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ABSTRACT

The increasing demand for high-quality, diverse training data poses a significant
bottleneck in advancing vision-language models (VLMs). This paper presents
VLM Dialog Games, a novel and scalable self-improvement framework for
VLMs. Our approach leverages self-play between two agents engaged in a goal-
oriented play centered around image identification. By filtering for successful
game interactions, we automatically curate a high-quality dataset of interleaved
images and text. We demonstrate that fine-tuning on this synthetic data leads to
performance gains on downstream tasks and generalises across datasets. More-
over, as the improvements in the model lead to better game play, this procedure
can be applied iteratively. This work paves the way for self-improving VLMs,
with potential applications in various real-world scenarios especially when the
high-quality multimodal data is scarce.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success by training on vast datasets that
now include a significant portion of the Internet (OpenAI et al., 2023; Gemini, 2024). Their perfor-
mance generally scales with training data size (Kaplan et al., 2020), but acquiring new, high-quality
data is increasingly challenging, especially for vision-language models (VLMs), which require care-
fully curated interleaved image and text data. Recent research (Chen et al., 2024; Bai et al., 2022;
Yuan et al., 2024; Huang et al., 2023) indicates that self-improvement techniques can use synthet-
ically generated data to overcome this limitation. We introduce a novel self-improvement method
based on goal-oriented play between VLMs. This approach provides a scalable way to iteratively
generate high-quality synthetic data, which can be used to fine-tune the model for further perfor-
mance improvement. By carefully designing the game, we can target specific capabilities and do-
mains for improvement, while the goal-oriented nature ensures the quality of the generated data.

We initiate the process with two VLMs which are assigned the roles of ”Describer” and ”Guesser”
in a variant of reference game (Krauss & Weinheimer, 1964; Das et al., 2017; De Vries et al., 2017;
Hakimov et al., 2024) which we call ”VLM Dialog Game”. Using a set of unlabelled images, we
construct a game with one target and several distractor images. The Describer answers questions
about the target image, while the Guesser poses targeted questions to disambiguate the target from
the distractors (Figure 1). While similar games exist, their primary use has been for human-based
data collection or VLM evaluation, and our work demonstrates that this game framework also facil-
itates VLM iterative self-improvement through goal-oriented self-play.

Thanks to their instruction-following and image-understanding capabilities, the pre-trained VLMs
achieve a non-zero success rate in this game. This inherent ability provides a scalable method for
generating interleaved image-text data. The initial performance is imperfect: The Describer may
provide incorrect answers, and the Guesser may ask irrelevant questions. However, the game’s
structure allows us to identify successful game instances where the Guesser correctly selects the
target image. By filtering for these successful dialogs, we automatically obtain a high-quality dataset
of interleaved data. This curated dataset is then used to fine-tune the VLM, improving its proficiency
in playing the game and, consequently, its overall image understanding capabilities. The improved
model has a higher success rate in the game, and it can be further used to generate a better dataset
of interleaved data, enabling further cycles of improvement.
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Describer sees the target image: Guesser sees several images:

G: How many objects can you see?

There are 9 objects.D:

G: Are the objects squares or circles?
They are squares.D:

G: I know the answer! It is the rightmost object in the second row!

Correct! We will include this dialog in the fine-tuning data.

Figure 1: Example interaction between a
Guesser and a Describer in the VLM Dialog
Game. The Guesser aims to identify the target
image from a set of distractors by asking ques-
tions, which the Describer answers. Since the
Guesser correctly identifies the target image at
the end of the game, this dialog is considered
successful and included in the fine-tuning data.

Our experiments demonstrate that fine-tuning
VLMs on the dialog game data yields significant
improvements, not just in game performance, but
also on related image understanding benchmarks.
Fine-tuning on games based on either OpenIm-
ages (Kuznetsova et al., 2020) or DOCCI (Onoe
et al., 2024) datasets leads to an increase in ac-
curacy on VQAv2 (Goyal et al., 2017) bench-
mark. The approach is adaptable to specific do-
mains, like robotics, where high-quality data is
often scarce. When the game is designed with
frames from robotics episodes we significantly
improve the model’s ability to detect successful
execution in robotics tasks.

The remainder of this paper is organized as fol-
lows: Section 2 reviews related literature, Sec-
tion 3 describes the VLM dialog game and self-
improvement methodology, Section 4 presents
experimental results in general VQA and robotic
success detection, and finally Section 5 summa-
rizes findings, discusses limitations, and outlines
future research.

2 RELATED WORK

Dialog games Various forms of dialog reference games have been known in linguistics since a
long time (Krauss & Weinheimer, 1964). In computer science, prior work on multimodal dialog
games is primarily focused on collecting datasets of grounded dialogs (Haber et al., 2019; Das et al.,
2017; De Vries et al., 2017; Kazemzadeh et al., 2014) or more recently, evaluating the capabilities
of VLMs (Hakimov et al., 2024; Chalamalasetti et al., 2023). These existing games vary in design,
including the number of images involved (single or multiple), the roles of the agents (symmetric,
sharing the same goal, or asymmetric), and the interaction length (single-turn or multi-turn).

In contrast to these evaluation and data collection efforts, our work leverages dialog games for self-
improvement, creating synthetic datasets to enhance VLM capabilities. To the best of our knowl-
edge, this is a novel use of the dialog games.

Self-Improvement Self-improvement (Chen et al., 2024) techniques have gained significant in-
terest in both language and multimodal learning. A prevalent approach involves using an LLM to
critique and refine its own responses (Bai et al., 2022; Yuan et al., 2024). For instance, Huang et al.
(2023) demonstrate that fine-tuning on self-generated rationale-augmented answers, without ground
truth labels, enhances LLM reasoning. Subramaniam et al. (2025) propose a multi-agent framework
where diverse responses from a society of LLMs drive iterative fine-tuning and continuous improve-
ment. Zelikman et al. (2022) leverage the question-answer pairs to generate rationales to augment
reasoning in order to improve chain-of-thought reasoning.

Self-improvement has also shown promise in enhancing multimodal understanding of VLMs, albeit
with fewer existing studies. A prominent technique in VLM self-improvement is cycle consistency,
initially developed for image-to-image translation (Zhu et al., 2017). It enforces that a transfor-
mation from a source domain to a target domain, and back, yields an output similar to the input.
This principle has been successfully extended to the multimodal domain (Li et al., 2023b;a; Shar-
ifzadeh et al., 2024), often exploiting the symmetry between image captioning and text-to-image
generation. Cycles such as text1 → image → text2 or image1 → text → image2 aim to ensure
similarity between the initial and final elements (text1 & text2, or image1 & image2) while produc-
ing data for self-improvement. Cycle consistency is particularly valuable when paired text-image
data is limited (Li et al., 2023b), but can also facilitate the generation of novel image compositions
with abundant data (Sharifzadeh et al., 2024). Another approach to improving VLMs performance
is through generating synthetic datasets by eliciting detailed question-answer datasets (Luu et al.,
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2024). Furthermore, self-improvement in VLMs is often tailored to specific applications, such as
medical imaging, where data acquisition is challenging (Wang et al., 2024).

In contrast to many LLM self-improvement methods that rely on agent-based response generation
and critique, we propose a novel self-improvement framework based on games. While inspired by
the underlying principle of cycle consistency, our approach deviates from the traditional image-text-
image cycle. Instead of direct image generation, we map a target image to a dialog, and then back
to the target image through contrastive image selection thus eliminating the need for text-to-image
model.

3 METHOD

This section introduces our method for iterative self-improvement through VLM Dialog Games. We
first describe the VLM Dialog Game mechanism and its key properties: self-play and goal-oriented
nature, which are crucial for self-improvement (Section 3.1). We then detail the complete self-
improvement workflow, including game setup, dialog generation and filtering, model finetuning,
final evaluation on the target task, and potentially repeating these steps (Section 3.2).

3.1 VLM DIALOG GAME DESCRIPTION

We introduce a VLM Dialog Game which is constructed using unlabelled images and two VLM
agents. The first agent, the Describer, is presented with a single target image and is instructed to
faithfully answer questions about it. The second agent, the Guesser, receives a set of N images,
including the target image and several distractor images. The Guesser’s objective is to identify the
target image by posing questions to the Describer. The agents’ behaviour is controlled by prompting
mechanism for VLMs which is described further in Section 3.2.1.

Figure 1 shows an illustrative example of the VLM Dialog Game in action. All images that the
Guesser sees contain white and blue objects on an orange background, thus, to identify the target
image the Guesser should focus on more specific properties of the images. To disambiguate, the
Guesser initiates a series of clarifying questions, such as ”How many objects can you see?” and ”Are
the objects squares or circles?”. Once the responses uniquely define the target image (in this case,
by pointing to ”9 square objects”), the Guesser successfully identifies it. While resembling a classic
reference game used for human data collection and VLM evaluation, this specific design features
two key elements enabling VLM self-improvement: self-play for data generation and automatic
success determination.

Self-play Current VLMs, thanks to their instruction-following capabilities, demonstrate a non-
trivial success rate in playing this dialog game (Hakimov et al., 2024). This capability enables a
scalable approach to data collection through self-play of two prompted models.

Success Determination We use the Guesser’s final selection to determine the success of the dia-
log: If the selected image matches the target image, the dialog is considered successful and added
to the synthetic training data, otherwise it is discarded. This mechanism provides crucial, automatic
quality control.

3.2 WORKFLOW

The properties of the VLM Dialog Game enable the following workflow for self-improvement:

• Game setup: Configure the dialog game with a designated unlabelled image dataset.

• Dialog generation: Generate dialogs via self-play between the VLM agents.

• Dialog filtering: Filter generated dialogs based on the success criteria.

• Model improvement: Fine-tune the VLM using the filtered dialog data and evaluate its
performance on the target task.

• Repeat the above steps (if needed): Repeat dataset generation with an improved version
of VLM.

3



Published as a workshop paper at ICLR 2025

3.2.1 GAME SETUP

This section details the setup of the VLM Dialog Game, including agent instructions and image
selection strategies.

Agent instructions We provide precise instructions to both the Describer and Guesser agents to
guide their interaction in the game. The Describer is instructed to answer questions about the target
image truthfully and accurately. The Guesser agent operates in two stages:

1. Questioning/Guessing: Initially provided with an empty image description, the Guesser
must either:

• Ask a clarifying question to distinguish the target image from the distractors, or
• Make a guess identifying image X as the target image where X is the index of the

hypothesized target image among the distractors.
2. Summarisation: The Guesser must create a concise summary of the target image descrip-

tion given the initial image description (or the previous summary), a question and an an-
swer.

Specific prompt texts for both agents are provided in Appendix A.1.

Image selection and game difficulty The images used in the game can be sourced from var-
ious datasets, including general datasets of natural images like OpenImages (Kuznetsova et al.,
2020) or DOCCI (Onoe et al., 2024), or domain-specific datasets tailored to applications such as
robotics (Zhao et al., 2023). The game’s difficulty is controlled through two primary factors related
to which images are selected for a game:

• Number of distractors: Increasing the number of distractor images directly increases dif-
ficulty. This is due to: (1) the Guesser needing to attend to a larger context, and (2) an
increased likelihood of a distractor closely resembling the target image.

• Image similarity in each game: Randomly selecting images from the dataset creates an eas-
ier game, while grouping visually or semantically similar images increases the challenge.

We select the appropriate settings in the game so that the games are sufficiently difficult to produce
interesting dialogs, but still feasible so that we generate sufficient amount of synthetic training data.

3.2.2 DIALOG GENERATION

During this stage, the Describer and Guesser agents engage in an interactive dialog. We construct
the training dataset from examples of successful behavior by both the Describer and the Guesser:

• Describer examples. Input: a single image and a question about it; Output: the corre-
sponding answer.

• Guesser examples. Input: N images (including the target and distractors) and a cumulative
summary of the target image description; Output: either a clarifying question or a guess
identifying the target image.

Each successful VLM Dialog Game generates multiple training examples of both types.

3.2.3 DIALOG FILTERING

The game’s design allows us to directly verify the Guesser’s final selection. However, to mitigate the
possibility of correct guess occurring by chance, we perform an additional validation step. We re-
run the dialog without the final selection using the same images but in a permuted order and verify
that the correct target image is identified in all cases. Empirically, we observed that the position
of the target image has the most significant impact on the Guesser’s accuracy, while the relative
order of the distractors (given a fixed dialog) has a smaller effect. Therefore, for computational
efficiency we limit the tested permutations to N where we ensure that the target image appears at
each possible position (1 to N ), while the distractors order can remain fixed. The datapoints from
these consistently successful games form the filtered dataset for subsequent model training.
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Image 1 Image 2
Image 3

Image 4

Guesser:  Is there an insect in the image? 
Describer: Yes. 

Guesser summary:  The scene contains an insect.
 

Guesser: Is the insect on a windowsill? 
Describer: No. 

Guesser summary: The scene features an insect 
that is not on a windowsill.

Guesser: Is the insect on a wooden surface? 
Describer: Yes.

Guesser summary: The scene depicts an insect 
resting on a wooden surface, not on a windowsill.

 
Guesser: I know the answer, it is image 4.

(a) DOCCI

Guesser: Is there a path in the image? 
Describer: Yes. 

Guesser summary:  The image shows a path. 

Guesser: Is the path covered in fog? 
Describer: No. 

Guesser summary: The image depicts a path 
that is not covered in fog. 

Guesser: I know the answer, it is image 1.

Image 1 Image 2 Image 3
Image 4

(b) OpenImages

Figure 2: Examples of VLM Dialog Games using images from DOCCI and OpenImages datasets.
The figure shows the Guesser’s questions, the Describer’s answers, and the Guesser’s internal dialog
summary. The Guesser correctly identifies the target image (4 and 1) at the end of the dialog.

3.2.4 MODEL IMPROVEMENT

The filtered dataset from successful dialog games is then used to fine-tune the VLM in a standard
supervised fine-tuning way. If the gains in playing the VLM Dialog Games are large, we can use the
improved model in order to collect the new synthetic dataset for further model improvement. While
this process directly affects the VLM’s performance within the dialog game itself, our primary focus
is on evaluating its capabilities on downstream tasks. For instance, if the dialog game utilizes images
from a robotics domain, we assess the fine-tuned VLM’s performance on tasks such as robotic
success detection, and for general images we test the performance on visual question answering
(VQA) on the unseen images.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our method using the Gemini 1.5 Flash model (Gemini, 2024) as the base VLM. Gemini
1.5 Flash is a powerful, instruction-tuned VLM that can take as input interleaved text and images
and it provides a strong base model. We use standard supervised fine-tuning procedure (see Ap-
pendix D). We limit the game length to a maximum of three question-answer turns. For conciseness,
we refer to the self-improvement method of the fine-tuning on synthetically collected dialogs as
”VLM Dialog Games”.

4.2 EXPERIMENTS WITH GENERAL IMAGES IN DIALOG GAMES

This section details our experiments using the DOCCI (Onoe et al., 2024) and the OpenImages
datasets (Kuznetsova et al., 2020) to evaluate the effectiveness of our self-improvement method for
image understanding through VQA tasks.

4.2.1 DATASET AND GAME CONFIGURATION

DOCCI dataset contains clusters of images grouped by their category. We randomly sample 1000
image groups, each containing N = 4 images from one of 149 categories. Figure 2(a) provides an
example of a dialog game generated by prompted Gemini using this setup.

OpenImages We select a subset of 1000 random images, forming them into games with N = 4
images. As the dataset does not contain clusters, we select the most similar images (Jia et al., 2021)
as distractors. An example of a dialog game produced in this scenario is demonstrated in Figure 2(b).
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Table 1: Comparison of VLM Dialog Games and the base Gemini 1.5 Flash. Fine-tuning on
dialog game data improves both game success rate and VQA performance (yes/no and counting
subsets). Results demonstrate generalization across training and evaluation datasets.

Model game success VQA VQA
DOCCI OpenImages yes/no counting

Gemini 1.5 Flash 20.3% 18.4% 73.0% 56%
VLM Dialog Games (DOCCI) 24.4% 21.9% 79.8% (+6.8) 58.3% (+2.3)
VLM Dialog Games (OpenImages) 25.6% 23.6% 83.4% (+10.4) 56% (+0.0)

4.2.2 EVALUATIONS TASKS

Dialog success rate Following prior work using dialog games to assess VLM capabilities (Haki-
mov et al., 2024), we use the dialog game success rate as one of measures of the model’s improve-
ment. We report the percentage of games where the Guesser correctly identifies the target image
across all N tested permutations (as described in Section 3.2.3).

Visual question answering (VQA) To assess the broader impact of our self-improvement method
on general visual understanding, we evaluate the fine-tuned model on a subset of 2000 randomly
sampled datapoints from the VQAv2 dataset (Goyal et al., 2017). We focus on two specific question
types:

• Binary (yes/no) questions: Semantically equivalent phrasings (e.g., ”No” and ”There is
no cat”) are treated as correct. We report the model accuracy.

• Object counting questions: All answers and ground truth labels are converted to numer-
ical form (e.g., ”one” becomes ”1”, ”none” becomes ”0”). We report a strict exact-match
accuracy.

4.2.3 RESULTS

Table 1 compares the performance of the base Gemini 1.5 Flash model with VLM Dialog Games
method. Fist, results demonstrate that the VLM Dialog Games method with either the DOCCI or
OpenImages datasets improves performance within the game with both training and unseen images
(e.g., games played on DOCCI by a model trained with OpenImages). More importantly we also
achieve better performance on broader visual understanding tasks as measured by VQA accuracy.
Note that evaluation images for it are drawn from a distinct dataset (VQAv2), demonstrating the
generalization of our method. Specifically, for DOCCI dialog games, the accuracy on the VQAv2
yes/no and counting subsets increased by 6.8% and 2.3%, respectively. For OpenImages dialog
games, yes/no question accuracy increases by 10.4% and remains unchanged for counting questions.
We hypothesis that different image sources may be better suited for improving specific tasks. For
example, Onoe et al. (2024) note that many DOCCI images contain references to counts, suggesting
that this dataset is well-suited for self-improvement on counting task.

4.3 ABLATION STUDIES

Next, we investigate the impact of key design choices: the number of images per game and the
method of image grouping. We test the different options on OpenImages dialog games and VQA
yes/no question accuracy.

Impact of the number of images per game We study the effect of N on the game complexity by
varying N from 2 to 8 (see Appendix B for dialog examples). Table 2 presents the game success
rate, the number of question-answer pairs from successful dialogs, and the VQAv2 yes/no accuracy
for each N . While fine-tuning with data from any N improves VQAv2 performance compared to the
base Gemini 1.5 Flash model, the best result is achieved with N = 4 in this study. With N = 2, the
game is relatively simple, leading to a high success rate but potentially less informative data, and a
higher probability of erroneous data due to the correct guesses by chance. Conversely, with N = 8,
the game becomes too difficult, resulting in few successful dialogs for fine-tuning. These results
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Table 2: Impact of varying the number of im-
ages N per game: We report the number of
successful dialog games (out of 1000), the total
number of question-answer pairs extracted, and
the VQAv2 yes/no accuracy after fine-tuning.
The optimal N in this case appears to be 4, bal-
ancing game difficulty and data quantity.

N game VQA
success yes/no

2 83.7% 81.3% ( +8.3%)
4 18.4% 275 83.4% (+10.4%)
8 0.24% 34 77.1% ( +4.1%)

Gemini 1.5 Flash 73.0%

Table 3: Impact of image grouping strategy:
Both random and semantically similar image
groupings lead to significant performance gains
compared to the baseline. Although using se-
mantically similar images demonstrates slightly
better results, the difference is small, highlight-
ing the robustness of the VLM Dialog Game ap-
proach even with random image selection.

Image grouping game VQA
strategy success yes/no

None (initial) N/A 73.0%
Similar images 18.4% 83.4% (+10.4%)
Random images 24.7% 82.6% ( +9.6%)

confirm that balancing game difficulty and the quantity of training data is crucial for generating an
optimal dataset for fine-tuning.

Impact of Image Grouping Strategy We investigate how image grouping affects model perfor-
mance by comparing two strategies: 1) similarity-based grouping (Section 4.2.1), which uses visu-
ally and conceptually related distractors to elicit more targeted Guesser questions, and 2) random
distractor selection. Table 3 compares models using these strategies. Both strategies improve over
the initial Gemini 1.5 Flash checkpoint (73.0%) significantly, therefore, the VLM Dialog Game can
be effectively implemented even with random image groupings. However, using similar images
yields slightly higher accuracy (83.4% vs. 82.6%). While random images produce a larger quantity
of successful dialogs (24.7% vs. 18.4%), the increased challenge of similar images in a game likely
leads to more informative training data. Thus, we believe that for the best results in fine-tuning, we
need to find a right trade off between game difficulty and training data quantity.

4.4 ROBOTICS DIALOG GAMES

Guesser: Are the arms of the robot grasping the dress?
Describer: Yes. 

Guesser summary: A robot is holding 
a dress with its arms.

Guesser: Is the dress fully unfolded in the image? 
Describer: Yes. 

Guesser summary: A robot is holding 
a fully unfolded dress with its arms.

Guesser: I know the answer, it is image 1

Image 1 Image 2

Figure 3: An example of a dialog game in
the robotics domain. The figure shows the
Guesser’s questions, the Describer’s answers,
and the Guesser’s internal dialog summary. The
Guesser correctly identifies the target image (1)
at the end of the dialog.

This section describes our experiments using
the VLM Dialog Games on video frames from
a robotics manipulation domain where we test
VLM success detection in object manipulation
tasks. This domain was chosen because high-
quality interleaved data is scarce in specialized
domains, potentially limiting base model perfor-
mance in applications.

4.4.1 DATASET AND GAME CONFIGURATION

We use image frames from videos recorded in the
ALOHA setup (A Low-cost Open-source Hard-
ware System for Bimanual Teleoperation) (Zhao
et al., 2023). The images feature bimanual
robotic arms performing 10 object manipulation
tasks: 1) fold the dress, 2) put the bowl into the
drying rack, 3) unbuckle the belt, 4) open the
drawer, 5) put the legos into the lego bag, 6) put
the cheese in the basket, 7) remove the gears from

the board, 8) put banana into the drying rack, 9) close the green trash bin lid, 10) put the giraffe in
the rack (Team, 2025). We use images captured from an overhead camera perspective. Our dataset
comprises 20 episodes (both successful and unsuccessful) for each of the 10 tasks, totaling 200
episodes. We limit the game to only two images randomly sampled from the same task execution as
the success rate drops significantly with more images. We generate 1000 games for each of the 10
tasks by sampling different frame combinations. Figure 3 shows a dialog game example.
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Table 4: Success detection accuracy on the ALOHA dataset, averaged across 10 tasks. Fine-
tuning on dialog game data outperforms the initial checkpoint and the other baselines. Iterative
refinement further improves performance.

Model Game Success Success Detection Accuracy

Gemini 1.5 Flash 14.39% 56.5%
VLM Dialog Games (round 1) 40.15% (+25.76%) 69.5% (+13.0%)
VLM Dialog Games (round 2) 53.74% (+39.35%) 73.0% (+16.5%)

SFT-Description N/A 65.0% ( +8.5%)
Self-QA N/A 67.0% (+10.5%)
VLM Dialog Games (answers only) 17.92% (+3.53%) 68% (+12.5)%

4.4.2 EVALUATION TASK: SUCCESS DETECTION IN ROBOTICS

To evaluate the impact of our method on robotic task understanding, we measure the model’s ability
to perform success detection. Accurate success detection is critical for various robotics applications,
including policy training, evaluation, and data curating. We evaluate success detection on the final
frame of video episodes, treating it as a zero-shot VQA task (Du et al., 2023). The model is presented
with the final frame image and a textual description of the intended task (e.g., ”open the drawer”)
and it is prompted with a question on task completion (e.g., ”Is the drawer open?”). We report the
accuracy of the model’s yes/no responses.

4.4.3 BASELINES

To isolate the specific contribution of the VLM Dialog Games, we compare our method against the
original Gemini 1.5 Flash model and several other baselines.

Description Supervised Fine-Tuning (SFT-Description) Since our dialog games design utilizes
task descriptions for each robotic episode, we include a baseline fine-tuned directly on image-
description pairs. This baseline ”SFT-Description” helps determine if simply exposing the model to
paired image and task descriptions from the target domain is sufficient for improvement.

Self-Improving Question Answering (Self-QA) This baseline explores an alternative self-
improvement approach based on question answering similar to the approach of Luu et al. (2024)
(without the image captioning). The model performs two tasks:

1. Question generation: Given an image from the ALOHA dataset, the model generates a
question about the scene.

2. Answer generation: Given an image and a generated question, the model provides an
answer.

The prompts used for these tasks are detailed in Appendix A.2. This baseline tests whether a simpler
self-improvement loop without the goal-oriented dialog structure can achieve similar results.

VLM Dialog Games (Answers Only) Our fine-tuning data includes both Describer and Guesser
perspectives. Since the final success detection task closely resembles the Describer’s role of an-
swering questions, we include a baseline fine-tuned only on the datapoints from the Describer. This
isolates the contribution of the Guesser’s questions to the overall improvement.

Multiple Rounds of Self-Improvement We expect fine-tuning to improve the model’s perfor-
mance in subsequent games. Thus, we use the improved model to generates a new, higher-quality
dataset of synthetic dialogs. These dialogs are filtered and used to fine-tune the next iteration of the
model, a process we refer to as ”round 1” and ”round 2”.

In all cases we generate datasets with a size equivalent to the corresponding dialog game dataset and
use it to fine-tune the Gemini 1.5 Flash model with the same settings.
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4.4.4 RESULTS

Table 4 presents the success detection accuracy and game success rates averaged across the 10
tasks. The initial Gemini 1.5 Flash model achieves a success detection accuracy of 56.5% on this
highly specialised domain, only slightly above chance. Both the SFT-Description and Self-QA
baselines improve upon this, demonstrating the benefit of domain-specific fine-tuning (65.0% and
67.0% accuracy, respectively).

However, fine-tuning on a single round of dialog game data (VLM Dialog Games (round 1)) yields a
larger improvement, achieving a success detection accuracy of 69.5% surpassing the baseline Self-
QA by 2.5%. Interestingly, although we gave no explicit instructions for success detection, the need
to distinguish between frames from the same task results in questions about the task progression. In
contrast, the Self-QA method primarily generates object-related questions (see Appendix C).

Importantly, the round of fine-tuning also substantially increases the game success rate, from 14.39%
to 40.15%, thus enabling further improvement. We performed a second round of fine-tuning (VLM
Dialog Games (round 2)), using data generated by the round 1 model. This further boosted both
the game success rate (to 53.74%) and the success detection accuracy (to 73.0%), a 16.5% absolute
improvement over the original base model.

The VLM Dialog Games (answers only) baseline, which uses only the Describer’s answers from the
dialog games, achieves a success detection accuracy comparable to VLM Dialog Games (round 1).
However, its game success rate remains comparatively low (17.92%) and does not enable further
iterative improvement. This suggests that the Guesser’s questions play a crucial role in improving
the model’s ability to play the dialog game, which is necessary for continued self-improvement.
To conclude, our dialog game framework enables significant adaptation to specialized tasks like
robotic success detection, where standard VLM pre-training may be less effective due to the lack
of the domain-specific data. Crucially, this self-improvement is achieved with minimal task-specific
supervision, requiring only video episodes to guide the dialog generation.

5 DISCUSSION, LIMITATIONS AND CONCLUSION

This paper introduced VLM Dialog Games as a novel self-improvement framework. Our approach
leverages goal-oriented self-play between two agents engaged in a reference-style dialog game. By
automatically filtering for successful game interactions, we generate a high-quality dataset of inter-
leaved image and text data. Crucially, our approach requires minimal supervision, demonstrating
the potential for scalable and data-efficient VLM training.

Despite promising results, our approach has limitations. First, agents might discover trivial or use-
less ”winning” strategies (e.g., querying specific pixel colors or inventing a private vocabulary)
without genuine understanding. To avoid these trivial strategies, we used several properties of the
game: 1) we rely on the instruction-following capabilities of the base model to steer the game
behaviour, 2) our image grouping strategy makes it less likely that trivial questions would help to
distinguish images. As we see the improvement on the downstream tasks, we conclude that we man-
aged to largely avoid trivial strategies, but developing automated and robust methods for detecting
and preventing such behavior remains an important area for future research. Second, while we saw
significant improvement in robotics (likely due to its under-representation in pre-training), iterative
gains plateaued after 2 iterations. It seems that when the success rate on the game is not changing
by a large margin, the difference in the size of the fine-tuning dataset is not large enough to show the
difference in the final performance. This is a known property of self-improvement methods and fur-
ther research into techniques that can mitigate this plateauing effect in VLM dialog games and other
self-improvement methods would be a valuable direction for future work. Finally, model improve-
ment in the model comes at a computational cost to produce data with model inference and cost to
fine-tune the model and other cheaper strategies can be considered, such as prompt engineering and
inference-time computation.

We believe that the success of our method suggests a promising direction for model development.
While current VLMs continue to improve, the core principle of our approach – learning from suc-
cessful interactions in a goal-oriented setting – remains applicable. Multimodal dialog games offer
a general recipe for VLM self-improvement, adaptable to various domains and tasks, particularly
those with scarce or specialized data.
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A APPENDIX: VLM PROMPTS

A.1 PROMPT FOR VLM DIALOG GAMES

Prompt to Describer agent to answer questions about the image faithfully is the same for all datasets
and domains:

You are given an image and your task is to answer a given question about
it. Be precise and accurate. Only answer the question, do not say
anything else about the image.

Image: {image}
Question: {question}
Answer:

Prompt for Guesser for general images (could be adapted for various number of images):

You are given several images Image 1, Image 2, Image 3, Image 4 and image
description.

This image description refers to only a single image, however, the image
description might be incomplete.

You task is the following:

11
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1) If the image description can only refer to a single image from the set
of images (Image 1, Image 2, Image 3, Image 4) you should provide

the answer in the format:
Answer: I know the answer, it is image X.
where X is the index of an image (1, 2, 3, 4).
Only provide a response in this format when you are absolutely certain to

which image the image description refers to.
Never provide an answer in this format when the image description is

empty.
2) If no image description is provided or the image description can refer

to more than one image, your task is to ask additional question to
narrow down the space of possible images from the set (Image 1, Image
2, Image 3, Image 4).

Ask any question that would help you to narrow the space of possible
images.

Choose a question that would help you to maximise the information about
the content of the target image.

Try to ask objective, factual questions that cover the content of the
image, but not the deductions about the scene or any impressions
about the image.

Follow the format:
Question: put your question here.
So, now given the image descriptions and 4 images, decide if you are

going to make a guess (in that case produce an Answer) or ask a
question (in that case produce a Question).

Image description: {image_description}
Image 1: {image1} Image 2: {image2} Image 3: {image3} Image 4: {image4}

In robotics experiments, the Guesser agent was prompted with instructions very similar to the gen-
eral images, but mentioning that the images come from a robotics domain. These instructions also
direct the agents to focus on relevant visual features for robotic manipulation tasks as opposed to
details in the background (e.g., people or chairs):

You are given two images (Image 1, Image 2) from a scene where robot is
trying to {task} and image description.

This image description refers to only a single image, however, the image
description might be incomplete.

You task is the following:
1) If the image description can only refer to a single image from the set

of images (Image 1, Image 2) you should provide the answer in the
format:

Answer: I know the answer, it is image X.
where X is the index of an image (1,2).
Only provide an response in this format when you are absolutely certain

to which image the image description refers.
Never provide an answer in this format when the image description is

empty.
2) If no image description is provided or the image description can refer

to more than one image, your task is to ask additional question to
narrow down the space of possible images from the set (Image 1, Image
2).

Try to ask objective, factual questions that cover the content of the
image.

Choose a question that would help you to maximise the information about
the content of the image.

NEVER ask questions about the background of the robotic scene (e.g.,
people in the background, scooters or chairs).

NEVER ask questions about the facts that are already known from the image
description.

Follow the format:
Question: put your question here

So, now given the image descriptions and 2 images, decide if you are
going to make a guess (in that case produce an Answer) or ask a
question (in that case produce a Question).

12
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Image description: {image_description}
Image 1: {image1} Image 2: {image2}

Prompt to Guesser agent to summarise the state of the existing dialog for all domains:

You are given a short description of a scene and one question and answer
about it.

Your task is to summarise the content of the scene in a short sentence or
paragraph. Only provide a summary, do no output anything else.

Always include all the details 1) from the description, 2) from question-
answer pair into your summary.

Description: {description}
Question: {question}
Answer: {answer}
Your summary:

A.2 FULL PROMPTS FOR THE BASELINE SELF-QA

To ask questions:

You are given an image and your task is to ask a question about the
content of this image.

Try to ask objective, factual questions that cover the content of the
image, but not the deductions about the scene or any impressions
about the image.

NEVER ask questions about the background of the robotic scene (e.g.,
people in the background, scooters or chairs).

Follow the format:
Question: put your question here.
So, now given the image, ask a question.
Image: {image}
Question:

To answer the questions:

You are given an image and your task is to answer a given question about
it. Be precise and accurate. Only answer the question, do not say
anything else about the image.

Image: {image}
Question: {question}
Answer:

B APPENDIX: DIALOG EXAMPLES FOR VARYING NUMBER OF IMAGES

Figures 4, 5, and 6 illustrate dialog examples with a consistent target image (Image 1) but a varying
number of distractor images (1, 3, and 7, respectively, corresponding to N values of 2, 4, and
8). These examples demonstrate the effect of N on dialog length and complexity. With only two
images (N = 2), the dialog is short, focusing on a single distinguishing feature. With four images
(N = 4), the dialog becomes more complex, requiring two questions that progressively narrow
down the possibilities. However, with eight images (N = 8), the Guesser is unable to identify the
target image within the three-question limit.

C APPENDIX: QUESTION-ANSWERS GENERATED BY DIALOG GAMES AND
SELF-QA

Self-QA:

• Question: Is there a yellow object in the image? Answer: yes

• Question: Is there a red object on the surface? Answer: yes
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Image 1 Image 2

Guesser: Is there a large tree in the image?
Describer: Yes. 

Guesser summary:  The scene 
includes a large tree.

Guesser: I know the answer, it is image 1.

Figure 4: An example of a dialog game with two images.

Guesser: Is there a path in the image? 
Describer: Yes. 

Guesser summary:  The image shows a path. 

Guesser: Is the path covered in fog? 
Describer: No. 

Guesser summary: The image depicts a path 
that is not covered in fog. 

Guesser: I know the answer, it is image 1.

Image 1 Image 2 Image 3
Image 4

Figure 5: An example of a dialog game with four images.

• Question: Are there any balls inside the basket? Answer: No

• Question: Is there a red ball in the image? Answer: yes

• Question: Are there two robotic arms in the image? Answer: yes

• Question: Is there a red apple in the image? Answer: yes

• Question: Is there a red object on the floor? Answer: yes

• Question: Is there a piece of fruit in the basket? Answer: yes

• Question: Is there a yellow triangle in the image? Answer: yes

VLM Dialog Games:

• Question: Are there any Lego blocks on the floor that are not in the bag? Answer: Yes.

• Question: Is the drawer in the image open? Answer: Yes.

• Question: Is the trash bin lid open or closed? Answer: Closed.

• Question: Is the bowl inside the drying rack? Answer: No.

• Question: Is the cheese in the basket? Answer: No.

• Question: Is the banana inside the drying rack? Answer: Yes.

• Question: Is the robot’s gripper holding the belt? Answer: No.

• Question: Is there a basket in the image? Answer: No.

• Question: Is the drawer open? Answer: Yes.

D APPENDIX: LLM INFERENCE AND TRAINING DETAILS

We rely on Gemini 1.5 Flash (gemini-1.5-flash-002) model which is available for inference and
fine-tuning through the Google Cloud Vertex API. For generating dailog and evaluation, we sample
with nucleus sampling selecting the top 0.8 probability mass of tokens. For the evaluation, we
use sampling temperature 0. Our batch size for SFT is 16, we use Adam optimizer with learning
rate 5 × 10−7. To prevent overfitting to the small datasets from the dialog games, we use a small
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  1     2     3     4     5     6     7     8   

Guesser: Is there a body of water in the image?
Describer: No. 

Guesser summary: The scene does not contain 
a body of water.

Guesser: Is there a road in the image? 
Describer: Yes. 

Guesser summary: The scene depicts a land area 
with a road present.

Guesser: Is there a car in the image?
Describer: No. 

Guesser summary: The scene depicts a land area 
with a road, but there is no car present.

Figure 6: An example of a dialog game with eight images.

unrelated to the any of the tested tasks dataset of images with text and track token loss on it. We
select a checkpoint just before this loss starts increasing. This usually corresponds to approximately
one epoch of fine-tuning. In various baselines, we generate datasets with a size equivalent to the
corresponding dialog game dataset and use it to fine-tune the Gemini 1.5 Flash model with the same
settings.
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