
Under review as a conference paper at ICLR 2021

CONTROLLABLE PARETO MULTI-TASK LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

A multi-task learning (MTL) system aims at solving multiple related tasks at
the same time. With a fixed model capacity, the tasks would be conflicted with
each other, and the system usually has to make a trade-off among learning all of
them together. Multiple models with different preferences over tasks have to be
trained and stored for many real-world applications where the trade-off has to be
made online. This work proposes a novel controllable Pareto multi-task learn-
ing framework, to enable the system to make real-time trade-off switch among
different tasks with a single model. To be specific, we formulate the MTL as a
preference-conditioned multiobjective optimization problem, for which there is a
parametric mapping from the preferences to the Pareto stationary solutions. A sin-
gle hypernetwork-based multi-task neural network is built to learn all tasks with
different trade-off preferences among them, where the hypernetwork generates
the model parameters conditioned on the preference. For inference, MTL prac-
titioners can easily control the model performance based on different trade-off
preferences in real-time. Experiments on different applications demonstrate that
the proposed model is efficient for solving various multi-task learning problems.

1 INTRODUCTION

Figure 1: Controllable Pareto
MTL allows practitioners to con-
trol the trade-offs among tasks in
real time with a single model,
which could be desirable for many
MTL applications.

Multi-task learning (MTL) is important for many real-world
applications, such as computer vision (Kokkinos, 2017), nat-
ural language processing (Subramanian et al., 2018), and re-
inforcement learning (Van Moffaert & Nowé, 2014). In these
problems, multiple tasks are needed to be learned at the same
time. An MTL system usually builds a single model to learn
several related tasks together, in which the positive knowledge
transfer could improve the performance for each task. In ad-
dition, using one model to conduct multiple tasks is also good
for saving storage costs and reducing the inference time, which
could be crucial for many applications (Standley et al., 2020).

However, with fixed learning capacity, different tasks could be
conflicted with each other, and can not be optimized simul-
taneously (Zamir et al., 2018). The practitioners might need
to carefully design and train the tasks into different groups to
achieve the best performance (Standley et al., 2020). A con-
siderable effort is also needed to find a set of suitable weights
to balance the performance of each task (Kendall et al., 2018;
Chen et al., 2018b; Sener & Koltun, 2018). For some applica-
tions, it might need to train and store multiple models for dif-
ferent trade-off preferences among the tasks (Lin et al., 2019).

In many real-world MTL applications, the system will need to make a trade-off among different tasks
in real time, and it is desirable to have the whole set of optimal trade-off solutions. For example,
in a self-driving system, multiple tasks must be conducted simultaneously but also compete for a
fixed resource (e.g., fixed total inference time threshold), and their preferences could change in real
time for different scenarios (Karpathy, 2019). A recommendation system needs to balance multiple
criteria among different stakeholders simultaneously, and making trade-off adjustment would be a
crucial component (Milojkovic et al., 2019). Consider the huge storage cost, it is far from ideal to

1

Under review as a conference paper at ICLR 2021

train and store multiple models to cover different trade-off preferences, which is also not good for
real-time adjustment.

In this paper, we propose a novel controllable Pareto multi-task learning framework, to learn the
whole trade-off curve for all tasks with a single model. As shown in Fig. 1, MTL practitioners can
easily control the trade-off among tasks based on their preferences. To our best knowledge, this is
the first approach to learn the MTL trade-off curve. The main contributions are:

• We formulate solving an MTL problem as a preference-conditioned multiobjective opti-
mization problem, and propose a novel Pareto solution generator to learn the whole trade-
off curve of Pareto stationary solutions. The proposed Pareto solution generator is also a
novel contribution to multiobjective optimization.

• We propose a general hypernetwork-based multi-task neural network framework, and de-
velop an end-to-end optimization algorithm to train a single model concerning different
trade-off preferences among all tasks simultaneously. With the proposed model, MTL
practitioners can control the trade-offs among different tasks in real time.

2 RELATED WORK

Multi-Task Learning. The current works on deep multi-task learning mainly focus on designing
novel network architecture and constructing efficient shared representation among tasks (Zhang &
Yang, 2017; Ruder, 2017). Different deep MTL networks, with hard or soft parameters sharing
structures, haven been proposed in the past few years (Misra et al., 2016; Long et al., 2017; Yang &
Hospedales, 2017). However, how to properly combine and learn different tasks together remains
a basic but challenging problem for MTL applications. Although it has been proposed for more
than two decades, the simple linear tasks scalarization approach is still the current default practice
to combine and train different tasks in MTL problems (Caruana, 1997).

Some adaptive weight methods have been proposed to better combine all tasks in MTL problems
with a single model (Kendall et al., 2018; Chen et al., 2018b; Liu et al., 2019; Yu et al., 2020).
However, analysis on the relations among tasks in transfer learning (Zamir et al., 2018) and multi-
task learning (Standley et al., 2020) show that some tasks might conflict with each other and can not
be optimized at the same time. Sener and Koltun (Sener & Koltun, 2018) propose to treat MTL as
a multiobjective optimization problem, and find a single Pareto stationary solution among different
tasks. Pareto MTL (Lin et al., 2019) generalizes this idea, and proposes to generate a set of Pareto
stationary solutions with different trade-off preferences. Recent works focuses on generating diverse
and dense Pareto stationary solutions (Mahapatra & Rajan, 2020; Ma et al., 2020).

Multiobjective Optimization. Multiobjective optimization itself is a popular research topic in the
optimization community. Many gradient-based and gradient-free algorithms have been proposed in
the past decades (Fliege & Svaiter, 2000; Désidéri, 2012; Miettinen, 2012). In addition to MTL, they
also can be used in reinforcement learning (Van Moffaert & Nowé, 2014) and neural architecture
search (NAS) (Elsken et al., 2019). However, most methods directly use or modify well-studied
multiobjective algorithms to find a single solution or a finite number of Pareto stationary solutions.

Recently, Lu et al. (2020) proposed a novel supernet-based multi-objective neural architecture trans-
fer framework. This method simultaneously optimizes a set of neural networks, which are sampled
from a large supernet, to approximate the optimal trade-off curve among different objectives via a
single run. The obtained supernet also supports fast adaption to new tasks and domains. Some ef-
forts have been made to learn the entire trade-off curve for different machine learning applications.
Parisi et al. (2016) proposed to learn the Pareto manifold for a multi-objective reinforcement learn-
ing problem. However, since this method does not consider the preference for generation, it does not
support real-time preference-based adjustment. Very recently, some efforts have been made to learn
preference-based solution adjustment for multi-objective reinforcement learning (Yang et al., 2019)
and image generation (Dosovitskiy & Djolonga, 2020) with simple linear combinations. There is
a concurrent work (Anonymous, 2021) that also proposes to learn the entire trade-off curve for
MTL problems by hypernetwork. While this work emphasizes the runtime efficiency on training for
multiple preferences, we highlight the benefit of scalability and real-time preference adjustment.

2

Under review as a conference paper at ICLR 2021

Figure 2: Controllable Pareto MTL can directly generate a corresponding Pareto stationary solu-
tion based on a given preference among tasks. (a) A practitioner adjusts the m-dimensional pref-
erence vector p to specify a trade-off preference among m tasks. (b) A trained Pareto solution
generator directly generates a Pareto solution θp conditioned on p. (c) The generated solution θp
should have objective values L(θp) that satisfies the trade-off preference among m tasks. The num-
ber of possible preference vectors and the corresponding Pareto stationary solutions could be infinite
for an MTL problem. We develop the idea in Section 4 and propose the MTL model in Section 5.

HyperNetworks. The hypernetwork approach is initially proposed for dynamic modeling and
model compression (Schmidhuber, 1992; Ha et al., 2017). It also leads to various novel appli-
cations such as hyperparameter optimization (Brock et al., 2018; MacKay et al., 2019), Bayesian
inference (Krueger et al., 2018; Dwaracherla et al., 2020), and transfer learning (von Oswald et al.,
2020; Meyerson & Miikkulainen, 2019). Recently, some discussions have been made on its initial-
ization method (Chang et al., 2020), the optimization dynamic (Littwin et al., 2020), and its relation
to other multiplicative interaction methods (Jayakumar et al., 2020). This paper uses a hypernetwork
to generate the weights of the main multi-task neural network conditioned on different preferences.

3 MTL AS MULTI-OBJECTIVE OPTIMIZATION

An MTL problem involves learning multiple related tasks at the same time. For training a deep
multi-task neural network, it is also equal to minimize the losses for multiple tasks:

minθ L(θ) = (L1(θ),L2(θ), · · · ,Lm(θ)), (1)

where θ is the neural network parameters andLi(θ) is the empirical loss of the i-th task. For learning
all m tasks together, an MTL algorithm usually aims to minimize all the losses at the same time.
However, in many MTL problems, it is impossible to find a single best solution to optimize all the
losses simultaneously. With different trade-offs among the tasks, the problem (1) could have a set
of Pareto solutions which satisfy the following definitions (Zitzler & Thiele, 1999):

Pareto dominance. Let θa, θb be two solutions for problem (1), θa is said to dominate θb (θa ≺ θb)
if and only if Li(θa) ≤ Li(θb),∀i ∈ {1, ...,m} and Lj(θa) < Lj(θb),∃j ∈ {1, ...,m}.

Pareto optimality. θ∗ is a Pareto optimal solution if there does not exist θ̂ such that θ̂ ≺ θ∗. The set
of all Pareto optimal solutions is called the Pareto set. The image of the Pareto set in the objective
space is called the Pareto front.

Approximation with Finite Pareto Stationary Solutions. The number of Pareto solutions could
be infinite, and their objective values are on the boundary of the valid value region (Boyd & Van-
denberghe, 2004). Under mild conditions, the whole Pareto set and Pareto front would be (m − 1)
dimensional manifolds in the solution space and objective space, respectively (Miettinen, 2012).
In addition, for a general multiobjective optimization problem, no method can guarantee to find a
Pareto optimal solution. Traditional multiobjective optimization algorithms aim at finding a set of
finite Pareto stationary solutions to approximate the whole Pareto set and Pareto front:

Ŝ = {θ̂1, θ̂2, · · · , θ̂K}, F̂ = {L(θ̂1),L(θ̂2), · · · ,L(θ̂K)}, (2)

where Ŝ is the approximated Pareto set of K estimated solutions, and F̂ is the set of correspond-
ing objective vectors in the objective space. The current multiobjective optimization based MTL
methods aim to find a single (K = 1) (Sener & Koltun, 2018) or a set of multiple (K > 1) Pareto
stationary solutions (Lin et al., 2019; Mahapatra & Rajan, 2020; Ma et al., 2020) for a given problem.

3

Under review as a conference paper at ICLR 2021

4 PREFERENCE-CONDITIONED PARETO SOLUTION GENERATOR

Instead of finite Pareto set estimation, we propose to directly learn the whole trade-off curve for a
MTL problem in this paper. As shown in Fig. 2, we want to build a Pareto solution generator to map
a preference vector p to its corresponding Pareto stationary solution θp. If an optimal generator
θp = g(p|φ∗) is obtained, MTL practitioners can assign their preference via the preference vector
p, and directly obtain the corresponding solution θp with the specific trade-off among tasks.

With the Pareto solution generator, we can obtain the approximate Pareto set/front as:

Ŝ = {θp = g(p|φ∗)|p ∈ P }, F̂ = {L(θp)|θp ∈ Ŝ}, (3)

where P is the set of all valid preference vectors, g(p|φ∗) is the Pareto generator with optimal pa-
rameters φ∗. Once we have a proper generator g(p|φ∗), we can reconstruct the whole approximated
set of Pareto stationary solutions Ŝ and the corresponding trade-off curve F̂ by going through all
possible preference vector p from P . In the rest of this section, we discuss two approaches to define
the form of preference vector p ∈ P and its connection to the corresponding solution θp = g(p|φ∗).

Preference-Conditioned Linear Scalarization: A simple and straightforward approach is to define
the preference vector p and the corresponding solution θp via the weighted linear scalarization:

θp = g(p|φ∗) = arg min
θ

m∑
i=1

piLi(θ), (4)

where the preference vector p = (p1,p2, · · · ,pm) is the weight for each task, and the corresponding
solution θp is the minimum of the weighted linear scalarization. If we further require

∑
pi = 1, the

set of all valid preference vector P is an (m− 1)-dimensional manifold in Rm. Therefore, the valid
preference set and the Pareto set are both (m− 1)-dimensional manifolds.

Although this approach is straightforward, it is not optimal for multiobjective optimization. Linear
scalarization can not find any Pareto solution on the non-convex part of the Pareto front (Das &
Dennis, 1997; Boyd & Vandenberghe, 2004). In other words, unless the problem has a convex Pareto
front, the generator defined by linear scalarization cannot cover the whole Pareto set manifold.

Figure 3: An MTL problem is
decomposed by a set of unit
vectors in the loss space.

Preference-Conditioned Multi-Objective Optimization: To bet-
ter approximate the manifold of Pareto set, we generalize the idea
of decomposition-based multiobjective optimization (Zhang & Li,
2007; Liu et al., 2014) and Pareto MTL (Lin et al., 2019) to connect
the preference vector and the corresponding Pareto solution. To be
specific, we define the preference p as anm dimensional unit vector
in the loss space, and the corresponding solution θp is the one on
the Pareto front which has the smallest angle with p.

The idea is illustrated in in Fig. 3. With a set of randomly generated
unit reference vectors U = {u(1), · · · ,u(K)} and the preference
vector p, an MTL problem is decomposed into different regions in
the loss space. We call the region closest to p as its preferred region.
The corresponding Pareto solution θp is the solution that always
belongs to the preferred region and on the Pareto front. Formally,
we can define the corresponding Pareto solution as:

θp = g(p|φ∗) = arg min
θ

L(θ) s.t. L(θ) ∈ Ω(p,U), (5)

where L(θ) is the loss vector and Ω(p,U) is the constrained preference region conditioned on the
preference and reference vectors Ω(p,U) = {v ∈ Rm+ |∠(v,p) ≤ ∠(v,u(j)),∀j = 1, ...,K}.
The constraint is satisfied if the loss vector L(θ) has the smallest angle with the preference vector
p. The corresponding solution θp is a restricted Pareto optimal in Ω(p,U). Since we require
the preference vectors should be unit vector ||p||2 = 1 in the m-dimensional space, the set of all
valid preference vectors P is an (m − 1) manifold in Rm. Similar to the linear scalarization case,
a preference vector might have more than one corresponding solution, and a Pareto solution can
correspond to more than one preference vector. For simplicity, we assume there is a one-to-one
mapping between the preference vector and the corresponding Pareto solution in this paper.

4

Under review as a conference paper at ICLR 2021

(a) Controllable Pareto MTL Network (b) Chunked Hypernetwork

Figure 4: The Controllable Pareto Multi-Task Network: (a) The main MTL network has a fixed
structure, and all its parameters are generated by the hypernetwork conditioned on the preference
vector. (b) With the chunking method, the hypernetwork can iteratively generate parameters for
different parts of the main network.

5 CONTROLLABLE PARETO MULTI-TASK LEARNING

In this section, we propose a hypernetwork-based deep multi-task neural network framework, along
with an efficient end-to-end optimization procedure to solve the MTL problem.

5.1 HYPERNETWORK-BASED DEEP MULTI-TASK NETWORK

The proposed controllable Pareto multi-task network is shown in Fig. 4(a). As discussed in the
previous section, we use a preference vector to represent a practitioner’s trade-off preference among
different tasks. The hypernetwork takes the preference vector p as its input, and generates θp =
g(p|φ) as the corresponding parameters for the main MTL network. the only trainable parameters to
be optimized are the hypernetwork parametersφ. Practitioners can easily control the MTL network’s
parameters, and hence the performances on different tasks in real time, by simply adjusting the
preference vector p.

Model Structure and Regularization: In our proposed model, the main MTL network always
has a fixed structure, and the parameters θp are generated by the hypernetwork. We consider the
main MTL network with hard-shared encoder (Ruder, 2017; Vandenhende et al., 2020) as shown
in Fig. 4(a). Once the parameters θp are generated, an input x to the main MTL network will
first go through the shared encoder, and then all task-specific heads to obtain the outputs fi(x|θp).
Different tasks share the same encoder, and they are regularized by each other as in the traditional
MTL model. Our proposed model puts the cross-tasks regularization on the hypernetwork, where it
should generate a set of good encoder parameters that work well for all tasks with a given preference.

There is also a regularization effect across different trade-off preferences. Our goal is to train a single
hypernetwork-based model that performs well for all preferences. In other words, the generated
main MTL network with a specific preference is regularized by the other networks with different
preferences through the hypernetwork. This regularization effect might be best explained by the
batched preferences update discussed in Appendix B.3. In this respect, it is similar to von Oswald
et al. (2020) that uses hypernetwork with explicit regularization on separate tasks in the continual
learning setting. It is also good for knowledge transfer among different preferences. We further
discuss how to use our model with a pretrained feature extractor in Appendix A.

Chunked Hypernetwork: With the model compression ability powered by the hypernetwork, our
proposed model can scale well to large scale problems. Chunking (Ha et al., 2017; von Oswald
et al., 2020) is a commonly used method to reduce the number of parameters for the hypernetwork.
As shown in Fig. 4(b), a hypernetwork can iteratively generate small parts of the main network
θp = [θp,1, θp,2, · · · , θp,K], with a reasonable model size and multiple trainable chunk embedding
{ck}Kk=1, where θp,k = g(p, ck|φ). In this way, we can significantly compress the model size
and make it scalable for large MTL models. In this paper, we use fully-connected networks as the
hypernetwork, and the main MTL neural networks have the same structures as the models used in
current MTL literature (Liu et al., 2019; Sener & Koltun, 2018; Vandenhende et al., 2020).

5

Under review as a conference paper at ICLR 2021

Figure 5: Parameter Generation: The hypernetwork takes a preference vector p as input and gener-
ates the parameter θp,k,j for part of the main MTL network, where e =

∑m
i=1 piei is the preference

embedding, ck is the chunk embedding, FC is the fully connected layers, a is the generated vector,
andWj is a parameter tensor. All blocks in color contain trainable parameters for the hypernetwork.

Parameter Generation: We follow the hypernetwork design proposed by Ha et al. (2017) with
additional chunk embedding (von Oswald et al., 2020) to construct our hypernetwork-based model.
An illustration on the process to generate a chunk of parameters for the main MTL network is
shown in Fig. 5. We first assign m trainable q-dimensional embedding ei for each task, and use the
preference-weighted embedding e =

∑m
i piei as the input to the hypernetwork. In this way, the

input dimension increases from a small m (e.g., 2) to a larger q (e.g. 100). We simply concatenate
the preference embedding e with a chunk embedding ck as the input to a set of fully connected
layers, and obtain the generated vector a ∈ Rd. Then the hypernetwork uses a linear operation
to project the vector a into the generated parameters θp,k,j = Wja, where Wj ∈ Rnj,1×nj,2×d

contains nj,1 × nj,2 × d trainable parameters and θp,k,j ∈ Rnj,1×nj,2 . The hypernetwork generates
all parameters θp = [θp,1,θp,2, · · · ,θp,K] by iteratively conducting this generation process.

Scalablity and Inference: In the proposed hypernetwork, the fully connected layers are reusable
to generate different a based on different chunk embedding. Most hypernetwork parameters are in
the parameter tensors. By sharing the same Wj to generate different chunks of parameters with
different a, the number of parameters for the hypernetwork can be further reduced (Ha et al., 2017),
which makes it suitable to generate the parameters for large scale models. In this work, we keep
our hypernetwork-based model to have a comparable size with the corresponding MTL model. For
inference, the fully connected layers can make batch inference for multiple chunk embedding to
generate different a, and most computation is on the linear projection. It leads to an acceptable
inference latency overhead, and supports real-time trade-off preference adjustment.

5.2 END-TO-END OPTIMIZATION: LEARNING PARETO GENERATOR VIA SOLVING MTL

Since we want to control the trade-off preference at the inference time, we need to train a model
suitable for all preference vector p in the valid set P rather than a single preference. Suppose we
have a probability distribution on all possible preference vector p ∼ Pp, a general goal would be
minφEp∼PpL(g(p|φ)). It is hard to optimize the parameters within the expectation directly. We
use Monte Carlo method to sample the preference vector, and use the stochastic gradient descent
algorithm to train the deep neural network. At each step, we can sample one preference vector p
and optimize the loss function:

minφL(g(p|φ)), p ∼ Pp. (6)
At each iteration t, if we have a valid gradient direction dt for the loss L(g(p|φt)), we can simply
update the parameters with gradient descentφt+1 = φt−ηdt. For the preference-conditioned linear
scalarization case as in problem (4), the calculation of dt is straightforward:

dt =

m∑
i=1

pi∇φtLi(g(p|φt)), p ∼ Pp. (7)

For the preference-conditioned multiobjective optimization problem (5), a valid descent direction
should simultaneously reduce all losses and activated constraints. One valid descent direction can
be written as a linear combination of all tasks with dynamic weight αi(t):

dt =

m∑
i=1

αi(t)∇φtLi(g(p|φt)), p ∼ Pp, U ∼ PU , (8)

where the coefficients αi(t) is depended on both the loss functions Li(g(p|φt)) and the constraints
Gj(θ|p,U). We give the detailed derivation in the Appendix B.1 due to page limit.

6

Under review as a conference paper at ICLR 2021

5.3 ALGORITHM FRAMEWORK

Algorithm 1 Controllable Pareto Multi-Task Learning

1: Initialize the hypernetwork parameters φ0

2: for t = 1 to T do
3: Sample a preference vector p ∼ Pp, U ∼ PU
4: Obtain a valid gradient direction dt from (7) or (8)
5: Update the parameters φt+1 = φt − ηdt
6: end for
7: Output: The hypernetwork parameters φT

Figure 6: The algorithm framework and the continually learned trade-off curve for the training
loss on MultiMNIST problem: Our proposed algorithm optimizes the hypernetwork parameters for
all valid preferences, and continually learns the trade-off curve during the optimization process.

The algorithm framework is shown in Algorithm 1. We use a simple uniform distribution on all
valid preferences and references vector in this paper. At each iteration, we calculate a valid gra-
dient direction and update the hypernetwork parameters. The proposed algorithm simultaneously
optimizes the hypernetwork for all valid preference vectors that represent different valid trade-offs
among all tasks. As shown in Fig. 6, it continually learns the trade-off curve during the optimization
process. We obtain a Pareto generator at the end, and can directly generate a solution θp = g(p|φT)
from any valid preference vector p. By taking all preference vectors as input, we can construct the
whole trade-off curve.

6 SYNTHETIC MULTI-OBJECTIVE OPTIMIZATION PROBLEM

(a) Approx. Pareto Set (b) Approx. Pareto Front (c) Generated Pareto Set (d) Generated Pareto Front

Figure 7: Point Set Approximation and Generated Pareto Front. (a) & (b): Traditional multi-
objective optimization algorithms can only find a finite point set to approximate the Pareto set and
Pareto front. In addition, the simple linear scalarization method can not cover most part of the Pareto
set/front when the ground truth Pareto front is a concave curve. (c) & (d): Our proposed controllable
Pareto MTL method can successfully generate the whole Pareto front from the preference vectors.
In contrast, the linear scalarization method is only accurate for Pareto solutions near the endpoints.

In the previous section, we propose to use a hypernetwork to generate the parameters for the main
deep multi-task network based on a preference vector. The network parameters are in a high-
dimensional decision space, and the optimization landscape would be complicated. To better analyze
the behavior and convergence performance of the proposed algorithm, we first use it to generate the
Pareto solutions for a low-dimensional multiobjective optimization problem.

The experimental results are shown in Fig. 7. This synthetic problem has a sin-curve-like Pareto set
in the solution space, and its corresponding Pareto front is a concave curve in the objective space.
The detailed definition is given in the appendix. Our proposed controllable Pareto MTL method
can cover and reconstruct the whole manifold of Pareto front from the preference vectors, while
the traditional methods can only find a finite point set approximation. It should be noticed that the
simple linear scalarization method has poor performance for the problem with concave Pareto front.

7

Under review as a conference paper at ICLR 2021

7 EXPERIMENTS

0.910 0.915 0.920 0.925 0.930 0.935 0.940
Task 1: Accuracy Top Left

0.890

0.895

0.900

0.905

0.910

0.915

0.920

0.925

0.930
Ta

sk
 2

: A
cc

ur
ac

y
Bo

tto
m

 R
ig

ht

Uncertainty
DWA
MGDA
Lineaer Scalarization
Pareto MTL
Single Task
Controllable Lineaer Scalarization
Controllable Pareto MTL

(a) MultiMNIST

0.9125 0.9130 0.9135 0.9140 0.9145
Task 1: Segmentation

50

51

52

53

54

55

56

Ta
sk

 2
: D

ep
th

 E
st

im
at

io
n

Uncertainty
DWA
MGDA
Lineaer Scalarization
Pareto MTL
Single Task
Controllable Lineaer Scalarization
Controllable Pareto MTL

(b) CityScapes

0.502 0.504 0.506 0.508 0.510 0.512 0.514
Task 1: Segmentation

0.65

0.66

0.67

0.68

0.69

0.70

0.71

Ta
sk

 2
: D

ep
th

 (1
 -

Re
la

tiv
e

Er
ro

r)

Uncertainty
DWA
MGDA
Lineaer Scalarization
Pareto MTL
Single Task
Controllable Lineaer Scalarization
Controllable Pareto MTL

(c) NYUv2

Figure 8: Results on MultiMNIST, CityScapes and NYUv2: Our proposed algorithm can generate
the Pareto front for each problem with a single model respectively. For CityScapes and NYUv2, we
report pixel accuracy for segmentation and (1 - relative error) for depth estimation.

T1 T2
T3

T4

T5

T6

T7

T8

T9
T10T11T12

T13

T14

T15

T16

T17

T18

T19
T20

0.65

0.70

0.75

0.80

0.85

0.90

Uniform Linear
Uncertainty
DWA
MGDA
Balanced Hypernet
Ctrl Linear
Ctrl Pareto MTL

Ave. Acc
Uniform Linear 79.45 ± 0.23

Uncertainty 79.35 ± 0.43
DWA 80.52 ± 0.24

MGDA 80.14 ± 0.19
Balanced Hypernet 80.53 ± 0.16

Ctrl Linear 81.17 ± 0.08
Ctrl Pareto MTL 82.36 ± 0.06

Figure 9: The results of CIFAR-100 with 20 Tasks: The results for each baseline method is a single
solution. Our proposed algorithms switch to the corresponding preference when making prediction
for each task (e.g., preference on task 1 for making prediction on task 1).

In this section, we validate the performance of the proposed controllable Pareto MTL to generate the
trade-off curves for different MTL problems. We compare it with the following MTL algorithms:
1) Linear Scalarization: simple linear combination of different tasks with fixed weights; 2)Uncer-
tainty (Kendall et al., 2018): adaptive weight assignments with balanced uncertainty; 3)DWA (Liu
et al., 2019): dynamic weight average for the losses; 4) MGDA (Sener & Koltun, 2018): finds one
Pareto stationary solution; 5) Pareto MTL (Lin et al., 2019): generates a set of wildly distributed
Pareto stationary solutions; and 6) Single Task: the single task baseline.

We conduct experiments on the following widely-used MTL problems: 1) MultiMNIST (Sabour
et al., 2017): This problem is to classify two digits on one image simultaneously. 2)
CityScapes (Cordts et al., 2016): This dataset has street-view RGB images, and involves two tasks
to be solved, which are pixel-wise semantic segmentation and depth estimation. 3) NYUv2 (Silber-
man et al., 2012): This dataset is for indoor scene understanding with two tasks: a 13-class semantic
segmentation and indoor depth estimation. 4) CIFAR-100 with 20 Tasks: Follow a similar setting
in (Rosenbaum et al., 2018), we split the original CIFAR-100 dataset (Krizhevsky & Hinton, 2009)
into 20 five-class classification tasks. Details for these problems can be found in the Appendix C.

Result Analysis: The experimental results are shown in Fig. 8 where all models are trained from
scratch. In all problems, our proposed algorithm can learn the trade-off curve with a single model,
while the other methods need to train multiple models and cannot cover the entire curve. In addition,
the proposed preference-conditioned multiobjective optimization method can always find a better
trade-off curve that dominates the curve found by the simple linear scalarization. These results
validate the effectiveness of the proposed model and the end-to-end optimization method.

For all experiments, the single-task models are a strong baseline in performance with larger model
size (m full models). However, it cannot dominate most of the approximated Pareto front learned by

8

Under review as a conference paper at ICLR 2021

Table 1: Overveiw of the models we used in different MTL problems.

Problem Tasks Network Model Params Latency(ms)

MultiMNIST 2 LeNet Single MTL Model 84K 1.49 ± 0.12
Hypernetwork-based Model 83K 1.96 ± 0.06

CityScape 2 SegNet Single MTL Model 25M 65.0 ± 1.23
Hypernetwork-based Model 26M 88.6 ± 4.85

NYUv2 2 SegNet Single MTL Model 25M 179 ± 13.1
Hypernetwork-based Model 26M 198 ± 11.5

CIFAR100 20 ConvNet Single MTL Model 1.4M 9.95 ± 0.17
Hypernetwork-based Model 5.9M 23.4 ± 0.34

NYUv2 2 ResNet-50 Single MTL Model 56M 236 ± 11.2
Hypernetwork-based Model 120M 384 ± 18.0

our model. Our models provide diverse optimal trade-offs among tasks (e.g., in the upper left and
lower right area) for different problems and support real-time adjustment among them.

The experimental result on the 20-tasks CIFAR100 problem is shown in Fig. 9. Our proposed model
can achieve the best overall performance among different tasks by making a real-time trade-off
adjustment. It also outperforms the balanced hypernet approach, which uses the same hypernetwork-
based model to optimize all tasks simultaneously. This result shows the benefit of our proposed
model on preference-based modeling and real-time preference adjustment.

43.0 43.2 43.4 43.6 43.8 44.0 44.2 44.4
Task 1: Segmentation (mIOU)

0.4050

0.4075

0.4100

0.4125

0.4150

0.4175

0.4200

0.4225

0.4250
Ta

sk
 2

: D
ep

th
 (1

 -
rm

se
)

Uncertainty
DWA
MGDA
Grid Search
GradNorm
Single Task
Controllable Lineaer Scalarization
Controllable Pareto MTL

Figure 10: Results on NYUv2
with ResNet-50 Backbone: The
proposed model can generate rea-
sonable trade-off curves.

Scalability and Latency: The models we use in the exper-
iments are summarized in Table.1. As discussed in the pre-
vious sections, we build the hypernetwork such that the pro-
posed models have a comparable number of parameters with
the corresponding MTL model. Given the current works (Lin
et al., 2019; Mahapatra & Rajan, 2020; Ma et al., 2020) need to
train and store multiple MTL models to approximate the Pareto
front, our proposed model is much more parameter-efficient
while learning the whole trade-off curve. In this sense, it is
more scalable than the current methods.

The inference latency for all models are also reported. The
latency is measured on a 1080Ti GPU with the training batch
size for each problem. We report the averaged mean and stan-
dard deviation over 100 independent runs. For our proposed
model, we randomly adjust the preference for each batch. Our
model has an affordable overhead on the inference latency,
which is suitable for real-time preference adjustment.

Experiment with Pretrained Backbone: We conduct an ex-
periment on the NYUv2 problem with a large-scale ResNet-50 backbone (He et al., 2016) following
the experimental setting in Vandenhende et al. (2020). Each model has a ResNet-50 backbone pre-
trained on ImageNet, and task-specific heads with ASPP module (Chen et al., 2018a). The results
are shown in Fig.10, where the results for MTL models are from Vandenhende et al. (2020) with the
best finetuned configurations. Our proposed model also uses the pretrained ResNet-50 backbone,
and generates the encoder’s last few layers and all task-specific heads. Our model can learn the
trade-off curve with comparable performance, which might be further improved with task balancing
methods and better hypernetwork architecture design as in Vandenhende et al. (2020).

8 CONCLUSION

In this paper, we proposed a novel controllable Pareto multi-task learning framework for solving
MTL problems. With a hypernetwork-based Pareto solution generator, our method can directly
learn the whole trade-off curve for all tasks with a single model. It allows practitioners to easily
make real-time trade-off adjustment among tasks at the inference time. Experimental results on
various MTL applications demonstrated the usefulness and efficiency of the proposed method.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Anonymous. Learning the pareto front with hypernetworks. In Submitted to International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
NjF772F4ZZR. under review.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 39(12):2481–2495, 2017.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. Smash: One-shot model architecture
search through hypernetworks. In ICLR 2018 : International Conference on Learning Represen-
tations 2018, 2018.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Oscar Chang, Lampros Flokas, and Hod Lipson. Principled weight initialization for hypernetworks.
In ICLR 2020 : Eighth International Conference on Learning Representations, 2020.

Liang Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. In European Con-
ference on Computer Vision, 2018a.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In Proceedings of the 35th
International Conference on Machine Learning, pp. 794–803, 2018b.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213–3223, 2016.

Indraneel Das and J.E. Dennis. A closer look at drawbacks of minimizing weighted sums of objec-
tives for pareto set generation in multicriteria optimization problems. Structural Optimization, 14
(1):63–69, 1997.

Jean-Antoine Désidéri. Mutiple-gradient descent algorithm for multiobjective optimization. In
European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS
2012), 2012.

Alexey Dosovitskiy and Josip Djolonga. You only train once: Loss-conditional training of deep
networks. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=HyxY6JHKwr.

Vikranth Dwaracherla, Xiuyuan Lu, Morteza Ibrahimi, Ian Osband, Zheng Wen, and Benjamin Van
Roy. Hypermodels for exploration. In ICLR 2020 : Eighth International Conference on Learning
Representations, 2020.

Thomas Elsken, Jan Metzen, and Frank Hutter. Efficient multi-objective neural architecture search
via lamarckian evolution. In International Conference on Learning Representations, 2019.

Jörg Fliege and Benar Fux Svaiter. Steepest descent methods for multicriteria optimization. Mathe-
matical Methods of Operations Research, 51(3):479–494, 2000.

Bennet Gebken, Sebastian Peitz, and Michael Dellnitz. A descent method for equality and inequality
constrained multiobjective optimization problems. In Numerical and Evolutionary Optimization,
pp. 29–61. Springer, 2017.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In ICLR 2017 : International Confer-
ence on Learning Representations 2017, 2017.

10

https://openreview.net/forum?id=NjF772F4ZZR
https://openreview.net/forum?id=NjF772F4ZZR
https://openreview.net/forum?id=HyxY6JHKwr
https://openreview.net/forum?id=HyxY6JHKwr

Under review as a conference paper at ICLR 2021

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Proceedings
of the 30th international conference on machine learning, pp. 427–435, 2013.

Siddhant M. Jayakumar, Jacob Menick, Wojciech M. Czarnecki, Jonathan Schwarz, Jack Rae, Si-
mon Osindero, Yee Whye Teh, Tim Harley, and Razvan Pascanu. Multiplicative interactions and
where to find them. In ICLR 2020 : Eighth International Conference on Learning Representa-
tions, 2020.

Andrej Karpathy. Multi-task learning in the wilderness. AMTL Workshop, ICML2019, 2019.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

Iasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited memory. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 6129–6138, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, https://www.cs.toronto.edu/ kriz/cifar.html, 2009.

David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste, and Aaron
Courville. Bayesian hypernetworks. arXiv: Machine Learning, 2018.

Xi Lin, Huiling Zhen, Zhenhua Li, Qingfu Zhang, and Sam Kwong. Pareto multi-task learning. In
Advances in Neural Information Processing Systems (NeurIPS). accepted, 2019.

Etai Littwin, Tomer Galanti, and Lior Wolf. On the optimization dynamics of wide hypernetworks.
arXiv preprint arXiv:2003.12193, 2020.

Hai-Lin Liu, Fangqing Gu, and Qingfu Zhang. Decomposition of a multiobjective optimization
problem into a number of simple multiobjective subproblems. IEEE Trans. Evolutionary Compu-
tation, 18(3):450–455, 2014.

Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with attention.
In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1871–
1880, 2019.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Philip S. Yu. Learning multiple tasks with
multilinear relationship networks. In Advances in Neural Information Processing Systems, pp.
1594–1603, 2017.

Zhichao Lu, Gautam Sreekumar, Erik Goodman, Wolfgang Banzhaf, Kalyanmoy Deb, and
Vishnu Naresh Boddeti. Neural architecture transfer. arXiv preprint arXiv:2005.05859, 2020.

Pingchuan Ma, Tao Du, and Wojciech Matusik. Efficient continuous pareto exploration in multi-task
learning. Thirty-seventh International Conference on Machine Learning (ICML 2020), 2020.

Matthew MacKay, Paul Vicol, Jonathan Lorraine, David Duvenaud, and Roger Grosse. Self-tuning
networks: Bilevel optimization of hyperparameters using structured best-response functions. In
ICLR 2019 : 7th International Conference on Learning Representations, 2019.

Debabrata Mahapatra and Vaibhav Rajan. Multi-task learning with user preferences: Gradient de-
scent with controlled ascent in pareto optimization. Thirty-seventh International Conference on
Machine Learning (ICML 2020), 2020.

Elliot Meyerson and Risto Miikkulainen. Modular universal reparameterization: Deep multi-task
learning across diverse domains. In Advances in Neural Information Processing Systems, pp.
7903–7914, 2019.

11

Under review as a conference paper at ICLR 2021

Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science & Business
Media, 2012.

Nikola Milojkovic, Diego Antognini, Giancarlo Bergamin, Boi Faltings, and Claudiu Musat. Multi-
gradient descent for multi-objective recommender systems. arXiv preprint arXiv:2001.00846,
2019.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3994–4003, 2016.

Simone Parisi, Matteo Pirotta, and Marcello Restelli. Multi-objective reinforcement learning
through continuous pareto manifold approximation. Journal of Artificial Intelligence Research,
57:187–227, 2016.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection
of non-linear functions for multi-task learning. In ICLR 2018 : International Conference on
Learning Representations 2018, 2018.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Advances in Neural Information Processing Systems, pp. 3856–3866, 2017.

Jürgen Schmidhuber. Learning to control fast-weight memories: an alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Advances
in Neural Information Processing Systems, pp. 525–536, 2018.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
port inference from rgbd images. In European conference on computer vision, pp. 746–760.
Springer, 2012.

Trevor Standley, Amir Roshan Zamir, Dawn Chen, Leonidas J. Guibas, Jitendra Malik, and Silvio
Savarese. Which tasks should be learned together in multi-task learning? International Confer-
ence on Machine Learning, 2020.

Sandeep Subramanian, Adam Trischler, Yoshua Bengio, and Christopher J Pal. Learning general
purpose distributed sentence representations via large scale multi-task learning. In International
Conference on Learning Representations, 2018.

Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of pareto
dominating policies. The Journal of Machine Learning Research, 15(1):3483–3512, 2014.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey, 2020.

Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F. Grewe. Continual
learning with hypernetworks. In ICLR 2020 : Eighth International Conference on Learning
Representations, 2020.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. In Advances in Neural Information Processing
Systems, pp. 14636–14647, 2019.

Yongxin Yang and Timothy M. Hospedales. Deep multi-task representation learning: A tensor
factorisation approach. In ICLR 2017 : International Conference on Learning Representations
2017, 2017.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. arXiv preprint arXiv:2001.06782, 2020.

12

Under review as a conference paper at ICLR 2021

Amir R. Zamir, Alexander Sax, William Shen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning. In 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 3712–3722, 2018. URL https://academic.
microsoft.com/paper/2964185501.

Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decomposi-
tion. IEEE Transactions on evolutionary computation, 11(6):712–731, 2007.

Yu Zhang and Qiang Yang. A survey on multi-task learning. arXiv preprint arXiv:1707.08114,
2017.

Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a comparative case study
and the strength pareto approach. IEEE transactions on Evolutionary Computation, 3(4):257–
271, 1999.

13

https://academic.microsoft.com/paper/2964185501
https://academic.microsoft.com/paper/2964185501

Under review as a conference paper at ICLR 2021

APPENDIX

We provide more discussion and analysis in this appendix, which can be summarized as follows:

• Model with Pretrained Feature Extractor: We discuss how to use pretrained feature
extractor in our proposed model in Appendix A.

• Preference-based Multiobjective Gradient Descent: We give the details of preference-
based multiobjective gradient descent for model training in Appendix B.

• Experimental Setting: The detailed experimental settings are provided in Section C.

A MODEL WITH PRETRAINED FEATURE EXTRACTOR

(a) Pareto MTL Net with Pretrain Encoder (b) Generated MTL Net with Different
Preference

Figure 11: (a) Controllable Pareto MTL network with a pretrained feature extractor: The pretrained
encoder is preference-agnostic, and the hypernetwork generates the rest parts of the main MTL
network. (b) The generated MTL models share the same parameters for part of the encoder.

One powerful and efficient way to improve the MTL model performance is to use a feature extractor
pretrained on large scale dataset (Ruder, 2017; Vandenhende et al., 2020). This approach can be
easily incorporated into our proposed model. As shown in Fig.11(a), our model can be built on top
of a shared pretrained feature extractor, and the hypernetwork generates the parameters for the rest
part of the encoder and all task-specific heads. The main MTL model parameters θ = [θs,θp] now
have a preference-agnostic part θs and a preference-conditioned part θp = g(p|φ).

In other words, no matter what preferences are given, all generated MTL models will share the
parameters for the feature extractor as shown in Fig.11(b). It is a structure constraint across all
generated solutions, and the trade-off curve learned by our model would be a front of restricted
Pareto stationary solutions, with constraints on the sharing parameters. The shared encoder brings
extra knowledge from the datasets it pretrained on, and it also has a regularization effect since it is
shared by models with different preferences. The experiment on models with ResNet-50 backbone
validates that our proposed model can still learn the trade-off curve with a pretrained encoder.

14

Under review as a conference paper at ICLR 2021

(a) iter 1 (b) iter 2 (c) iter 3 (d) iter 4

Figure 12: The training process of the Pareto solution generator. At each iteration, the proposed
algorithm randomly samples a preference vector and a set of reference vectors to decompose the
loss space, and calculates a valid gradient direction to update the Pareto solution generator. The
algorithm iteratively learns and improves the generated manifold during the optimization process.

B PREFERENCE-BASED MULTIOBJECTIVE GRADIENT DESCENT

In this section, we give the details of preference-based multiobjective gradient descent for training
the hypernetwork-based model.

B.1 PREFERENCE-CONDITIONED MULTIOBJECTIVE GRADIENT DESCENT

The Pareto solution generator generates a solution θp = g(p|φ) from the preference vector p. Under
ideal condition, if we take all valid preference vectors p ∈ P (which is an (m − 1)-dimensional
manifold) as input, the output would be another (m − 1)-dimensional manifold. At the end of the
algorithm, we hope the generated manifold is close to the manifold of true Pareto set.

In the proposed algorithm, we randomly sample a preference vector p at each iteration to update the
generator parameters φ. As illustrated in Fig. 12, it continually learns and improves the current man-
ifold around the preference vector at each iteration. It should be noticed that the sampled preference
vector and all reference vectors are different at each iteration, so as the decomposition.

Figure 13: For a preference vector,
the valid gradient direction should
reduce all losses and activated con-
straints for the generated solution.

As mentioned in the Algorithm 1 in the main paper, we use
simple gradient descent to update the Pareto solution gener-
ator at each iteration. For the case of linear scalarization,
calculating the gradient direction is straightforward. In this
subsection, we discuss how to obtain a valid gradient direc-
tion for the preference-conditioned multiobjective optimiza-
tion. Similar to the previous work (Sener & Koltun, 2018; Lin
et al., 2019), we use multiobjective gradient descent (Fliege
& Svaiter, 2000; Désidéri, 2012) to solve the MTL problem.
However, in our algorithm, the optimization parameter is φ for
the Pareto solution generator rather than θ for a single solution.

A simple illustration of the multiobjective gradient descent
idea for a problem with two tasks is shown in Fig. 13. At each
iteration, the algorithm samples a preference vector p and ob-
tains its current corresponding solution θp. A valid gradient
direction should reduce all the losses and guide the generated
solution θp = g(p|φ) toward the preference region Ω(p,U)
around the preference vector p.

At iteration t, for a given preference vector p, the preference-
conditioned multiobjective problem with the Pareto solution generator can be written as:

min
φt

(L1(g(p|φt)),L2(g(p|φt)), · · · ,Lm(g(p|φt))),

s.t. Gj(g(p|φt)|p,U) = (u(j) − p)TL(g(p|φt)) ≤ 0,∀j = 1, ...,K.
(9)

15

Under review as a conference paper at ICLR 2021

Since the parameter θp is generated by the Pareto solution generator g(p|φt), the generator’s pa-
rameter φt is the only trainable parameters to be optimized. What we need is to find a valid gradient
direction dt to reduce all the losses Li(g(p|φt)) and activated constraints Gj(g(p|φt)|p,U) with
respect to φt.

We follow the methods proposed in (Fliege & Svaiter, 2000; Gebken et al., 2017), and calculate a
valid descent direction dt by solving the optimization problem:

(dt, αt) =arg min
d∈Rn,α∈R

α+
1

2
||d||2

s.t. ∇φtLi(g(p|φt))Td ≤ α, i = 1, ...,m

∇φtGj(g(p|φt))Td ≤ α, j ∈ I(φt).

(10)

where dt is the obtained gradient direction, α is an auxiliary parameter for optimization, and I(θ) =
{j ∈ I|Gj(g(p|φt)) ≥ 0} is the index set of all activated constraints. By solving the above problem,
the obtained direction dt and parameter αt will satisfy the following lemma (Gebken et al., 2017):

Lemma 1: Let (dt, αt) be the solution of problem (10), we either have:

1. A non-zero dt and αt with

αt ≤ −(1/2)||dt||2 < 0,

∇φtLi(g(p|φt))Tdt ≤ αt, i = 1, ...,m

∇φtGj(g(p|φt))Tdt ≤ αt, j ∈ I(φt).

(11)

2. or dt = 0 ∈ Rn, αt = 0, and θp = g(p|φt) is local Pareto critical restricted on Ω(p,U).

In case 1, we obtain a valid descent direction dt 6= 0 which has negative inner products with
all ∇φLi(g(p|φt)) and ∇φGj(g(p|φt)) for j ∈ I(φt). With a suitable step size η, we can update
φt+1 = φt+ηdt to reduce all losses and activated constraints. In case 2, we cannot find any nonzero
valid descent direction, and obtain dt = 0. In other words, there is no valid descent direction to
simultaneously reduce all losses and activated constraints. Improving the performance for one task
would deteriorate the other(s) or violate some constraints. Therefore, the current solution θp =
g(p|φt) is a local restricted Pareto optimal solution on Ω(p,U).

B.2 ADAPTIVE LINEAR SCALARIZATION

As mentioned in the main paper, we can rewrite the gradient direction dt as a dynamic linear combi-
nation with the gradient of all losses ∇φLi(g(p|φt)). Similar to the approach in (Fliege & Svaiter,
2000; Lin et al., 2019), we reformulate the problem (10) in its dual form:

max
λi,βj

− 1

2
||

m∑
i=1

λi∇φtLi(g(p|φt)) +
∑

j∈I(φt)

βi∇φtGj(g(p|φt))||2

s.t.

m∑
i=1

λi +
∑

j∈I(φt)

βj = 1, λi ≥ 0, βj ≥ 0,∀i = 1, ...,m, ∀j ∈ I(φt),

(12)

where dt =
∑m
i=1 λi∇φtLi(g(p|φt))+

∑
j∈I(φt) βi∇φtGj(g(p|φt)) is the obtained valid gradient

direction, λi and βi are the Lagrange multipliers for the linear inequality constraints in problem (10).

Based on the definition in problem (9), a constraint Gj(g(p|φt)) can be rewritten as a linear combi-
nation of all losses:

Gj(g(p|φt)) = (u(j) − p)TL(g(p|φt)) =

m∑
i=1

(u
(j)
i − pi)Li(g(p|φt)). (13)

The gradient of the constraint is also a linear combination of those for the losses:

∇φtGj(g(p|φt)) = (u(j) − p)T∇φtL(g(p|φt)) =

m∑
i=1

(u
(j)
i − pi)∇φtLi(g(p|φt)). (14)

16

Under review as a conference paper at ICLR 2021

(a) iter 1 (b) iter 2 (c) iter 3 (d) iter 4

Figure 14: The training process of the Pareto solution generator with multiple preferences. At
each iteration, the proposed algorithm randomly samples multiple preference vectors, and calculates
a valid gradient direction which can improve the performance for all subproblems.

Therefore, we can rewrite the valid descent direction as a linear combination of the gradients for all
tasks with dynamic weight αi(t):

dt =

m∑
i=1

αi(t)∇φtLi(g(p|φt)), αi(t) = λi +
∑

j∈Iε(θ)

βj(u
(j)
i − pi), (15)

where λi and βj are obtained by solving the dual problem (12).

It should be noticed that the primal problem (10) directly optimizes the gradient direction dt, which
could be in millions of dimensions for training a deep neural network. In contrast, the dimension of
dual problem (12) is the number of all tasks and activated constraints (up to a few dozens), which is
much smaller than the primal problem. Therefore, in practice, we obtain the valid gradient direction
dt by solving the dual problem (12) instead of the primal problem (10).

We use the Frank-Wolfe algorithm (Jaggi, 2013) to solve the problem (12) as in the previous
work (Sener & Koltun, 2018; Lin et al., 2019). We use simple uniform distribution to sample both
the unit preference vector p and unit reference vectors U in this paper. The number of preference
vector is 1 in the previous discussion, and the number of reference vectors is a hyperparameter,
which we set it as 3 in this paper. In the next subsection, we will discuss how to use more than one
preference vector at each iteration to update the Pareto solution generator.

B.3 BATCHED PREFERENCES UPDATE

To obtain an optimal Pareto generator g(p|φ∗), we need to find:

φ∗ = argminφEp∼PpL(g(p|φ)). (16)

In the main paper, we sample one preference vector at each iteration to calculate a valid direction
dt to update the Pareto generator. A simple and straightforward extension is to sample multiple
preference vectors to update the Pareto solution generator, as shown in Fig. 14.

At each iteration, we simultaneously sample and optimize multiple subproblems with respect to the
Pareto generator:

minφ{L(g(p1|φ)),L(g(p2|φ)), · · · ,L(g(pK |φ))}, p1,p2, · · · ,pK ∼ Pp (17)

where p1,p2, · · · ,pK areK randomly sampled preference vectors and each L(g(pk|φ)) is a multi-
objective optimization problem. Therefore, we now have a hierarchical multiobjective optimization
problem. If we do not have a specific preference among the sampled preference vectors, the above
problem can be expanded as a problem with Km objectives:

minφ(L1(g(p1|φ)), · · · ,Lm(g(p1|φ)), · · · ,L1(g(pK |φ)), · · · ,Lm(g(pK |φ))). (18)

For the linear scalarization case, the calculation of valid gradient direction at each iteration t is
straightforward:

dt =

K∑
k=1

∇φtL(g(pk|φt)) =

K∑
k=1

m∑
i=1

pi∇φtLi(g(pj |φt)), p1,p2, · · · ,pK ∼ Pp, (19)

17

Under review as a conference paper at ICLR 2021

where we assume all sampled subproblems are equally important.

It is more interesting to deal with the preference-conditioned multiobjective optimization problem.
For each preference vector pk, suppose we use the rest preference vectors as its reference vectors,
the obtained preference-conditioned multiobjective optimization problem would be:

min
φt

(L1(g(p1|φt)), · · · ,Lm(g(p1|φt)), · · · ,L1(g(pK |φt)), · · · ,Lm(g(pK |φt)))

s.t. G1j(g(p1|φt)) = (pj − p1)TL(g(p1|φt)) ≤ 0,∀j ∈ {1, ...,K}\{1},
G2j(g(p2|φt)) = (pj − p2)TL(g(p2|φt)) ≤ 0,∀j ∈ {1, ...,K}\{2},
· · ·
GKj(g(pK |φt)) = (pj − pK)TL(g(pK |φt)) ≤ 0,∀j ∈ {1, ...,K}\{K}.

(20)

There are (K − 1) constraints for each preference vector, hence total K(K − 1) constraints for
the preference-conditioned multiobjective problem, although some of them could be inactivated.
Similar to the single point case, we can also calculate the valid gradient direction in the form of
adaptive linear combination as:

dt =

K∑
k=1

m∑
i=1

βi(t)∇φtLi(g(pk|φt)), (21)

where the adaptive weight βi(t) depends on all loss functions Li(g(pk|φt)) and activated con-
straints Gkj(g(pk|φ)).

18

Under review as a conference paper at ICLR 2021

C EXPERIMENTAL SETTING

Synthetic Example: The synthetic example we use in Section 6 is defined as:

min
θ
f1(θ) = 1− exp

(
−(θ1 − 1)2 − 1

n− 1

n∑
i=2

[θi − sin(5θ1)]2

)
,

min
θ
f2(θ) = 1− exp

(
−(θ1 + 1)2

)
.

(22)

We set n = 10 and use a simple two-layer MLP network with 50 hidden units on each layer to
generate the Pareto solutions based on the preference vectors.

MultiMNIST (Sabour et al., 2017): In this problem, the goal is to classify two overlapped digits
in an image at the same time. The size of the original MNIST image is 28 × 28. We randomly
choose two digits from the MNIST dataset, and move one digit to the upper-left and the other one
to the bottom right with up to 4 pixels. Therefore, the input image is in size 36× 36.

Similar to the previous work (Sener & Koltun, 2018; Lin et al., 2019), we use a LeNet-based neural
network with task-specific fully connected layers as the main MTL model, and use a simple MLP as
the hypernetwork. Since the LeNet model is small, we do not use any preference/chunk embedding.
We let the hypernetwork-based model has a similar number of parameters with a single MTL model.
For all methods, the optimizer is Adam with learning rate lr = 3e−4, the batch size is 256, and the
number of epochs is 200.

CityScapes (Cordts et al., 2016): This dataset has street-view RGB images, and involves two
tasks to be solved, which are pixel-wise semantic segmentation and depth estimation. We follow the
setting used in (Liu et al., 2019), and resize all images into 128×256. For the semantic segmentation,
the model predicts the 7 coarser labels for each pixel. We use the L1 loss for the depth estimation.
We report the experimental results on the Cityscapes validation set.

We use the MTL network proposed in (Liu et al., 2019), which has SegNet (Badrinarayanan et al.,
2017) as the shared representation encoder, and two task-specific lightweight convolution layers.
In our hypernetwork-based model, the hypernetwork contains three 2-layer MLPs with 100 hidden
units on each layer, and most parameters are stored in the parameter tensors for linear projection.
The preference embedding and chunk embedding are all 64-dimensional vectors. We also let the
hypernetwork-based model has a similar number of parameters with the single MTL model. For all
experiments, we use Adam with learning rate lr = 3e−4 as the optimizer, and the batch size is 12.
We train the model from scratch with 200 epochs.

NYUv2 (Silberman et al., 2012): This dataset is for indoor scene understanding with two tasks: a
13-class semantic segmentation and indoor depth estimation. Similar to Liu et al. (2019), we resize
all images into 288× 384. For the training from scratch experiment, we use a similar MTL network
and hyperparameter setting as for the CityScapes problem, except the batch size is 8 in this problem.

We also test the performance on models with pretrained encoder on the NYUv2 Dataset. We follow
the setting in the recent MTL survey paper (Vandenhende et al., 2020), all models have a ResNet-50
backbone (He et al., 2016) pretrained on ImageNet, and two-specific heads with ASPP module (Chen
et al., 2018a). In our hypernetwork-based model, the hypernetwork has three different 2-layer MLPs
with 200 hidden unit on each layer. One MLP is for generating shared convolution layers on top of
the ResNet backbone, and the other two are for each task-specific head. The shared parameters for
backbone are unfrozen, and will be adapted during training. We use 100-dimensional vectors as the
preference and chunking embedding. We use Adam with learning rate lr = 1e−4 as the optimizer,
the batch size is 8, and the total epoch is 200.

CIFAR100 with 20 Tasks: To validate the algorithm performance on MTL problem with many
tasks, we split the CIFAR-100 dataset (Krizhevsky & Hinton, 2009) into 20 tasks, where each task is
a 5-class classification problem. Similar setting has been used in MTL learning (Rosenbaum et al.,
2018) and continual learning (von Oswald et al., 2020).

19

Under review as a conference paper at ICLR 2021

The MTL neural network has four convolution layers as the shared architecture, and 20 task-specific
FC layers. In our proposed model, we have 5 MLPs and the preference and chunking embedding
are both 32-dimensional vectors. The optimizer is Adam with learning rate lr = 3e−4, the batch size
is 128, and the number of epochs is 200. We report the test accuracy for all 20 tasks.

20

	Introduction
	Related Work
	MTL as Multi-Objective Optimization
	Preference-Conditioned Pareto Solution Generator
	Controllable Pareto Multi-Task Learning
	Hypernetwork-based Deep Multi-Task Network
	End-to-End Optimization: Learning Pareto Generator via Solving MTL
	Algorithm Framework

	Synthetic Multi-Objective Optimization Problem
	Experiments
	Conclusion
	Model with Pretrained Feature Extractor
	Preference-based Multiobjective Gradient Descent
	Preference-Conditioned Multiobjective Gradient Descent
	Adaptive Linear Scalarization
	Batched Preferences Update

	Experimental Setting

