel, relate the
regret to the spectrum of L ,, and highlight how the effective dimension adapts to the cluster structure
of the user graph, rather than reducing network information to ad hoc latent features inferred from
context distributions.

B PROOF OF THEOREM

Proof. The proof proceeds in three main steps: (1) We construct the Hilbert space for our multi-
user problem as the tensor product of the user space and the context space; (2) We define a feature
map into this space and show that its inner product yields the kernel K. This establishes that our
constructed space is indeed the RKHS H; (3) We characterize the elements of H and derive the
expression for their norm.

Step 1: Constructing the Hilbert Space via Tensor Product. Let 7s = R" be the finite-
dimensional Hilbert space for the users, equipped with the standard Euclidean inner product
(u,v)3. = u'v. {e;}_, forms the standard orthonormal basis for H¢. Our multi-user RKHS H
is the tensor product of H¢g and H.:

H:=Hcg@H, =R"QH,.

The elements of H are (limits of) finite linear combinations of elementary tensors of the form u ® h,
where u € Hy and h € H,. The inner product in H is defined on these elementary tensors and
extended by linearity:

(U1 ® hi,us @ ha)y = (U1, U2)p e (h1, ha)p, -

Step 2: Defining the Feature Map and Verifying the Kernel. Let L,l,/ ? be the unique symmetric
positive definite square root of L,. We define the feature map ¢ : (U x D) — #H as:

oz, u) = (L;I/Qei) ® p(x).

This is a valid element of H since L;l/Qei € R" = Hg and o(x) € H,. Let’s compute the inner
product of two such feature mappings in H:

(@(x.3), (y. )n = (L, ei) @ p(x), (L, %e;) © p(y))n
=(L,"%ei, L' ?e;) 3 - (p(x), 0(¥))n,
= eZTLp_lej K (z,y)
= [L,1ij - Koz, y) = K((2,1), (y.))-
By the fundamental property of RKHS, since the kernel K is generated by the inner product of the
feature map ¢ in the Hilbert space H, H is the unique RKHS associated with K.

Step 3: Characterizing Functions in 7 and their Norms. An element of # is a function f :
(U x D) — R. By the Riesz representation theorem, for each f € H, there exists a unique
element 6 € H such that f(-,-) = (6, ¢(,-))# and || f[|;, = ||@]|,,. For some component functions
{gr}7_, C H, we can uniquely express 6 as

922%@%
k=1

and the squared norm of @ in H is then:

n

1615 = (Y er g erma) = lew enclon g, = 3 ol
k l

k,l k=1
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Then we can relate our reward functions f;., to the component functions { gk}};:l:

fi(x) = (0,0((2,1)))n
Zek®gk, ;' e) @ p(@))u

= Z €k, 2 ! <gk750(w)>7'h
;I/Q]ki “Agrs o (),

=D L, ?luig(@) (since (g, p(@))n, = g(@))

which leads to N
=D [y
j=1

This equality holds for the functions as elements of H.: gx = >/, Ly ks -

Finally, we compute the norm of f in H:

n
2 2 2
1£13 = 1013, = > _ llgwllz,

k=1
Z Z L1/2 ks £
i=1

=
—

Ha

I
M@

Z L1/2 k]fij[L;la/Q]klfl>Hw

13 =1

S LY Pk (L Pkl fs fi,

J,l=1

<Z [L}/%]5; (L) kl) (fi f)n.

k=1

n n

=
Il
—

M- M-

~

1
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)

M:

[ /)]jl<f]7 fl>

1

Jil

where the last step is because the term in parentheses is the (j,)-th element of the matrix product
(L,l,/ Q)TL,I/ 2 = LFI,/ 2L,13/ 2= L,. By polarization identity, the associated inner product in H is:

n

(f,9)n = Z (Lplij(fir 9j)n.

i,7=1

To see that || f ||§{ is the exactly the penalty in equation, we expand L, = pI,, + L:

n

I£113, = > (PG =1+ L), fi)a.

Jl=1

_pZHfJH”HI—"_Z jl f]vfl

7,l=1
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Using the standard identity for the Laplacian quadratic form, the second term in the above equation
: 1 2 .
isexactly 53, - wij|l fi — fill5,,, we get:

2 - 2 1 2
15 = 2D Ifilla, + 3 > wisllfi = fill3, -
i=1 i

This completes the proof. O

C PROOFS IN ANALYSIS

We first define following additional notations

D, = [p(w1,u1), -, P@e, uy)] " (15)
J, =®/®, (16)
L :=J, + Mo (17)
¥, =K, + M\, (18)

Here we have ®, € R*** and J;, I'; are from R>*>°,
Then we define some useful events for concentration:
E® = {|z(z)| < /21og(t2|Dy]), forall & € D;}
& = {bui—1(x) + Brze(@)ou, -1 (27) > fleg, ue)}

where z(x) ~ N(0,1) stands for the resampling randomness in Thompson Sampling. We also
define the confidence set at round ¢:

C = {|Mut,t71(azt) - f(fvtaut)| < B 'Jut,tfl(wt)} (19)

where

2 202 1
By = <Bp + \/U/\ -logdet(I;—y + \"1Ky 1) + % log 6>'

In addition, recall the following effective dimension
Joe logdet(Ir + Kr /)
" log(1+ TKmax/N)
and the upper bound of the optimality gap:

|A;| < Ba = 2B,K}/?

max*

Lastly, we provide the following Lemmas, which are commonly required in regret analysis.
Lemma C.1 (Concentrations for TS). For all t € [T, we have Py(EF*) < t=2 and P,(EF|Cy) >
(dey/m) L.

Lemma C.2 (One Step Regret Bound for TS). Suppose Pi(E) — Py(EF*) > 0. Then for any t,
almost surely,

EelAde) < le.- {(m +1) - Eulyeou o1 (20)] + Ba -Pt(é‘é“)}

where v := By + Btr/21og(t?|D;|) and Ba = ZBpKrln/azx

Lemma C.3 (Cumulative Uncertainty Bound). We have the upper bound for the cumulative esti-
mated uncertainty:

T
Zaut,tfl(mt) < V2T max{1, Kyay} - logdet(I7 + A1 K7)

t=1
Lemma C.4 (Dual Identities). With the defined notations in equation[13] we have two key identities:

2,10 =&, and o), () = A|g(@, w7

17
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C.1 PROOF OF CONFIDENCE SET

Proof of Theorem We first decompose
pu () = (@, 0) = k(1) 577 (840 + €) — 076 (,u)
= (@], Ky (x,u) "0 + Ky (x,u) B ey — 07 o, u)
=(0,6,(z,u)) + ki(x,u) 2 e

bias (z,u) noise (a,u)

where 6;(z,u) = ® =, 'ki(x,u) — ¢(x,u) € 2. Our target is to bound the bias,(x, u) and
noise; (x, u). We state the following Lemmas:
Lemma C.5 (Bias Identity). The squared bias is the degraded variance for noise:

160, w)l[72 = o (@) — Ny (2, u) " 27 ke (a0, w) (20)

In particular, we have ||5;(x,u)]| ;2 < 0y () and Ney(z,u) T 2, 2k (2, u) < oo i(x).

Lemma C.6 (Noise Bound). With high probability, we have the upper bound for the following norm
of noise vector €;:

1
[®€eflp—2 < \/02 log det(I; + A~1K}) + 202 log 5

From Lemma|C.3] we could bound the bias by
bias, (@, 1) < 6161 (@, )2 < Byo(a). e

Using the identities in above Lemma|C.4] we note that
noise; (z, u) = ky(x,u) ' 3; e
= ¢(x,u) T, '®,¢
= (¢p(z, u), ‘I’t€t>r;1
||(;5(£13,’LL)“1—~;1 : Hq’tet”r;l

_ M ) H<I>t€t||1“,f1

VA

where the inequality is from the Cauchy-Schwarz inequality for the inner product (-, '>r;1'

IN

Our Lemma|C.6| gives the high probability upper bound for the norm ||®,€;||-1, leading to
rt

Uu’t((l?)

1
noise (x, u) < : \/02 logdet(I; + A1 K;) + 202 log 5 (22)

Now combine equation [2T]and equation [22]together, we have

|tut(x) = f(2,u)| < |biasy(x,u)| + [noiseq(a, u)|

1

o? 202
< out(x)| B, + 5% -logdet(I; + A1 K}) + ~ log 5

C.2 PROOF OF REGRET BOUND OF LK-GP—-UCB

Proof of Theorem[{.2] Recall the instantaneous regret at time ¢ is A, = f(x},u;) — f(@, us) and
the cumulative regret in a time horizon T is R = Zle Ay. We note event C;, = {| by, 1—1(2t) —
fxe,ue)| < Br - 0w, t—1(x¢)} happens with high probability (1 — 0), according to Theorem

1

o2 - 202
By = | B,+ 5 logdet(I—1 + A1 K1) + By log 3 (23)

18
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By Theorem 4.1} for all ¢ > 2 with probability at least 1 — 4,

A = floy,ue) — fl@e, ur) < oy t—1(27) + Brow, 1—1(x7) — f(2r, ue)
< g t—1(®1) + Beou, i1 () — f(@e, ue)
< 28104, 1—1 ().

Thus we have high probability bound for the cumulative regret

T

Ry <2E |:Bt Zo'ut,t—l(wt)} + Ba.
P

Then we apply Lemma [C.3]and the definition of effective dimension in equation [T1]

T
> ui—1(me) < /2T max{l, Kmax} - log det(Ir + A1 Ky)

t=1

= \/2T max{1, Kmax} - d1og(1 + TA1 Koy

Therefore, we have the final high probability upper bound for regret:

R < 2E[Br]\/2T max{1, Kax} - d10g(1 + TA Kona) + Ba.

The next step is to analyze the order of the upper bound. By using the effective dimension d again
and dropping constants, we have

202

2
51& < Bp + \/JA . dlog(l + TAileax) + A

=Ry = O(dlog(T)VT) = O(dVT).

log% = O(y/dlog(T))

C.3 PROOF OF REGRET BOUND OF LK-GP-TS

Proof of Theorem We start from the decomposition of the cumulative regret

T T

Rr =Y E[A] =D E[Ade]+ Y E[AI].

t=1 t=1 t=1
By Theorem4.1]and the upper bound for the optimality gap, we know the second term is bounded:

T
> E[Ad,] < 6Ba

t=1
by letting P(C;) < 6/T for all ¢t in Theorem 4.1
For the regret on the event C;, by Lemma|C.2] almost surely, we have

? ots
P (EF) — P(EF) + 1) “Ei[viou, 1—1(xt)] + Ba - Pi(&} )}

EiAde,] <Te, - {(

where 7; = B¢ + Biy/21log(t2|Ds]). Note that P,(E2) — Py(EF) > 45/% -5 > 30077 bY
Lemmaand the fact that t2 > 5ey/m for all t > 5. Thus we have

E[Ade,] < I, - {194Et Ye0u, o1 (a0)] + BAt’Q}

19
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by using 40e+/7 + 1 < 194. Taking summation on both side for our target cumulative regret, we get

> E[Ade,] =E) | EiAdc,]]

T
<EDY (194Ei[y10u, t—1(2¢)] + Bat™?) + 4Ba]
t=>5
T 7T2
<E[194)  Eilyi0u, 11 ()] + (4 + —)Bal
t=5 6

T
< E[194~7E, [Z Ougi—1(2)] + (4 + %)BA]

t=1

where the second equality is using Zfi 1 t=2 = 72 /6 and the last step is from the monotonicity of
the ; and the nonnegative of o, ; (). Our next focus is bounding the summation of uncertainty. As
the same approach in the proof of Theorem[4.2] we apply Lemma|C.3|and the definition of effective
dimension in equation

T
Zout,tﬂ(azt) < \/QTInax{l, Kumax} - logdet(I7 + A~ K1)

t=1

= \/ZT max{1, Kmax} - d10g(1 + TA1 Kpax)-

Thus we have

T — 2
SOE[A,] < 194E ]/ 27 max{1, Ky} - dlog(l + TA- Ko + (4 + )Ba

t=1

leading to the high probability (1 — §) regret upper bound:

= 2
R < 194Eyr] /2T max{1, Kpax} - dlog(1 + TA-1 Kppay) + (4 + ")Ba +0Bs.

For the order of the upper bound, we first analyze E[yr], by using the definition of effective dimen-
sion d again and dropping constants

2 2
T < (1 + \/210g(T2M)> . (Bp + \/U)\ ~dlog(l 4+ TA ' Kpax) + 2% log ;)
= O(log(T)Vd).

where M is the upper bound for the size of action set at time ¢, i.e. |D:] < M forall t < T.
Therefore,

Ry = O(dlog(T)**VT) = O(dVT).

D PROOF OF LEMMAS

D.1 PRrROOF OF LEMMA [C.T]
Proof. Using the standard Gaussian tail bound and the classical union bound, we have
2
Py (|2 ()] > u) < |Dyle™* /2.

By letting u = +/21og(#2|D;|), we obtain P;(£f%) < ¢t=2.

20
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For the result of event £, we have

P, (uut,u(a::) T Buzr(@) 0w (@) > f(wf,ut)ct) _P, (zt@:) 5 L@ u) = (@)

Biou, 1—1(xF)
> Pi(ze(zy) > 1)

> (dey/m) !

where the first inequality is from the fact that C; holds and the last step is directly obtain by the fact
that P(Z > 1) > (dey/7) "L for Z ~ N(0,1).

O

D.2 PROOF oF LEMMA[C.Z]

Proof. This proof is following the classical analysis for Thompson Sampling algorithms |[Kveton
et al. (2019);|Wu et al.| (2022); Wu & Amini| (2024).

We first recall E,[-] = E[-|F;]. Given the randomness from the history F;, event C; becomes deter-
ministic and the randomness is only from the resampling step. So we have

Ei[A¢lle,] = le, - E¢[A]
= I[Ct . (]Et [Atﬂ“:f] + ]Et [At]lg‘?])
< Ie, - (Ee[Addgs] + Ba - B (EF))

where the last step is from the boundness of the optimality gap A; < Ba. Our following focus is
bounding E, [Atﬂg?}, indicating C; holds in the remaining part of proof.

We then define the concept of “least uncertain undersampled” action, which is called unsaturated
actions, defined as

Uy ={x €Dy : f(x],ur) < f(,ut) + 0y, t—1(x)}
where
Ve = Br + B/ 21og(t2|Dyl)
and let x; be the least uncertain unsaturated action at time ¢:

&, = argminy,oy, -1 ().
xrEU,L

Recall the notation for the resampled index is fi;(€) = py, t—1(x) + Bize(x)0y, t—1(x). On the
good situation C; N &, we have

() = f (@, ue)| < | (®) = prag,i-1(@)] + [, -1 (@) = F(@, )] < Y10, 11 (2).

Thus we can provide an initial upper bound for regret

Ay = f(xf,up) — f(2r,ut)

= f(w:) Ut) - f(it,Ut) + f(:itvut) - f(xta ut)

< VeOup -1 (Be) + f(Ze,ur) — fl@e,ue) + fie(@e) — fie()  (by T4 € Up) (24)

< 290w, 1-1(Zt) + VeOu, t—1(xt) + [t (Te) — fie(xs)  (since Cp NEY)

< 290w, t—1(Zt) + Viou, t—1(Te) (DY [ (Ze) < fir(T1))-
Note that

VeOup t—1(Ze)[{xe € Ur} < Y10, 1—1(2t)
and by taking ;] after multiplying both sides by I ¢, we have
Oup -1 ()P ({me € Up} N EY) < Eifo, p—1(xe)gy]-

Thus it remains to bound the probability P;({x: € U;} N EF) from below.

21
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We notice the following two facts. First, if fi;(z}) > jit(x) for all z € Uy, then z; must belong to
Uy, which means {ji;(x}) > max,y fi(z)} € {x; € U;}. Second, for any & € U;, on the good
situation C; N EF N EZ, we have

fe(@) < f(@,ur) + 0w, e-1(x) < flo], u) < fu(z”)
which leads to £ C {ji;(x}) > max,cy, fic()}
Therefore, on event C;, we have
Py({z: € Up} N EF) = Po({fue(}) > nljleagfﬁt(w)} ary
> Py(EF NES)
> Py (&) — Pi(E)

Now we have a upper bound for o, +—1(Z¢):

Uut,tfl(-’ﬂt)

_ Blowa—1(@)ley] _ Eifow,—1(z)]
T Pi({m €U I NEP) T P(EF) — PL(ER)

which gives the upper bound for instantaneous regret by plugging above result in equation 24}

Et[At]Ig;s] S ( + 1) . Et[’YtUut,t—l(xt)]~

2
Py(Ef) — Pi(EF)

Therefore,

2

Ei[Adle,] <Ie, - {(W

+ 1) ‘E¢[veou, t—1(2e)] + Ba 'Pt(gis)}

D.3 PROOF oF LEMMA [C3]

Proof. We first apply Cauchy-Schwartz inequality and obtain

3 - 2 a Ugt t—1(xt)
Zgu“t_l(mt) S Tzo—ut,tfl($t) = )\TZ ’f
t=1 —1 ]

02 t .
IfA > Kuax, using o7, (24) < |K (x4, u) (2, ur))| < Kiax. we know 7’“”31@ ) < 1, which
leads to
T

aﬁ _q(x ) 1 2K max r 1
Z %(t) < 2ZIOg <1 + /\O'i“tl(il:t)) < 3 Zlog(l + /\Uihtl(wt))
t=1 t=1

t=1

by applying the fact that z < 2log(1 4 z) if z < 1.
If A < Kpax, still using 022 () < |[K (@4, u) (2, ur))| < Kimax. We know

-Kvmaux7 Uzt,tfl(wt)} < K
A A A

Uﬁt,H(-’Bt)

O’?Lmt*l (:Bt) }
A

< m
< min{ 3

= min{1,

which leads to

T 2 T T
Jut,tfl(mt) Kmax . 1 2 2Kmax 1 2
Z b\ < b\ ;mm{L Xaut,t—l(wt)} < N Zlog(l + Xaut,tﬂ(wt) .

t=1 t=1

by applying the fact that min{1, 2} < 2log(1 + ) for z > 0.

We can summarize the above two conditions for A together and achieve

T T
1

ZUUt,tq(iBt) < .| 2T max{1, Kyax } Zlog <1 + /\Jihtl(dﬁt)). (25)

=1

t=1
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Now we can use the property of the Shur complement for K:

det (It + ;\Kt> =det <It1 + iKt1>

l(K((mt,ut), (a:t,ut)) — kt,1($t7ut)T(Kt,1 + AI)_lkt,1($t7ut) >i|

x[l—i—)\

Uit,t—l(mt)

which leads to
T

det(I; + v K, _
Zlog<1+ N 1@)) :21 det(If( - 1KZ)1) = logdet(Ir + A™'Kr).
t=

Therefore, we combine above result with equation [25]and obtain

Zauht_l(a:t) < /2T max{1, Kpay} - logdet(I7 + A1 K7)

t=1
O
D.4 PROOF OF LEMMA [C.3]
Proof. We note that
161 (, )72 = (@, )7z + | @] S ko, )2 — 2((x, ), B 7 ke, u)) o
and we have
| @) =) ke (, u ||€2 =ki(x,u) ;7' @8] B, ki (x,u)
=ky(x,u) T K ey (2, )
= ki(x,u) 2780 ey (e, u) — Mk (2, u) T2 2Ry (22, 0)
= ky(z,u) ' 2 ke (2, u) — Ay (z,u) " 2 ke (0, 1)
and
(O(z,w), B/ (@, 0)) e = d((,w) " @) By ke (a,u) = e(,0) "7 ke (@, ).
Putting above equalities together, we have
16: (2, w)lle = 16 ((a, )l — Ko (@, w) "By ki@, 1) = Mey(@, 1) "2 %Ky (@, 0)
= K((z,u), (z,u)) — ke(z,u) " ) ke(z,0) — Mey(z,0) T B; %k (2, u)
= 02 () = My (x,u) T 27 2k (2, u)
< Ju,(a})
since 3, ! is positive semindefinite.
O

D.5 PROOF oF LEMMA [C.6]

Proof. We first define

t
= D¢, = Z (s, us)e
s=1

Note that s; is a martingale w.r.t F;.

Also we define a supermartingale

t
1
) =eap(D_ —(g.s1) *HQHQ)
s=1
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which has an alternative form
t

My(g) = e:rp( Z

s=1
where g is the function vector with elements

(9,6, u))es — 5 lg1)

Q|+~

We follow the approach from classical linear bandit|Abbasi- Yadkori et al.|(2011), which is averaging
M;(g) w.r.t a Gaussian distribution on g. The key technical issue is the infinite dimension of the
function vector g. We will first perform the truncated version which can precisely match the classical
result. Let d be the dimension of the feature map. Our target is the obtain the limiting result when

d — co. Now assume g ~ N(0, %Id), independent of everything else, and define

d d
M = EgulMilg)) = [ M (9)dp"g)
and by iterated expectation (i.e Fubini’s theorem), we have
E[MP|F) < My_,
which shows that M, is a supermartingale.

Then we define U : /> — R? as the truncation projection onto the first d coordinates: ¥,0 =

[©1,---,0y]T forany 6 € (2. We further denote
‘I’d@—r = [q}d¢($17 ’U,l), T ‘Ild(b(xta ut)] € RdXt
and
U, 0] =0, 0,0,

We notices that
det(A1y) _ 1

det(My+ Ty ¥ ) det(Iy+ A 10, J, 0 )

which leads to
(@) _ det(Aq) )1/2 RS 2
t - (det(/\Id + ‘I/th‘I/;lr) €xXp 20_2 ||‘I’dq,t€t||(AId+‘I’th‘I’I)*1

= det(I; + A\ @ gy 0] )2

Let M, be the limit of Mt(d) as d — 0o, we have

_ -1/2 1
Mt = det(Ioo + A 1Jt) / exp(w||¢’tet||?>\loo+Jt)_1>

-1 —1/2 1 2
= det(I; + A" Ky) exp<w||¢tet||rt1>
where the second step is from (Slyvestr) or Weinstein—Aronszajn identity.
By Ville’s inequality,

P( sup M, > 1) <E[M] 6
£=0,1,2,-- 0

1 2
exp (%._2 ||‘Ild(1,t€t||()\1d+‘I’th‘I’I)l) .

and My = 1. Thus we know that, with probability at least 1 — §, forallt =0,1,2,---

log(My) < logcs)

which leads to
1 _ 1 1
—5 IOg det(It + A 1Kt) + @”@tﬁt”f—\t—l < 10g(6> .

After re-arranging, we get

Vdet(I + \1K;)
1)

|®1e:]|7 1 < 202 log

which shows our result.
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D.6 PROOF oF LEMMA [C4]

Proof. Let us write &, = U; A, V;T as the singular value decomposition(SVD) of ®,. We have
Ay = [A14,0] where Ay, is at x t diagonal matrix with singular values of ®,. We also note that
3, € Rt and U; € R¥**. We also have

2
Jo= @[ =V, [Aé’t 3} v,

and similarly
K, =®® =UA},U,/ .
Then, we have

A+, 0
0

I‘t:‘/;. )\Ioo

} V', S.=U(A}, + U, .

It is clear to have the identity:
> e, = @,T; !
since both side equal Uy[Dy, 0]V, where D; = Ay ¢(A?, + )", which is a diagonal matrix.
Next, we note that
Taa(@) = K((x,u), (z,u) — ke(2,u) " Sy ke(, 0)

= 6(@,u) " (Is = B/ 2 @) (x, )

= ¢z, u) (I — B/ L") (2, 0)
which is a norm of ¢(x, u) induced by matrix

I,-®/®&r'=1,-JI;!
_v, {)\It(A%t +AL)"L 0 } v

0 M,
A2, + )71 0
= \V; |:( 1,t 0 t) Ioo:| ‘/tT

= AT, L.
Therefore, we have the other identity

oa (@) = Mé(a, u)g .

E MISCELLANEOUS

E.1 ALGORITHMS

Algorithm 1 LK-GP-UCB

1: Input: T, \, {8},

2: Initialization: 1, o(x), 0y,0()

3: fort=1,....,T do

4 Observe user u; and arm set D;.

5 Select arm ; = arg maxX,ep, fu,,i—1(€) + B10u, 1—1(x).
6: Receive feedback y; = f(xy, ur) + €.
7

8

Update fuy, (2) and o7, ().
: end for
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Algorithm 2 LK-GP-TS

1: Input: T, \, {v;}1,
2: Initialization: 1, o(x), 0y 0()
3: fort=1,....T do

4: Observe user u; and arm set D;.

5: Sample fiy(2) from N (-1 (x), vion, () forall z € D,
6: Select arm z; = arg max,p, fit(T).

7: Receive feedback y; = f(xs, ur) + €.

8:  Update fiy,¢(x) and o7 ().

9: end for

E.2 RECURSIVE UPDATE OF POSTERIOR MEAN AND VARIANCE

This sections refers to the derivation of incremental update of the posterior mean and posterior
variance (Chowdhury & Gopalan| (2017), via the properties of Schur complement. Recall that we
need to handle the inversion of 3; = I + AK; € R**? which grows with the number of rounds. To
compute the inversion of 3, efficiently, we use the recursive formula from ¥,_; by block matrix
inverse formula

== [ ]
where
M, =3 + d;tGy
Mo, = —dt_lzt__llkt—l(-’ﬁt, Uy) &7
and

dy = K((ze,u), (@0, u0)) — k1 (@, ) "B ko1 (e, ue) + A =05, g (24) + A
Gy =3 k1 (@, u) kg1 (@, up) T2
Here d; is the Schur complement.
Thus we have the posterior mean using equation 26|
Pt (T2) Zkt(iﬂyu)—rz;lyt

= [kia(@u)T K((x,u), (@, u))] miz Ailﬁ’t} {y;]

=k (x,u) " My ey 1 + K((,u), (wt’ut))MFz,t’ytﬂ
+ ko1 (z,u) T Moy + K((z,u), (2, ut))d; ye
=k 1 (x,u) " E Ny (Bryie1 — Bayi1 — Baye + Bayr)

Hou,t—1(x)

where

B =ki1(x,u) Gy = By = (ktfl(wvU)TE;—llktfl(mtaut)),uut,tfl(wt)

By = K((z,u), (e, ue) ki1 (e, u0) " Sy = Boyer = K (2, w), (@, w0)) g, 61 (20)

By = ki1 (z,u) B, key

o= K((x,u), (4, ur)).
Thus we have the recursive update of posterior mean

fat () = proe—1 () +d *
% (ke (@, w0) TS K (1) (-1 (1) = 91) + K (@), (@ 10)) (= a1 (1))

= fly,t—1(x) + dt_l%—l((m’ u), (T4, ue)) (Yt — Puy,t—1(21))
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where ¢;—1((x, u), (x¢, ut)) is defined from
Qt((w’ u)a (wla ul)) = K((w7 u)v (x/’ u/)) - kt(w7 u)TEt_lkt(:B/? u/)
which can be transferred into a recursive form using equation 26|
qt((z,u), (', u"))

=K ((z,u), (&', 1)) — (kt_l(sc,u)TEt__llkt_l(a:’,u’)

+ dzl(ﬁlkt*1<w/7 ul) - Bthfl(w/’ u/) - B3K((wt7 uT)7 (wlv ul)) + /B4K((wt7 uT)v (:B/, u/))))

:qtfl((ma u)a (wla ’U/)) - dtilqtfl((wa u)7 (wh Ut))Qt—l((wm ut)7 (wl7 ’U/))
Now using the incremental update of the posterior covariance, we can easily obtain the recursive
update for the posterior variance

U?L,t(m) = Gi,t—l(m) - dt_lth—1((m’U)» (x4, u¢)).

Now replace d; by aghtfl (z¢) + X and we achieve the recursive updates in equation

F SUPPLEMENT TO EXPERIMENTS

This appendix provides full details of our synthetic environments, algorithm configurations, hyper-
parameter selection, implementation choices, ablations, and reporting protocol.

F.1 SYNTHETIC ENVIRONMENTS

Letd = {1,...,n} denote users, D C R? the arm (context) space, and M; := |D;| the number of
candidates shown at round ¢. We draw a global normalized context pool D = {21, ... (™)} with
x(® ~ N(0,I;) and ) + 2 /||z?|. At round ¢ we present D; by sampling M; distinct items
from D without replacement. One user u, is served per round, drawn uniformly from ¢/ unless stated
otherwise. Rewards are observed with additive noise y; = f(x¢, us) + €;. We generate graphs, con-
texts, and ground-truth rewards under one linear regime (Linear—GOB) and two kernelized regimes
(Laplacian—Kernel using GP draw and representer draw).

User graph. We consider two graph random generators on /. First random graph family is Erd&s—
Rényi (ER) random graphs: each (undirected) edge is present with probability p and weights w;; =
1. We set p = 0.2 in our experiment. Second one is Radial basis function(RBF) random graphs:
sample latent z; ~ N(0, I,)), set w;; = exp(—pr||z; — 2;|3), and sparsify by keeping edges with
w;j > s. We choose s = 0.1, p;, = 0.1 and ¢ = 4 in our simulation.

Task Design. We design different level of the task. The simplest case is (M, M, n,d,T) =
(10,5,20,5,1000). This is a 10-arm bandit problem with 50% viewability at each round for all
users. The medium level is (M, My, n,d, T) = (20, 5, 20, 10, 3000) which leads to a 20-arm bandit
problem with 25% viewability at each round for all users. We also have the toughest case using
(M, M, n,d, T) = (50,5, 20,20,3000) which leads to a 50-arm bandit problem with 10% viewa-
bility at each round for all users. o is set as 0.1 unless additional specification.

Practical scenarios. Although our empirical study uses synthetic environments, the multi-user,
graph-based bandit setting we consider is motivated by several practical applications. Examples
include recommendation systems, where users are connected via social or similarity graphs and re-
peatedly interact with a common catalog of items; regional personalization problems, where stores
or geographic areas form a graph and the arms correspond to assortments or pricing actions; and
applications in healthcare or education, where patients or students are linked through similarity net-
works while treatments or exercises constitute the arm set. In such domains, the proposed Laplacian
kernelized bandits can leverage the user graph to share statistical strength while capturing non-linear
context effects.

F.1.1 REGIME 1: Linear-GOB (GRAPH-SMOOTH LINEAR REWARDS)

Sample initial user parameters ®y € R"*? with rows 8y,; ~ N(0,I;). Enforce the graph ho-
mophily via Tikhonov smoothing Yankelevsky & Elad| (2016)):

© = argmin |© — Q|2 +ntr(@"LO) = (I, +1L) '0,.
)
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Thus f(x,u) = x '@, where 8, is row u of ©. The strength of the graph homophily 7 is set as 1.0
as default.

F.1.2 REGIME 2: Laplacian-Kernel

Our choice of the base kernel K, over arms is Squared Exponential which are defined as
Kse(w, ') = exp(~ |l - @'||* /262

where length-scale ¢ > 0 and is set to be 1.0 in our experiment. Then we construct the multi-user
kernel by the definition:

K((z,u), (@', u) = [L,?]yu Ko (z,2)
where we set p = 0.01 in our experiment.
Option A: Laplacian-Kernel with GP draw

We draw the joint values { f (x, u) }ueur,zep from the zero-mean GP with covariance induced by K
and fix f by interpolation on D x U. Noise is ¢; ~ N (0,0?) with ¢ = 0.01 - range( f).

Option B: Laplacian-Kernel with representer draw We consider the representer theorem for
RKHS and sample the i.i.d. coefficients via o o, ~ N(0,1) on D x U and set

fx,u) = Z oz K ((m,0), (2 ,u)).

u' eU,x’' €D

F.2 BASELINES

All methods face the same sequence {u;, Dy, €; }1_; in each trial of each synthetic environment to
ensure a fair comparison. Our experiment include the following baselines.

Per-User LinUCB(no graph).: We implement Per—-User LinUCB, which ignores the whole
graph and perform the linear bandit algorithm independently on each user.

Pooled LinUCB(no graph).: We implement Pooled LinUCB, which ignores graph and person-
alization by treating the multi-user problem as a single agent bandit problem. Simply speaking,
there is global linear UCB algorithm to solve the problem.

GP-UCB(no graph). We implement GP-UCBChowdhury & Gopalan| (2017), which is the
IGP-UCB from the previous study on GP and UCB |Chowdhury & Gopalan| (2017). This is a
kernelized baseline using K ,, on arms only, ignoring the similarities across users (the Laplacian).

GoB.Lin. We implement GoB.Lin, which is the classical methods in gang-og-bandits prob-
lem |Cesa-Bianchi et al.| (2013). This is a Laplacian-regularized linear UCB algorithm on graph-
whitened features (equivalent to GraphUCB with p = 1i.e A = I + L). The confidence scale in
the algorithm is tuned from the table.

GraphUCB. We implement GraphUCREYang et al.| (2020), the Laplacian-regularized LinUCB.
Also, the confidence scale in the algorithm is tuned from the table.

COOP-KernelUCB. We implement COOP-KernelUCREDubey et al.| (2020), which utilizes the
product kernel over agents x arms. Here we borrow the notations from their work. We consider five
choices of K, (presented below); the full kernel is K = K, ® K, and we apply the same UCB rule
in LK-GP-UCB.

The five PSD options for the agent kernel K :

1. laplacian_inv: K, = (L + pI)7!, p>0.
2. heat: K, = exp(—7L) via the spectral decomposition of L.

3. spectral_rbf: embed nodes using the k lowest nontrivial Laplacian eigenvectors Z € R"™**
and set

K [uu] = exp(, M)

)
202
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4. all ones: full cooperation, K, = 117,

5. learned_mmd (network contexts, faithful to Dubey et al.| (2020)): define per-user kernel
mean embeddings ¥, of the observed arm-context distribution in H,, and let
K, (uu) = exp(— H‘ifu(t);‘i;u/(t)\lz)
s ? o2 9
where \i/u(t) is the empirical mean embedding of contexts observed for user u up to time
t. In our implementation we use an efficient random Fourier feature approximation for K,

and update K, ; on a fixed schedule; users with fewer than a small threshold of observations
cooperate only with themselves (diagonal entries).

For time-varying K, (learned_mmd), the GP state is rebuilt at K, refresh points using the algo-
rithm’s own history, ensuring consistency of the Gram matrix with the current kernel. Flgure shows
the comparison of the choice of K, for COOP-KernelUCB.

7001 Coop-KernelUCB (all ones)

Coop-KernelUCB (heat)
—— Coop-KernelUCB (laplacian_inv)
| =— Coop-KernelUCB (learned_mmd)
= Coop-KernelUCB (spectral_rbf)

-}
=}
S}

Cumulative Regret

0 200 400 600 800 1000
Round

Figure 5: Comparison of the choice of user-similarity kernel for COOP-KernelUCB.

F.3 CENTRALIZED PROTOCOL

At each t: sample u; ~ Unif(U), present D; (size M), select x; € D, per the algorithm, observe
Y+, update our decision policy(model), and record A; = maxgep, f(x,ur) — f(@t, us). Each
configuration is repeated for R trials (final results use R = 20; preliminary/pilot tuning uses R €
[5,10]).

F.4 POSTERIOR UPDATES AND NUMERICAL DETAILS

Motivation. For the original update equation [3| at round ¢, the inversion takes O(#3|D;|) time.
The practical updates is efficient for each pair (x,w) while it requires the updates for all pairs,
leading to O(|D;|n) time. Therefore, high-level idea is to perform original updates equation 3| when
t < n'/3 and perform practical updates equation [8| when when ¢ < n'/3. Therefore, for our GP-
based methods we use a hybrid implementation, which is described as below.

Exact (Cholesky) phase: maintain 3; = K; + AI and update via rank-one Cholesky for ¢t < ¢,
(cost O(t?) per step; initial inversion O(t3)).

Recursive phase: switch to the rank-one recursions in equation 8] with ¢o = K restricted to D x .
This costs O(n|D;|) per update when applied to the whole grid D x U.

By default we take ¢, = min{1500, [n'/3]|D|} as the phase switch. We use Cholesky jitter 10~%,
clip negative variances to zero, and cache K, (D, D). For large n we optionally apply graph spectral
truncation L, ~ U, AU, (top-r eigenpairs), yielding K ~ (U, AU, ) ® K,.

F.5 HYPERPARAMETERS AND TUNING

What is fixed across algorithms. For fairness, base-kernel hyperparameters are fixed inside each
environment: the length-scale ¢ uses the median heuristic on D, and the Laplacian ridge p = 0.1 is
fixed. For K., laplacian_inv uses p = 0.1; heat uses 7 = 1.0; spectral_rbf uses k = 8 and median
bandwidth; learned_mmd uses random-feature dimension 256, a median bandwidth heuristic, update

29



Under review as a conference paper at ICLR 2026

interval around 200 rounds, and a minimum count of 5 observations before a user participates in
cooperation.

What is design. To avoid using unknown noise scale as a prior, all GP-style methods use a graph-
and time-aware ridge schedule

T A2(L)
i allE Sspec = N N
T+t Amax (L)
where Apicdier (L) is the Fiedler value (smallest non-zero eigenvalue). We clip At to [Amin, Amax]

with Apin = 1079 and Apax = 1071, To limit refactorizations, we update A on a doubling epoch
schedule (approximately at ¢ =200, 400, 800, . . .) and only rebuild if the change exceeds 20%.

At = Apase - Sspec ' € [03 1]7

What is tuned. Only the exploration scales are tuned by grid search on a pilot horizon (T}, = 1500
for medium/hard; T = 1000 for simple) using Rpiior € {5,10}:

Algorithm Grid (pilot)

LK-GP-UCB, GP-UCB, Coop—-KernelUCB f € {0.5,1,2,4}
LK-GP-TS v e {0.5,1,2,4}
GOB.Lin, GraphUCB, LinUCB variants a€{05,1,2,4}

The best pilot setting (by mean pilot cumulative regret) is then frozen for the full-horizon evaluation.
Noise/ridge Apase in GP updates uses Apye € {0.001,0.005,0.01,0.05,0.1} on the pilot.

F.6 ABLATIONS AND STRESS TESTS

We report two ablation studies. One is an ablation under the medium, Laplacian-Kernel with GP
Draw environment (ER graph, fixed ¢ and p) on Scalability in users (n): n € {20, 50, 100, 200}
with fixed (M, My, d, T') and graph generator. We provide the final cumulative regret vs. n an report
the last step cumulative regret in Table[I| Another study is on the effect of random graph models.
Our standard experiment uses two graph random generators: Erdds—Rényi (ER) random graphs
and the Radial basis function(RBF) random graphs, mentioned in[F-I} We add the stochastic block
models(SBM) in this ablation study. We still keep the medium, Laplacian-Kernel with GP Draw
environment. The result is shown in Figure[6]

Table 1: Ablation over number of users n (final cumulative regret; mean+SE).

Algorithm n =20 n = 50 n = 100 n = 200
LK-GP-UCB 627.22 £32.98  892.43 +21.73 1062.69 £18.29 1157.74 4+ 23.02
LK-GP-TS 634.46 £22.78  943.41+19.56 1176.23 £15.77 1260.35 + 16.23

Coop-KernelUCB

730.06 £ 31.02

1015.35 + 22.18

1273.28 £17.36

1358.48 £ 14.22

GOB.Lin 1092.86 £ 71.70 1203.32 £ 18.57 1370.51 £16.78 1432.48 £ 18.72
GraphUCB 1105.20 £ 68.54 1192.30 £22.12 1360.02 +15.32 1453.21 £17.81
GP-UCB 2222.20 £90.26 1964.65 +£61.40 1641.43 £37.43 1444.83 +36.33
Pooled-LinUCB 2360.95 £ 70.55 1909.81 £49.49 1723.27 +40.23 1438.74 £ 26.44
PerUser-LinUCB ~ 1117.87£72.04 1221.99 +22.03 1432.89 £18.81 1527.04 £17.61

RBF

SBM

Algorithm
= LK-GP-UCB
LK-GPTS

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Round Round Round

Figure 6: Comparison of the choice of random graph models.
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