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ABSTRACT

We study multi-user contextual bandits where users are related by a graph and
their reward functions exhibit both non-linear behavior and graph homophily. We
introduce a principled joint penalty for the collection of user reward functions
{fu}, combining a graph smoothness term based on RKHS distances with an in-
dividual roughness penalty. Our central contribution is proving that this penalty
is equivalent to the squared norm within a single, unified multi-user RKHS. We
explicitly derive its reproducing kernel, which elegantly fuses the graph Laplacian
with the base arm kernel. This unification allows us to reframe the problem as
learning a single ”lifted” function, enabling the design of principled algorithms,
LK-GP-UCB and LK-GP-TS, that leverage Gaussian Process posteriors over this
new kernel for exploration. We provide high-probability regret bounds that scale
with an effective dimension of the multi-user kernel, replacing dependencies on
user count or ambient dimension. Empirically, our methods outperform strong
linear and non-graph-aware baselines in non-linear settings and remain compet-
itive even when the true rewards are linear. Our work delivers a unified, theo-
retically grounded, and practical framework that bridges Laplacian regularization
with kernelized bandits for structured exploration.

1 INTRODUCTION

Graphs are pervasive in modern sequential decision-making, encoding similarity or interaction
among entities like users, items, or sensors. In a multi-user contextual bandit setting, this graph
structure is informative since it provides a pathway to share information, allowing an algorithm to
learn more efficiently than if it treated each user in isolation. We study the problem where a known
user graph promotes homophily, meaning connected users tend to have similar reward functions. At
each round t, a learner observes a user ut and a set of available arms (contexts) Dt ⊂ Rd, selects
an arm xt ∈ Dt, and receives a noisy reward yt. Naively learning a separate model for each user
is inefficient, leading to regret that scales with the number of users. Exploiting the graph structure,
however, can yield dramatic improvements in both sample efficiency and performance Szorenyi
et al. (2013); Landgren et al. (2016); Gong & Zhang (2025); Wang et al. (2025).

This problem was first formalized as the Gang of Bandits (GOB) Cesa-Bianchi et al. (2013), which
models the collection of user reward functions {fu(·)}nu=1 as a smooth signal on the graph. Seminal
works like GoB.Lin Cesa-Bianchi et al. (2013) assume linear reward functions, fu(x) = θ⊤

u x,
and penalize roughness via the graph Laplacian, leading to the effective linear bandit solution. Sub-
sequent research has extended this approach with improved computational scaling Vaswani et al.
(2017); Yang et al. (2020), but has largely remained within the linear paradigm. Yet, in many appli-
cations, from recommendation systems to personalized medicine, reward functions exhibit complex,
non-linear behavior. While a rich literature on kernelized bandits exists to handle non-linear rewards
for a single agent Chowdhury & Gopalan (2017); Du et al. (2021); Bubeck et al. (2021); Li et al.
(2022); Zhou & Ji (2022), principled methods for the multi-user graph setting are less developed.
Existing approaches construct a multi-user kernel heuristically as a product of user and arm ker-
nels Dubey et al. (2020), leaving a gap between the intuitive modeling goal and the final algorithm.
We refer to Appendix A for further discussion of the related work.

Our work bridges this gap, starting from a natural first principle for this problem. A desirable
collection of reward functions {fu}nu=1, where each fu lies in a Reproducing Kernel Hilbert Space
(RKHS) Hx, should be jointly regularized: they should be smooth across the graph (homophily)
and individually well-behaved (low complexity). We formalize this via an intuitive, additive penalty
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that combines a graph smoothness term with a standard ridge penalty. In the scalar case without arm
features, this type of Laplacian-based regularization is known to induce a kernel whose matrix is the
(regularized) Green’s function of the graph Smola & Kondor (2003). Building on this connection,
we show that the same principle extends to the multi-user contextual setting: the joint penalty defines
the squared norm of a single, lifted function f(x, u) := fu(x) in a unified multi-user RKHS. We
explicitly derive the reproducing kernel for this space, which elegantly fuses the graph Laplacian L
and the base arm kernel Kx: K((x, u), (x′, u′)) = [L−1

ρ ]u,u′ Kx(x,x
′), where Lρ = L+ρI is the

regularized Laplacian.

This unifying perspective transforms the problem of learning n related functions into the elegant
problem of learning a single function in a well-defined kernel space. It allows us to directly apply
the powerful machinery of Gaussian Process (GP) bandits Srinivas et al. (2009); Krause & Ong
(2011); Vakili et al. (2021). We develop LK-GP-UCB and LK-GP-TS, algorithms whose principled
uncertainty estimates are derived from the GP posterior of this unified kernel, enabling them to
naturally and jointly leverage non-linear arm structure and Laplacian homophily. We provide regret
guarantees for these algorithms in terms of an effective dimension that captures the spectral interplay
between the graph and the kernel. Our experiments show that our methods are competitive in linear
regimes and substantially outperform both linear and non-graph-aware baselines when rewards are
non-linear yet graph-smooth.

Our main contributions are:

• We formalize the generalized gang-of-bandits problem with a principled joint penalty
combining graph smoothness and RKHS regularity for the collection of reward functions
{fu}nu=1.

• We prove that this penalty is equivalent to the squared norm in a single multi-user RKHS
and explicitly derive its reproducing kernel, unifying the graph and arm structures.

• We develop LK-GP-UCB and LK-GP-TS, GP-based bandit algorithms that leverage this
unified kernel for principled and effective exploration.

• We provide novel regret bounds in terms of an effective dimension that depends on the
spectral properties of both the kernel and the graph Laplacian.

• We empirically validate our approach, demonstrating significant performance gains over
strong baselines in settings with non-linear, graph-smooth reward structures.

Notations. Let [n] be set {1, 2, ..., n}. For a set or event E , we denote its complement as Ē . Vectors
are assumed to be column vectors. ei is the i-th canonical basis vector in Rn. I is the identity matrix.
λmin(A) represents the minimum eigenvalue of matrix A. ⊗ is the Kronecker product. Denote the
history of randomness up to (but not including) round t as Ft and write Pt(·) := P( · |Ft) and
Et(·) := E[ · |Ft] for the conditional probability and expectation given Ft. We use Õ for big-O
notation up to logarithmic factor and≍ to represent asymptotically equivalence in rate of growth for
any two functions.

2 PROBLEM FORMULATION

2.1 GANG OF BANDITS WITH NON-LINEAR REWARDS

We consider a multi-user contextual bandit problem, often called Gang of Bandits (GOB) Cesa-
Bianchi et al. (2013), with n users and a potentially infinite set of arms. We denote the set of users
as U = {1, . . . , n} and the arm set as D ⊆ Rd, where each arm is represented by a feature vector
x ∈ D. The users are connected by a known undirected graph G = (U , E), where E is the set of
edges. Let W ∈ Rn×n be the matrix of non-negative edge weights wij , and D be the diagonal
degree matrix with entries di :=

∑
j wij . The corresponding graph Laplacian is L := D −W .

The learning process unfolds over T rounds. At each round t ∈ {1, . . . , T}, the environment
presents a user ut ∈ U (for example, randomly/uniformly pick one) and a finite subset of avail-
able arms Dt ⊆ D. The learner selects an arm xt ∈ Dt following some decision policy π and
observes a noisy reward: yt = fut(xt) + ϵt where {fu : D → R}nu=1 is a collection of unknown
reward functions, one for each user. The noise term ϵt is assumed to be conditionally zero-mean
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and sub-Gaussian with variance proxy σ2, given the history of interactions Ft. For the illustrative
purpose, we use f1:n := {fu}nu=1 as the collection of the user-level reward functions.

The learner’s objective is to minimize cumulative regret. The instantaneous regret incurred at time
t is ∆t = fut(x

∗
t ) − fut(xt) where x∗

t = argmaxx∈Dt
fut(x) and and cumulative regret over

T rounds is defined as RT =
∑T

t=1 ∆t. A successful algorithm must achieve sub-linear regret,
RT /T → 0 as T →∞, ensuring that the average per-round regret vanishes.

2.2 A PRINCIPLED REGULARITY MODEL FOR GRAPH HOMOPHILY

To make learning tractable, we need to impose regularity on the unknown functions f1:n. We make
two core assumptions. First, we assume that each function fu is individually well-behaved, be-
longing to a common Reproducing Kernel Hilbert Space (RKHS), denoted Hx, with a positive
semi-definite kernel Kx : D × D → R. The associated feature map is denoted as φ such that
Kx(x,x

′) = ⟨φ(x), φ(x′)⟩Rd . This captures the non-linear structure of rewards with respect to
arm features.

Second, we formalize the notion of graph homophily by assuming that users connected by an edge
in G have similar reward functions. This user similarity is measured by the squared distance be-
tween functions in the RKHS, ∥fi − fj∥2Hx

. Combining these principles, we model the true reward
functions as having a small joint penalty that balances graph smoothness with individual function
complexity:

PEN(f1:n; ρ) :=
1

2

n∑
i,j=1

wij∥fi − fj∥2Hx︸ ︷︷ ︸
PENgraph(f1:n)

+ρ

n∑
i=1

∥fi∥2Hx︸ ︷︷ ︸
PENridge(f1:n)

=

n∑
i,j=1

[Lρ]ij⟨fi, fj⟩Hx
, (1)

where ρ > 0 is a regularization hyperparameter and Lρ := L + ρI is the regularized graph Lapla-
cian. This penalty is central to our framework, as it provides a clear, interpretable objective for
modeling related, non-linear functions.

2.3 FROM JOINT PENALTY TO A UNIFIED MULTI-USER KERNEL

Our key theoretical insight is that the intuitive, additive penalty in equation 1 is not merely an ad-
hoc regularizer. It is, in fact, the squared norm in a single, unified Hilbert space over the user-arm
product domain U × D. This allows us to reframe the problem from learning n related functions
to learning one ”lifted” function, f(x, u) := fu(x), in this new space. We show that it is the
squared RKHS norm for the product space H = HG ⊗ Hx where HG is the RKHS with kernel
KG(u, u

′) = [L−1
ρ ]u,u′ in the following theorem.

Theorem 2.1 (Multi-user Kernel). Let Hx be an RKHS of functions on D with kernel Kx. The
vector space of function collections H := {(f1, . . . , fn) : fu ∈ Hx, ∀u ∈ U} equipped with the
inner product

⟨f, g⟩H :=

n∑
i,j=1

[Lρ]ij⟨fi, gj⟩Hx

is a Reproducing Kernel Hilbert Space of functions on U ×D. The associated squared RKHS norm
is precisely the penalty in equation 1, and its reproducing kernel K : (D × U)2 → R is given by:

K((x, u), (x′, u′)) = [L−1
ρ ]u,u′Kx(x,x

′). (2)

This result is powerful: it provides a direct, canonical construction for a multi-user kernel that fuses
graph and feature information. The kernel Kx captures similarity between arms, while the matrix
L−1

ρ (the graph Green’s function) captures similarity between users, with [L−1
ρ ]u,u′ measuring the

strength of connection between users u and u′ through all paths in the graph. See Appendix A for
more background.

This unification allows us to represent the lifted reward function f(x, u) via a feature map ϕ(x, u)
such that f(x, u) = ⟨θ, ϕ(x, u)⟩ for some (potentially infinite-dimensional) parameter θ, and
K((x, u), (x′, u′)) = ⟨ϕ(x, u), ϕ(x′, u′)⟩. Formally, for a context-user pair (x, u) ∈ D × U ,
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the feature map ϕ is defined as ϕ(x, u) := L
−1/2
ρ eu ⊗ φ(x). The problem is now cast as learning a

single function in the multi-user RKHS H. This insight paves the way for a principled algorithmic
approach based on Gaussian processes, which we detail next.

3 LAPLACIAN KERNELIZED BANDIT ALGORITHMS

The identification of the multi-user RKHS with its explicit kernel K provides a powerful, unified
framework for the GOB problem. It allows us to model the entire system—across all users and
arms—with a single Gaussian Process (GP), sidestepping the complexity of managing n separate
but correlated models.

3.1 A GAUSSIAN PROCESS PERSPECTIVE

We propose algorithms based on the Gaussian process (GP), motivated by the kernelized bandit
literature Chowdhury & Gopalan (2017). Our Bayesian modeling is only assumed for derivation of
our estimators and it is not necessarily the true model. We place a GP prior over the unknown lifted
reward function f : D × U → R, denoted as

[f1(·), . . . , fn(·)] ∼ GP(0,K(·, ·)).

where K is the multi-user kernel defined in equation 2. For any finite set of user-arm pairs
{(xi, ui)}ti=1, This proir implies that ft :=[fu1(x1), · · · , fut(xt)]

⊤ ∼ N (0,Kt) where Kt ∈
Rt×t with entries [Kt]ij = K((xi, ui), (xj , uj)) is the kernel matrix.

At round t, given user ut and selected arm xt, the Bayesian model assume a reward model yt =
f(xt, ut) + ϵt where ϵt ∼ N (0, λ) is the noise. Therefore, conditioned on the history Ft, the
posterior distribution for fu(x) is N (µu,t−1(x), σ

2
u,t−1(x)), with the posterior mean and variance:

µu,t(x) = kt(x, u)
⊤(Kt + λIt)

−1yt

σ2
u,t(x) = K((x, u), (x, u))− kt(x, u)

⊤(Kt + λIt)
−1kt(x, u).

(3)

Here kt(x, u) := [K((x1, u1), (x, u)), . . . ,K((xt, ut), (x, u))]
⊤ ∈ Rt is the kernel vector be-

tween past selected user-action pairs {(xs, us)}ts=1 and new pair (x, u), and yt = [y1, . . . , yt]
⊤ ∈

Rt is the observed reward.

Remark 1. When {(ut,xt)}Tt=1 is a fixed (deterministic) sequence, under this model we have
yt |ft ∼ N(ft, λIt) and ft ∼ N(0,Kt). Then, the mutual information between yt and ft is
given by: I(yt;ft) = 1

2 log det
(
It + λ−1Kt

)
, which is often referred as the information gain of

the Bayesian model (Srinivas et al., 2009, Section 2.1). For convenience, we write

γt := log det
(
It + λ−1Kt

)
, (4)

and refer to it as the information gain at round t, although it is twice what is usually called the
information gain in the literature. Moreover, γt in our notation depends on the sequence, although
in the literature, this symbols is often used for the maximum information gain over all sequence
{(ut,xt)}Tt=1 of length T .

Connection to Regularized Regression. It is worth noting that the GP posterior mean estimator
in equation 3 is equivalent to the solution of an offline Kernel Laplacian Regularized Regression
(KLRR) problem. Specifically, the function f ∈ H that minimizes the regularized least-squares
objective

min
f∈H

t∑
s=1

(f(xs, us)− ys)
2 + λ∥f∥2H (5)

is precisely the posterior mean function µt−1(x, u). This equivalence confirms that our online, GP-
based algorithm is deeply connected to the batch learning principle of minimizing prediction error
regularized by our proposed multi-user RKHS norm from equation 1.
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3.2 DECISION STRATEGIES: UCB AND THOMPSON SAMPLING

With these posterior estimates, we can design bandit algorithms that effectively balance exploration
and exploitation. We propose two algorithms based on common and powerful heuristics: Upper
Confidence Bound (UCB) and Thompson Sampling (TS). The complete procedures are described in
Appendix E.1

Laplacian Kernelized GP-UCB (LK-GP-UCB). Following the principle of ”optimism in the face of
uncertainty,” our UCB algorithm selects the arm with the highest optimistic estimate of the reward.
At round t, upon observing user ut and arm set Dt, it chooses:

xt = argmax
x∈Dt

(
µut,t−1(x) + βtσut,t−1(x)

)
, (6)

where βt is the hyperparameter that ensures the appropriate scale of exploration via confidence width
σut,t−1(x). Our theoretical analysis provides an explicit form for βt in Theorem 4.2 to guarantee
low regret, though in practice it is often treated as a tunable hyperparameter.

Laplacian Kernelized GP-TS (LK-GP-TS). Thompson Sampling Thompson (1933); Russo et al.
(2018) operates on the principle of ”probability matching.” At each round, it draws a random func-
tion from the posterior distribution and acts greedily with respect to this sample. A practical way to
implement this is to select the arm that maximizes a sample from the posterior predictive distribution
for the reward:

xt = argmax
x∈Dt

(
µut,t−1(x) + νtzt(x)σut,t−1(x)

)
, (7)

where νt is the scale hyparameter for exploration and zt(x) ∼ N (0, 1) is the Gaussian perturba-
tion. Aligned with common Thompson Sampling literature, our decision strategy in equation 7 can
be separated into two steps: sampling µ̃t(x) from N (µut,t−1(x), ν

2
t σ

2
ut,t−1(x)) for all x ∈ Dt

and choosing an arm by xt = argmaxx∈Dt
µ̃t(x). Similarly to the UCB algorithm, we also use

the explicit theoretical choice for νt in Theorem 4.3, while it is a tuning hyperparameter in a real
application.

3.3 PRACTICAL IMPLEMENTATION

A naive implementation of the posterior updates in equation 3 is computationally expensive, requir-
ing an O(t3) matrix inversion at each step. To ensure practical scalability, we can use recursive
formulas to update the posterior mean and variance inO(t2) or, for a fixed grid of points, even more
efficiently. Specifically, we can maintain and update the inverse matrix (Kt + λIt)

−1 or use the
following recursive updates for the posterior estimators Chowdhury & Gopalan (2017):

µu,t(x) = µu,t−1(x) +
qt−1((x, u), (xt, ut))

λ+ σ2
ut,t−1(xt)

(yt − µut,t−1(xt))

qt((x, u), (x
′, u′)) = qt−1((x, u), (x

′, u′))− qt−1((x, u), (xt, ut))qt−1((xt, ut), (x
′, u′))

λ+ σ2
ut,t−1(xt)

σ2
u,t(x) = σ2

u,t−1(x)−
q2t−1((x, u), (xt, ut))

λ+ σ2
ut,t−1(xt)

.

(8)

where qt((x, u), (x′, u′)) is the estimated posterior covariance at round t. We explain how to obtain
the updates in Appendix E.2. A hybrid approach that uses exact inversion for small t and switches to
recursive updates for larger t can balance numerical stability and computational efficiency. Further
details on our implementation are provided in Appendix F.4.

4 REGRET ANALYSIS

We now provide theoretical guarantees for our proposed algorithms. Our analysis is built upon a
high-probability confidence bound for our GP posterior estimates, which in turn leads to sub-linear
regret bounds for both LK-GP-UCB and LK-GP-TS.

5
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4.1 ASSUMPTIONS

Our results rely on the following standard assumptions.
Assumption 1 (Sub-Gaussian Noise). The noise process {ϵt}Tt=1 is a Ft-measurable stochastic
process and is conditionally sub-Gaussian with constant σ2.
Assumption 2 (Bounded Base Kernel). The base arm kernel Kx(·, ·) is positive semi-definite and
its diagonal is uniformly bounded: supx∈D Kx(x,x) ≤ α2 for some α > 0.
Assumption 3 (Bounded Multi-User RKHS Norm). The true lifted reward function f has a bounded
norm in the multi-user RKHSH: ∥f∥2H = PEN(f1:n; ρ) ≤ B2

ρ for some constant Bρ > 0.

Assumption 1 is common assumption in bandit literature. Assumption 2 and 3 indirectly align
with the regularity assumptions in kernelized bandit and graph smoothness literatures Belkin et al.
(2006); Kocák et al. (2020). These assumptions imply that the rewards and the multi-user kernel are
bounded. Formally, we have

sup
(x,u)∈D×U

K((x, u), (x, u)) ≤ Kmax := α2 ·max
u∈U

[L−1
ρ ]u,u.

4.2 HIGH PROBABILITY CONFIDENCE BOUND

The core of our regret analysis is the confidence bound that relates the true function f to our pos-
terior mean estimator µt. This result quantifies the model’s uncertainty and justifies the exploration
strategy of the UCB algorithm.
Theorem 4.1 (Confidence Bound). Suppose Assumptions 1, 2, and 3 hold. Let {(xt, ut)}∞t=1 be the
Ft−1-measurable discrete time stochastic process. Then, using the posterior estimators µu,t(x) and
σu,t(x) in equation 3 yields to a high probability upper bound: for any δ ∈ (0, 1), with probability
at least 1− δ, for all t ≥ 1 and all (x, u) ∈ D × U:

|µu,t(x)− f(x, u)| ≤ βt · σu,t(x) (9)
where the confidence parameter βt is given by

βt := Bρ +

√
σ2

λ

(
2 log

1

δ
+ log det(It + λ−1Kt)

)
. (10)

This confidence bound follows a structure similar to those in the kernelized bandit literature Chowd-
hury & Gopalan (2017); Valko et al. (2013); Dubey et al. (2020), but our analysis offers two key
distinctions. First, our proof does not require the constraint λ ≥ 1 found in some prior work.
More significantly, we retain the term log det

(
It + λ−1Kt

)
directly within our confidence width

βt. This contrasts with classical approaches that often proceed by further bounding this term using
information-theoretic quantities, which can result in looser bounds. By keeping the exact term, we
set the stage for a tighter, data-dependent analysis via the effective dimension.

4.3 REGRET BOUNDS VIA EFFECTIVE DIMENSION

To obtain concrete regret rates, we characterize the growth of the log det term using the notion of an
effective dimension.
Definition 4.1 (Effective Dimension). The effective dimension d̃ of the learning problem, given the
sequence of actions up to time T , is defined as:

d̃ :=
log det(IT +KT /λ)

log(1 + TKmax/λ)
. (11)

This quantity, inspired by recent work in kernel methods and overparameterized models Wu &
Amini (2024); Bietti & Mairal (2019); Yang & Wang (2020), measures the intrinsic complexity of
the learning problem. It can be interpreted as the ratio of the sum of log-eigenvalues of the matrix
IT +KT /λ to a bound on the maximum possible log-eigenvalue (TKmax is an upper bound on the
largest eigenvalue of KT ). As such, it serves as a robust, graph-dependent measure of the matrix’s
rank, capturing the ”dimensionality” of the function space actually explored by the algorithm.

Using the confidence bound in Theorem 4.1 and d̃ in Definition 4.1, we provide the regret upper
bound for LK-GP-UCB and LK-GP-TS as follow.

6
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Theorem 4.2 (Regret Bound of LK-GP-UCB). Suppose Assumptions1, 2 and 3 hold, with no as-
sumption on the number of arms. By setting the exploration parameter βt in LK-GP-UCB to βt

from Theorem 4.1, the cumulative regret is bounded with high probability as:

RT = O(d̃ log(T )
√
T ) = Õ(d̃

√
T )

Theorem 4.3 (Regret Bound of LK-GP-TS). Suppose Assumptions1, 2 and 3 hold, and the decision
sets Dt are uniformly finite. By setting the exploration parameter νt in LK-GP-TS to βt from
Theorem 4.1, the cumulative regret is bounded with high probability as:

RT = O(d̃ log(T )3/2
√
T ) = Õ(d̃

√
T )

These bounds demonstrate the efficiency of our approach. The regret scales not with the number of
users n or the ambient feature dimension, but with the effective dimension d̃. For problems where
the graph and kernel structure lead to a rapid spectral decay, d̃ can be significantly smaller, resulting
in substantial gains in sample efficiency.

In the notation of Remark 1, the effective dimension d̃ scales as: d̃ = γT / log(1 + TKmax/λ) ≍
γT

log T where the approximation assumes λ = Θ(1). The interpretation of d̃ as a dimension is evident
in the linear setting (n = 1 with linear kernel on Rd), where γT = O(d log T ) (Srinivas et al., 2009,
Theorem 5), yielding d̃ = O(d). This example demonstrates that our bound Õ(d̃

√
T ) is tight up to

logarithmic factors for infinite action spaces, matching the minimax optimal rate Õ(d
√
T ) for linear

bandits Dani et al. (2008).

For uniformly finite action spaces (|Dt| ≤ M for all t), it is possible to achieve a tighter regret
bound of Õ(

√
d̃T ) using algorithms such as SupKernelUCB Valko et al. (2013). This improvement

relies on scaling the exploration parameter as βt ∝ 1/
√
λ rather than using equation 10, effectively

removing a factor of
√
γT . Since our primary contribution is the construction of the unified multi-

user kernel, such algorithmic refinements from the kernel bandit literature are directly applicable to
our framework.

4.4 SPECTRAL ANALYSIS OF THE MULTI-USER KERNEL

To interpret the effective dimension d̃, we analyze the spectrum of the multi-user kernel K. By
Theorem 2.1, K = KG⊗Kx, the tensor product of the user kernel KG associated with matrix KG =
L−1

ρ and the arm kernel Kx. Consequently, the eigenvalues of the integral operator associated with
K are the pairwise products of the marginal eigenvalues. Let {λG

i }ni=1 be the eigenvalues of L−1
ρ

and {νxj }∞j=1 be the eigenvalues of Kx. The operator eigenvalues for K are then {µij = λG
i ν

x
j }i,j .

The eigenvalues of the normalized matrix KT /T approximate these operator eigenvalues1.

In particular, we obtain the following approximate upper bound on the information gain γT :

γT = log det
(
I + λ−1KT

)
⪅

n∑
i=1

∞∑
j=1

log

(
1 +

T

λ
λG
i ν

x
j

)
=

n∑
i=1

Ψ

(
TλG

i

λ

)
, (12)

where Ψ(s) :=
∑∞

j=1 log
(
1 + sνxj

)
represents the information gain of a single-user problem with

effective signal strength s. We know that Ψ(s) is concave and sublinear; e.g., for the squared
exponential kernel on Rd, Ψ(s) ≲ (log s)d+1 (Srinivas et al., 2009, Theorem 5)), hence as a function
of T , γT grows slowly in T . What is interesing then is the dependence on n.

While informative, the bound in equation 12 can be conservative for finite T (see Figure 1). A
sharper bound in a similar vein can be obtained by considering a regular design: assume we observe
each user exactly m := T/n times, choosing the same set of actions {x1, · · · ,xm} for all users.
By permuting round indices such that all observations for user 1 appear first, followed by user 2,
etc., the eigenvalues of KT remain invariant. Under this setup, KT = KG ⊗Kbase

x , where ⊗ is the
matrix Kronecker product and Kbase

x is the m ×m kernel matrix evaluated on the common action
set. Let {ν̂xj }mj=1 be the eigenvalues of Kbase

x /m. The normalization by m ensures that ν̂xj stabilize
around the population eigenvalues νxj for large m.

1This holds asymptotically as T → ∞ under i.i.d. sampling Koltchinskii & Giné (2000); results from
(Srinivas et al., 2009, Theorem 5) suggest a similar approximation holds for worst-case sequences.
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(a) Two bounds vs. Actual (b) d̃ vs. (log T )d (empty graph) (c) d̃ vs. (log T )d (complete graph)

Figure 1: Rank Collapse: (a) Comparing the growth of the actual information gain γT vs n in i.i.d.
design (red) versus the two bounds equation 12 (blue; crude) and equation 13 (green; nearly exact)
in a complete graph. The kernel is exp

(
−∥x− y∥2/2

)
, ui ∼ Unif([n]) and xi ∼ Unif[0, 1]d where

d = 5. Panels (b) and (c) show the growth of d̃ vs. (log T )d under empty and complete graphs,
respectively. Note that under the complete graph, d̃ slightly decreases as n increases.

Consequently, the eigenvalues of KT /T are given by λG
i ν̂

x
j /n, yielding the exact expression:

γT =

n∑
i=1

m∑
j=1

log

(
1 +

T

nλ
λG
i ν̂

x
j

)
=

n∑
i=1

Ψ̂

(
T

nλ
λG
i

)
, (13)

where Ψ̂(s) :=
∑m

j=1 log
(
1 + sν̂xj

)
represents the “empirical” information gain of a single-user

problem with common actions. For large enough m = T/n, we have ν̂xj ≈ νxj and Ψ̂(s) ≈ Ψ(s).
Expression equation 13 is exact for regular designs and, as shown in Figure 1, provides a sharp
approximation for the i.i.d. sampling case. We use equation 13 to analyze d̃ across graph structures.

Case 1: Independent Users (Worst Case). If L = 0, then KG = ρ−1I , and λG
i = ρ−1 for

all i ∈ [n]. The gain sums linearly: γindep
T =

∑n
i=1 Ψ̂

(
T

nρλ

)
= n · Ψ̂

(
T

nρλ

)
. Thus, the effective

dimension scales as n times the single-user effective dimension. For example, with an SE kernel,
d̃ = O(n (log(T/n))d), which remains sublinear in T .

Case 2: Strong Homophily (Complete Graph). To isolate the effect of an extremely dense user
graph under a homophilous prior, consider a complete graph with edge weights wij = 1. The
Laplacian eigenvalues are 0 (multiplicity 1) and n (multiplicity n − 1). The kernel eigenvalues
invert this structure, with λG

1 = 1/ρ and λG
i = 1/(n+ρ) for i ≥ 2.. For large n, this yields a nearly

rank-1 matrix. Substituting into equation 13 provides a “Head + Tail” decomposition:

γclique
T = Ψ̂

(
T

nρλ

)
+ (n− 1)Ψ̂

(
T

n(n+ ρ)λ

)
. (14)

This leads to the following consequence:

Proposition 4.1. Consider the regime where T ≤ Cn for some constant C. Then, under a regular
design: γclique

T ≲ C
λ

(
1
ρ + 1

)
= O(1).

Proof. Using log(1 + x) ≤ x for x ≥ 0, we have Ψ̂(s) ≤ s(
∑m

j=1 ν̂
x
j ). Then, for T ≤ Cn,

(n− 1)Ψ̂

(
T

n(n+ ρ)λ

)
≤ nΨ̂

(
C

(n+ ρ)λ

)
≤ n · C

(n+ ρ)λ

m∑
j=1

ν̂xj ≲
C

λ
,

since
∑m

j=1 ν̂
x
j = O(

∑∞
j=1 ν

x
j ) = O(1)2. Similarly, for the first term, Ψ̂

(
T

nρλ

)
≲ C

ρλ .

2This bound holds for any kernel whose integral operator is trace class. For a unifromly bounded kernel as
in Assumption 2, we have the more straightforward bound

∑m
j=1 ν̂

x
j = tr

(
Kbase

x

)
/m ≤ α2.
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Figure 2: Cumulative Regret under Linear-GOB regime. From left to right are tasks of easy level,
medium level, to hard level.

Figure 3: Cumulative Regret under Laplacian–Kernel regime using GP draw. From left to right are
tasks of easy level, medium level, to hard level.

This result is significant: in the regime T ≤ Cn, the information gain grows with neither n nor
T , implying d̃ = O(1/ log T ) (slowly decreasing). This behavior has no counterpart in the single-
user setting and confirms that under strong homophily, regret is independent of n. These theoretical
findings are corroborated by our empirical plots in Figure 1.

Generalization to Clusters. If the graph contains k disjoint clusters with high internal connectivity,
KG will have k eigenvalues of magnitudeO(1) and n−k of magnitudeO(1/n). A similar argument
implies that d̃ = O(k/ log T ) when T ≤ Cn. Thus, d̃ essentially counts the number of significant
eigenvalues of the normalized kernel KG, serving as a soft proxy for the number of distinct user
clusters.

Comparison with Independent Bandits. It is instructive to compare this with independent learn-
ers that share no information. Since each user generates T/n observations on average, the regret for
learning each function is at best

√
T/n, yielding an overall regret of

∑n
u=1

√
T/n =

√
nT . In the

worst case (Case 1), our bound d̃
√
T scales as n

√
T (ignoring log factors), which is a factor of

√
n

looser than the independent baseline. However, had we assumed a uniformly finite action space, we
could achieve a regret bound of

√
d̃T ≍

√
nT , matching the optimal independent rate.

The advantage of our approach becomes evident under strong homophily. For independent learners
in the regime T ≍ n, the regret scales as

√
nT ≍ T , meaning no learning occurs. In contrast, we

showed that our Laplacian Kernelized Bandit achieves regret of O(
√
T ) in this regime (up to log

factors). A similar improvement holds when there are k = O(1) strong clusters.

5 EXPERIMENTS

We evaluate Laplacian Kernelized bandit algorithms, LK-GP-UCB and LK-GP-TS on several syn-
thetic data environments that capture user–user homophily on a known graph while varying reward
structure (linear vs. nonlinear) and problem difficulty. Baseline algorithms include GraphUCBYang
et al. (2020), GoB.LinCesa-Bianchi et al. (2013), COOP-KernelUCBDubey et al. (2020),
GP-UCBChowdhury & Gopalan (2017), Pooled LinUCB and Per-User LinUCB. Full im-
plementation details are Provided in Appendix F.
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Figure 4: Cumulative Regret under Laplacian–Kernel regime using representer draw. From left to
right are tasks of easy level, medium level, to hard level.

Environments. We draw a context pool D by sampling from N (0, Id) first and then normalize
the context vectors. At round t we present Dt by sampling Mt distinct items from D without
replacement. We generate the user graphs by Erdős–Rényi (ER) random graph model or Radial
basis function(RBF) random graph model. After giving the generated graph, we consider one lin-
ear regime and two kernelized(nonlinear) regimes for synthetic data simulation. First synthetic data
environment is called Linear–GOB. We consider simulating the true graph graph-smooth user pa-
rameters Θ = (I + ηL)−1Θ0, which enforce graph homophily on the random initial parameters
Θ0 ∈ Rn×d Yang et al. (2020). The homophily strength is controlled by η in Linear–GOB regime.
We also generate the true reward functions by simulating multi-user kernel, which is called the
Laplacian–Kernel regime. We first use Squared Exponential as our base kernel Kx over arms U and
construct the multi-user kernel using equation 2. Next, we design two choices to generate f , includ-
ing a GP draw and a representer draw. We leave all the details for data simulation in Appendix F.1.

Task Design. Our experiment has following design of the bandit tasks for a general comparison. In
these tasks, the noise of reward is set as σ = 0.1 and the number of users is n = 20. The simplest
level task is a 10-arm bandit problem (m = 10) with 50% viewability (Mt = 5) at each round for all
users, under T = 1000 interaction rounds. Medium level task is a 20-arm bandit problem (m = 20)
with 25% viewability (Mt = 5) at each round for all users, under T = 3000 interaction rounds. The
hard task is a 50-arm bandit problem (m = 50) with 10% viewability (Mt = 5) at each round for
all users, under T = 5000 interaction rounds. In our figures (2, 3 and 4), from left to right are tasks
of easy level, medium level, to hard level.

Algorithms Configurations. Our proposals LK-GP-UCB and LK-GP-TS are given in Algorithm 1
and Algorithm 2 in Appendix E.1. We implement the hybrid updates using practical recursive up-
date in equation 8 and exact update in equation 3 with Cholesky decomposition. Details are in
Appendix F.4. Hyperparameters ν and β are tuned. For Coop-KernelUCB, we initially set five
choices of similarity kernel Kz and conduct an experiment (Figure in Appendix) to verify that
the inverse Laplacian L−1

ρ is the optimal choice while the empirical maximum mean discrepancy
method is close to the best choice. In the experiment, Kz is set as the empirical MMD method
to learn the similarity kernel Kz unless otherwise stated. The classical baselines for GOB problem,
GoB.Lin, GraphUCB, and all the remaining baselines, Pooled LinUCB, Per-User LinUCB
and GP-UCB, are all UCB-based algorithms. We also tune their hyperparameter for the confidence
bound. The regularization parameter λ is is designed as a scheduling λt = λbase · Sspec · T

T+t

where Sspec is the ratio of the smallest non-zero eigenvalue to the max eigenvalue and λbase is tuned.
Appendix F.5 discusses hyperparameter tuning. All methods run in a centralized, no-delay setting.

Main Findings. Our proposals LK-GP-UCB and LK-GP-TS have robust performance in all the
9 data environments. In the Linear-GOB regime, which is the preferred setting for linear bandit
algorithms, our proposals can beat the most baselines with clear gaps. In the Laplacian-Kernel
regime, our proposals are consistently the best choices. For the GP draw setting, our proposals
are always the top algorithms in our experiment. For setting using representer draw, LK-GP-UCB
and LK-GP-TS are sublinear while most baselines are hard to achieve sublinear regret. We be-
lieve our proposed algorithms can clearly outperform others in a long-term manner due to the
achievement of the clear sublinear regret. Lastly, even though we conduct an empirical study on
the choice for Coop-KernelUCB and pick a best one in the comparison, leading to the top per-
formances(close to our proposal) of Coop-KernelUCB , our LK-GP-UCB are consistently better
than Coop-KernelUCB.
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A RELATED WORK

Gaussian Processes on Graphs Our kernel construction builds upon foundational work in graph
regularization. Smola & Kondor (2003) originally established that penalizing the discrete graph
norm ∥f∥2L = f⊤Lf induces a Reproducing Kernel Hilbert Space (RKHS) where the kernel is the
pseudoinverse of the Laplacian. Our Theorem 2.1 formalizes this duality for the vector-valued case
via a tensor product RKHS. We note that this structural result can essentially be inferred from the
comprehensive review of vector-valued functions by Alvarez et al. Alvarez et al. (2012).

Following Smola & Kondor (2003), any positive semi-definite kernel on the vertices that is a func-
tion of the Laplacian can be written in the eigenbasis of L as KG =

∑n
i=1 r(λi) qiq

⊤
i where

{(λi, qi)}ni=1 are the eigenpairs of L and r(·) ≥ 0 is a spectral transfer function. Our choice
KG = (L + ρI)−1 corresponds to r(λ) = 1/(λ + ρ), which is monotone decreasing and there-
fore shrinks high-frequency components more strongly, enforcing a smooth/homophilous prior. In
principle, non-monotone or band-pass transfer functions r can encode more complex, possibly non-
smooth or heterophilous relations between users; analyzing such priors in the bandit setting is an
interesting direction for future work.

More recent works in graph signal processing adopt related Laplacian-based constructions but do
not use the induced RKHS norm as the main vehicle for analysis. Venkitaraman et al. (2020) obtain
Gaussian Processes over graphs from a Laplacian prior, and Zhi et al. (2023) further generalize
this by learning a spectral filter g(L) applied directly to the Laplacian. In both cases, the focus is on
batch regression and signal reconstruction; the underlying regularizer can be characterized spectrally
in terms of the transfer function associated with g, in the sense of Smola & Kondor (2003), but it is
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not the primary object of study. By contrast, in our work we commit to the specific Green’s-function
kernel KG = (L + ρI)−1, which corresponds to the classical Dirichlet energy regularizer and
enforces a homophilous prior. This choice yields a simple, explicit RKHS norm that we can track
throughout the analysis and directly tie to the effective dimension and regret in the multi-user bandit
setting.

Graph-structure Bandits Graph-based bandit models are also relevant but conceptually distinct.
In nonstochastic bandits with graph-structured feedback, a learner chooses an arm (node) and ob-
serves the losses of that arm and its neighbors in a feedback graph, interpolating between full-
information and standard bandits Alon et al. (2017). Regret bounds in this line of work typically
scale with graph-theoretic quantities such as the independence number α(G) or related observabil-
ity parameters Alon et al. (2013). Follow-up studies on bandits with feedback graphs and graphical
bandits refine these guarantees and extend them to stochastic settings, switching costs, adversarial
corruptions, non-stationary environments, and contextual bandits, with regret controlled by parame-
ters such as domination and weak-domination numbers, clique-cover and independence numbers, or
maximum acyclic subgraph–type quantities Liu et al. (2018a;b); Arora et al. (2019); Lu et al. (2021);
Zhang et al. (2023). In our setting, the user graph instead encodes prior correlation across user value
functions through a Laplacian kernel; feedback remains strictly bandit (we only observe the reward
of the chosen user–arm pair). Consequently, the graph enters our analysis only via the spectrum of
the user kernel and the resulting effective dimension, rather than via such side-information parame-
ters used in graphical bandit regret bounds.

Collaborative Bandits Our approach is related to collaborative contextual bandits on graph,
which exploit relations among users to accelerate learning. The collaborative contextual bandit Wu
et al. (2016) uses a user adjacency graph to share context and reward information online, effectively
adding a Laplacian-type regularizer to a linear contextual bandit model. Other works consider low-
rank or factorization-based collaborative bandits, such as matrix-factorization bandits for interactive
recommendation Wang et al. (2017) and collaborative filtering bandits that co-cluster users and items
in a bandit framework Li et al. (2016). A complementary line of work studies multi-agent bandits
over social networks, where multiple players observe or share each other’s actions and rewards to
reduce regretKolla et al. (2018); Chawla et al. (2023); Christakopoulou & Banerjee (2018). These
methods typically either (i) impose linear models with manually chosen regularizers, or (ii) model
collaboration via latent factors, clustering, or message passing, without an explicit multi-output
RKHS / GP interpretation. By contrast, our Laplacian-kernelized construction provides a principled
kernel view of collaboration: the known user graph defines a positive-definite user kernel that is
combined with a flexible context kernel, leading to algorithms whose uncertainty quantification and
regret depend explicitly on the joint spectrum of the graph Laplacian and the base kernel, rather than
on the number of users, clusters, or latent dimensions.

Cooperative Multi-Agent Kernelized Bandits Dubey et al. (2020) study a cooperative multi-
agent kernelized contextual bandit with delayed communication over a fixed graph G = (V,E). In
their model, every agent v ∈ V acts at every round t, selecting an action xv,t and receiving a reward
yv,t, so that after T rounds there are |V |T observations; the graph G is used solely to constrain
message passing and appears in the regret via graph-theoretic quantities (e.g., clique numbers of
graph powers), but it does not enter the construction of the similarity kernel between agents or
the modeling of the reward functions themselves. Instead, Dubey et al. posit a latent “network
context” zv for each agent and assume a global function F (x, z) in the RKHS of a product kernel
K((x, z), (x′, z′)) = Kx(x, x

′)Kz(z, z
′). When the network contexts (or the kernel Kz) are not

available, they propose to estimate them from the contexts xv,t by embedding each agent’s context
distribution Pv into the RKHS of Kx and defining Kz as an RBF kernel on these mean embeddings.
Thus, the agent kernel is ultimately a learned similarity over (estimated) context distributions, and
the underlying communication graph plays no direct role in defining task similarity or a smoothness
penalty on (fv)v∈V .

By contrast, our setting follows the Gang-of-Bandits model: at each time step a single user is drawn
at random, we choose one action for that user, and we observe only one reward, so that after T
rounds we have T observations rather than |V |T . We also behave as a centralized learner rather
than a decentralized network of bandits. Most importantly, we do not introduce or estimate any
latent network contexts; instead, we assume a given user graph and fix the agent kernel to the inverse

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

regularized Laplacian,
Kz(u, v) = [L−1

ρ ]u,v.

This kernel is tightly coupled to the global homophily penalty on the vector of reward functions and
yields an explicit RKHS norm with a clear smoothness interpretation. This principled graph-based
construction allows us to carry out a spectral analysis of the resulting multi-user kernel, relate the
regret to the spectrum of Lρ, and highlight how the effective dimension adapts to the cluster structure
of the user graph, rather than reducing network information to ad hoc latent features inferred from
context distributions.

B PROOF OF THEOREM 2.1

Proof. The proof proceeds in three main steps: (1) We construct the Hilbert space for our multi-
user problem as the tensor product of the user space and the context space; (2) We define a feature
map into this space and show that its inner product yields the kernel K. This establishes that our
constructed space is indeed the RKHS H; (3) We characterize the elements of H and derive the
expression for their norm.

Step 1: Constructing the Hilbert Space via Tensor Product. Let HG = Rn be the finite-
dimensional Hilbert space for the users, equipped with the standard Euclidean inner product
⟨u,v⟩HG

= u⊤v. {ei}ni=1 forms the standard orthonormal basis for HG. Our multi-user RKHS H
is the tensor product ofHG andHx:

H := HG ⊗Hx = Rn ⊗Hx.

The elements ofH are (limits of) finite linear combinations of elementary tensors of the form u⊗h,
where u ∈ HU and h ∈ Hx. The inner product in H is defined on these elementary tensors and
extended by linearity:

⟨u1 ⊗ h1,u2 ⊗ h2⟩H := ⟨u1,u2⟩HG
⟨h1, h2⟩Hx .

Step 2: Defining the Feature Map and Verifying the Kernel. Let L1/2
ρ be the unique symmetric

positive definite square root of Lρ. We define the feature map ϕ : (U × D)→ H as:

ϕ(x, u) :=
(
L−1/2
ρ ei

)
⊗ φ(x).

This is a valid element of H since L
−1/2
ρ ei ∈ Rn = HG and φ(x) ∈ Hx. Let’s compute the inner

product of two such feature mappings inH:

⟨ϕ(x, i), ϕ(y, j)⟩H = ⟨(L−1/2
ρ ei)⊗ φ(x), (L−1/2

ρ ej)⊗ φ(y)⟩H
= ⟨L−1/2

ρ ei,L
−1/2
ρ ej⟩HG

· ⟨φ(x), φ(y)⟩Hx

= e⊤i L
−1
ρ ej ·Kx(x,y)

= [L−1
ρ ]ij ·Kx(x,y) = K((x, i), (y, j)).

By the fundamental property of RKHS, since the kernel K is generated by the inner product of the
feature map ϕ in the Hilbert spaceH,H is the unique RKHS associated with K.

Step 3: Characterizing Functions in H and their Norms. An element of H is a function f :
(U × D) → R. By the Riesz representation theorem, for each f ∈ H, there exists a unique
element θ ∈ H such that f(·, ·) = ⟨θ, ϕ(·, ·)⟩H and ∥f∥H = ∥θ∥H. For some component functions
{gk}nk=1 ⊂ Hx, we can uniquely express θ as

θ =

n∑
k=1

ek ⊗ gk

and the squared norm of θ inH is then:

∥θ∥2H =
〈∑

k

ek ⊗ gk,
∑
l

el ⊗ gl

〉
H

=
∑
k,l

⟨ek, el⟩HG
⟨gk, gl⟩Hx =

n∑
k=1

∥gk∥2Hx
.
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Then we can relate our reward functions f1:n to the component functions {gk}nk=1:

fi(x) = ⟨θ, ϕ((x, i))⟩H

= ⟨
n∑

k=1

ek ⊗ gk, (L
−1/2
ρ ei)⊗ φ(x)⟩H

=

n∑
k=1

⟨ek,L−1/2
ρ ei⟩HG

· ⟨gk, φ(x)⟩Hx

=

n∑
k=1

[L−1/2
ρ ]ki · ⟨gk, φ(x)⟩Hx

=

n∑
k=1

[L−1/2
ρ ]kigk(x) (since ⟨g, φ(x)⟩Hx

= g(x))

which leads to

gk(x) =

n∑
j=1

[L1/2
ρ ]kjfj(x).

This equality holds for the functions as elements ofHκ: gk =
∑n

j=1[L
1/2
ρ ]kjfj .

Finally, we compute the norm of f inH:

∥f∥2H = ∥θ∥2H =

n∑
k=1

∥gk∥2Hx

=

n∑
k=1

∥∥∥∥∥∥
n∑

j=1

[L1/2
ρ ]kjfj

∥∥∥∥∥∥
2

Hx

=

n∑
k=1

⟨
n∑

j=1

[L1/2
ρ ]kjfj ,

n∑
l=1

[L1/2
ρ ]klfl⟩Hx

=

n∑
k=1

n∑
j,l=1

[L1/2
ρ ]kj [L

1/2
ρ ]kl⟨fj , fl⟩Hx

=

n∑
j,l=1

( n∑
k=1

[L1/2
ρ ]kj [L

1/2
ρ ]kl

)
⟨fj , fl⟩Hx

=

n∑
j,l=1

[Lρ]jl⟨fj , fl⟩Hx

where the last step is because the term in parentheses is the (j, l)-th element of the matrix product
(L

1/2
ρ )⊤L

1/2
ρ = L

1/2
ρ L

1/2
ρ = Lρ. By polarization identity, the associated inner product inH is:

⟨f, g⟩H :=

n∑
i,j=1

[Lρ]ij⟨fi, gj⟩Hx .

To see that ∥f∥2H is the exactly the penalty in equation 1 , we expand Lρ = ρIn +L:

∥f∥2H =

n∑
j,l=1

(ρI{j = l}+ [L]jl)⟨fj , fl⟩Hx

= ρ

n∑
j=1

∥fj∥2Hx
+

n∑
j,l=1

[L]jl⟨fj , fl⟩Hx
.
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Using the standard identity for the Laplacian quadratic form, the second term in the above equation
is exactly 1

2

∑
i,j wij∥fi − fj∥2Hx

, we get:

∥f∥2H = ρ

n∑
j=1

∥fj∥2Hx
+

1

2

∑
i,j

wij∥fi − fj∥2Hx
.

This completes the proof.

C PROOFS IN ANALYSIS

We first define following additional notations

Φt := [ϕ(x1, u1), · · · , ϕ(xt, ut)]
⊤ (15)

Jt := Φ⊤
t Φt (16)

Γt := Jt + λI∞ (17)
Σt := Kt + λIt (18)

Here we have Φt ∈ Rt×∞ and Jt, Γt are from R∞×∞.

Then we define some useful events for concentration:

E ts
t = {|zt(x)| ≤

√
2 log(t2|Dt|), for all x ∈ Dt}

Eat = {µut,t−1(x
∗
t ) + βtzt(x

∗
t )σut,t−1(x

∗
t ) > f(x∗

t , ut)}
where zt(x) ∼ N (0, 1) stands for the resampling randomness in Thompson Sampling. We also
define the confidence set at round t:

Ct := {|µut,t−1(xt)− f(xt, ut)| ≤ βt · σut,t−1(xt)} (19)

where

βt :=

(
Bρ +

√
σ2

λ
· log det(It−1 + λ−1Kt−1) +

2σ2

λ
log

1

δ

)
.

In addition, recall the following effective dimension

d̃ :=
log det(IT +KT /λ)

log(1 + TKmax/λ)

and the upper bound of the optimality gap:

|∆t| ≤ B∆ := 2BρK
1/2
max.

Lastly, we provide the following Lemmas, which are commonly required in regret analysis.
Lemma C.1 (Concentrations for TS). For all t ∈ [T ], we have Pt(Ētst ) ≤ t−2 and Pt(Eat |Ct) ≥
(4e
√
π)−1.

Lemma C.2 (One Step Regret Bound for TS). Suppose Pt(Eat ) − Pt(Ētst ) > 0. Then for any t,
almost surely,

Et[∆tICt ] ≤ ICt ·

{( 2

Pt(Eat )− Pt(Ē ts
t )

+ 1
)
· Et[γtσut,t−1(xt)] +B∆ · Pt(Ē ts

t )

}
where γt := βt + βt

√
2 log(t2|Dt|) and B∆ := 2BρK

1/2
max

Lemma C.3 (Cumulative Uncertainty Bound). We have the upper bound for the cumulative esti-
mated uncertainty:

T∑
t=1

σut,t−1(xt) ≤
√

2T max{1,Kmax} · log det(IT + λ−1KT )

Lemma C.4 (Dual Identities). With the defined notations in equation 15, we have two key identities:

Σ−1
t Φt = ΦtΓ

−1
t , and σ2

u,t(x) = λ∥ϕ(x, u)∥2Γ−1
t
.
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C.1 PROOF OF CONFIDENCE SET

Proof of Theorem 4.1. We first decompose

µu,t(x)− f(x, u) = kt(x, u)
⊤Σ−1

t (Φtθ + ϵt)− θ⊤ϕ(x, u)

= (Φ⊤
t Σ

−1
t kt(x, u))

⊤θ + kt(x, u)
⊤Σ−1

t ϵt − θ⊤ϕ(x, u)

= ⟨θ, δt(x, u)⟩︸ ︷︷ ︸
biast(x,u)

+kt(x, u)
⊤Σ−1

t ϵt︸ ︷︷ ︸
noiset(x,u)

where δt(x, u) = Φ⊤
t Σ

−1
t kt(x, u) − ϕ(x, u) ∈ ℓ2. Our target is to bound the biast(x, u) and

noiset(x, u). We state the following Lemmas:

Lemma C.5 (Bias Identity). The squared bias is the degraded variance for noise:

∥δt(x, u)∥2ℓ2 = σ2
u,t(x)− λkt(x, u)

⊤Σ−2
t kt(x, u) (20)

In particular, we have ∥δt(x, u)∥ℓ2 ≤ σu,t(x) and λkt(x, u)
⊤Σ−2

t kt(x, u) < σ2
u,t(x).

Lemma C.6 (Noise Bound). With high probability, we have the upper bound for the following norm
of noise vector ϵt:

∥Φtϵt∥Γ−1
t
≤
√

σ2 log det(It + λ−1Kt) + 2σ2 log
1

δ

From Lemma C.5, we could bound the bias by
biast(x, u) ≤ ∥θ∥ℓ2∥δt(x, u)∥ℓ2 ≤ Bρσu,t(x). (21)

Using the identities in above Lemma C.4, we note that

noiset(x, u) = kt(x, u)
⊤Σ−1

t ϵt

= ϕ(x, u)⊤Γ−1
t Φtϵt

= ⟨ϕ(x, u),Φtϵt⟩Γ−1
t

≤ ∥ϕ(x, u)∥Γ−1
t
· ∥Φtϵt∥Γ−1

t

=
σu,t(x)√

λ
· ∥Φtϵt∥Γ−1

t

where the inequality is from the Cauchy-Schwarz inequality for the inner product ⟨·, ·⟩Γ−1
t

.

Our Lemma C.6 gives the high probability upper bound for the norm ∥Φtϵt∥Γ−1
t

, leading to

noiset(x, u) ≤
σu,t(x)√

λ
·
√

σ2 log det(It + λ−1Kt) + 2σ2 log
1

δ
(22)

Now combine equation 21 and equation 22 together, we have

|µu,t(x)− f(x, u)| ≤ |biast(x, u)|+ |noiset(x, u)|

≤ σu,t(x)

(
Bρ +

√
σ2

λ
· log det(It + λ−1Kt) +

2σ2

λ
log

1

δ

)
.

C.2 PROOF OF REGRET BOUND OF LK-GP-UCB

Proof of Theorem 4.2. Recall the instantaneous regret at time t is ∆t = f(x∗
t , ut) − f(xt, ut) and

the cumulative regret in a time horizon T isRT =
∑T

t=1 ∆t. We note event Ct := {|µut,t−1(xt)−
f(xt, ut)| ≤ βt · σut,t−1(xt)} happens with high probability (1− δ), according to Theorem 4.1,

βt :=

(
Bρ +

√
σ2

λ
· log det(It−1 + λ−1Kt−1) +

2σ2

λ
log

1

δ

)
(23)
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By Theorem 4.1, for all t ≥ 2 with probability at least 1− δ,

∆t = f(x∗
t , ut)− f(xt, ut) ≤ µut,t−1(x

∗
t ) + βtσut,t−1(x

∗
t )− f(xt, ut)

≤ µut,t−1(xt) + βtσut,t−1(xt)− f(xt, ut)

≤ 2βtσut,t−1(xt).

Thus we have high probability bound for the cumulative regret

RT ≤ 2E
[
βt

T∑
t=2

σut,t−1(xt)
]
+B∆.

Then we apply Lemma C.3 and the definition of effective dimension in equation 11

T∑
t=1

σut,t−1(xt) ≤
√

2T max{1,Kmax} · log det(IT + λ−1KT )

=

√
2T max{1,Kmax} · d̃ log(1 + Tλ−1Kmax).

Therefore, we have the final high probability upper bound for regret:

RT ≤ 2E[βT ]

√
2T max{1,Kmax} · d̃ log(1 + Tλ−1Kmax) +B∆.

The next step is to analyze the order of the upper bound. By using the effective dimension d̃ again
and dropping constants, we have

βt ≤ Bρ +

√
σ2

λ
· d̃ log(1 + Tλ−1Kmax) +

2σ2

λ
log

1

δ
= O(

√
d̃ log(T ))

⇒RT = O(d̃ log(T )
√
T ) = Õ(d̃

√
T ).

C.3 PROOF OF REGRET BOUND OF LK-GP-TS

Proof of Theorem 4.3. We start from the decomposition of the cumulative regret

RT =
T∑

t=1

E[∆t] =
T∑

t=1

E[∆tICt
] +

T∑
t=1

E[∆tIC̄t
].

By Theorem 4.1 and the upper bound for the optimality gap, we know the second term is bounded:

T∑
t=1

E[∆tIC̄t
] ≤ δB∆

by letting P(Ct) ≤ δ/T for all t in Theorem 4.1.

For the regret on the event Ct, by Lemma C.2, almost surely, we have

Et[∆tICt
] ≤ ICt

·

{( 2

Pt(Eat )− Pt(Ē ts
t )

+ 1
)
· Et[γtσut,t−1(xt)] +B∆ · Pt(Ē ts

t )

}

where γt := βt + βt

√
2 log(t2|Dt|). Note that Pt(Eat ) − Pt(Ē ts

t ) ≥ 1
4e

√
π
− 1

t2 ≥
1

20e
√
π

by
Lemma C.1 and the fact that t2 ≥ 5e

√
π for all t ≥ 5. Thus we have

Et[∆tICt
] ≤ ICt

·
{
194Et[γtσut,t−1(xt)] +B∆t

−2
}

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

by using 40e
√
π+1 ≤ 194. Taking summation on both side for our target cumulative regret, we get

T∑
t=1

E[∆tICt ] = E[
T∑

t=1

Et[∆tICt ]]

≤ E[
T∑

t=5

(
194Et[γtσut,t−1(xt)] +B∆t

−2
)
+ 4B∆]

≤ E[194
T∑

t=5

Et[γtσut,t−1(xt)] + (4 +
π2

6
)B∆]

≤ E[194γTEt[

T∑
t=1

σut,t−1(xt)] + (4 +
π2

6
)B∆]

where the second equality is using
∑∞

t=1 t
−2 = π2/6 and the last step is from the monotonicity of

the γt and the nonnegative of σu,t(x). Our next focus is bounding the summation of uncertainty. As
the same approach in the proof of Theorem 4.2, we apply Lemma C.3 and the definition of effective
dimension in equation 11

T∑
t=1

σut,t−1(xt) ≤
√
2T max{1,Kmax} · log det(IT + λ−1KT )

=

√
2T max{1,Kmax} · d̃ log(1 + Tλ−1Kmax).

Thus we have
T∑

t=1

E[∆tICt
] ≤ 194E[γT ]

√
2T max{1,Kmax} · d̃ log(1 + Tλ−1Kmax) + (4 +

π2

6
)B∆

leading to the high probability (1− δ) regret upper bound:

RT ≤ 194E[γT ]
√

2T max{1,Kmax} · d̃ log(1 + Tλ−1Kmax) + (4 +
π2

6
)B∆ + δB∆.

For the order of the upper bound, we first analyze E[γT ], by using the definition of effective dimen-
sion d̃ again and dropping constants

γT ≤
(
1 +

√
2 log(T 2M)

)
·
(
Bρ +

√
σ2

λ
· d̃ log(1 + Tλ−1Kmax) +

2σ2

λ
log

1

δ

)
= O(log(T )

√
d̃).

where M is the upper bound for the size of action set at time t, i.e. |Dt| ≤ M for all t ≤ T .
Therefore,

RT = O(d̃ log(T )3/2
√
T ) = Õ(d̃

√
T ).

D PROOF OF LEMMAS

D.1 PROOF OF LEMMA C.1

Proof. Using the standard Gaussian tail bound and the classical union bound, we have

Pt(|zt(x)| > u) ≤ |Dt|e−u2/2.

By letting u =
√
2 log(t2|Dt|), we obtain Pt(Ētst ) ≤ t−2.
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For the result of event Eat , we have

Pt

(
µut,t−1(x

∗
t ) + βtzt(x

∗
t )σut,t−1(x

∗
t ) > f(x∗

t , ut)|Ct
)

= Pt

(
zt(x

∗
t ) >

f(x∗
t , ut)− µut,t−1(x

∗
t )

βtσut,t−1(x∗
t )

|Ct
)

≥ Pt(zt(x
∗
t ) > 1)

≥ (4e
√
π)−1

where the first inequality is from the fact that Ct holds and the last step is directly obtain by the fact
that P(Z ≥ 1) ≥ (4e

√
π)−1 for Z ∼ N (0, 1).

D.2 PROOF OF LEMMA C.2

Proof. This proof is following the classical analysis for Thompson Sampling algorithms Kveton
et al. (2019); Wu et al. (2022); Wu & Amini (2024).

We first recall Et[·] = E[·|Ft]. Given the randomness from the history Ft, event Ct becomes deter-
ministic and the randomness is only from the resampling step. So we have

Et[∆tICt
] = ICt

· Et[∆t]

= ICt
·
(
Et[∆tIE ts

t
] + Et[∆tIĒ ts

t
]
)

≤ ICt
·
(
Et[∆tIE ts

t
] +B∆ · Pt(Ē ts

t )
)

where the last step is from the boundness of the optimality gap ∆t ≤ B∆. Our following focus is
bounding Et[∆tIE ts

t
], indicating Ct holds in the remaining part of proof.

We then define the concept of ”least uncertain undersampled” action, which is called unsaturated
actions, defined as

Ut := {x ∈ Dt : f(x
∗
t , ut) < f(x, ut) + γtσut,t−1(x)}

where

γt := βt + βt

√
2 log(t2|Dt|)

and let x̄t be the least uncertain unsaturated action at time t:

x̄t = argmin
x∈Ut

γtσut,t−1(x).

Recall the notation for the resampled index is µ̃t(x) = µut,t−1(x) + βtzt(x)σut,t−1(x). On the
good situation Ct ∩ E ts

t , we have

|µ̃t(x)− f(x, ut)| ≤ |µ̃t(x)− µut,t−1(x)|+ |µut,t−1(x)− f(x, ut)| ≤ γtσut,t−1(x).

Thus we can provide an initial upper bound for regret

∆t = f(x∗
t , ut)− f(xt, ut)

= f(x∗
t , ut)− f(x̄t, ut) + f(x̄t, ut)− f(xt, ut)

≤ γtσut,t−1(x̄t) + f(x̄t, ut)− f(xt, ut) + µ̃t(xt)− µ̃t(xt) (by x̄t ∈ Ut)
≤ 2γtσut,t−1(x̄t) + γtσut,t−1(xt) + µ̃t(x̄t)− µ̃t(xt) ( since Ct ∩ E ts

t )
≤ 2γtσut,t−1(x̄t) + γtσut,t−1(xt) ( by µ̃t(x̄t) < µ̃t(xt)).

(24)

Note that

γtσut,t−1(x̄t)I{xt ∈ Ut} ≤ γtσut,t−1(xt)

and by taking Et[·] after multiplying both sides by IE ts
t
, we have

σut,t−1(x̄t)Pt({xt ∈ Ut} ∩ E ts
t ) ≤ Et[σut,t−1(xt)IE ts

t
].

Thus it remains to bound the probability Pt({xt ∈ Ut} ∩ E ts
t ) from below.
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We notice the following two facts. First, if µ̃t(x
∗
t ) > µ̃t(x) for all x ∈ Ūt, then xt must belong to

Ut, which means {µ̃t(x
∗
t ) > maxx∈Ūt

µ̃t(x)} ⊆ {xt ∈ Ut}. Second, for any x ∈ Ūt, on the good
situation Ct ∩ E ts

t ∩ Eat , we have

µ̃t(x) ≤ f(x, ut) + γtσut,t−1(x) ≤ f(x∗
t , ut) < µ̃t(x

∗)

which leads to Eat ⊆ {µ̃t(x
∗
t ) > maxx∈Ūt

µ̃t(x)}
Therefore, on event Ct, we have

Pt({xt ∈ Ut} ∩ E ts
t ) ≥ Pt({µ̃t(x

∗
t ) > max

x∈Ūt

µ̃t(x)} ∩ E ts
t )

≥ Pt(Eat ∩ E ts
t )

≥ Pt(Eat )− Pt(Ē ts
t )

Now we have a upper bound for σut,t−1(x̄t):

σut,t−1(x̄t) ≤
Et[σut,t−1(xt)IE ts

t
]

Pt({xt ∈ Ut} ∩ E ts
t )
≤ Et[σut,t−1(xt)]

Pt(Eat )− Pt(Ē ts
t )

which gives the upper bound for instantaneous regret by plugging above result in equation 24:

Et[∆tIE ts
t
] ≤

( 2

Pt(Eat )− Pt(Ē ts
t )

+ 1
)
· Et[γtσut,t−1(xt)].

Therefore,

Et[∆tICt ] ≤ ICt ·

{( 2

Pt(Eat )− Pt(Ē ts
t )

+ 1
)
· Et[γtσut,t−1(xt)] +B∆ · Pt(Ē ts

t )

}

D.3 PROOF OF LEMMA C.3

Proof. We first apply Cauchy-Schwartz inequality and obtain

T∑
t=1

σut,t−1(xt) ≤

√√√√T

T∑
t=1

σ2
ut,t−1(xt) =

√√√√λT

T∑
t=1

σ2
ut,t−1(xt)

λ
.

If λ ≥ Kmax, using σ2
ut,t−1(xt) ≤ |K((xt, ut)(xt, ut))| ≤ Kmax, we know

σ2
ut,t−1(xt)

λ ≤ 1, which
leads to

T∑
t=1

σ2
ut,t−1(xt)

λ
≤ 2

T∑
t=1

log

(
1 +

1

λ
σ2
ut,t−1(xt)

)
≤ 2Kmax

λ

T∑
t=1

log

(
1 +

1

λ
σ2
ut,t−1(xt)

)
by applying the fact that x ≤ 2 log(1 + x) if x ≤ 1.

If λ ≤ Kmax, still using σ2
ut,t−1(xt) ≤ |K((xt, ut)(xt, ut))| ≤ Kmax, we know

σ2
ut,t−1(xt)

λ
≤ min{Kmax

λ
,
σ2
ut,t−1(xt)

λ
} ≤ Kmax

λ
min{1,

σ2
ut,t−1(xt)

λ
}

which leads to
T∑

t=1

σ2
ut,t−1(xt)

λ
≤ Kmax

λ

T∑
t=1

min{1, 1
λ
σ2
ut,t−1(xt)} ≤

2Kmax

λ

T∑
t=1

log

(
1 +

1

λ
σ2
ut,t−1(xt)

)
.

by applying the fact that min{1, x} ≤ 2 log(1 + x) for x ≥ 0.

We can summarize the above two conditions for λ together and achieve

T∑
t=1

σut,t−1(xt) ≤

√√√√2T max{1,Kmax}
T∑

t=1

log

(
1 +

1

λ
σ2
ut,t−1(xt)

)
. (25)
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Now we can use the property of the Shur complement for Kt:

det

(
It +

1

λ
Kt

)
=det

(
It−1 +

1

λ
Kt−1

)
×
[
1 +

1

λ

(
K((xt, ut), (xt, ut))− kt−1(xt, ut)

⊤(Kt−1 + λI)−1kt−1(xt, ut)︸ ︷︷ ︸
σ2
ut,t−1(xt)

)]
which leads to

T∑
t=1

log

(
1 +

1

λ
σ2
ut,t−1(xt)

)
=

T∑
t=1

log
det
(
It +

1
λKt

)
det
(
It−1 +

1
λKt−1

) = log det
(
IT + λ−1KT

)
.

Therefore, we combine above result with equation 25 and obtain
T∑

t=1

σut,t−1(xt) ≤
√

2T max{1,Kmax} · log det(IT + λ−1KT )

D.4 PROOF OF LEMMA C.5

Proof. We note that

∥δt(x, u)∥2ℓ2 = ∥ϕ((x, u))∥2ℓ2 +
∥∥Φ⊤

t Σ
−1
t kt(x, u)

∥∥2
ℓ2
− 2⟨ϕ((x, u)),Φ⊤

t Σ
−1
t kt(x, u)⟩ℓ2

and we have∥∥Φ⊤
t Σ

−1
t kt(x, u)

∥∥2
ℓ2

= kt(x, u)
⊤Σ−1

t ΦtΦ
⊤
t Σ

−1
t kt(x, u)

= kt(x, u)
⊤Σ−1

t KtΣ
−1
t kt(x, u)

= kt(x, u)
⊤Σ−1

t ΣtΣ
−1
t kt(x, u)− λkt(x, u)

⊤Σ−2
t kt(x, u)

= kt(x, u)
⊤Σ−1

t kt(x, u)− λkt(x, u)
⊤Σ−2

t kt(x, u)

and

⟨ϕ((x, u)),Φ⊤
t Σ

−1
t kt(x, u)⟩ℓ2 = ϕ((x, u))⊤Φ⊤

t Σ
−1
t kt(x, u) = kt(x, u)

⊤Σ−1
t kt(x, u).

Putting above equalities together, we have

∥δt(x, u)∥2ℓ2 = ∥ϕ((x, u))∥2ℓ2 − kt(x, u)
⊤Σ−1

t kt(x, u)− λkt(x, u)
⊤Σ−2

t kt(x, u)

= K((x, u), (x, u))− kt(x, u)
⊤Σ−1

t kt(x, u)− λkt(x, u)
⊤Σ−2

t kt(x, u)

= σ2
u,t(x)− λkt(x, u)

⊤Σ−2
t kt(x, u)

≤ σ2
u,t(x)

since Σ−1
t is positive semindefinite.

D.5 PROOF OF LEMMA C.6

Proof. We first define

st = Φtϵt =

t∑
s=1

ϕ(xs, us)ϵs.

Note that st is a martingale w.r.t Ft.

Also we define a supermartingale

Mt(g) = exp
( t∑
s=1

1

σ
⟨g, st⟩ −

1

2
∥g∥2

)
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which has an alternative form

Mt(g) = exp
( t∑
s=1

1

σ
⟨g, ϕ(xs, us)⟩ϵs −

1

2
∥g∥2

)
where g is the function vector with elements

We follow the approach from classical linear bandit Abbasi-Yadkori et al. (2011), which is averaging
Mt(g) w.r.t a Gaussian distribution on g. The key technical issue is the infinite dimension of the
function vector g. We will first perform the truncated version which can precisely match the classical
result. Let d be the dimension of the feature map. Our target is the obtain the limiting result when
d→∞. Now assume gd ∼ N (0, 1

λId), independent of everything else, and define

M
(d)
t = Egd [Mt(g

d)] =

∫
M

(d)
t (g)dρd(g)

and by iterated expectation (i.e Fubini’s theorem), we have

E[M (d)
t |Ft] ≤Mt−1

which shows that Mt is a supermartingale.

Then we define Ψ : ℓ2 → Rd as the truncation projection onto the first d coordinates: Ψdθ =
[Θ1, · · · ,Θd]

⊤ for any θ ∈ ℓ2. We further denote

ΨdΦ
⊤
t = [Ψdϕ(x1, u1), · · · ,Ψdϕ(xt, ut)] ∈ Rd×t

and
ΨdJtΨ

⊤
d = ΨdΦ

⊤
t ΦtΨd.

We notices that
det(λId)

det
(
λId +ΨdJtΨ⊤

d

) =
1

det
(
Id + λ−1ΨdJtΨ⊤

d

)
which leads to

M
(d)
t =

( det(λId)

det
(
λId +ΨdJtΨ⊤

d

))1/2 exp( 1

2σ2
∥ΨdΦtϵt∥2(λId+ΨdJtΨ⊤

d )−1

)
= det

(
Id + λ−1ΨdJtΨ

⊤
d

)−1/2
exp

(
1

2σ2
∥ΨdΦtϵt∥2(λId+ΨdJtΨ⊤

d )−1

)
.

Let Mt be the limit of M (d)
t as d→∞, we have

Mt = det
(
I∞ + λ−1Jt

)−1/2
exp

(
1

2σ2
∥Φtϵt∥2(λI∞+Jt)−1

)
= det

(
It + λ−1Kt

)−1/2
exp

(
1

2σ2
∥Φtϵt∥2Γ−1

t

)
where the second step is from (Slyvestr) or Weinstein–Aronszajn identity.

By Ville’s inequality,

P( sup
t=0,1,2,···

Mt ≥
1

δ
) ≤ E[M0] · δ

and M0 = 1. Thus we know that, with probability at least 1− δ, for all t = 0, 1, 2, · · ·

log(Mt) ≤ log

(
1

δ

)
which leads to

−1

2
log det

(
It + λ−1Kt

)
+

1

2σ2
∥Φtϵt∥2Γ−1

t
≤ log

(
1

δ

)
.

After re-arranging, we get

∥Φtϵt∥2Γ−1
t
≤ 2σ2 log

√
det(It + λ−1Kt)

δ
.

which shows our result.
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D.6 PROOF OF LEMMA C.4

Proof. Let us write Φt = UtΛtV
⊤
t as the singular value decomposition(SVD) of Φt. We have

Λt = [Λ1,t,0] where Λ1,t is a t × t diagonal matrix with singular values of Φt. We also note that
Σt ∈ Rt×t and Ut ∈ Rt×t. We also have

Jt = Φ⊤
t Φt = Vt

[
Λ2

1,t 0
0 0

]
V ⊤
t

and similarly

Kt = ΦtΦ
⊤
t = UtΛ

2
1,tU

⊤
t .

Then, we have

Γt = Vt

[
Λ2

1,t + λIt 0
0 λI∞

]
V ⊤
t , Σt = Ut(Λ

2
1,t + λIt)U

⊤
t .

It is clear to have the identity:

Σ−1
t Φt = ΦtΓ

−1
t

since both side equal Ut[Dt,0]V
⊤
t where Dt = Λ1,t(Λ

2
1,t + λIt)

−1, which is a diagonal matrix.

Next, we note that

σ2
u,t(x) = K((x, u), (x, u))− kt(x, u)

⊤Σ−1
t kt(x, u)

= ϕ(x, u)⊤(I∞ −Φ⊤
t Σ

−1
t Φt)ϕ(x, u)

= ϕ(x, u)⊤(I∞ −Φ⊤
t ΦtΓ

−1
t )ϕ(x, u)

which is a norm of ϕ(x, u) induced by matrix

I∞ −Φ⊤
t ΦtΓ

−1
t = I∞ − JtΓ

−1
t

= Vt

[
λIt(Λ

2
1,t + λIt)

−1 0
0 λI∞

]
V ⊤
t

= λVt

[
(Λ2

1,t + λIt)
−1 0

0 I∞

]
V ⊤
t

= λΓ−1
t .

Therefore, we have the other identity

σ2
u,t(x) = λ∥ϕ(x, u)∥2Γ−1

t
.

E MISCELLANEOUS

E.1 ALGORITHMS

Algorithm 1 LK-GP-UCB

1: Input: T , λ, {βt}Tt=1
2: Initialization: µu,0(x), σu,0(x)
3: for t = 1, ..., T do
4: Observe user ut and arm set Dt.
5: Select arm xt = argmaxx∈Dt

µut,t−1(x) + βtσut,t−1(x).
6: Receive feedback yt = f(xt, ut) + ϵt.
7: Update µut,t(x) and σ2

ut,t(x).
8: end for
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Algorithm 2 LK-GP-TS

1: Input: T , λ, {νt}Tt=1
2: Initialization: µu,0(x), σu,0(x)
3: for t = 1, ..., T do
4: Observe user ut and arm set Dt.
5: Sample µ̃t(x) from N (µut,t−1(x), ν

2
t σ

2
ut,t−1(x)) for all x ∈ Dt

6: Select arm xt = argmaxx∈Dt
µ̃t(x).

7: Receive feedback yt = f(xt, ut) + ϵt.
8: Update µut,t(x) and σ2

ut,t(x).
9: end for

E.2 RECURSIVE UPDATE OF POSTERIOR MEAN AND VARIANCE

This sections refers to the derivation of incremental update of the posterior mean and posterior
variance Chowdhury & Gopalan (2017), via the properties of Schur complement. Recall that we
need to handle the inversion of Σt = I + λKt ∈ Rt×t which grows with the number of rounds. To
compute the inversion of Σt efficiently, we use the recursive formula from Σt−1 by block matrix
inverse formula

Σ−1
t =

[
M11,t M12,t

M⊤
12,t d−1

t

]
(26)

where
M11,t = Σ−1

t−1 + d−1
t Gt

M12,t = −d−1
t Σ−1

t−1kt−1(xt, ut)
(27)

and

dt = K((xt, ut), (xt, ut))− kt−1(xt, ut)
⊤Σ−1

t−1kt−1(xt, ut) + λ = σ2
ut,t−1(xt) + λ

Gt = Σ−1
t−1kt−1(xt, ut)kt−1(xt, ut)

⊤Σ−1
t−1

Here dt is the Schur complement.

Thus we have the posterior mean using equation 26

µu,t(x) =kt(x, u)
⊤Σ−1

t yt

=
[
kt−1(x, u)

⊤ K((x, u), (xt, ut))
] [M11,t M12,t

M⊤
12,t d−1

t

] [
yt−1

yt

]
=kt−1(x, u)

⊤M11,tyt−1 +K((x, u), (xt, ut))M
⊤
12,tyt−1

+ kt−1(x, u)
⊤M12,tyt +K((x, u), (xt, ut))d

−1
t yt

=kt−1(x, u)
⊤Σ−1

t−1yt−1︸ ︷︷ ︸
µu,t−1(x)

+d−1
t (β1yt−1 − β2yt−1 − β3yt + β4yt)

where

β1 = kt−1(x, u)
⊤Gt ⇒ β1yt−1 =

(
kt−1(x, u)

⊤Σ−1
t−1kt−1(xt, ut)

)
µut,t−1(xt)

β2 = K((x, u), (xt, ut))kt−1(xt, ut)
⊤Σ−1

t−1 ⇒ β2yt−1 = K((x, u), (xt, ut))µut,t−1(xt)

β3 = kt−1(x, u)
⊤Σ−1

t−1kt−1

β4 = K((x, u), (xt, ut)).

Thus we have the recursive update of posterior mean

µu,t(x) = µu,t−1(x) + d−1
t

×
(
kt−1(x, u)

⊤Σ−1
t−1kt−1(xt, ut)(µut,t−1(xt)− yt) +K((x, u), (xt, ut))(yt − µut,t−1(xt))

)
= µu,t−1(x) + d−1

t qt−1((x, u), (xt, ut))(yt − µut,t−1(xt))
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where qt−1((x, u), (xt, ut)) is defined from
qt((x, u), (x

′, u′)) = K((x, u), (x′, u′))− kt(x, u)
⊤Σ−1

t kt(x
′, u′)

which can be transferred into a recursive form using equation 26
qt((x, u), (x

′, u′))

=K((x, u), (x′, u′))−
(
kt−1(x, u)

⊤Σ−1
t−1kt−1(x

′, u′)

+ d−1
t (β1kt−1(x

′, u′)− β2kt−1(x
′, u′)− β3K((xt, uT ), (x

′, u′)) + β4K((xt, uT ), (x
′, u′)))

)
=qt−1((x, u), (x

′, u′))− d−1
t qt−1((x, u), (xt, ut))qt−1((xt, ut), (x

′, u′)).

Now using the incremental update of the posterior covariance, we can easily obtain the recursive
update for the posterior variance

σ2
u,t(x) = σ2

u,t−1(x)− d−1
t q2t−1((x, u), (xt, ut)).

Now replace dt by σ2
ut,t−1(xt) + λ and we achieve the recursive updates in equation 8.

F SUPPLEMENT TO EXPERIMENTS

This appendix provides full details of our synthetic environments, algorithm configurations, hyper-
parameter selection, implementation choices, ablations, and reporting protocol.

F.1 SYNTHETIC ENVIRONMENTS

Let U = {1, . . . , n} denote users, D ⊂ Rd the arm (context) space, and Mt := |Dt| the number of
candidates shown at round t. We draw a global normalized context poolD = {x(1), . . . ,x(m)} with
x(i) ∼ N (0, Id) and x(i) ← x(i)/∥x(i)∥. At round t we present Dt by sampling Mt distinct items
fromD without replacement. One user ut is served per round, drawn uniformly from U unless stated
otherwise. Rewards are observed with additive noise yt = f(xt, ut) + ϵt. We generate graphs, con-
texts, and ground-truth rewards under one linear regime (Linear–GOB) and two kernelized regimes
(Laplacian–Kernel using GP draw and representer draw).

User graph. We consider two graph random generators on U . First random graph family is Erdős–
Rényi (ER) random graphs: each (undirected) edge is present with probability p and weights wij =
1. We set p = 0.2 in our experiment. Second one is Radial basis function(RBF) random graphs:
sample latent zi ∼ N (0, Iq), set wij = exp

(
−ρL∥zi − zj∥22

)
, and sparsify by keeping edges with

wij ≥ s. We choose s = 0.1, ρL = 0.1 and q = 4 in our simulation.

Task Design. We design different level of the task. The simplest case is (M,Mt, n, d, T ) =
(10, 5, 20, 5, 1000). This is a 10-arm bandit problem with 50% viewability at each round for all
users. The medium level is (M,Mt, n, d, T ) = (20, 5, 20, 10, 3000) which leads to a 20-arm bandit
problem with 25% viewability at each round for all users. We also have the toughest case using
(M,Mt, n, d, T ) = (50, 5, 20, 20, 3000) which leads to a 50-arm bandit problem with 10% viewa-
bility at each round for all users. σ is set as 0.1 unless additional specification.

Practical scenarios. Although our empirical study uses synthetic environments, the multi-user,
graph-based bandit setting we consider is motivated by several practical applications. Examples
include recommendation systems, where users are connected via social or similarity graphs and re-
peatedly interact with a common catalog of items; regional personalization problems, where stores
or geographic areas form a graph and the arms correspond to assortments or pricing actions; and
applications in healthcare or education, where patients or students are linked through similarity net-
works while treatments or exercises constitute the arm set. In such domains, the proposed Laplacian
kernelized bandits can leverage the user graph to share statistical strength while capturing non-linear
context effects.

F.1.1 REGIME 1: Linear–GOB (GRAPH-SMOOTH LINEAR REWARDS)

Sample initial user parameters Θ0 ∈ Rn×d with rows θ0,i ∼ N (0, Id). Enforce the graph ho-
mophily via Tikhonov smoothingYankelevsky & Elad (2016):

Θ = argmin
Θ̃
∥Θ̃−Θ0∥2F + η tr(Θ̃⊤LΘ̃) = (In + ηL)−1Θ0.
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Thus f(x, u) = x⊤θu, where θu is row u of Θ. The strength of the graph homophily η is set as 1.0
as default.

F.1.2 REGIME 2: Laplacian-Kernel

Our choice of the base kernel Kx over arms is Squared Exponential which are defined as

KSE(x,x
′) = exp

(
−∥x− x′∥2/2ℓ2

)
where length-scale ℓ > 0 and is set to be 1.0 in our experiment. Then we construct the multi-user
kernel by the definition:

K((x, u), (x′, u′)) = [L−1/2
ρ ]u,u′ Kx(x,x

′)

where we set ρ = 0.01 in our experiment.

Option A: Laplacian-Kernel with GP draw

We draw the joint values {f(x, u)}u∈U,x∈D from the zero-mean GP with covariance induced by K
and fix f by interpolation on D × U . Noise is ϵt ∼ N (0, σ2) with σ = 0.01 · range(f).
Option B: Laplacian-Kernel with representer draw We consider the representer theorem for
RKHS and sample the i.i.d. coefficients via αx,u ∼ N (0, 1) on D × U and set

f(x, u) =
∑

u′∈U,x′∈D
αx,u K

(
(x, u), (x′, u′)

)
.

F.2 BASELINES

All methods face the same sequence {ut,Dt, ϵt}Tt=1 in each trial of each synthetic environment to
ensure a fair comparison. Our experiment include the following baselines.

Per-User LinUCB(no graph).: We implement Per-User LinUCB, which ignores the whole
graph and perform the linear bandit algorithm independently on each user.

Pooled LinUCB(no graph).: We implement Pooled LinUCB, which ignores graph and person-
alization by treating the multi-user problem as a single agent bandit problem. Simply speaking,
there is global linear UCB algorithm to solve the problem.

GP-UCB(no graph). We implement GP-UCBChowdhury & Gopalan (2017), which is the
IGP-UCB from the previous study on GP and UCB Chowdhury & Gopalan (2017). This is a
kernelized baseline using Kx on arms only, ignoring the similarities across users (the Laplacian).

GoB.Lin. We implement GoB.Lin, which is the classical methods in gang-og-bandits prob-
lem Cesa-Bianchi et al. (2013). This is a Laplacian-regularized linear UCB algorithm on graph-
whitened features (equivalent to GraphUCB with ρ = 1 i.e A = I + L). The confidence scale in
the algorithm is tuned from the table.

GraphUCB. We implement GraphUCBYang et al. (2020), the Laplacian-regularized LinUCB.
Also, the confidence scale in the algorithm is tuned from the table.

COOP-KernelUCB. We implement COOP-KernelUCBDubey et al. (2020), which utilizes the
product kernel over agents× arms. Here we borrow the notations from their work. We consider five
choices of Kz (presented below); the full kernel is K = Kz ⊗Kx and we apply the same UCB rule
in LK-GP-UCB.

The five PSD options for the agent kernel Kz:

1. laplacian inv: Kz = (L+ ρI)−1, ρ > 0.

2. heat: Kz = exp(−τL) via the spectral decomposition of L.

3. spectral rbf: embed nodes using the k lowest nontrivial Laplacian eigenvectors Z ∈ Rn×k

and set
Kz[u, u

′] = exp
(
− ∥Zu−Zu′∥2

2σ2
z

)
.
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4. all ones: full cooperation, Kz = 11⊤.
5. learned mmd (network contexts, faithful to Dubey et al. (2020)): define per-user kernel

mean embeddings Ψu of the observed arm-context distribution inHx, and let

Kz,t(u, u
′) = exp

(
− ∥Ψ̂u(t)−Ψ̂u′ (t)∥2

2σ2
z

)
,

where Ψ̂u(t) is the empirical mean embedding of contexts observed for user u up to time
t. In our implementation we use an efficient random Fourier feature approximation for Kx

and update Kz,t on a fixed schedule; users with fewer than a small threshold of observations
cooperate only with themselves (diagonal entries).

For time-varying Kz (learned mmd), the GP state is rebuilt at Kz refresh points using the algo-
rithm’s own history, ensuring consistency of the Gram matrix with the current kernel. FIgure shows
the comparison of the choice of Kz for COOP-KernelUCB.

Figure 5: Comparison of the choice of user-similarity kernel for COOP-KernelUCB.

F.3 CENTRALIZED PROTOCOL

At each t: sample ut ∼ Unif(U), present Dt (size Mt), select xt ∈ Dt per the algorithm, observe
yt, update our decision policy(model), and record ∆t = maxx∈Dt

f(x, ut) − f(xt, ut). Each
configuration is repeated for R trials (final results use R = 20; preliminary/pilot tuning uses R ∈
[5, 10]).

F.4 POSTERIOR UPDATES AND NUMERICAL DETAILS

Motivation. For the original update equation 3 at round t, the inversion takes O(t3|Dt|) time.
The practical updates is efficient for each pair (x, u) while it requires the updates for all pairs,
leading toO(|Dt|n) time. Therefore, high-level idea is to perform original updates equation 3 when
t ≤ n1/3 and perform practical updates equation 8 when when t ≤ n1/3. Therefore, for our GP-
based methods we use a hybrid implementation, which is described as below.

Exact (Cholesky) phase: maintain Σt = Kt + λI and update via rank-one Cholesky for t < t∗
(cost O(t2) per step; initial inversion O(t3)).

Recursive phase: switch to the rank-one recursions in equation 8, with q0 = K restricted toD×U .
This costs O(n|Dt|) per update when applied to the whole grid D × U .

By default we take t⋆ = min{1500, ⌊n1/3⌋|D|} as the phase switch. We use Cholesky jitter 10−8,
clip negative variances to zero, and cache Kx(D,D). For large n we optionally apply graph spectral
truncation Lρ ≈ UrΛrU

⊤
r (top-r eigenpairs), yielding K ≈ (UrΛ

−1
r U⊤

r )⊗Kx.

F.5 HYPERPARAMETERS AND TUNING

What is fixed across algorithms. For fairness, base-kernel hyperparameters are fixed inside each
environment: the length-scale ℓ uses the median heuristic on D, and the Laplacian ridge ρ = 0.1 is
fixed. For Kz , laplacian inv uses ρ = 0.1; heat uses τ = 1.0; spectral rbf uses k = 8 and median
bandwidth; learned mmd uses random-feature dimension 256, a median bandwidth heuristic, update
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interval around 200 rounds, and a minimum count of 5 observations before a user participates in
cooperation.

What is design. To avoid using unknown noise scale as a prior, all GP-style methods use a graph-
and time-aware ridge schedule

λt = λbase · Sspec ·
T

T + t
, Sspec =

λ2(L)

λmax(L)
∈ [0, 1],

where λFiedler(L) is the Fiedler value (smallest non-zero eigenvalue). We clip λt to [λmin, λmax]
with λmin = 10−6 and λmax = 10−1. To limit refactorizations, we update λ on a doubling epoch
schedule (approximately at t≈200, 400, 800, . . .) and only rebuild if the change exceeds 20%.

What is tuned. Only the exploration scales are tuned by grid search on a pilot horizon (Tpilot = 1500
for medium/hard; Tpilot = 1000 for simple) using Rpilot ∈ {5, 10}:

Algorithm Grid (pilot)

LK-GP-UCB, GP-UCB, Coop-KernelUCB β ∈ {0.5, 1, 2, 4}
LK-GP-TS ν ∈ {0.5, 1, 2, 4}
GOB.Lin, GraphUCB, LinUCB variants α ∈ {0.5, 1, 2, 4}

The best pilot setting (by mean pilot cumulative regret) is then frozen for the full-horizon evaluation.
Noise/ridge λbase in GP updates uses λbase ∈ {0.001, 0.005, 0.01, 0.05, 0.1} on the pilot.

F.6 ABLATIONS AND STRESS TESTS

We report two ablation studies. One is an ablation under the medium, Laplacian-Kernel with GP
Draw environment (ER graph, fixed ℓ and ρ) on Scalability in users (n): n ∈ {20, 50, 100, 200}
with fixed (M,Mt, d, T ) and graph generator. We provide the final cumulative regret vs. n an report
the last step cumulative regret in Table 1. Another study is on the effect of random graph models.
Our standard experiment uses two graph random generators: Erdős–Rényi (ER) random graphs
and the Radial basis function(RBF) random graphs, mentioned in F.1. We add the stochastic block
models(SBM) in this ablation study. We still keep the medium, Laplacian-Kernel with GP Draw
environment. The result is shown in Figure 6.

Table 1: Ablation over number of users n (final cumulative regret; mean±SE).

Algorithm n = 20 n = 50 n = 100 n = 200

LK-GP-UCB 627.22± 32.98 892.43± 21.73 1062.69± 18.29 1157.74± 23.02
LK-GP-TS 634.46± 22.78 943.41± 19.56 1176.23± 15.77 1260.35± 16.23
Coop-KernelUCB 730.06± 31.02 1015.35± 22.18 1273.28± 17.36 1358.48± 14.22
GOB.Lin 1092.86± 71.70 1203.32± 18.57 1370.51± 16.78 1432.48± 18.72
GraphUCB 1105.20± 68.54 1192.30± 22.12 1360.02± 15.32 1453.21± 17.81
GP-UCB 2222.20± 90.26 1964.65± 61.40 1641.43± 37.43 1444.83± 36.33
Pooled-LinUCB 2360.95± 70.55 1909.81± 49.49 1723.27± 40.23 1438.74± 26.44
PerUser-LinUCB 1117.87± 72.04 1221.99± 22.03 1432.89± 18.81 1527.04± 17.61

Figure 6: Comparison of the choice of random graph models.
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