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Abstract

Carefully-designed schemas describing how to001
collect and annotate dialog corpora are a pre-002
requisite towards building task-oriented dia-003
log systems. In practical applications, manu-004
ally designing schemas can be error-prone, la-005
borious, iterative, and slow, especially when006
the schema is complicated. To alleviate this007
expensive and time consuming process, we008
propose an unsupervised approach for slot009
schema induction from unlabeled dialog cor-010
pora. Leveraging in-domain language mod-011
els and unsupervised parsing structures, our012
data-driven approach extracts candidate slots013
without constraints, followed by coarse-to-fine014
clustering to induce slot types. We compare015
our method against several strong supervised016
baselines, and show significant performance017
improvement in slot schema induction on Mul-018
tiWoz and SGD datasets. We also demon-019
strate the effectiveness of induced schemas020
on downstream applications including dialog021
state tracking and response generation.022

1 Introduction023

Defining task-specific schema, including intents024

and arguments, is the first step of building a task-025

oriented dialog (TOD) system. In real-world appli-026

cations such as call centers, we may have abundant027

conversation logs from real users and system assis-028

tants without annotation. To build an effective sys-029

tem, experts need to study thousands of conversa-030

tions, find relevant phrases, manually group phrases031

into concepts, and iteratively build the schema to032

cover use cases. The schema is then used to an-033

notate belief states and train models. This pro-034

cess is labor-intensive, error-prone, expensive, and035

slow (Eric et al., 2020; Zang et al., 2020; Min et al.,036

2020). As a prerequisite, it hinders quick deploy-037

ment for new domains and tasks. We therefore are038

interested in developing automatic schema induc-039

Can I have more information for the 
train you’re needing?

I am leaving from Cambridge and 
going to Norwich.

I also need a train. The train should 
leave after 16:15 and leave on sunday.
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Figure 1: Overview of slot schema induction from raw
conversation. We use a bottom-up representation level
distance function derived from pre-trained LMs (com-
bined with PCFG structure) to extract informative can-
didate phrases such as “after 16:15” and “expensive”.
The spans are subsequently clustered through multiple
stages to form coarse to fine categories. The ground
truth mapping is shown on the right (such as “train
leaveat”).

tion methods in this work to create the ontology1 040

from conversations for TOD tasks. 041

Most existing approaches for slot schema induc- 042

tion rely on syntactic or semantic models trained 043

with labeled data (Chen et al., 2013; Hudeček et al., 044

2021; Min et al., 2020). Our proposed method, on 045

the other hand, is completely unsupervised with- 046

out requiring generic parser and heuristics, and 047

hence portable to new tasks and domains seam- 048

lessly, overcoming the limitations of previous re- 049

search. Analogous to human experts, our procedure 050

is divided into two general steps: relevant span ex- 051

traction, and slot categorization. Fig. 1 provides an 052

overview of our approach. We introduce a bottom- 053

up span extraction method leveraging a pre-trained 054

language model (LM) and regularized by unsuper- 055

vised probabilistic context-free grammar (PCFG) 056

structure. We also propose a multi-step auto-tuned 057

clustering method to group the extracted spans into 058

fine-grained slot types with hierarchy. 059

We demonstrate that our unsupervised in- 060

duced slot schema is well-aligned with expert- 061

1We use “schema” and “ontology” interchangeably in this
paper. Following previous work in literature, we focus on
schema induction for slots, which is more challenging than
domains and intents.
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designed reference schema on the public Multi-062

WoZ (Budzianowski et al., 2018) and SGD (Ras-063

togi et al., 2020) datasets. We further evaluate064

the induced schema on dialog state tracking (DST)065

and response generation to indicate usefulness and066

demonstrate performance gains over strong super-067

vised baselines. Meanwhile, our method is appli-068

cable to more realistic scenarios with complicated069

schemas.070

2 Related Work071

Schema induction for dialog Motivated by the072

practical advantages of unsupervised schema induc-073

tion, Klasinas et al. (2014); Athanasopoulou et al.074

(2014) propose to induce spoken dialog grammar075

based on n-grams to generate fragments. Differ-076

ent from studying semantic grammars, Chen et al.077

(2013, 2014, 2015b,a); Hudeček et al. (2021) pro-078

pose to utilize annotated FrameNet (Baker et al.,079

1998) to label semantic frames for raw utterances080

(Das et al., 2010). The frames are designed on081

generic semantic context, which contains frames082

that are related to the target domain (such as "ex-083

pensiveness") and irrelevant (such as "capability"),084

while other relevant slots such as “internet” cannot085

be extracted because they do not have correspond-086

ing defined frames. This line of work focuses on087

ranking extracted frame clusters and then manu-088

ally maps the top-ranked induced slots to reference089

slots. Instead of FrameNet, Shi et al. (2018) extract090

features such as noun phrases (NPs) using part-of-091

speech (POS) tags and frequent words and aggre-092

gate them via a hierarchical clustering method, but093

only about 70% target slots can be induced. In094

addition to the unsatisfactory induction results due095

to candidate slot extraction, most of the previous096

works are only applicable to a single domain such097

as restaurant booking with a small amount of data,098

and require manual tuning to find spans and gener-099

ate results. These methods are not easily adaptable100

to unseen tasks and services.101

The most comparable work to ours is probably102

Min et al. (2020), which is not bounded by an ex-103

isting set of candidate values so that potentially all104

slots can be captured. They propose to mix POS105

tags, named entities, and coreferences with a set106

of rules to find slot candidates while filtering irrel-107

evant spans using manually updated filtering lists.108

In comparison, our method does not require any109

supervised tool and can be easily adapted to new110

domains and tasks with self-supervised learning. In111

addition to flexibility, despite our simple and more 112

stable clustering process compared to their varia- 113

tional embedding generative approach (Jiang et al., 114

2017), our method achieves better performance on 115

slot schema induction and our induced schema is 116

more useful for downstream tasks. 117

We survey schema induction work for other nat- 118

ural language processing tasks in Appendix A.11. 119

Span extraction Previous works in span extrac- 120

tion consider all combination of tokens as candi- 121

dates (Yu et al., 2021). Alternatively, keyphrase 122

extraction research (Campos et al., 2018; Bennani- 123

Smires et al., 2018) mostly depends on corpus 124

statistics (such as frequency), similarity between 125

phrase and document embeddings, or POS tags 126

(Wan and Xiao, 2008; Liu et al., 2009), and formu- 127

lates the task as a ranking problem. Although these 128

methods can find meaningful phrases, they may re- 129

sult in a low recall for TOD settings. For instance, 130

the contextual semantics of a span (such as time) 131

in an utterance may not represent the utterance- 132

level semantics compared to other generic phrases. 133

Other methods for span extraction include syntac- 134

tic chunking, but mostly require supervised data 135

(Li et al., 2021) and heuristics (such as considering 136

“noun phrases” or “verb phrases”), and thus are not 137

flexible and robust compared to our method. 138

Finally, target spans can be found in syntactic 139

structures which can be potentially induced from 140

supervised parsers or unsupervised grammar induc- 141

tion (Klein and Manning, 2002, 2004; Shen et al., 142

2018; Drozdov et al., 2019; Zhang et al., 2021). 143

Kim et al. (2020) probe LMs and observe that re- 144

cursively splitting sentences into binary trees in a 145

top-down approach can correlate to constituency 146

parsing. However, unlike the task of predicting 147

relationship between words in a sentence where 148

phrases at each level of a hierarchical structure 149

are valid, detecting clear boundaries is critical to 150

span extraction but challenging with various phrase 151

lengths. Even though more flexible compared to se- 152

mantic parsers that are limited by pre-defined roles, 153

there is no straightforward way to apply these meth- 154

ods to span extraction. 155

3 Unsupervised Slot Schema Induction 156

Our proposed method for slot schema induction 157

consists of a fully unsupervised span extraction 158

stage followed by coarse-to-fine clustering. 159
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3.1 Overview160

Given user utterances from raw conversations, our161

goal is to induce the schema of slot types S and162

their corresponding slot values. The span extraction163

stage extracts spans (e.g., “with wifi”) from an164

utterance x. The candidate spans from all user165

utterances are then clustered into a set of groups S166

where each group si corresponds to a slot type such167

as “internet” with values “with wifi”, “no wifi”,168

and “doesn’t matter”. The induced slot schema can169

be later used for downstream applications such as170

dialog state tracking and response generation.171

3.2 Candidate span extraction172

Challenges Since it is unclear what spans are173

meaningful phrases representative of task-specific174

slots, candidate span extraction presents two chal-175

lenges. Firstly, with either supervised or unsuper-176

vised predicted structures, there is no protocol on177

what constituent and from what level we should178

extract the spans from without relying on dataset-179

specific heuristics, especially as structured repre-180

sentations are often compositional (Herzig and Be-181

rant, 2021). The second challenge is that span182

extraction methods should be flexible and robust183

to unseen tasks and domains. To tackle these prob-184

lems, we leverage pre-trained LMs and propose a185

novel bottom-up attention-based span extraction186

method regularized by unsupervised PCFG for bet-187

ter structure representation. Because our method188

does not need any supervised data, the second prob-189

lem can be effectively addressed by in-domain self-190

training. The full algorithm is outlined in Algo-191

rithm 1.192

Algorithm 1: Span Extraction
Require: x = x1, x2, . . . , xn: a user utterance x

1: t← PCFG(x) {A Chomsky normal form (binary)
tree structure from self-supervised PCFG}

2: a← LM(x) {Attention distribution from a LM}
3: d← [f(ai, ai+1) for i = 1, 2, . . . , n− 1] {Distance

between consecutive tokens using a distance function f}
4: τ ← median(d)
5: sort d in increasing order, di still represents f(ai, ai+1)
6: for all di in d do
7: if di < τ and using PCFG then
8: if nodei and nodei+1 are siblings in PCFG then
9: nodei+1 ← {nodei, nodei+1} {merge nodes,

assign new parents}
10: end if
11: else if di < τ then
12: wi+1 ← {wi, wi+1} {merge two tokens}
13: end if
14: end for

0.67 0.55 0.12 0.33 0.45 0.42 0.22 0.14

Figure 2: Illustration of span extraction where LM-
derived distance function (distances between tokens are
shown below the text) is constrained by a structure pre-
dicted by PCFG (tree structure shown in the figure).
Numbers in red are above the median threshold (0.375)
while numbers in green are below, indicating that the
tokens share similar semantics and are from the same
span. We can then extract candidate phrases “a restau-
rant” and “modern global cuisine”, together with uni-
grams “I”, “want”, “which”, and “serves”.

Bottom-up attention-based extraction with 193

LMs and PCFG regularization Recent studies 194

reveal that attention distributions in pre-trained 195

LMs can indicate syntactic relationships among 196

tokens (Clark et al., 2019). Therefore, we hypoth- 197

esize that similar attention distributions indicate 198

tokens to form a meaningful phrase. We define the 199

distance between attention distributions as a sym- 200

metric Jensen-Shannon divergence (Clark et al., 201

2019), and iteratively merge tokens whose distance 202

is smaller than a threshold2 in a bottom-up fashion. 203

We start from the smallest distance to the largest, 204

where the merged tokens are considered as a new 205

token in the next iteration but the distribution dis- 206

tance with adjacent tokens remains the same. Fig. 2 207

illustrates the distances between tokens from a pre- 208

trained LM for an example sentence where adjacent 209

tokens such as “global” and “cuisine” are merged 210

but not “serves” and “modern”. This new decoding 211

method enables us to effectively group tokens into 212

phrases with precise boundaries. 213

Although LMs can be used to induce grammar, 214

their training objectives are not optimized for sen- 215

tence structure prediction, hence falling behind un- 216

supervised PCFG (Kim et al., 2020) on syntac- 217

tic modeling. Utilizing attention distribution from 218

LM representations to extract spans can thus be 219

fuzzy and noisy. We therefore employ unsuper- 220

vised PCFG proposed by Kim et al. (2019) as a 221

mechanism to regularize our bottom-up span ex- 222

2We use the median of all pairwise distances in an utter-
ance in the experiments. We also compared other thresholds
such as mean but did not observe significant difference.

3



traction. Instead of relying solely on attention dis-223

tribution, we in addition require two tokens to share224

the the same parent in the predicted PCFG tree225

structure before merging. This extra requirement226

reduces the noise from the distribution divergence227

in a sub-optimal structure representation. An ex-228

ample illustrating the necessity of span constraint229

is given in Fig. 2. Even though the distance be-230

tween “restaurant” and “which” (0.33) is small, we231

disregard this span since they do not belong to the232

same parent in the PCFG structure. After merging233

two tokens, we assign the grandparent of the two234

tokens as the new parent, and continue the iteration235

until all distances are examined.236

Self-supervised in-domain training Our237

attention-based approach enables us to extract238

phrases beyond certain n-grams, or certain types239

of phrases in a specific hierarchical layer. More240

importantly, it is appealing to adapt to new241

domains, where a LM can be further trained242

to encode structure representations without any243

annotated data and to group tokens into candidate244

phrases based on the training corpus. To encourage245

efficient span extraction above token-level repre-246

sentation, we further pre-train a SpanBERT model247

(Joshi et al., 2020) by predicting masked spans248

together with a span boundary objective (denoted249

as TOD-Span) on TOD data (Wu et al., 2020).250

In addition to masking random contiguous spans251

with a geometric distribution, we also mask spans252

inspired by recent findings such as segmented253

PMI (Levine et al., 2021) among other methods254

(See Appendix A.3 for details). This process can255

be thought of as incorporating corpus statistics256

such as phrase frequency into the model implicitly257

(Henderson and Vulić, 2021).258

The unsupervised PCFG is trained to maximize259

the marginal likelihood of in-domain utterances260

with the inside-outside algorithm on the same TOD261

dataset. Similar to self-supervised LMs, this pro-262

cess is flexible and robust against domain mis-263

match, a common problem with supervised parsers264

(Davidson et al., 2019). At inference time, the265

trained model predicts a Chomsky normal form266

from Viterbi decoding (Forney, 1973).267

3.3 Clustering candidate spans268

Challenges After extracting candidate spans as269

potential slot values, we apply contextualized clus-270

tering on them to form latent concepts each slot271

value belongs to. We face two major challenges.272

Extracted Spans
after 16:15

Sunday
Cambridge

Norwich
east

4 star
doesn’t matter

before 11
guesthouses

need
free parking

12 
expensive

12:30
before 9:30
moderate

need
7:15
…

time
16:45
7:28

before 3

price
cheap

moderate
expensive

taxi time
16:45
17:26

before 3

train time
after 4:15
before 11

7:28

departure 
time

after 4:15
5:11

before 7:28

arrival time
7:15

before 11
21:36

First step Second step Third step

area
east

center
don’t care

Figure 3: Multi-step clustering procedure. Each coarse
cluster is further refined by next-step clustering. The
first step uses contextualized span representations to
capture salient groups (such as a cluster about time),
and the second step uses the utterance-level representa-
tions of each span to capture domain and intent infor-
mation. The third step utilizes span-level representa-
tion for fine-grained slot types.

Firstly, for any clustering method, hyperparame- 273

ters such as the number of clusters are critical to 274

the clustering quality, while they are not known 275

for a new domain. Secondly, because of the trivial 276

differences in slot types (for example, a location 277

can be a “train departure place”, or a “taxi arrival 278

place”), clustering requires considering different di- 279

mensions of semantics and pragmatics. To address 280

these problems, we propose an auto-tuned, coarse- 281

to-fine multi-step clustering method. The pseudo 282

code of the clustering algorithm can be found in 283

Appendix A.2. 284

Auto-tuning hyperparameters To avoid hyper- 285

parameter tuning, we utilize density-based HDB- 286

SCAN (McInnes et al., 2017). Compared to other 287

clustering methods such as K-Means, HDBSCAN 288

is mainly parametrized by the minimum number 289

of samples per cluster, and resulting clusters are 290

known to be less sensitive to this parameter. We 291

set this number automatically by maximizing the 292

averaged Silhouette coefficient (Rousseeuw, 1987) 293

294

s =
b− a

max(a, b)
295

across all clusters where a represents the distance 296

between samples in a cluster, and b measures the 297

distance between samples across clusters. 298

Multi-step clustering The input to our first-step 299

clustering is the contextualized span-level repre- 300

sentation from the extracted spans. To prevent 301

the surface-level token embeddings from playing 302
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a dominant role, we replace candidate spans with303

masked tokens and use the contextual representa-304

tion of the masked spans (Yamada et al., 2021).305

After the first step of clustering, we have coarse306

groups illustrated in Appendix A.5.307

Michael et al. (2020) suggest that we may only308

identify salient clusters (e.g., cardinal numbers),309

but cannot separate for example, different types310

of cardinals (e.g., number of people or number of311

stays). Thus, in the second step, we cluster exam-312

ples within each cluster from the first step lever-313

aging utterance level representation of spans (i.e.314

the [CLS] token of the utterance where the span315

is from). This enables us to distinguish between316

domains and intents as they reflect utterance-level317

semantics. For example, we may find a cluster of318

time information (e.g., “11 AM”) in the first step,319

and the second step clustering is to differentiate320

between train and taxi booking time. Lastly, we321

cluster groups developed from the second step into322

more fine-grained types using span-level represen-323

tations similar to the first step. After this multi-step324

clustering, we can potentially separate for instance,325

departure time and arrival time in train booking.326

This process is illustrated in Fig. 3. Each cluster327

represents a slot type, with slot values shown as328

data points. This multi-step clustering brings an329

additional benefit of inducing the slot schema with330

hierarchy, where sub-groups in further steps belong331

to the same parent group.332

4 Experiments333

To examine the quality of our induced schema, we334

perform intrinsic and extrinsic evaluations. Our335

intrinsic evaluation compares the predicted schema336

with the ground truth schema by measuring their337

overlap in slot types and slot values. This indi-338

cates how well our induced schema aligns with339

the expert annotation. The extrinsic evaluation es-340

timates the usefulness of the induced schema for341

downstream tasks, for which we consider dialog342

state tracking and response generation tasks. Ex-343

periments are conducted on MultiWOZ (Eric et al.,344

2020) and SGD (Rastogi et al., 2020) datasets fol-345

lowing previous research. See Appendix A.1 for346

implementation details. We also apply and eval-347

uate our method for both intent and slot schema348

induction on realistic scenarios (See Section 5).349

Baselines We compare our proposed approach350

with different setups against DSI (Min et al., 2020),351

which uses supervised tools and heuristics. We352

evaluate different span extraction methods includ- 353

ing using parsers only, leveraging distance func- 354

tions from LMs, and combining LMs with un- 355

supervised PCFG. Specifically, NP extracts all 356

noun phrases3, DSI cand. uses the same candidates 357

phrases as DSI, and PCFG and CoreNLP (Man- 358

ning et al., 2014) extract phrases from an unsu- 359

pervised and supervised structure respectively by 360

taking the smallest constituents above the leaf level. 361

These baselines solely rely on parsers. For our 362

bottom-up attention-based LM methods (Section 363

3.2), we compare spans extracted using representa- 364

tions from BERT (Devlin et al., 2019), SpanBERT 365

(Joshi et al., 2020), TOD-BERT (Wu et al., 2020), 366

and our span-based TOD pre-training from mask- 367

ing random spans (TOD-Span). Lastly, we combine 368

the LMs with unsupervised PCFG structures. 369

Due to space constraints, we show results on 370

MultiWOZ in this section. Observations on SGD 371

can be found in the Appendix. 372

4.1 Slot schema induction 373

To evaluate the induced schema against ground 374

truth, we need to match clusters to ground truth 375

labels4. Previous work on dialog schema induction 376

either requires manual mapping from a cluster to 377

the ground truth (Hudeček et al., 2021) or com- 378

pares predicted slot values to its state annotation 379

at each turn (Min et al., 2020). These can create 380

noises and biases, hence not practical when no an- 381

notation is available. Particularly, Min et al. (2020) 382

compare candidate spans to corresponding refer- 383

ence slot types at each turn, which is a small subset 384

of the ground-truth ontology. This would overes- 385

timate the performance of schema induction since 386

the matching is more evident and is different from 387

defining schemas in realistic settings. Instead, we 388

simulate the process of an expert annotator map- 389

ping clusters to slot names by considering the gen- 390

eral contextual semantics of spans in a cluster. 391

Setup We consider semantic representations of 392

ground truth clusters as labels. Specifically, we 393

calculate the contextual representation of spans 394

averaged across all spans in an induced cluster 395

as cluster representations, and compare that with 396

ground truth slot type representations computed in 397

the same way. For fair comparison among different 398

3https://spacy.io/
4Predicting labels for each cluster is out of the scope of this

paper. Since there are many ways to assign labels with equal
semantics to a cluster (e.g., “food” vs. “restaurant type”), we
leave this to future work.
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method # clusters slot type slot value

Baseline

DSI 522 87.72 37.18

Parser only

NP 88 69.39 47.46
DSI cand. 113 85.19 49.71
PCFG 339 91.53 53.62
CoreNLP 292 87.72 54.43

Language model only

BERT 340 85.71 55.80
SpanBERT 343 89.66 45.21
TOD-BERT 219 89.66 50.89
TOD-Span 374 85.71 55.29

Language model contrained on unsupervised PCFG

BERT 350 87.72 52.32
SpanBERT 203 89.66 44.51
TOD-BERT 245 91.53 48.13
TOD-Span 290 96.67 58.71

Table 1: Schema induction results on MultiWOZ.
TOD-Span (span-based LM further pre-trained on in-
domain data) regulated by PCFG achieves the best per-
formance on slot type induction and slot value induc-
tion evaluated by F1 scores. All methods (except DSI)
differ only by span extraction (i.e., same clustering).

methods, we use BERT to obtain span represen-399

tations. We assign the name of the most similar400

slot type representation to a predicted cluster mea-401

sured by cosine similarity. If the score is lower402

than 0.8 (Min et al., 2020), the generated cluster is403

considered as noise without mapping, which sim-404

ulates when a human cannot label the cluster. We405

report precision, recall, and F1 on the induced slot406

types. When the number of clusters is larger than407

the ground truth, multiple predicted clusters can be408

mapped to one slot type. This evaluation process is409

identical to human annotation, but may be biased410

towards more clusters. Thus we report the number411

of induced clusters for reference. Similarly, within412

each slot type, we compute the overlapping of clus-413

ter values to all ground truth slot values and report414

precision, recall, and F1 by fuzzy-matching scores415

(Min et al., 2020), averaged across all types.416

Results Table 1 shows the results of schema in-417

duction on slot types and slot values. All methods418

lead to a number of clusters within a similar range419

(except the slightly larger 522 clusters for DSI),420

indicating that the results are not biased and are421

comparable. When the candidate span input to422

our proposed multi-step clustering is the same as423

method turn level joint level

Baseline

DSI 18.29 25.22

Parser only

PCFG 25.43 32.39

Language model only

BERT 24.35 30.18
SpanBERT 20.24 26.07
TOD-BERT 25.05 34.94
TOD-Span 29.72 38.89

Language model contrained on unsupervised PCFG

BERT 23.27 30.09
SpanBERT 20.96 27.25
TOD-BERT 27.11 31.92
TOD-Span 39.59 46.69

Table 2: DST results on MultiWOZ. We show F1
scores of turn and joint level. TOD-Span regularized
by PCFG achieves the best performance.

the baseline DSI using POS tagging and corefer- 424

ence (DSI cand.), we achieve similar performance 425

on slot type induction (85.19) and better results 426

on slot values (49.71). This illustrates the effec- 427

tiveness of our proposed clustering method since 428

the only difference from the DSI baseline is cluster- 429

ing. Compared to methods leveraging noun phrases 430

(NP), or supervised parsers (CoreNLP), using an 431

unsupervised PCFG trained on in-domain TOD 432

data can achieve comparable or superior results. 433

If we extract spans using LMs only, different 434

models perform similarly on both slot type and slot 435

value. However, when regularized by an unsuper- 436

vised PCFG structure, we observe a large perfor- 437

mance boost especially with TOD-Span. This indi- 438

cates that the unsupervised PCFG can provide com- 439

plementary information to LMs. In addition, results 440

show that further pre-training a LM at span level 441

is more efficient. The better representation from 442

span-level in-domain self-training can also be jus- 443

tified by a standard dialog state tracking task with 444

few-shot or full data shown in Appendix A.3. De- 445

tailed comparison among different LM pre-training 446

results can be seen in Appendix A.13. 447

4.2 Application in DST 448

Now that we have mapped induced clusters to 449

ground truth names, we can immediately evaluate 450

DST performance by identifying slot values and 451

types as described above. This can be considered 452

as a zero-shot setting. 453
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belief state BLEU

None 15.6
DSI 13.9
TOD-Span + PCFG 16.4
Ground truth 17.9

Table 3: Response generation results on MultiWOZ.
Our method introduces positive inductive bias.

Setup Following Min et al. (2020), we calculate454

the overlapping of the predicted slots and values455

with their corresponding ground truth at both the456

turn level and the joint level. At each turn, a fuzzy457

matching score is applied on predicted values (Ras-458

togi et al., 2020) whose corresponding slot types459

are in the ground truth. On the other hand, even if460

a slot value is predicted correctly but its slot type461

does not match the ground truth, no reward is ac-462

credited. On the joint level, we calculate the score463

for accumulative predictions up to the current turn.464

Results Table 2 summarizes the results for DST.465

Similar to the trend in schema induction, constrain-466

ing an in-domain fine-tuned LM (TOD-Span) on467

an unsupervised structure representation (PCFG)468

achieves the best performance (39.95 on turn level),469

significantly outperforming a strong baseline DSI470

(18.29)5. We also note that because all accumu-471

lated predictions are evaluated for partial rewards472

instead of exact matching on all slot types in stan-473

dard DST evaluation, the joint level scores are474

higher than the turn level from accumulative scores.475

See Appendix A.8 for more detailed discussion.476

4.3 Application in response generation477

The above settings map latent slot clusters to478

ground truth analogous to expert designs so that we479

can evaluate the alignment with human annotations.480

This experiment investigates whether the induced481

latent schema is still useful before mapping.482

Setup We modify the model of Lei et al. (2018);483

Zhang et al. (2020) by appending the predicted484

labels (i.e., cluster index such as “10-24” indicating485

a specific slot type) and values to the context (e.g.,486

“I need a train at 7:45. [10-24] 7:45” as input). The487

added belief state can be considered as a prior to488

generate responses similar to Hosseini-Asl et al.489

(2020). Since we do not have the mapped names490

of the slots, we only report the BLEU score rather491

5We use their provided data and model to run the DSI
baseline. The reason the score is lower here than their report
is due to slot type matching (Section 4.1).

than other metrics used in response generation that 492

require entity-level matching (e.g., inform rate). 493

This is a more practical setting directly evaluating 494

on the induced schema compared to previous work 495

(Min et al., 2020), where dialog act is modeled with 496

delexicalized input utterances (Chen et al., 2019, 497

not feasible because ontology is required from a 498

pre-defined schema for delexicalization). 499

Results Table 3 compares the performance of 500

using no belief state (None), belief state induced by 501

DSI, our introduced method (TOD-Span + PCFG), 502

and ground truth. Results show that our induced 503

schema introduces a positive inductive bias (16.4) 504

compared to the baseline (15.6) and is close to the 505

ground truth schema with actual slot type names. 506

We conjecture that the lower performance of DSI is 507

due to the larger number of latent types (522) which 508

creates noises in model training. Thus, our induced 509

slot schema is useful for downstream applications. 510

5 Analysis 511

Comparison among different methods Our re- 512

sults show that in general, span-based pre-training 513

methods outperform token-based, and continued 514

pre-training on in-domain data is important. When 515

regularized by PCFG structures, we observe a large 516

performance boost on TOD-BERT and TOD-Span, 517

however the PCFG structure does not help BERT 518

and SpanBERT when the LM is trained on gen- 519

eral domain data only. We speculate that the LM 520

representation trained on generic text is not com- 521

patible with the predicted structure induced via 522

in-domain self-supervision. In addition, we believe 523

that the performance gap between our proposed 524

method and previous research using rules from su- 525

pervised parsers (such as NPs and coreference) is 526

larger when the data is less biased (for example, if 527

NP is not dominant as slot values, Du et al., 2021). 528

Moreover, our proposed method is data-driven, in- 529

dicating that the slots are determined by the dialog 530

corpus. If there are specific annotation require- 531

ments, we can inject inductive bias to the LM to 532

change distribution distances (Shi et al., 2019) or 533

add rules to incorporate such conditions. See Ap- 534

pendix A.12 for discussions. 535

Comparison among different datasets On 536

MultiWOZ, our method induces 30 out of 31 slot 537

types in the ontology except “hospital-department”, 538

which only appears once in the dialog corpus. For 539

slot values, errors are mostly from low precision 540
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schema DST
method # clusters type value turn joint

Different number of clustering steps

one-step 31 60.87 39.74 23.58 30.68
two-step 99 83.64 46.66 35.21 41.94

Original representation instead of masked

unmasked rep. 284 85.71 53.30 27.93 36.40

Three-step masked clustering

Three-step masked 290 96.67 58.71 39.59 46.69

Table 4: Ablation results with TOD-Span constrained
on PCFG. Using masked presentation for multi-step
clustering improves the performance on schema induc-
tion and DST by a large margin.

due to loose boundaries and semantic matching541

(e.g., predicting “free wifi”, and “include free wifi”,542

where the target value is “yes”). In comparison,543

DSI induces 26 slot types, with similar slots mixed544

(such as mapping “taxi-arriveby” to “taxi-leaveat”).545

It receives a relatively low slot value score since546

spans extracted using rules are not robust and com-547

patible. On SGD where 82 slot types are defined548

in the ontology, our method induces 50 and DSI549

induces 72. The main reason for this low re-550

call is similar slot types with overlapping values551

(such as “media-genre” and “movies-genre”), and552

single-value slots (such as “has-wifi” with the value553

“True”). More importantly, SGD has a smaller ut-554

terance length, making it more difficult to map to555

the correct slot type without considering more con-556

text. With a magnitude more number of clusters,557

DSI (11992 clusters) has a higher chance to map558

predicted slots to target slot types which explains559

better performance than ours on schema induction.560

However, this large number of clusters make it in-561

feasible for humans to use, and our induced schema562

is comparable in downstream tasks such as DST.563

We also apply our method on internal customer564

data for both intent (by applying multi-step cluster-565

ing directly on utterances) and slot schema induc-566

tion. Compared to MultiWOZ and SGD, schema567

in more realistic scenarios is more complicated and568

the slot boundaries are less clear. Nevertheless, our569

method is still effective in inducing the majority570

of the schema to find intents such as “change pass-571

word” and slot types such as “devices”. We observe572

similar findings on the Ubuntu dialog corpus (Lowe573

et al., 2015). See discussions in Appendix A.9.574

Ablation studies Table 4 illustrates the perfor-575

mance comparisons with different numbers of clus-576

tering steps, as well as input representations. Re-577

sults demonstrate that compared to one-step (using578

masked span representation) and two-step (adding 579

utterance representation), our three-step clustering 580

method induces a more fine-grained schema, which 581

is more effective for downstream tasks. The num- 582

ber of steps can be customized to real use cases 583

depending on target granularity6. In addition, if we 584

use the original input rather than the masked phrase 585

representation, the performance drops by a large 586

margin (85.71 on slot type). This suggests that the 587

surrounding context is more critical than the sur- 588

face embeddings for schema induction, especially 589

when the same phrase can serve different functions 590

even in the same domain (such as locations). 591

DST Error analysis Suggested by the relatively 592

high span extraction accuracy (68.13 F1 score) 593

from Appendix A.4, we find that the majority of the 594

problems in DST come from cluster mapping. This 595

is caused by either excessive surrounding informa- 596

tion or by the lack of context from previous turns. 597

For instance, in the utterance “Can I book it for 3 598

people", the “3 people” can be mapped to either 599

“restaurant-book people” or “hotel-book people”, 600

since we extract the contextual information from 601

the current turn only. If more context is consid- 602

ered, the mapping performance including results 603

on downstream tasks is expected to improve. An- 604

other issue is with span boundary. Even though we 605

apply fuzzy matching, the evaluation still penalizes 606

correct predictions (such as “indian food”) from 607

its ground truth (“indian”), since we do not have 608

training signals to identify the target boundaries. 609

6 Conclusion 610

In this paper, we propose a fully unsupervised 611

method for slot schema induction. Compared 612

to previous research, our method can be easily 613

adapted to unseen domains and tasks to extract 614

target phrases before clustering into fine-grained 615

groups without domain constraint. We conduct ex- 616

tensive experiments and show that our proposed 617

approach is flexible and effective in generating ac- 618

curate and useful schemas without task-specific 619

rules in both academic and realistic datasets. We 620

believe that our method could also be applied to 621

other languages (since no supervised parser is re- 622

quired) and tasks where the target is not explicitly 623

annotated (Min et al., 2019). In the future, we 624

plan to extend our method to problems with more 625

complex structures. 626

6More steps were also conducted but we observed lower
Silhouette coefficient and lower quality in preliminary studies.
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7 Ethical Considerations627

Our intended use case is to induce the schema of628

raw conversations between a real user and system,629

where the conversation is not structured or con-630

strained. Our experiments are done on English data,631

but our approach can be used for any language, es-632

pecially because our method does not require any633

language-specific tools such as parsers which gen-634

erally require a lot of labeled data. We hope that635

our work can reduce design and annotation cost in636

building dialog systems for new domains, and can637

inspire future research on this practical bottleneck638

in applications.639
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A Appendices1046

A.1 Implementation details1047

For language model further pre-training, we imple-1048

ment our code based on Wu et al. (2020) where1049

the training data and hyperparameters are kept the1050

same. Their evaluation script is used to show re-1051

sults on the standard supervised dialog state track-1052

ing with the full-data and few-shot learning setting.1053

We run all experiments on three random seeds and1054

report the average score. The TOD-BERT base-1055

line is the “TOD-BERT-JNT-V1” provided by Wolf1056

et al. (2020). For span-based pre-training methods,1057

we use the provided “spanbert-base-cased” model1058

from Joshi et al. (2020) as the initial checkpoint1059

and add a span boundary object. For random mask-1060

ing, we use a 15% masking budget and sample a1061

span length by geometric distribution with p = 0.21062

and clip the max length to 10. For other mask-1063

ing methods, we follow Levine et al. (2021) by1064

considering n-grams of lengths 2 to 5 which ap-1065

pear more than 10 times in the corpus. We choose1066

the top 10 - 20% of n-grams by each criterion so1067

about half of the tokens can be identified as part1068

of correlated n-grams. We also experimented with1069

different number of n-grams to mask and evaluate1070

on both pre-training loss and DST results, but did1071

not observe significant difference. We further pre-1072

train using the same data as TOD-BERT with early1073

stopping by prediction loss. For the attention dis-1074

tribution used to define our distance function, we1075

use the eighth layer of the model suggested by Kim1076

et al. (2020). We modify Jin and Schuler (2020)1077

to train our unsupervised PCFG model using their1078

suggested hyperparameters on the text input only1079

with data cleaned by Wu et al. (2020). These ex-1080

isting techniques, however, cannot be applied to1081

induce schema without our proposed novel method.1082

They only inspire us to propose an fully unsuper-1083

vised method leveraging the potential benefits. All1084

our experiments run on eight V-100 GPUs. The1085

training time varies from three hours to 14 hours.1086

For the baseline DSI, we run their provided pub-1087

lic codebase on the same MultiWOZ 2.1 data and1088

SGD dataset respectively (since each corpus has1089

different schemas in the output space, we cannot1090

pre-train on more task-oriented dialog data as ours),1091

following their suggested hyperparameters on the1092

best model DSI-GM.1093

For our auto-tuned multi-step clustering, we set1094

the minimum number of samples per cluster by1095

dividing the total number of samples by 5, 10, 15,1096

20, 25 and choose the best one auto-tuned by the 1097

Silhouette coefficient. A more rigorous grid search 1098

can potentially generate better performance on our 1099

tasks. All other parameters are kept as default in 1100

HDBSCAN. 1101

For our experiments on MultiWOZ and SGD, 1102

we use the development portion of the data (fol- 1103

lowing the standard separation in their original 1104

Github repositories), which represents a sample 1105

of whole corpus. MultiWOZ and SGD are com- 1106

monly used task-oriented dialog datasets collected 1107

in English. On MultiWOZ, we use 7374 user ut- 1108

terances from the development set (1000 conversa- 1109

tions), which covers 31 slot types. On SGD, we use 1110

24363 user utterances (2482 conversations), which 1111

covers 82 slot types. We also report the induced 1112

schema results on the training portion of the data 1113

in Appendix A.6 where there are 56668 user utter- 1114

ances (8420 conversations) on MultiWOZ 2.1., and 1115

164982 user utterances (16142 conversations) on 1116

SGD. We build the ground-truth ontology from the 1117

annotated corpus with slot types and values in the 1118

dialog state. 1119

A.2 Algorithm 1120

Algorithm 1 shows the algorithm for span extrac- 1121

tion. For simplicity, we compare the distance from 1122

left to right for both the settings with and without 1123

PCFG stricture. For using language model only, 1124

we merge tokens into phrases if their distance if 1125

small. If PCFG structure is constrained, we com- 1126

pare the distance between tokens and check if their 1127

corresponding nodes belong to the same parent. In 1128

practice, we implement the PCFG span extraction 1129

from bottom to top where we merge tokens into 1130

nodes from the lower level and represent the tokens 1131

with merged nodes. At each level, we compare the 1132

distance between consecutive nodes. To illustrate 1133

this process, for example in Figure 2, we com- 1134

pare the distance between the node “modern” and 1135

“global cuisine”, and the distance between “a restau- 1136

rant” and “which” to check if they are siblings in 1137

the same level. Since “which” is not merged in a 1138

lower level, itself serves as the node whereas “a 1139

restaurant” serves as the node for “restaurant”. All 1140

merged phrases, with left-out unigrams, are consid- 1141

ered as candidate extracted spans. 1142

Algorithm 2 shows the algorithm for auto-tuned 1143

multi-step clustering. For each step, the input to 1144

the clustering algorithm (HDBSCAN) is the embed- 1145

dings of spans (or uttereances in the second step) 1146
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grouped from the previous step. In other words,1147

for each sub-groups clustered by the previous step,1148

we further cluster the embeddings into fine-grained1149

groups. Figure 3 illustrates this process. The clus-1150

tering algorithms returns groups of embeddings1151

and corresponding labels (0, 1, . . . ) and we choose1152

the minimum number of samples per cluster based1153

on Silhouette score. We filter clusters where the1154

frequent spans of each sub-cluster are the same, in-1155

dicating that there is only one value for this cluster.1156

We consider the rest clusters as the input to the next1157

step, or return as our final clusters.1158

A.3 Supervised DST results1159

Wu and Xiong (2020) suggest that further pre-1160

training on TOD data (Wu et al., 2020) helps gen-1161

erating better utterance-level representation, but1162

less so for other features such as slots. To encour-1163

age better span-level representation, we further pre-1164

trained a SpanBERT model on TOD data by mask-1165

ing spans based on frequency, Pointwise Mutual1166

Information (PMI), symmetric conditional proba-1167

bility (SCP, Downey et al., 2007), and segmented1168

PMI (Levine et al., 2021) following recent research,1169

together with randomly masking contiguous ran-1170

dom spans. Implementation details can be found1171

in Appendix A.1. Here we evaluate different pre-1172

trained methods on the standard DST benchmark.1173

Table 5 and Table 6 shows the performance of1174

supervised DST performance evaluated on joint1175

accuracy and slot accuracy with the full data and1176

few-shot data (1 - 10%), respectively. Note that1177

this was not used to choose the best model to per-1178

form schema induction and related tasks. These1179

results compare different pre-training methods to1180

illustrate the quality of the initial checkpoints on a1181

more standard benchmark. As shown similarly in1182

recent work, TOD-BERT can only show marginal1183

improvement over BERT averaged over different1184

random seeds. Meanwhile, SpanBERT when used1185

as an initial checkpoint is not stable at downstream1186

DST tasks even if multiple random seeds were1187

tested. However, after further pre-training on task-1188

oriented dialog dataset, TOD-Span achieve signif-1189

icantly better performance in both the few-shot and1190

full-data setting. When comparing different span1191

masking methods, random masking (TOD-Span)1192

is quite effective. Although freq and PMI_seg1193

achieves better performance (over the naive PMI),1194

the improvement is not large. We conjecture that1195

this might be due to that compared to general do-1196

mains and tasks with more diverse prediction space 1197

such as question answering, the number of task- 1198

relevant phrases in task-oriented dialog is limited. 1199

A.4 Span Extraction Results 1200

Table 7 shows the recall for span extraction re- 1201

sults. We manually annotate 200 user utterances 1202

so that acceptable span boundaries would not be 1203

penalized. For instance, given the utterance “I need 1204

to book a hotel in the east that has 4 stars”, in- 1205

stead of the DST annotation “hotel-starts: 4” and 1206

“hotel-area: east” together with coreference and 1207

annotation errors that cannot be detected from the 1208

context, we manually annotate the candidate spans 1209

as [“in the east”, ”the east”, ”east”] and [”4 stars”, 1210

”has 4 stars”, ”4”] which relaxes the rigid require- 1211

ment of strict matching of slot values. Compared 1212

to fuzzy matching, this evaluation is cleaner. Be- 1213

cause of the annotation errors and coreference that 1214

a value does not appear in the current utterance, 1215

the ground truth score is 78.83. Similar to our 1216

schema induction and DST evaluation results, we 1217

observe that constraining on predicted structures 1218

can increase model performance. In particular, us- 1219

ing an in-domain self-supervised PCFG structure 1220

and achieve similar or even better performance than 1221

using a supervised parser. We only evaluate recall 1222

here because there are non-meaningful spans ex- 1223

tracted, and is not important to downstream tasks 1224

since they are potentially filtered by our clustering 1225

method. 1226

A.5 Clustering 1227

Figure 4 shows the clustering results after the first 1228

step. This shows that we can get some coarse clus- 1229

ters with non-meaningful groups (such as “thank 1230

you”). Some slot types (such as day of the week as 1231

“wednesday”) are not distinguished by their domain 1232

and intent. Further clustering can generate more 1233

fine-grained schema. 1234

In addition, from empirical analysis, we found 1235

that meaningless spans extracted together with 1236

meaningful ones from the previous stage may add 1237

noises in the process. To study its influence by fil- 1238

tering out noisy clusters, we automatically examine 1239

clusters and their corresponding sub-clusters from 1240

the first two steps based on the assumption that 1241

valid slot types include more than one slot value. 1242

We choose one here because if one cluster is domi- 1243

nated by examples such as “thank you” with a few 1244

other instances such as “thanks”, the latter can be 1245

considered as outliers from our clustering method. 1246
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Algorithm 2: Auto-tuned Multi-step Clustering
Require: Repspan = Repspan1 , Repspan2 , . . . , Repspann : masked span representation (hidden states of LM by replacing

extracted spans with [MASK] token)
Require: Reputt = Reputt1 , Reputt2 , . . . , Reputtn : utterance-level representation (hidden states of LM on [CLS] token)
Require: min_nums: a list of candidate values to set for minimum samples for cluster. This is not sensitive to the clustering

results.
1: input_embeddings← Repspan

2: clusters← input_embeddings
3: for stepi in multi-steps do
4: for input_embeddingsi in clusters do
5: clustersi ← max_i{silhouette_score(HDBSCAN(input_embeddingsi,min_numi))} {Clustered group

of embeddings}
6: if step_i = 1 then
7: if all sub-clusters share the same frequent span then
8: ignore input_embeddingsi, continue the for loop {filter clusters with only one value}
9: end if

10: clustersi ← corresponding Reputt for each item in clustersi {Use utterance-level representation for the second
step clustering}

11: end if
12: end for
13: clusters← {clustersi for all i in the current step}
14: end for

Model Joint Acc. Slot Acc.

BERT 45.6 96.6
SpanBERT 1.5 81.1
ToD-BERT 46.0 96.6

Span-based model trained on TOD data

TOD-Span 49.0 96.9
freq 49.7 97.0
freq w/o stop 47.3 96.8
PMI 48.7 96.9
PMI_seg 49.4 97.0
SCP 48.3 96.8

Table 5: Supervised DST results with the full-data
setting. Results show that span-based methods outper-
form token-based pre-training methods, and this im-
provement is not from the initial checkpoint. Different
masking methods achieve similar performance.

Afterwards there is only one value left. We can1247

also choose to filter out clusters with more than one1248

slot value, which may result in lower recall. Since1249

the goal of schema induction is to build a com-1250

plete ontology with high recall, noisy groups are1251

actually acceptable. In other words, we observed1252

similar performance before and after filtering out1253

such noisy cluster since the cluster mapping step1254

would assign a low score to such groups from clus-1255

ter embedding representations (Section 4.1), which1256

is similar to how human experts would ignore a1257

cluster of meaningless spans.1258

data Model Joint Acc. Slot Acc.

1%

BERT 6.4 84.4
SpanBERT 3.6 82.6
TOD-BERT 7.9 84.9
TOD-Span 9.9 86.0

5%

BERT 19.6 92.0
SpanBERT 5.6 83.9
TOD-BERT 20.9 91.0
TOD-Span 28.2 93.9

10%

BERT 32.9 94.7
SpanBERT 11.8 85.6
TOD-BERT 30.2 93.5
TOD-Span 38.6 95.5

Table 6: Supervised DST results with few-shot train-
ing data. Similar to the full-data setting, span-based
methods achieve significantly better performance than
token-based further pre-training methods.

A.6 Schema induction on training portion 1259

Since our goal is to induce the schema of a corpus 1260

without using any labeled data, there is no major 1261

difference in whether the schema is induced on 1262

the training set of MultiWOZ or the development 1263

set. The main difference is the number of utterance 1264

where the training data is ten times larger than 1265

the development data. Here we show the results 1266

for reference. Table 8 demonstrates that despite 1267

our much smaller number of clusters, our method 1268

achieves significantly better performance than the 1269

DSI baseline on both schema induction and DST. 1270
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Figure 4: Clustering after first step. Grey labels are outliers detected by HDBSCAN. The numbers in each group
represent a latent cluster label, and the texts represent the most frequent phrase in cluster.

Model R (LM only) R (+ supervised) R (+ unsupervised)

NP 62.13
BERT 62.30 62.05 64.30
SpanBERT 58.43 64.60 62.52
TOD-BERT 54.15 60.88 65.05
TOD-Span 64.21 67.22 68.13

Ground Truth 78.83

Table 7: Span extraction results on manually labeled
utterances. Results show that constrained on unsu-
pervised PCFG structure, our span-based further pre-
training method TOD-Span achieves the best recall
(68.13), close to the ground truth performance (78.83)

schema DST
method # clusters type value turn joint

DSI 4981 95.08 43.23 21.10 28.14
Ours 374 93.33 47.32 37.64 44.74

Table 8: Results for schema induction and DST when
the schema is induced on the training portion of Multi-
WOZ data. Our method significantly outperforms the
strong DSI baseline.

A.7 SGD results1271

Table 9 shows the results for schema induction and1272

DST on the SGD dataset. We conjecture that the1273

similar performance results with the strong DSI1274

baseline is due to large difference in cluster num-1275

bers. Intuitively, with a larger number of clusters,1276

each group with fewer examples can be mapped1277

to the ground truth embeddings correctly. On the1278

other hand, if different slot types are mixed into one1279

schema DST
method # clusters type value turn joint

DSI 11992 92.21 46.19 27.23 26.24
Ours 806 77.04 47.50 26.01 26.50

Table 9: Schema induction and DST results on SGD
dataset. Results suggests that our method achieves
comparable or better performance than the strong DSI
baseline even though our number of clusters is a mag-
nitude smaller. See text for analysis.

cluster, all slot values are assigned an inaccurate 1280

name. Another potential reason is that compared to 1281

MultiWOZ, SGD dataset requires more contextual 1282

information (SGD has less average tokens per turn 1283

and more turns per dialogue). Thus the mapping 1284

from relatively noisy clusters to ground truth cre- 1285

ates errors for downstream tasks, especially that 1286

the evaluation metric require exact match of slot 1287

types. 1288

A.8 Comparison to DSI on DST 1289

We note that the DST results on MultiWOZ for 1290

DSI is lower than that reported in Min et al. (2020). 1291

As shown in Section 4.1, the original number was 1292

reported by mapping predicted slot types to target 1293

ontology at the turn level (before accumulating for 1294

the final prediction), where a small subset is used. 1295

This process makes mapping more evident (for ex- 1296

ample, instead of mapping a predicted slot type to 1297

the target 30 slot types, it only compares a slot type 1298
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to one of two slot types that appear in the refer-1299

ence). Hence, it overestimates the performance and1300

is very different from how a human expert would1301

assign labels when inducing the schema for a new1302

corpus without (turn-level) annotation. Since DST1303

is evaluated to make sure that the slot type matches,1304

an incorrect slot type matching would result in a 01305

true positive score. The actual performance in our1306

experiments is thus lower.1307

In addition, we follow the exactly same settings1308

including training and evaluation scripts (on DST)1309

with their provided pre-processed span-level data1310

and suggested hyperparameters. We use the same1311

metrics and scripts to evaluate all methods. Accord-1312

ingly, all the numbers reported in Table 2 are fair1313

and comparable.1314

Lastly, since we use fuzzy matching scores (Ras-1315

togi et al., 2020; Min et al., 2020), turn-level per-1316

formance is accumulated to the joint level. For1317

that reason, different from joint goal accuracy com-1318

monly used where all slot types and values are re-1319

quired to be exactly match, partial true positives are1320

counted again in future turns. For example, if the1321

current turn predicts “train leave-at: 10” with the1322

target dialog state “train leave-at: 10:00”, even if1323

the next turn predicts nothing correctly, this partial1324

score is counted in the joint level score in the next1325

turn. This procedure follows the setting of Min1326

et al. (2020). In fact, in their reported performance1327

of DSI-GM on MultiWOZ 2.1 with precision and1328

recall of 52.5, 39.3, and 49.2, 43.2 at turn and joint1329

level respectively, the actual F1 scores are actually1330

45.0 for the turn level and 46.0 at the joint level.1331

Similar to ours, they also received higher score on1332

the joint level due to accumulative partial scores1333

(by calculating F1 using their reported precision1334

and recall scores directly). Since we follow the1335

same evaluation script and metrics, the results and1336

conclusion we have in our experiments comparing1337

different methods are comparable.1338

A.9 Further analysis of schema induction1339

among datasets (including realistic data)1340

Following previous research on schema induction1341

(Min et al., 2020; Hudeček et al., 2021), we ap-1342

ply our method and compare to previous base-1343

lines on the public available MultiWOZ and SGD1344

datasets. In addition to values that can be extracted1345

by spans, our method can also extract phrases such1346

as “doesn’t matter” which maps to the “don’t care”1347

slot value. In particular, on MultiWOZ, “hotel-1348

internet” receives the lowest f1 score (0.07 with 1349

precision of 0.04 and recall of 0.35), mainly be- 1350

cause of imprecise boundaries for low precision 1351

(e.g. “free wifi”, ”include free wifi”, and “offer 1352

free wifi”). It also mixes with “free parking” be- 1353

cause of the context (hotel). On SGD, due to our 1354

filtering step and many slots have only one value 1355

(e.g. “Homes-has-wifi” and “Homes-has-pets”), 1356

and the value (“True”) cannot be detected by spans, 1357

we received a lower schema induction score. In 1358

addition, there are 16 groups with lower matching 1359

score (< 0.8). This is particularly an issue when the 1360

number of instances is small (only 8 instances for 1361

“home-furnished” in total). If more instances are 1362

available, it is likely that our method can recover 1363

these missed slots due to low matching scores. 1364

However, the schema defined here is less com- 1365

plicated compared to more realistic settings. For 1366

example, spans may not be a noun phrase (such 1367

as “until the 30th” to distinguish from “after the 1368

30th” in the utterance “Do I have access to my 1369

premium account until the 30th or will I have to 1370

pay additional $15 on the 29th” to distinguish dif- 1371

ferent constraints), and spans may not necessarily 1372

be meaningful arguments to intents (such as “Can 1373

you help me to reset my password” even though 1374

“reset my password” can be considered as a phrase). 1375

ABCD (Chen et al., 2021) collect more realistic 1376

TOD conversations with more in-depth discussion 1377

on finishing tasks in the shopping domain. How- 1378

ever, they propose to leverage actions, rather than 1379

slot-value pairs as used before in slot discovery, 1380

where the actions are defined above the utterance 1381

level. 1382

When we apply our method on internal customer 1383

data for slot schema induction, we follow the same 1384

pipeline introduced in Section 3. For intent schema 1385

induction, we consider both the system turn and 1386

utterance turn as the context to our multi-step clus- 1387

tering to find schema with the hierarchy. Because 1388

our method is data-driven and does not require 1389

heuristics, it can induce expected slots explained 1390

before (e.g. “until the 30th”). We observed empiri- 1391

cally satisfying performance but the results cannot 1392

be reported publicly because of restrictions. There- 1393

fore, we only report results on the public datasets to 1394

compare to previous research, as well as to inspire 1395

follow-up works for comparison. 1396

We also applied our approach to the Ubuntu dia- 1397

log corpus (Lowe et al., 2015). Compared to gen- 1398

eral TOD systems where a user and an knowledge- 1399
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able agent communicate with each other, this data1400

is collected from online forms to discuss technical1401

issues. The utterances are less conversational, and1402

include coding scripts, making it very noisy. We1403

experiment on this more realistic dataset only for1404

reference, since it is significantly different from1405

building a TOD systems to interact with real users1406

where schema is critical. We sample 8k utterances1407

from the training data, and apply our method on1408

both the intent level and the slot level. On the intent1409

level, our method generates 70 clusters from the1410

first step, and 154 clusters after three steps. Apart1411

from greetings (which appear very frequently), we1412

can induce intents such as suggesting one ques-1413

tion is off topic (e.g. “this is a support channel;1414

please leave and go to xxx channel”). There are1415

also some more evident intent clusters such as sug-1416

gested command line, suggested url, and questions1417

for installations in a specific setup (e.g. “how to1418

install firefox on 64 bit”). When the input sentence1419

is long with mixed intents, our method may group1420

these into one large cluster (such as providing sug-1421

gestions to a specific problem, which is more simi-1422

lar to dialog act). We may choose to mix slot- and1423

utterance-level clustering to solve such an issue1424

by treating each complete segment in an utterance1425

as a long span. On the slot level induction, our1426

method generates 36 clusters from the first step,1427

and 287 clusters after three steps. Our method can1428

induce slot types such as “ubuntu verision” and1429

“software name”. However, compared to Multi-1430

WOZ and SGD, the induced slots are much nosier1431

with lower precision where meaningless verbs (e.g.1432

“set up” are grouped). Meanwhile, there a many1433

other slot types that are not meaning such as a clus-1434

ter regarding part of a path (e.g., “/var/”), which1435

may be due to that we use the same LM trained1436

on TOD dat which does not handle code scripts.1437

Further in-domain pre-training within the Ubuntu1438

dialog corpus may solve this issue. To conclude,1439

even though this dataset is noisy and different from1440

TOD, our method is still applicable to discover use-1441

ful schmea on both the intent and the slot level1442

without any supervision.1443

Finally, we acknowledge that since we extract1444

phrases as candidates of slot values, our DST can-1445

not deal with other linguistic features such as coref-1446

erences and ellipses annotated in MultiWOZ and1447

SGD. This partially explains the relatively low per-1448

formance on the full zero-shot DST task. However,1449

these features are not important for schema induc-1450

tion since the majority of the slot values can be 1451

found as phrases in the raw conversation, which 1452

can further be categorized into slot types. Obtain- 1453

ing better performance on DST is out of the scope 1454

of this paper. 1455

A.10 Applying induced schema on testing 1456

data 1457

After inducing the schema on the training data, we 1458

may apply the induced schema directly to a differ- 1459

ent set of data (such as testing data) for downstream 1460

applications (such as DST). Since we already in- 1461

duced slot clusters and mapped them to ground 1462

truth, we do not need to follow the same span ex- 1463

traction before clustering again. Alternatively, we 1464

adopt the following procedure. We extract all can- 1465

didate phrases in the same way, but instead of clus- 1466

tering, we map the extracted phrases to clustered 1467

groups. Specifically, similar to mapping induced 1468

latent clusters to ground truth groups in schema 1469

induction, we find the most similar latent cluster 1470

to the candidate in the contextualized embedding 1471

space, and assign the cluster name to the phrase 1472

as its slot type. We observed that even though the 1473

schema is not induced on the testing data, the per- 1474

formance on both turn and joint level maintains 1475

(36.58 and 48.98). 1476

A.11 Related work in schema induction of 1477

other natural language processing tasks 1478

Similar to grammar induction and unsupervised 1479

parsing, schema induction can help to eliminate 1480

the time-consuming manual process and serves as 1481

the first step to build a large corpus (Klein and 1482

Manning, 2002; Klasinas et al., 2014). Related 1483

tasks include event type induction (Huang et al., 1484

2016, 2018), semantic frame induction (Yamada 1485

et al., 2021), and semantic role induction (Lang 1486

and Lapata, 2010; Michael and Zettlemoyer, 2021). 1487

Relationship in these tasks such as predicate and 1488

head or patient and agent are relatively evident 1489

compared to that in conversational dialog. In ad- 1490

dition, most of previous research requires either 1491

strong statistical assumptions based on pre-defined 1492

parsers, or existing ontologies and annotations for 1493

some seen types, and formulate the problem similar 1494

to word sense disambiguation on predicate-object 1495

pairs (Shen et al., 2021). In contrast, our method 1496

does not require any formal syntactic or semantic 1497

supervision. 1498
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A.12 Incorporating task-specific annotation1499

requirements for schema induction1500

Our method is data-driven, indicating that if two to-1501

kens appear frequently (thus form a span), it might1502

be a good idea to consider them as a slot together.1503

Our motivation here is to induce the most prob-1504

abilistic schema based on distributed representa-1505

tions. Incorporating annotation requirement is not1506

specific to schema induction from corpus, and is a1507

broader concept of neuro-symbolic integration by1508

merging symbolic rules with connectionist models1509

like neural networks.1510

However, if there is a specific requirement, we1511

can either inject inductive bias similar to Shi et al.1512

(2019); Kim et al. (2020) to change the attention1513

distribution (so that the requirement-specific bias1514

can result in smaller or larger divergence explicitly).1515

We can also add such requirements as rules directly1516

on certain spans. In this way, we can incorporate1517

the requirements. In comparison, previous methods1518

relying on supervised parser are not applicable.1519

A.13 Detailed schema induction results1520

Table 10 shows detailed results comparison on1521

different proposed methods on schema induction.1522

All methods result in a similar number of clusters,1523

while span-based further pre-training methods con-1524

strained on unsupervised PCFG structures achieve1525

the best performance overall.1526
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slot type slot value

method # clusters precision recall f1 precision recall f1

Baseline

DSI 522 96.15 80.65 87.72 41.53 57.40 37.18

Parser only

NP 88 94.44 54.84 69.39 42.26 67.80 47.46
DSI cand. 113 100.00 74.19 85.19 56.46 60.80 49.71
PCFG 339 96.43 87.10 91.53 62.14 58.01 53.62
CoreNLP 292 96.15 80.65 87.72 57.80 63.18 54.43

Language model only

BERT 340 96.00 77.42 85.71 62.11 58.60 55.80
SpanBERT 343 96.30 83.87 89.66 56.34 51.95 45.21
TOD-BERT 219 96.30 83.87 89.66 63.58 57.64 50.89
TOD-Span 374 96.00 77.42 85.71 54.88 69.13 55.29
freq 100 93.33 45.16 60.87 47.31 63.32 45.97
freq w/o stop 337 95.65 70.97 81.48 48.63 63.66 48.27
PMI 369 100.00 80.65 89.29 53.97 73.60 56.38
PMI_seg 551 96.55 90.32 93.33 60.37 66.68 58.33
SCP 374 96.00 77.42 85.71 55.06 61.23 51.78

Language model contrained on unsupervised PCFG

BERT 350 96.15 80.66 87.72 58.85 57.49 52.32
SpanBERT 203 96.30 83.87 89.66 60.54 48.23 44.51
TOD-BERT 245 96.43 87.10 91.53 55.40 57.26 48.13
TOD-Span 290 100.00 93.55 96.67 61.34 67.26 58.71
freq 379 100.00 83.87 91.23 56.67 68.19 57.19
freq w/o stop 315 96.55 90.32 93.33 56.40 66.43 53.74
PMI 335 96.55 90.32 93.33 57.90 67.50 56.91
PMI_seg 275 96.55 90.32 93.33 55.19 65.04 54.54
SCP 290 100.00 90.32 94.92 53.62 65.31 53.00

Table 10: Schema induction results for different proposed methods.
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