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Abstract

Human visual experience is markedly di�erent from the large-scale computer vision datasets
consisting of internet images. Babies densely sample a few 3D scenes with diverse varia-
tions such as object viewpoints or illuminations, while datasets like ImageNet contain one
single snapshot from millions of 3D scenes. We investigated how these di�erences in input
data composition (i.e., visual diet) impact the Out-Of-Distribution (OOD) generalization
capabilities of a visual system. Training models on a dataset mimicking attributes of the
human-like visual diet improved generalization to OOD lighting, material, and viewpoint
changes by up to 18%. This observation held despite the fact that the models were trained
on 1, 000-fold less training data. Furthermore, when trained on purely synthetic data and
tested on natural images, incorporating these visual diet attributes in the training dataset
improved OOD generalization by 17%. These experiments are enabled by our newly pro-
posed benchmark—the Human Visual Diet (HVD) dataset, and a new model (Human Diet
Network) designed to leverage the attributes of a human-like visual diet. These findings
highlight a critical problem in modern day Artificial Intelligence—building better datasets
requires thinking beyond dataset size and rather focus on improving data composition. All
data and source code are available at https://bit.ly/3yX3PAM.

1 Introduction

The development of the visual system is intricately tied to the visual experiences encountered from infancy
(Kandel et al. (2000); Kreiman (2021); Arcaro et al. (2017); Hubel & Wiesel (1964); Daw & Wyatt (1976);
Wood & Wood (2018; 2022); Bambach et al. (2018); Lee et al. (2021)). Growing evidence highlights the
importance of visual experience (Smith & Slone (2017); Wood & Wood (2018; 2022); Sheybani et al. (2023;
2024); Tsotsos (1992); Tsotsos et al. (2019)). These visual experiences are constrained by the statistics
of natural scenes (Simoncelli & Olshausen (2001)), resulting in data significantly di�erent from large-scale
datasets used in computer vision.

Fig. 1a illustrates two such di�erences. First, children learn from the physical space they occupy—a few
3D scenes and objects viewed under diverse real-world transformations including viewpoints, lighting, object
textures, and occlusions. Second, children always view objects in the context of their surroundings. We
refer to these as real-world transformational diversity (RWTD) and scene context, respectively. Here we
investigate how these di�erences in input data composition impact Out-Of-Distribution (OOD) generalization
performance.

Here we show that incorporating these visual diet attributes improves generalization. Models trained with a
human-like visual diet achieve up to 18% improvement on OOD lighting, materials, and viewpoint changes.
Training with such data outperforms training models on 1,000-fold larger internet datasets. Furthermore,
when trained on synthetic images and tested on natural images, incorporating attributes of the human
visual diet improved OOD generalization performance by up to 17%. These experiments are enabled by
two key technical contributions. First, we introduce the Human Visual Diet (HVD) dataset, which
mimics the input data during visual development and contains both transformational diversity and scene
context (Sheybani et al. (2023); Smith & Slone (2017)) as shown in Fig. 2. Second, we propose the Human
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Figure 1: Comparing the input data composition for humans and machines. (a) Humans view
the sofa in the context of its surroundings. Furthermore, the sofa is viewed under a variety of real-world
transformations including variations in object viewpoints, changes to room lighting depending the time of the
day, and material variations in the form of upholstery. (b) Both scene context and real-world transformational
diversity (RWTD) are missing in internet scraped images of sofas.

Diet Network (HDNet)—a model designed to leverage the attributes present in HVD (Fig. 1c). HDNet
exploits transformational diversity by employing a contrastive loss over real-world transformations (lighting,
material, 3D viewpoint changes), and uses a two-stream architecture to jointly reason over target and scene
context to perform context aware visual recognition. To summarize, our work has three main contributions:

• We present three new benchmarks for measuring OOD generalization across disentangled, real-
world transformations in lighting, materials, and viewpoint changes: the Human Visual Diet (HVD)
dataset, Semantic-iLab dataset, and the Syn2Real dataset.

• We assess generalization capabilities of multiple computer vision architectures and domain general-
ization approaches on disentangled, semantic OOD shifts in these benchmarks.

• We show that incorporating real-world transformational diversity (RWTD) and scene context im-
proves OOD generalization by large margins (as high as 17-18%), and present a new architecture,
Human Diet Network (HDNet), designed to leverage these attributes.

2 Related Work

Out-of-Distribution (OOD) generalization continues to be the Achilles heel of modern AI (Engstrom et al.
(2018); Chaman & Dokmanic (2021); Zhang (2019)). Failure modes include OOD rotations and translations
(Engstrom et al. (2018); Chaman & Dokmanic (2021); Zhang (2019)), real-world transformations including
3D viewpoints (Barbu et al. (2019); Liu et al. (2018); Zeng et al. (2019); Madan et al. (2021c); Sakai et al.
(2022); Zheng et al. (2023)), changes in lighting (Madan et al. (2021c); Beery et al. (2018); Zhang et al.
(2021)), and color changes (Joshi et al. (2019); Shamsabadi et al. (2020)), among other transformations.

Existing approaches to counter this generalization gap include—specialized architectures (Shahtalebi et al.
(2021); Sun & Saenko (2016); Arjovsky et al. (2019); Kim et al. (2021); Vedantam et al. (2021); Krueger
et al. (2021); Blanchard et al. (2017a)), novel pre-processing and data augmentation strategies (Yun et al.
(2019); Hendrycks et al. (2019); Zhang et al. (2017); Madan et al. (2021b;a)), and generative modeling (Ilse
et al. (2020); Wang et al. (2020)), among others. Lately, investigators introduced billion scale datasets like
LAION-5B (Schuhmann et al. (2022)) and IG-1B Targeted (Yalniz et al. (2019)) hoping that they will leave
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little out of the distribution. However, despite progress, OOD samples remain an unsolved problem (Radford
et al. (2021); Wortsman et al. (2022); Pham et al.). We introduce a new dataset and model inspired by the
human visual diet.

Some recent work has emphasized the importance of training with more human-like data ( Bambach et al.
(2018); Lee et al. (2021); Wood & Wood (2018; 2022)). These e�orts include incorporating scene context
(Zhang et al. (2020)), temporal structure (Sheybani et al. (2024)), binocular vision (Orhan et al. (2020);
Orhan & Lake (2024)), and goal-directed/active sampling (Tsotsos (1992); Tsotsos et al. (2019); Bajcsy
et al. (2018); Bajcsy (1988); Pelgrim et al. (2024)), among others. Our work extends these e�orts to Out-of-
Distribution generalization. Some recent work on egocentric vision has led the development of datasets which
are closer to human visual experience. This includes the Ego4D Grauman et al. (2022), EpicKitchens Damen
et al. (2018), and UVO Wang et al. (2021), among others. Our proposed HVD dataset shares the aim of being
closer to the human visual experience, but di�ers in two significant ways. Firstly, these large-scale, video
datasets are comprised of sparse experiences collected across a large number of 3D scenes. In contrast, the
Human Visual Diet (HVD) dataset samples densely from each 3D scene. Secondly, HVD contains controlled,
semantic variation in light, materials, and viewpoints which enables controlled analysis of distribution shifts
in each parameter.

3 Datasets with controlled variations in lighting, materials and viewpoints

We present three new benchmarks for measuring OOD generalization across real-world transformations in
lighting, materials, and viewpoint changes.

3.1 Human visual diet (HVD) Dataset

3D scenes from ScanNet (n=1,288) (Dai et al. (2017)) were reconstructed using the OpenRooms framework
(Li et al. (2020a;b)), and 15 photo-realistic domains were constructed with these scenes by introducing 3
real-world transformations—lighting, material, and viewpoint changes. For each domain, 19, 800 images
were rendered resulting in a total of 300, 000 images containing 1 million object instances with controlled
variations in lighting, materials, and viewpoints (Fig. 2a).

Light shift domains: Outdoor lighting was controlled using 250 High Dynamic Range (HDR) environment
maps from the Laval Outdoor HDR Dataset ( Hold-Geo�roy et al. (2019)) and OpenRooms. These were
split into 5 sets of 50 each to create 5 light shift domains. We split the HSV color space into chunks of
disjoint hue values. Each domain sampled indoor light color and intensity from one chunk. One domain was
held out for testing (OOD Light), and never used for training (see sample images in Fig. S1).

Material shift domains: 250 procedural materials from Adobe Substances were used, including di�erent
types of wood, fabrics, floor and wall tiles, and metals, among others. These were split into sets of 50
materials each to create 5 di�erent material domains. For each material domain, one of these 50 materials
were randomly assigned to each scene object. One domain was held out for testing (OOD Materials), and
never used for training (see sample images in Fig. S2).

Viewpoint shift domains: Disjoint viewpoint domains were constructed by changing the height at which
the camera focuses, i.e., the zenith angle. Five viewpoint domains were constructed, and one was held out
for testing (OOD Viewpoints, see sample images in Fig. S3).

3.2 Semantic-iLab dataset

Images from iLab (Borji et al. (2016)) were modified to create a natural image dataset with variations in
lighting, material and viewpoints (Fig. 2b). iLab contains objects from 15 categories placed on a turntable
and photographed from varied viewpoints. Fist, a foreground detector was used to extract the object. Then,
material variations were implemented using AdaIN-based style transfer (Huang & Belongie (2017b)) on these
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Figure 2: Datasets with real-world transformations. (a) Sample images from the Human Visual Diet
(HVD) dataset. We created 15 photo-realistic domains with 3, disentangled real-world transformations—
lighting, material, and viewpoint changes. Each 3D scene was created by reconstructing an existing ScanNet
(Dai et al. (2017)) scene using the OpenRooms framework (Li et al. (2020b)), followed by introducing
controlled changes in scene parameters before rendering. (b) Sample images from the Semantic-iLab dataset.
We modified the iLab dataset (Borji et al. (2016)), augmenting images with changes in lighting and material
by modifying the white balance and using AdaIN-based style transfer (Huang & Belongie (2017a)). (c)
Sample images from the Syn2Real benchmark. HVD training images (left) and ScanNet testing images
(right) show the same 3D scene. Models are trained on the purely synthetic HVD images, and tested on the
natural ScanNet images.

object masks and the style transferred object was overlaid onto the original background. Lighting changes

4



Under review as submission to TMLR

Cross-attention 
transformer

2D-ConvNet

𝒑

𝑭𝒕,𝒄

𝑭𝒕
𝑰𝒕

𝑰𝒄

Weighted sum

Predicted label
‘monitor’

𝒚𝒑

𝒚𝒕

𝒚𝒕,𝒄

(a) Context-aware Feature Extraction

monitor

monitor

chair

Attract

Repel

(b) Contrastive Learning

Figure 3: Architecture overview for the Human Diet Network(HDNet). (a) Modular steps carried
out by HDNet in context-aware object recognition. HDNet consists of 3 modules: feature extraction, integra-
tion of context and target information, and confidence-modulated classification. HDNet takes the cropped
target object It and the entire context image Ic as inputs and extracts their respective features. These feature
maps are tokenized and information from the two streams is integrated over multiple cross-attention layers.
HDNet also estimates a confidence score p for recognition using the target object features alone, which is
used to modulate the contributions of Ft and Ft,c in the final weighted prediction yp. (b) To help HDNet
learn generic representations across domains, we introduce contrastive learning on the context-modulated
object representations Ft,c in the embedding space. Target and context representations for objects of the
same category are enforced to attract each other, while those from di�erent categories are enforced to repel.
Pairs for contrastive learning are generated using various lighting, material, or viewpoint shifts (Sec. 3.1).

were simulated by modifying the white balance. Unlike HVD, this dataset does not contain scene context
(see Sec. B for more details).

3.3 Syn2Real dataset: Natural image test set from ScanNet

The Syn2Real dataset is composed of a test set of natural images from the ScanNet dataset, and a training
set of only synthetic images from HVD. The natural image test set was created by annotating images from
ScanNet ( Dai et al. (2017)). To capture distinct images, one frame was sampled every 100 frames from
ScanNet’s raw video footage. These frames were then annotated using LabelMe (see Sec. H for further
details).

4 Human Diet Network (HDNet)

A schematic of HDNet is shown in Fig 3. There are two main components to this model. First, a two-stream
network inspired by the eccentricity dependence of human vision that jointly reasons over target object and
context. Second, a contrastive loss over real world transformations.

Two-stream network inspired by human vision: Given the training dataset D = {xi, yi}n

i=1, HDNet is
presented with an image xi with multiple objects and the bounding box for a single target object location.
The target (Ii,t) is obtained by cropping the input image xi to the bounding box whereas Ii,c covers the entire
contextual area of the image xi. yi is the ground truth class label for Ii,t. The first stream processes only the
target object (It, 224 ◊ 224) and outputs yt, while the second stream processes the periphery (Ic, 224 ◊ 224)
and outputs yt,c. Based on the confidence in the prediction yt (denoted p), HDNet computes a confidence-
weighted average of yt and yt,c to get the final prediction yp. If the model makes a confident prediction with
the object only, it overrules the context reasoning stage.

Contrastive loss over real-world transformations: HDNet builds on the supervised contrastive learning
loss (Khosla et al. (2020))—samples from the same object category (but di�erent lighting, material, or
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viewpoint) serve as positive pairs, while samples from di�erent object categories serve as negative pairs.
Consider a batch of N data and label pairs {xk, yk}N

k=1. The corresponding multiview batch consists of 2N
pairs of domain-shifted images constructed by modifying the lighting, materials or viewpoints of objects in
the batch. {x̃l, ỹl}2N

l=1, where x̃2k and x̃2k≠1 are two views created with random semantic domain shifts of
xk(k = 1, ..., N) and ỹ2k = ỹ2k≠1 = ỹk. The domain shifts are randomly selected from a set of HVD domains
specified during training. For example, if xk is from a material domain, x̃2k and x̃2k≠1 would be images from
the same 3D scene but with di�erent materials.

Within a multiviewed batch, let m œ M := {1, ..., 2N} be the index of an arbitrary domain shifted sample.
Let j(m) be the index of the other domain shifted samples originating from the same source samples belonging
to the same object category, also known as the positive. Then A(m) := M\{m} refers to the rest of indices
in M except for m itself. Hence, we can also define P (m) := {p œ A(m) : ỹp = ỹm} as the collection of
indices of all positives in the multiviewed batch distinct from m. |P (m)| is the cardinality. The supervised
contrastive learning loss is:

Lcontrast =
ÿ

mœM

Lm =
ÿ

mœM

≠1
|P (m)|

ÿ

pœP (m)
log exp(zm · zp/·)q

aœA(m) exp(zm · za/·) (1)

Here, zm refers to the context-dependent object features Fm,t,c on x̃m after L2 normalization. This design
encourages HDNet to attract the objects and relevant context from the same category, and repel the objects
and irrelevant context from di�erent categories. HDNet is trained end-to-end with contrative loss alongside
three three cross-entropy losses proposed in context-aware CRTNet architecture Bomatter et al. (2021).
These include cross-entropy losses. First, loss w.r.t. the confidence-weighted prediction yp denoted Lp,
which allows the model to increase the confidence value p for samples where the prediction based on target
alone tends to be correct. Second, w.r.t. yt, denoted Lt. (iii) Finally, w.r.t. yt,c, denoted Lc,t. This
disentangled objective function ensures strong learning signals for all parts of the architecture irrespective
of the value of p. Thus, HDNEt is trained end to end with:

LHDNet = –Lcontrast + Lp + Lt + Lc,t (2)

Similar to past work (Bomatter et al. (2021); Zhang et al. (2020)), we set · = 0.1, – = 0.5 to balance the
supervision from constrastive learning and the classification loss. Learning rate was set to 0.0001 and all
models were trained the Adam optimizer.

5 Results

We present findings demonstrating the e�ectiveness of training models with two key attributes of the human
visual diet:—Real-World Transformational Diversity (RWTD) and Scene Context. To begin, Sec. 5.1 es-
tablishes a lower baseline by benchmarking generalization capabilities of conventional vision models trained
with low RWTD and minimal scene context. Building further, Sec. 5.2 and Sec. 5.3 respectively show that
incorporating real-world transformation diversity and scene context into the training data improves general-
ization significantly. Sec. 5.4 presents an extreme test of our hypothesis, showing that models trained with a
human-like visual data outperform models trained on a 1000x-fold larger internet-scraped dataset. Finally,
as a real-world litmus test, Sec. 5.5 shows that a human-like visual diet leads to significant improvement in
generalizing from synthetic images from HVD to natural images from ScanNet.

For all experiments, one domain per transformation (light, material, viewpoint) was held out as the OOD test
set and never used for training. As Real-World Transformational Diversity (RWTD) was increased from 1 to
4 domains (20% to 80% RWTD), the number of images sampled per domain were reduced. This ensured a
fixed training dataset size. All models were pre-trained on ImageNet. Additional details on hyperparameters
and baseline models are provided in Sec. I and Sec. J.
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(a) (b) (c) (d)

Figure 4: Real-world transformational diversity significantly improved generalization for all
OOD transformations and architectures. (a) Models trained with low transformational diversity and
minimal context struggled to generalize across real-world OOD transformations (especially material and
viewpoint changes). Y-axis reports the top-1 classification accuracy for ResNet, DenseNet and ViT models
trained on the HVD dataset (b) ResNet, DenseNet and ViT models trained on the Semantic-iLab dataset
also struggled to generalize to OOD transformations. (c) Generalization improved significantly as real-world
transformational diversity (RWTD) is increased. Y-axis reports accuracy for a HDNet model trained on the
HVD dataset. This held true for all OOD transformations. (d) Generalization performance also improved
for a ResNet model trained on the Semantic-ilab dataset. An ú represents statistical significance (two-sided
t-test). The colors green, blue, and red represent performance on OOD lighting, OOD materials, and OOD
viewpoints respectively.

(a)

Human Visual Diet (HVD) Dataset Semantic iLab Dataset

(c)

Original Image

Generalization performance
with unseen materials

Images after Style Transfer

(d)

80% Real-World Transformational Diversity (RWTD) 20% RWTD + Data Augmentations

(b)

Figure 5: Data post-processing does not match gains from collecting data mimicking the human
visual diet. (a),(b) Models trained with 80% real-world transformational diversity (RWTD) (solid bars)
outperform those trained with 20% RWTD + traditional data augmentation (striped bars) for all transfor-
mations (lighting (green), material (blue), and viewpoint (red)) across both HVD (a) and Semantic-iLab (b)
datasets. Number of images is held constant in these experiments. Format and conventions as in Fig. 4ab.
(c) Sample images (bottom) from style transfer domains created using AdaIn ( Huang & Belongie (2017a))
based on the original image on top. (d) Models trained on style transfer domains (red) do not generalize
as well as those trained with material diversity (blue). The increase in OOD performance for real-world
materials is statistically significant (blue, significance denoted by ‘*’). However, there is no statistically
significant increase in performance when the model is tranied with additional style-transfer domains (red,
without an ‘*’).

5.1 Models trained with low diversity and minimal context struggle to generalize

We started by estimating a lower baseline by training models on a dataset analogous to internet-scraped
datasets like ImageNet ( Deng et al. (2009)). For this purpose, we evaluated generalization performance of
three common vision models: ResNet He et al. (2016), DenseNet ( Huang et al. (2017)), and ViT ( Dosovitskiy
et al. (2020)) when trained with low real-world transformational diversity (RWTD) and minimal scene
context. Specifically, these models were trained with data from only 1 domain (low RWTD) and cropping
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images to show only the target object and testing on other domains (minimal context). These results are
reported inFig.4a,b.

For HVD (Fig. 4a), ResNet generalized better across lighting changes (green) than material changes (blue,
two-sided t-test, p < 10≠5) or viewpoint changes (red, two-sided t-test, p < 10≠6). There is ample room
for improvement, especially when tested on OOD material and viewpoints. Similar conclusions can be
drawn for DenseNet and ViT. The qualitative conclusions were similar for Semantic-iLab (Fig. 4b)—ResNet
generalized better across OOD lighting (Fig. 4b, green) than OOD materials (blue, two-sided t-test, p <
10≠6) or OOD viewpoints (red, two-sided t-test, p < 10≠6). Furthermore, the degree of generalization for
material and viewpoints was particularly low for Semantic-iLab. These conclusions on the Semantic-iLab
dataset held true for DenseNet and ViT architectures as well. In sum, models trained with minimal diversity
and minimal context showed only moderate generalization, especially struggling with material and viewpoint
changes.

5.2 Real-word transformational diversity (RWTD) improves generalization for all OOD
transformations

For each transformation, we increased the amount of real-world transformational diversity (RWTD) that
the models were exposed to by training them using samples from more domains from 1 domain (20%) to
4 domains (80%). Fig. 4 reports results for our proposed Human Diet Network (HDNet) trained with
the HVD dataset, and for a ResNet model trained with the Semantic-iLab dataset as transformational
diversity is increased. As described in Sec. 3 and Sec. 4, HDNet was designed specifically to leverage the
transformational diversity present in the HVD dataset.

OOD generalization improved approximately monotonically with transformational diversity for all three
transformations in the HVD dataset (Fig. 4c). This improvement was significantly greater for OOD ma-
terials than for OOD lighting (p < 10≠4) and OOD viewpoints (p < 10≠4). Increased diversity improved
generalization for a ResNet model trained on the Semantic-iLab dataset as well (Fig. 4d). As with HVD,
improvement in generalization across the Semantic-iLab dataset was higher for unseen materials than for un-
seen lighting (p < 10≠3) and unseen viewpoints (p < 10≠6). Thus, with su�cient diversity, generalization to
OOD lighting and materials reached almost ceiling levels. However, despite improvement, OOD viewpoints
remained a challenge.

RWTD outperforms data augmentation: We compared the impact of training with real world trans-
formations versus training with traditional data augmentation (Crops, Rotations, Contrast, and Solarize
operations). Fig. 5a compares HDNet trained on HVD with 80% RWTD, and the same architecture trained
with 20% RWTD+traditional data augmentation. RWTD outperformed data augmentation for all three
transformations (two-sided t test, p < 10≠4). The same was true for a ResNet model trained with Semantic-
iLab dataset (Fig. 5(b)). For additional details, see Sec. G.

RWTD outperforms generative AI: Fig. 5(c) shows style-transfer domains constructed using the gen-
erative AI model AdaIn Huang & Belongie (2017a), an alternate approach to the rendered, photorealistic
materials used in HVD. 5(d) shows generalization performance of HVD trained with real-world materials
from HVD vs images from these style-transfer domains. The training dataset size was kept constant, and
all models were tested on the same held-out OOD Materials domain. Unlike new material domains, new
style transfer images did not improve generalization to OOD materials. Additional details are provided in
Sec. E.2.

5.3 Utilizing scene context improves generalization

We compared HDNet with a suite of baselines that do not utilize scene context. This includes domain
generalization (DG) architectures—ANDMask (Shahtalebi et al. (2021)), CAD (Blanchard et al. (2017a)),
CORAL (Sun & Saenko (2016)), MTL (Blanchard et al. (2017b)), Self-Reg (Kim et al. (2021)), VREx
(Krueger et al. (2021)), IRM (Arjovsky et al. (2019)), and ERM (Gulrajani & Lopez-Paz (2020)). We also
report comparisons with two context-aware models—a modified FasterRCNN model designed to perform
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Transformation AND
Mask CAD COR

AL ERM IRM MTL Self
Reg VREx Faster

RCNN
HDNet
(ours)

Lighting 0.82 0.80 0.81 0.8 0.83 0.81 0.75 0.83 0.95 0.98
Materials 0.75 0.75 0.75 0.75 0.74 0.74 0.74 0.75 0.78 0.94

Viewpoints 0.75 0.77 0.79 0.78 0.76 0.79 0.76 0.78 0.65 0.83

Table 1: Contextual information improves OOD generalization. All models were trained with 4
HVD domains (80% RWTD) and tested on the 1 held-out domain for each of the three transformations.
HDNet is benchmarked against specialized domain generalization (DG) baselines, and two context-aware
baselines—a FasterRCNN model modified to do recognition, and CRTNet Bomatter et al. (2021). Similar to
past works Gulrajani & Lopez-Paz (2020), ERM performed the best among the DG baselines. CRTNet was
the best performing baseline, but HDNet outperformed all baselines on all three transformations. Bolded
entries indicate the highest accuracy in each row.

Semantic
Shift

Full
Context
(‡ = 0)

Less
Context
(‡ = 25)

Least
Context

(‡ = 125)
Lighting 0.98 ± 0.001 0.96 ± 0.001 0.94 ± 0.001
Material 0.94 ± 0.002 0.88 ± 0.01 0.83 ± 0.006

Viewpoints 0.83 ± 0.006 0.77 ± 0.01 0.76 ± 0.01

Table 2: Blurring scene context worsens generalization performance. ‡ is the standard deviation for
the gaussian kernel applied to the image as a filter. Thus, blurring increases with ‡, and is applied to both
training and testing data. Similar to Table. 1, HDNet is trained on 4 domains and tested on the held-out
OOD domain for each transformation. As blurring increases, the generalization performance of HDNet drops
on all three OOD transformations (Lighting, Material and Viewpoints).

visual recognition and the recent CRTNet (Bomatter et al. (2021)) — to the comparison. All models were
trained with 80% Transformational Diversity, i.e., 4 training domains.

Table 1 reports the top-1 classification accuracy of HDNet compared with the above listed baselines. HDNet
beat all baselines with statistical significance (two-sided t-test, p < 0.05) for all three transformations.
The best performing baseline was another context-aware model—CRTNET Bomatter et al. (2021). The
best performing DG approach was ERM, which was outperformed by CRTNet. In summary, approaches
utilizing scene context (HDNet and CRTNet) outperformed all specialized DG approaches on all real-world
transformations, and our proposed HDNet also outperformed the closest baseline (CRTNet).

Removing scene context worsens generalization: The results above show that incorporating scene
context improves generalization. Additionally, Table. 2 shows the impact of reducing scene context in-
formation by blurring the context using a Gaussian Blur. Performance dropped consistently for all three
transformations as contextual information is reduced.

Modifying existing architectures to leverage scene context: We present a simple methodology to
modify existing architectures (ResNet, ViT) such that they can leverage scene context. For ResNet, a two-
stream version was made where each stream was a ResNet backbone. One stream operated on the target,
and the other on the scene context. Output features from each stream were concatenated, and passed
through a fully connected layer for classification. Two-stream ViT was analogous. In contrast, the one-
stream architecture did not use scene context and operated on the target object alone. These modifications
led to significantly improved performance (two-sided t test, p < 0.05), as shown in Table 3. Additional
experiments on the role of scene context are presented in Sec. E.1.
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Real-World
Transformation

Architecture 1 Stream 2 Stream

Lighting

ResNet 0.85 ± 0.004 0.95 ± 0.009ú

ViT 0.91 ± 0.003 0.97 ± 0.007ú

HDNet (Ours) - 0.98 ± 0.001

Materials

ResNet 0.64 ± 0.03 0.83 ± 0.008ú

ViT 0.78 ± 0.01 0.92 ± 0.003ú

HDNet (Ours) - 0.94 ± 0.002

Viewpoint

ResNet 0.63 ± 0.02 0.72 ± 0.009ú

ViT 0.77 ± 0.01 0.83 ± 0.001ú

HDNet (Ours) - 0.83 ± 0.006

Table 3: Modifying standard architectures to leverage scene context. We proposed a methodology
to modify standard architectures such that they can utilize scene context. Inspired by HDNet, a ResNet
and a ViT model were modified to have two streams—one operating on the target, and the other one
on the contextual information. This modification significantly improved generalization across all OOD
transformations for both ResNet and ViT trained on the HVD dataset. All models were trained on 4
domains (80% RWTD) and tested on the held out domain for each transformation. Best performing model
for each transformation has been bolded.

Real World
Transformation

Dino
V2

ResNet50
SWSL

ResNet18
SWSL

ResNext101
32x4d
SWSL

ResNext101
32x16d
SWSL

ResNext50
32x4d
SWSL

HDNet
(Ours)

Lighting 0.94 0.9 0.88 0.93 0.93 0.91 0.98
Materials 0.79 0.73 0.67 0.77 0.79 0.74 0.94

Viewpoints 0.74 0.72 0.65 0.74 0.78 0.73 0.83

Table 4: Our approach beats models trained with 1,000x more data. HDNet was pre-trained on
ImageNet and fine-tuned on data with both transformational diversity and scene context (4 HVD domains,
full scene context). Baselines were pre-trained on 1,000-fold more data (IG-1B dataset), but fine-tuned on
data not containing these two attributes (1 HVD domain, minimal scene context). HDNet beats all baselines
by a large margin for all three transformations.

5.4 Human-like visual diet beats billion-scale internet-scraped datasets

Next, we compared HDNet with visual recognition models trained with 1,000x more data (Table. 4). All
models except HDNet were pre-trained on the IG-1B dataset Yalniz et al. (2019), and then fine-tuned on
data with 20% RWTD and with object crops i.e., low transformational diversity and minimal context. In
comparison, HDNet was pre-trained on ImageNet and fine-tuned with data consisting of 80% RWTD and
scene context i.e., human-like visual diet. All models were fine-tuned on the same number of images. HDNet
outperformed all billion-scale baselines by large margins despite being trained on 1000x less data (Table. 4,
two-sided t-test, p < 0.001).

5.5 Human-like visual diet enables generalization to real-world images

As a real litmus test, we tested the impact of a human-like visual diet on the Syn2Real benchmark i.e., models
were trained on purely synthetic images (from HVD) and tested on natural images from ScanNet. These
models were not pretrained on ImageNet, and thus, had never seen any natural images. Fig. 6 reports a
comparison of HDNet is compared against a suite of DG benchmarks, standard computer vision models,
and the context-aware CRTNet model. HDNet trained with RWTD and scene context achieved an accuracy
of 0.69, while the best baseline (CRTNet) trained without a human-like diet achieved an accuracy of 0.51.
Thus, incorporating these attributes into the training dataset enabled HDNet to generalize significantly well
from a purely synthetic training data to a natural image test set (two-sided t-test, p < 0.05).
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OOD Generalization on Syn2Real

Figure 6: Human-like visual diet enables improved generalization on the Syn2Real benchmark.
HDNet is compared against a suite of DG benchmarks, standard computer vision models, and the context-
aware CRTNet model. All models are trained on purely synthetic images (HVD) and tested on natural
images (ScanNet) with no pre-training on any natural images. HDNet beats all baselines by a large margin
(18%), and with statistical significance.

6 Conclusions

We investigated the impact of data composition on the out-of-distribution generalization capabilities of vi-
sual recognition models. Specifically, we demonstrated that incorporating two key components of the human
visual diet—transformational diversity and scene context—improves generalization to OOD viewpoints, light-
ing, and material changes. Our contributions include three new benchmarks, and a novel architecture that
models and leverages these human-like visual attributes. This work provides an approach complementary to
existing directions on data augmentation and specialized domain generalization architectures.

While our results are promising, the human visual diet is complex and multifaceted, with several additional
features like temporal information, egocentric views, embodiment, and goal-driven/active sampling that
warrant further investigation. We hope that future datasets extending the Human Visual Diet (HVD)
dataset introduced here can address these. Similarly, the Human Diet Network (HDNet) introduced here
represents a promising first step in integrating human-like scene context, but is currently limited to only
spatial context. We hope that future work can build architectures incorporating temporal context—such
as motion and sequential dependency. In summary, this work opens new avenues for aligning biological
and artificial vision systems, and advancing generalization in AI. Out-of-distribution generalization remains
the Achilles’ heel of modern AI, and we hope future research in these directions will lead to models that
generalize as e�ortlessly as human vision.
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Supplementary Materials

A HVD domains

A.1 Sample images from the HVD Dataset

We present additional images from the HVD dataset. Each figure shows change in one scene parameter,
while holding all others constant. In Fig. S1 we show images from two di�erent light domains. Note that
the first three rows in Fig S1 show di�erent indoor lighting conditions controlled using indoor light color and
intensity sampled from disjoint chunks of the HSV space. The last two rows show di�erent outdoor lighting
settings created by changing the environment maps. Similarly, Fig. S2 shows five di�erent scenes from two
training domains with a material shift. Fig. S3 shows viewpoint shifted domains.

B Details on the construction of the Semantic iLab dataset

We show sample images from the Semantic iLab dataset in Fig. 2(b) created by modifying the existing
iLab Borji et al. (2016) dataset. This is a multi-view dataset, and hence already contains viewpoint shifted
variations of the same objects. We modify the dataset to also contain material and light shifts. To mimick
light shift, we modified the white balance of the original images, as shown in Fig. 2(b). For material shifts,
we first run a foreground detector on these objects using Google’s Cloud Vision API. We also run style
transfer on these images using AdaIn Huang & Belongie (2017b). Then, we overlay the style transferred
image on to the object mask on the original image to mimick material shifts. Note that this is approximate,
and does not model the physics of material transfer in the same way as our rendered HVD dataset which is
far more photorealistic, as shown in Fig. S2. Material shifted Semantic iLab images are shown in Fig. 2(b).
As the dataset is originally multi-view, we do not need to generate new viewpoints and can use images of a
di�erent viewpoint from the original dataset as shown in Fig. 2(b).

C Details on the construction of the Syn2Real dataset

Results are reported on a test subset of 350 test images which are not blurry and do not have significant
clutter, and on a larger subset of 700 test images where clutter and minor blurring was allowed to achieve a
bigger test set. The same procedure was also followed to hand-annotate 8, 000 training object instances from
the HVD dataset to ensure there is no spurious impact of the annotation procedure on the performance of
models when tested on ScanNet. We made three adaptations for these experiments. Firstly, as both ScanNet
and ImageNet contain natural images and overlapping categories, we trained models from scratch to ensure
pre-training does not interfere with our results. Thus, these models never saw any real-world images, not
even ImageNet as they were not pretrained on those datasets. Secondly, we trained and tested models on
overlapping classes between HVD and ScanNet. Finally, we used the LabelMe Wada (2018) software to
manually annotate a test set from ScanNet and training set for the HVD dataset using the same procedure
to make sure biases from the annotation procedure do not impact experiments. Thus, all models were trained
purely on synthetic data from HVD and tested on only real-world natural image data from ScanNet as shown
in Fig. 2(c).

D Details on the Human Diet Network

E Additional experiments with real-world transformational diversity

E.1 Real-world transformations outperform traditional data augmentation.

We investigated how real-world transformational diversity (RWTD) compares to traditional data augmen-
tation strategies including 2D rotations, scaling, and changes in contrast. Models trained with a visual diet
consisting of 80% RWTD were reported in Fig.3(e). We compared these with models trained with a visual
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Figure S1: Example images showing lighting tranformations. We show paired images from di�erent lighting
transformation domains between the right and left column in each row. All other parameters held constant.
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Figure S2: Example images showing material tranformations. We show paired images from di�erent material
transformation domains between the right and left column in each row. All other parameters held constant
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Figure S3: Example images showing viewpoint tranformations. We show paired images from di�erent view-
point transformation domains between the right and left column in each row. All other parameters held
constant
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diet consisting of 20% RWTD + traditional augmentation. As before, all models were tested on unseen
lighting, material, and viewpoint changes.

The number of training images was kept constant across all training scenarios to evaluate the quality of
the training images rather than their quantity. Training set size equalization was achieved by sampling
fewer images per domain in the 80% RTWD training set. For instance, for HVD experiments with unseen
viewpoints we sampled 15, 000 training images per viewpoint domain to construct the training set with 20%
RWTD + Data Augmentations. In comparison, we sampled only 3, 750 per viewpoint domain to construct the
80% RWTD training set. Thus, the initial sizes of the 80%RWTD and the 20%RWTD+Data Augmentation
training sets was identical. However, due to data augmentations being stochastic the total number of unique
images shown to models trained with data augmentations was much larger. Assuming a unique image was
created by data augmentation in every epoch, over 50 epochs the dataset size would be 50 times larger with
data augmentations.

Traditional data augmentation largely involves 2D a�ne operations (crops, rotations) or image-processing
based methods (contrast, solarize) which are not necessarily representative of real-world transformations. In
summary, the positive impact of a visual diet consisting of diverse lighting, material, and viewpoint changes
(real-world transformational diversity) cannot be replicated by using traditional data augmentation applied
to the dataset after data collection—diversity must be ensured at the data collection level.

E.2 Real-world transformations outperform augmentation with generative AI.

Several existing works rely on increasing data diversity using AdaIn-based methods Huang & Belongie
(2017a); Zhou et al. (2021). These style transfer methods change the colors in the image while retaining
object boundaries, but do not modify materials explicitly as done in our HVD dataset. We evaluated how
well models perform if diversity is increased using style transfer as opposed to material diversity. We started
with one material domain, and created four additional domains using style transfer. Sample images of style
transfer domains are shown in Fig. 5(c). Corresponding images from the HVD dataset with real-world
transformation in materials can be seen in Fig. 2(a). The total number of domains (and images) created
using style transfer was kept the same as the material domains in HVD. The only di�erence in the training
data was that instead of four additional material domains, we have four additional style transfer domains.
We compared models trained with these two di�erent visual diets—one consisting of four material domains,
and the other consisting of four style transfer domains. All models were then tested on the same held-out
OOD Materials domain. Style transfer domains did not enable models to generalize to new materials as well
as the material shift domains presented in HVD (Fig. 5(d)).

These experiments support the notion that in order to build visual recognition models that can generalize
to unseen materials, it is important to explicitly increase diversity using additional materials at the time
of training data collection. The impact of diverse materials cannot be replicated by using style transfer to
augment the dataset after data collection.

E.3 Each individual real-world transformation is helpful

Some real-world transformations are easier to capture than others. For instance, capturing light changes
during data collection might be significantly easier than collecting multiple possible room layouts, or object
viewpoints. Thus, it would be beneficial if training with one transformation (e.g., light changes) can improve
performance on a di�erent transformation (e.g., viewpoint changes). We refer to such a regime as assymetric
diversity—as models are trained with one kind of diversity, and tested on a di�erent kind of diversity
(Fig. 5(e),(f)). In all cases, the best generalization performance was obtained when training and testing
with the same real-world transformation for both HVD (Fig. 5(e)) and Semantic-iLab datasets (Fig. 5(f)).
In most cases, there was a drop in performance of 10% or more when training in one transformation and
testing with a di�erent (assymetric) transformation. These experiments imply that to build models that
generalize well, it is important to collect training data with multiple real-world transformations.
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F Additional experiments for the role of context

Given the success of HDNet, we asked whether implementing a two-stream separation of target and con-
text would also improve performance for other architectures. We modified ResNet18 He et al. (2016) and
ViT Dosovitskiy et al. (2020) to leverage scene context in the same way as HDNet. For ResNet, a two-stream
version was made where each stream is a ResNet backbone. One stream operates on the target, and the
other one on the scene context. Output features from each stream were concatenated, and passed through
a fully connected layer for classification as shown in Fig. 1(c). The two-stream architecture for ViT was
analogous. In contrast, the one-stream architecture did not use scene context and operated on the target
object alone (see methods for additional details). The two-stream architectures consistently led to improved
performance (two-sided t test, p < 0.05), as shown in Table 3.

To further understand the role of contextual information on visual recognition, we conducted two additional
experiments. Firstly, we evaluated the impact of reducing scene context information by blurring it using a
Gaussian Blur. As shown in Table. 2, performance dropped consistently for all three transformations as
contextual information is reduced. Secondly, we confirmed that the increase in performance is due to the
addition of contextual information and not due to the two-stream architecture per se by training HDNet with
both streams receiving only the target information. This removal of context led to a drop in performance,
as reported in Table. S1 (see Sec. F for details).

Besides results on the role of context presented in Table. 3, we present here two additional experiments eval-
uating the contribution of scene context on generalization. Firstly, we also evaluated the impact of blurring
the scene context while keeping the target intact Zhang et al. (2020). For each real-world transformation,
we trained and tested models with increasing levels of Gaussian blurring applied to the scene context. These
results are presented in Blurring was applied to the images in the form of a Gaussian kernel filter, with the
kernel standard deviation (‡) set to 0, 25, or 125. The cropped image of the target object was passed to
the second stream of the network without blurring. These results are reported in Table 2. As can be seen,
there was a drop in performance as context blurred for all three real-world transformations.

Semantic
Shift

Target
only

Target and
Context

Viewpoint 0.77 0.82
Material 0.85 0.94
Lighting 0.97 0.98

Table S1: Training a two-stream HDNet with only target information. As a third control for
confirming the role of context, we train HDNet where both streams are passed just the target object. Thus,
it is forced to learn without scene context. This results in a drop in performance for all semantic shifts,
providing further evidence in support of the utility of scene context.

Secondly, we train HDNet such that both streams are trained with the target object. Thus, this modified
version is forced to learn without scene context. These results are shown in Table. S1. For all semantic
shifts, forcing HDNet to learn with only the target results in a drop in accuracy. This provides further
evidence supporting the utility of scene context in enabling generalization.

G Additional experiments with HDNet and contrastive loss

We evaluate the contribution of the contrastive loss by training variations of HDNet on HVD with and
without the contrastive loss as shown in Eq. 2. These numbers are reported in Table S2. As can be seen,
adding a contrastive loss improves performance for all three semantic shifts, providing evidence for its utility.
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Semantic
Shift

Without
Contrastive

Loss

With
Contrastive

Loss
Viewpoint 0.79 0.82
Material 0.89 0.94
Lighting 0.98 0.98

Table S2: Impact of removing contrastive loss. We evaluate the contribution of the contrastive loss by
training and testing HDNet on the HVD dataset with and without the contrastive loss. The contrastive loss
results in an improvement across all three semantic shifts.

Test
Dataset ResNet ViT AND

Mask CAD CORALERM IRM MTL Self
Reg VREx

HDNet
(ours)

ScanNet 0.35 0.29 0.43 0.40 0.42 0.48 0.46 0.46 0.53 0.42 0.61

Table S3: Human visual diet improves generalization to larger real world dataset as well. We
curated a larger subset of ScanNet images, allowing more complex real world scenarios like blurry images,
clutter and occlusions. We report the capability of models to generalize from synthetic HVD images to this
more complex subset of ScanNet. HDNet leveraging human-like visual-diet outperforms all baselines on this
more complex dataset as well.

H Additional experiments with a larger, less controlled ScanNet test set.

We extend the generalization to real-world results presented in the main paper by reporting these numbers
on a larger test set created by annotating additional images from ScanNet. As ScanNet was created by
shooting video footage of 3D scenes, many frames can be blurry. In the original, smaller test-set such blurry
frames were removed to ensure a higher quality test set. However, here we also include additional images
with lower fidelity to report numbers on a larger test set. These numbers are reported in Table. S3. The
trend is consistent with results reported on a smaller, more controlled subset in the main paper—HDNet
outperforms all other benchmarks by a large margin. As expected, including these images in the test set
results in a drop in accuracy across all methods. All models were trained on synthetic images from HVD
and were tested on a test set of natural images from ScanNet.

I Hyperparameters

HDNet: As our model builds on top of CRTNet Bomatter et al. (2021) as backbone, we use the same
hyperparameters for the backbone as reported in the original paper. All models were trained for 20 epochs
with a learning rate of 0.0001, with a batch size of 15 on a Tesla V100 16Gb GPU.

Domain generalization: We used the code from Gulrajani et al. Gulrajani & Lopez-Paz (2020) to train
and test domain generalization methods on our dataset. The code is available here: https://github.com/
facebookresearch/DomainBed. To begin, we ran all available models and tried 10 random hyperparameter
initializations. Of these, we picked the best performing hyperparameter seed—24596. We also picked the
top performing algorithms as the baselines reported in the paper.

FasterRCNN: We used the code from Bomatter et al. Bomatter et al. (2021) to train and test the mod-
ified FasterRCNN model for recognition. The code is available here: https://github.com/kreimanlab/
WhenPigsFlyContext, and we used the exact hyperparameters mentioned in the repository.
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J Experimental Details

HDNet was compared against several baselines presented below. All models were trained on NVIDIA Tesla
V100 16G GPUs. Optimal hyper-parameters for benchmarks were identified using random search, and all
hyper-parameters are available in the supplement in Sec. I.

J.1 Baseline Approaches

We compared the impact of a human-like visual diet with a diverse set of alternative approaches popular in
machine learning. This includes:

2D feed-forward object recognition networks: Previous works have tested popular object recognition
models in generalization tests Geirhos et al. (2018); Boyd et al. (2022). We include the same popular
architectures ranging from 2D-ConvNets to transformers: DenseNet Iandola et al. (2014), ResNet He et al.
(2016), and ViT Dosovitskiy et al. (2020). These models do not use context, and take the target object
patch It as input.

Domain generalization methods: We also compare HDNet to an array of state-of-the-art domain gen-
eralization methods (Table 1). These methods also use only the target object, and do not use contextual
information.

Context-aware recognition models: To compare against models which use scene context, we include
CRTNet Bomatter et al. (2021) and Faster R-CNN Ren et al. (2015). CRTNet fuses object and contextual
information with a cross-attention transformer to reason about the class label of the target object. We also
compare HDNet with a Faster R-CNN Ren et al. (2015) model modified to perform recognition by replacing
the region proposal network with the ground truth location of the target object.

Billion-Scale self and semi supervised architectures: We presented results with a suite of modern
approaches trained on 1000-fold more data to emphasize the importance of data quality over sheer dataset
size. These included—Dino V2, ResNet50 SWSL, ResNet18 SWSL, 32x4d SWSL, ResNext101 32x16d SWSL,
and ResNext50 32x4d SWSL.

J.2 Evaluation of computational models

Performance for all models is evaluated as the Top-1 classification accuracy. Error bars reported on all
figures refer to the variance of per-class accuracies of di�erent models. For statistical testing, p-values were
calculated using a two-sample paired t-test on the per-category accuracies for di�erent models. The t-test
checks for the null hypothesis that these two independent samples have identical average (expected) values.
For ScanNet, a t-test is not optimal due to the smaller number of samples, and thus a Wilcoxon rank-sum
test was employed for hypothesis testing as suggested in past works De Winter (2019); Posten (1982). All
statistical testing was conducting using the python package scipy, and the threshold for statistical significance
was set at 0.05.
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