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Abstract

Mixed modality search, retrieving information across a heterogeneous corpus1

composed of images, texts, and multimodal documents, is an important yet un-2

derexplored real-world application. In this work, we investigate how contrastive3

vision-language models, such as CLIP, perform on the mixed modality search4

task. Our analysis reveals a critical limitation: these models exhibit a pronounced5

modality gap in the embedding space, where image and text embeddings form6

distinct clusters, leading to intra-modal ranking bias and inter-modal fusion failure.7

To address this issue, we propose GR-CLIP, a lightweight post-hoc calibration8

method that removes the modality gap in CLIP’s embedding space. Evaluated on9

MixBench, the first benchmark specifically designed for mixed modality search,10

GR-CLIP improves NDCG@10 by up to 26% over CLIP, surpasses recent vision-11

language generative embedding models by 4%, while using 75× less compute.12

1 Introduction13

Information in the digital world exists across multiple modalities—text, images, video, audio,14

and their various combinations. While traditional retrieval systems have primarily focused on15

searching within a homogeneous corpus (e.g., text-to-text or text-to-image retrieval) [27, 15, 17, 26],16

real-world applications increasingly demand the ability to search and retrieve relevant content17

across heterogeneous modalities (e.g., text-to-{text, image, or both} retrieval) [29]. For instance,18

a user searching for “Mountain Fuji” might expect to find text documents, standalone images, and19

multimodal webpages that combine both modalities to describe the mountain (Figure 1a).20

Despite its practical importance, the task of mixed modality search remains largely underex-21

plored [29]. The central challenge lies in constructing a unified embedding space where semanti-22

cally similar content across modalities—such as an image and a textual description of “Mountain23

Fuji”—can be mapped to nearby locations. This enables accurate measurement of semantic similarity24

between queries and documents, regardless of their modality. Recent advances in multimodal con-25

trastive learning, particularly CLIP-based models [26, 6, 33], offer a promising solution by aligning26

text and image embeddings through training on large-scale paired image-text datasets.27

In this work, we investigate how well these contrastive models perform in realistic mixed modality28

search scenarios. Specifically, CLIP consists of two separate encoders for vision and language [26].29

For each corpus item, we encode image-only and text-only documents using their respective encoders.30

For multimodal documents containing both image and text, we compute a linear combination of the31

image and text embeddings to represent them (Figure 1b). Once the embeddings are obtained, we32

perform similarity search by computing cosine similarity between the query embedding and each33

corpus item, and evaluate performance using standard retrieval metrics such as NDCG@10 [12],34

which measures the quality of the top-10 ranked results based on relevance.35

Our analysis reveals a fundamental limitation of CLIP-style contrastive models: they exhibit a36

pronounced modality gap [19, 35, 36] in their embedding space, significantly degrading retrieval37
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Figure 1: Overview of mixed modality search. (a) Problem Formulation: Mixed modality search
aims to retrieve relevant information from a heterogeneous corpus containing multimodal documents.
This is achieved by embedding both the query and documents, followed by similarity-based retrieval.
(b) Embedding Method: Unimodal documents are embedded using CLIP’s modality-specific
encoder, while multimodal documents are embedded via a weighted fusion of image and text features.
(c) Modality Gap: CLIP’s embedding space exhibits a modality gap: embeddings form distinct
clusters for each modality and remain largely separated across modalities. (d) Cosine Similarity
Across Modalities: Due to this modality gap, documents that share the same modality as the query
tend to have higher cosine similarity scores and are ranked higher, introducing systematic ranking
bias. (e) Performance on MixBench: On our newly created MixBench benchmark—specifically
designed for the task of mixed modality search—GR-CLIP, a lightweight post-hoc calibration method
that closes the modality gap, significantly improves performance and outperforms the state-of-the-art
VLM2Vec [14] baseline with substantially lower computational cost.

performance in mixed modality settings. Although these models are trained to align image-text38

pairs, image and text embeddings form separate clusters and remain far apart in the embedding space39

(Figure 1c). This clustering causes a strong intra-modal ranking bias (§3), where similarities between40

items of the same modality (e.g., image-to-image or text-to-text) are much higher than those across41

modalities (e.g., image-to-text), skewing retrieval rankings (Figure 1d). For instance, given the text42

query “Mountain Fuji,” an image that depicts Mountain Fuji is ranked below an unrelated text snippet43

like “this is a great paper.” Additionally, the modality gap hurts inter-modal fusion (§4): combining44

image and text embeddings via linear interpolation often pushes the features to a suboptimal region,45

weakening their semantics and performing worse than using image or text alone.46

To address the ranking bias and fusion failure caused by the modality gap, we introduce GR-CLIP, a47

lightweight post-hoc calibration method that removes the modality gap in CLIP’s embedding space48

(GR stands for gap-removed). Prior work [35, 36] has shown that the modality gap in CLIP-like49

models can be approximated by a constant vector that is orthogonal to the image and text embedding50

subspaces. Based on this theory, we compute the mean embeddings of all image and text data, use51
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their difference to estimate the modality gap, and subtract this vector from all embeddings before52

performing retrieval. This method requires only a single pass over the dataset to compute mean53

embeddings and introduces negligible computational overhead.54

Evaluated on MixBench, our benchmark explicitly designed for mixed modality search with four55

subsets (Google-WIT [28], MSCOCO [20], OVEN [11], VisualNews [21]), GR-CLIP consistently out-56

performs the original CLIP models, achieving up to 26 percentage points improvement in NDCG@10.57

It also surpasses recent vision-language generative embedding methods such as VLM2Vec [14] by 458

percentage points, while reducing computational cost by 75×. Furthermore, we demonstrate that59

our method generalizes across different CLIP variants (e.g., OpenAI CLIP [26], OpenCLIP [6],60

SigLIP [33]) and modalities (e.g., text-to-image, text-to-audio, text-to-video).61

In summary, we formulate and study the problem of mixed modality search, which reflects real-62

world scenarios such as web search engines, where users query a heterogeneous corpus containing63

diverse modality types. We show that state-of-the-art contrastive models suffer from ranking bias and64

fusion failure due to the modality gap, and we propose a lightweight post-hoc calibration method to65

address this issue. Our findings highlight the importance of constructing truly unified embedding66

spaces for effective mixed modality search.67

2 Preliminaries68

In this section, we define the mixed modality search task, introduce its challenges and three settings69

related to the challenge, and describe the methods and evaluation metrics used.70

2.1 Problem Formulation71

Mixed modality search aims to retrieve semantically relevant content when both the query and72

the documents may consist of different combinations of modalities, such as text, image, audio, or73

video. LetM be the set of supported modalities (e.g.,M = {text, image, audio, video}). A query is74

denoted by q, with modality set mq ⊆ M. The retrieval corpus is defined as C = {di}Ni=1, where75

each document di is associated with a modality set mi ⊆ M. The goal is to compute a similarity76

score s(q, di) for each document and return a ranked list based on semantic relevance, regardless of77

how the modalities are distributed across queries and documents.78

Two properties distinguish mixed modality search from traditional retrieval tasks: 1) heterogeneous79

corpus: the modality composition varies across documents, i.e., there exist di, dj ∈ C such that80

mi ̸= mj . For example, one document may be text-only (mi = {text}), another image-only81

(mj = {image}), and another multimodal (mk = {text, image}); b) multimodal documents: some82

documents contain multiple modalities within a single entry, i.e., |mi| > 1. These modalities often83

provide complementary information that must be fused for effective understanding (e.g., an image84

paired with a descriptive caption).85

2.2 Settings86

The combination of a heterogeneous corpus and multimodal documents introduces two central mod-87

eling challenges: 1) cross-modal alignment: ensuring that representations of similar concepts are88

comparable across different modalities—for instance, the text and image of “Mount Fuji” should89

be embedded in nearby locations in the representation space; 2) multimodal fusion: effectively90

combining multiple modalities within a document to form a unified, semantically meaningful represen-91

tation—for example, integrating the text and image of “Mount Fuji” to produce a richer representation92

of the concept. To study these challenges systematically, we define three settings:93

Ablated setting 1: only heterogeneous corpus (§3). Each document is unimodal (|mi| = 1), but the94

corpus spans multiple modalities (|M| > 1). For example, it may include text-only and image-only95

descriptions of the same concept, corresponding to d1 and d2 in Figure 1a. This tests only cross-modal96

alignment—whether the model can encode comparable representations across modalities.97

Ablated setting 2: only multimodal documents (§4). All documents contain the same set of98

modalities (mi =M with |mi| > 1). For example, each document includes both an image and a99

corresponding caption, corresponding to d3 in Figure 1a. This setting focuses purely on multimodal100

fusion—evaluating whether the model can effectively combine multiple modalities.101
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Full setting: mixed modality search (§5). Documents are variably unimodal or multimodal102

(|mi| ≥ 1), and the corpus is heterogeneous. For instance, some documents may be text-only, others103

image-only, and others a combination—corresponding to d1, d2, and d3 all being present in Figure 1a.104

This is the most realistic and general setting, reflecting real-world corpora such as news articles,105

product listings, or scientific datasets. It combines both core challenges and serves as our primary106

evaluation scenario.107

2.3 Methods108

Given a query q and a document di, we use an embedding model f to compute their embeddings109

eq = f(q) and ei = f(di), and rank documents using cosine similarity: s(q, di) =
eq·ei

∥eq∥·∥ei∥ . We110

evaluate the following embedding approaches:111

CLIP (baseline) [26]. CLIP is a contrastive vision-language model trained to align paired image-text112

inputs. It encodes each modality separately using an image encoder f I and a text encoder fT . For113

unimodal text or image documents di and dj , we use the modality-specific encoder to compute the114

embedding: ei = f I(di) and ej = fT (dj). For multimodal documents dk with image and text115

inputs dIk and dTk , we compute a weighted interpolation: ek = α · fT (dTk ) + (1− α) · f I(dIk), where116

α ∈ [0, 1] balances the contribution of each modality.117

VLM2Vec (baseline) [14]. VLM2Vec is a state-of-the-art multimodal generative embedding method118

that adapts large vision-language models f (e.g., LLaVA [23], Qwen-VL [1]) to generate document119

embeddings in an auto-regressive fashion. Each document di is formatted as an instruction-style120

prompt pi that combines text and image inputs (e.g., “Generate the embedding for the document:121

[image tokens] [text tokens]”), which is then processed autoregressively. The pooled representation122

from the final decoder layer is used as the embedding ei = f(pi). This method captures high-level123

semantic alignment through joint modeling of the two modalities and instruction tuning.124

GR-CLIP (ours). Despite CLIP’s goal of aligning modalities, prior work reveals a persistent modality125

gap in its embedding space: image and text embeddings form separate clusters and remain distant [19].126

Given a paired image-text embedding eTi and eIi , their relationship can be modeled as eTi − eIi ≈ c⊥,127

where c⊥ is a constant vector orthogonal to the shared embedding subspace, representing the modality128

gap [36]. GR-CLIP (GR stands for gap-removed) is a lightweight post-hoc calibration method that129

removes this gap by subtracting modality-specific means: e′Ti = eTi − Ei[e
T
i ], e

′I
i = eIi − Ei[e

I
i ].130

This zero-centering eliminates the modality gap [36], as e′Ti −e′Ii = (eTi −eIi )− (Ei[e
T
i ]−Ei[e

I
i ]) ≈131

c⊥ − c⊥ = 0, which improves cross-modal alignment at negligible inference cost. For multimodal132

documents, we apply the same interpolation over the calibrated embeddings. Figure 1b illustrates this133

process. In practice, we find this simple calibration significantly boosts CLIP’s performance and even134

outperforms VLM2Vec while using much less compute.135

2.4 Evaluation Metrics136

We evaluate retrieval performance using NDCG@10 (Normalized Discounted Cumulative Gain [12]),137

a widely used metric that reflects both the relevance and ranking of the top-10 retrieved documents.138

Higher NDCG@10 scores indicate better performance. Details are provided in the Appendix.139

3 Retrieval with Heterogeneous Corpus140

As discussed in §2, we begin with an ablated setting of mixed modality search: a heterogeneous141

corpus composed of unimodal documents (e.g., text-only or image-only; see Figure 2a). This setting142

evaluates whether a retrieval model can effectively handle the challenge of cross-modal alignment.143

3.1 Dataset Construction144

Since no existing dataset follows this setting, we construct new datasets tailored for this task using two145

complementary strategies: one based on synthetic screenshots and another using image replacements.146

Screenshot replacement. Starting from a standard text-only retrieval dataset—where both queries147

and corpus documents are textual—we synthetically render the text documents as image-based148

screenshots. Specifically, for each text document dTi , we generate a screenshot version dIi containing149
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Figure 2: Retrieval with a heterogeneous corpus. (a) Dataset Construction: We construct a
heterogeneous corpus by randomly replacing text documents with either screenshot renderings of the
text or paired images with probability p. Since the semantic content remains unchanged, a retrieval
system with perfect cross-modal alignment should maintain the same performance regardless of p.
(b) Initial Results & Simulation: Surprisingly, CLIP exhibits a U-shaped performance curve as text
is replaced with screenshots. We attribute this behavior to the modality gap in CLIP’s embedding
space. A simulation experiment that artificially penalizes cross-modal documents reproduces the
same U-shaped trend, confirming our hypothesis. (c) Method — GR-CLIP: Building on prior
work, we propose GR-CLIP, a simple post-hoc calibration that removes the modality gap via mean-
centering of text and image embeddings. (d) Improved Results: GR-CLIP flattens the U-shaped
curve and significantly improves retrieval accuracy, achieving comparable or better performance
than the VLM2Vec baseline with far less compute. (e) Generalization Across Models, Datasets,
and Modalities: To evaluate generalization, we test GR-CLIP across three CLIP variants, three
additional datasets, and three other modalities (detailed in the Appendix). In all cases, the findings
and improvements hold consistently.

identical content and replace it with probability p (Figure 2a). This synthetic setup preserves semantic150

content exactly, making it ideal for controlled experiments. A model with perfect cross-modal151

alignment should represent paired text and screenshot documents similarly in the embedding space,152

and thus its retrieval performance should remain unchanged across varying values of p. We apply this153

transformation to two datasets: NFCorpus [3] and SciFact [30] .154

Real image replacement. For datasets containing image-caption pairs, we replace text captions155

dTi with their corresponding images dIi with probability p. While this setting is more realistic,156

it introduces slight semantic differences between modalities. Nevertheless, given the underlying157

semantic alignment, retrieval performance is expected to remain stable across different replacement158

ratios p. We construct two datasets using this approach: Google WIT [28], MSCOCO [20].159
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3.2 Initial Results & Simulation160

We first focus on the synthetic screenshot-based setting due to its exact semantic preservation. Ideally,161

a model with perfect cross-modal alignment should yield consistent retrieval performance regardless162

of how many documents are replaced with screenshots.163

Models exhibit a U-shaped performance curve when mixing texts and screenshots. Surprisingly,164

we observe a U-shaped performance curve (Figure 2b) rather than the expected flat trend. As more165

screenshots replace text documents (increasing p), performance initially drops—from 0.22 at p = 0166

(all text) to 0.02 at p = 0.99 (99% screenshots). However, at p = 1 (all screenshots), performance167

improves again to 0.36, forming a clear U-shape as a function of p. Interestingly, CLIP performs168

better on text-to-image retrieval (p = 1) than on text-to-text retrieval (p = 0), likely due to its training169

objective: cross-modal contrastive loss, without explicit optimization for unimodal retrieval.170

The U-shape arises from the modality gap. We attribute the U-shaped performance to modality171

gap. First, the modality gap induces intra-modal similarity bias: although CLIP aligns text and172

image embeddings in a shared space, text and image clusters remain separate (Figure 1c), resulting173

in systematically higher intra-modal similarity scores (Figure 1d). Second, this bias causes ranking174

distortion. As screenshots replace more text entries, relevant screenshots are penalized due to lower175

cross-modal similarity, while irrelevant text documents may rank higher solely because of intra-176

modal alignment. At p = 0.99, the few remaining text documents dominate rankings regardless of177

relevance. At p = 1, all documents are images and modality bias disappears, leading to improved178

performance—thus forming the U-shaped curve.179

Push-down simulation confirms the hypothesis. To verify this explanation, we simulate a modality-180

induced ranking bias by assigning a fixed similarity score of zero to all screenshots, effectively181

pushing them to the bottom of the ranked list. The resulting performance curve (Figure 2b) closely182

matches the actual CLIP curve, validating our hypothesis that the U-shape arises from modality183

gap–induced ranking distortion.184

3.3 GR-CLIP with Improved Results185

Given that the modality gap causes performance drops, we mitigate this gap to improve performance.186

Closing the modality gap via mean-shift calibration. Following prior work characterizing the187

modality gap as a mean shift in the embedding space [36], we propose GR-CLIP, a lightweight188

post-hoc calibration method. We compute the mean embeddings for text and image modalities and189

subtract them from their respective representations to center both modalities in the shared space. This190

reduces separation between modalities (Figure 2d; see §2 for derivation).191

Flattened curves and improved performance after removing the modality gap. After applying192

GR-CLIP, retrieval performance improves significantly, and the U-shaped curve flattens across193

different p values (Figure 2e). GR-CLIP also outperforms VLM2Vec [14], a recent generative194

embedding method that achieves similarly flat performance but requires 75× more computational195

resources. These results demonstrate that reducing the modality gap is both efficient and effective for196

improving CLIP-based model in mixed modality retrieval settings.197

3.4 Generalization across Models, Datasets, and Modalities198

To assess the generality of our findings, we evaluate GR-CLIP across different models, datasets, and199

modalities. 1) Across models: As shown in Figure 2f (top row), the U-shaped curve is observed across200

three CLIP variants: OpenAI CLIP [26], OpenCLIP [6], and SigLIP [33]. GR-CLIP consistently201

flattens the curve and improves performance; 2) Across datasets: As shown in Figure 2f (second202

row), our findings extend beyond synthetic screenshot settings (NFCorpus [3] and SciFact [30]) to203

real-world datasets (Google WIT [28] and MSCOCO [20]); 3) Across modalities. We also test204

generalization to text-to-video and text-to-audio retrieval. Results are provided in the Appendix.205

4 Retrieval with Multimodal Documents206

We now consider a complementary ablation to §3, where the retrieval corpus is homogeneous, but207

each document is multimodal—containing both image and text modalities (Figure 3a). This setup208
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Figure 3: Retrieval with multimodal documents. (a) Dataset Construction: Each document
contains both image and text, and embeddings are obtained by fusing modality-specific features. We
vary the fusion coefficient α to evaluate the model’s ability to integrate multimodal information. (b)
Results: GR-CLIP consistently outperforms CLIP across three model variants and four datasets,
demonstrating that the modality gap hinders effective multimodal fusion—and that removing it
significantly enhances retrieval performance.

evaluates the model’s ability to fuse multimodal information, where image and text together should209

provide richer semantic cues than either modality alone.210

4.1 Dataset Construction211

We use four real-world multimodal datasets in which each document contains both image and text212

components. OVEN [11] is an existing retrieval benchmark that follow a query-to-multimodal-213

document format. For MSCOCO [20] and VisualNews [21], each image is paired with one or more214

short captions; we randomly sample one caption as the query and generate a long caption using GPT215

by conditioning on short captions along with the image to form the document. In Google WIT [28],216

each image is accompanied by a title, a short caption, and a long caption. We use the concatenation of217

the title and short caption as the query, and the image combined with the long caption as the document.218

These datasets span diverse domains with naturally paired image-text data. Each document provides219

complementary visual and textual signals, making them well-suited for evaluating modality fusion.220

4.2 Results221

To analyze how modality fusion is affected by the modality gap, we vary the fusion weight α ∈ [0, 1],222

which controls the contribution of each modality for the fused embedding: ei = α · eTi + (1−α) · eIi .223

Modality gap hinders effective fusion. As shown in Figure 3b (blue curves), with the original CLIP224

embeddings, performance typically peaks at one of the unimodal endpoints (α = 0 or α = 1), and225

fusion with intermediate α values fails to outperform these unimodal baselines. This suggests that the226

modality gap prevents effective integration across modalities: linear interpolation often pushes the227

fused features into a suboptimal region in embedding space, degrading semantic quality and resulting228

in worse performance than using image or text alone.229

Fusion improves significantly after closing the modality gap. Once the modality gap is removed230

(via mean-shift calibration as described in §3), fusion becomes substantially more effective. As231

shown in Figure 3b (orange curves), performance peaks at intermediate α values—surpassing both232
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Figure 4: Mixed modality search. (a) Dataset Construction: We introduce MixBench, a benchmark
where the corpus is heterogeneous and includes multimodal documents, reflecting the most realistic
setting for search engines. (b) Results: Across four MixBench subsets and five CLIP variants, GR-
CLIP delivers substantial improvements over the original CLIP models by eliminating the modality
gap, achieving state-of-the-art performance with significantly lower computational cost.

unimodal baselines. This demonstrates that the gap-removed model, GR-CLIP, successfully integrates233

complementary information from image and text, yielding stronger overall representations.234

Generalization across models and datasets. These findings hold consistently across multiple CLIP235

variants, including OpenAI CLIP [26], OpenCLIP [6], and SigLIP [33], and across various datasets236

such as OVEN [11], VisualNews [21], Google WIT [28], and MSCOCO [20]. In all cases, removing237

the modality gap improves fusion quality, thereby enhancing retrieval performance.238

5 Mixed Modality Search239

We now unify the findings from §3 and §4 and extend our analysis to the most realistic scenario:240

mixed modality search, where documents in the corpus may be purely text, purely image, or a241

combination of both (Figure 4a). This setting mirrors real-world search engine challenges, where242

retrieval systems must operate over heterogeneous and variably multimodal content.243

5.1 MixBench: Dataset Construction244

To support research in this realistic setting, we introduce MixBench, a new benchmark specifically245

designed for mixed modality search. MixBench is constructed from four real-world multimodal246

datasets—OVEN [11], MSCOCO [20], Google WIT [28], and VisualNews [21]—which span247

diverse domains and contain naturally aligned image-text content. The procedure for converting248

these datasets into a query-document retrieval format is detailed in §4. In MixBench, documents may249

consist of image-only, text-only, or image-text pairs. To ensure a balanced distribution, we sample250

document types (pure image, pure text, and multimodal) in a 1:1:1 ratio.251

5.2 Results252

Figure 4b presents results on the four MixBench subsets using both the original CLIP variants and253

their gap-removed counterparts (GR-CLIP).254

GR-CLIP shows substantial improvement over original CLIP after closing the modality gap.255

Consistent with our earlier findings, closing the modality gap via mean-shift calibration leads to signif-256
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icant performance improvements on MixBench across all tested models, including CLIP [26], Open-257

CLIP [6], and SigLIP [33]. These improvements generalize across the four datasets—OVEN [11],258

VisualNews [21], Google WIT [28], and MSCOCO [20]. On average, GR-CLIP achieves up to a 26259

percentage point gain in NDCG@10, with negligible additional compute cost. These gains are driven260

by improved cross-modal alignment and multimodal fusion, as demonstrated in §3 and §4, which are261

critical for performance in mixed modality retrieval.262

GR-CLIP achieves state-of-the-art performance with significantly lower compute. Notably, GR-263

CLIP outperforms the strong VLM2Vec baseline despite using 75× fewer computational resources.264

The only exception is MSCOCO, which VLM2Vec has been trained on, as reported in the paper.265

These results underscore the importance of constructing a truly shared embedding space for mixed266

modality search—a capability that is essential for effective retrieval systems yet often overlooked.267

6 Related Work268

Unimodal, cross-modal and multimodal retrieval. Unimodal retrieval (e.g., text-to-text, image-269

to-image), cross-modal retrieval (e.g., text-to-image, image-to-text) and multimodal retrieval have270

been extensively studied in prior work [27, 15, 16, 17, 26, 34, 13] and now power many search271

engines such as Google and Bing. The core challenge in these settings is to construct an effective272

representation space that enables accurate similarity comparison between queries and documents.273

In contrast, we focus on the more complex mixed modality retrieval setting, where both queries274

and documents may span multiple modalities [29]. This setting is significantly underexplored but275

highly practical. It presents a new challenge: designing a shared representation space where semantic276

similarities can be meaningfully measured across modality boundaries.277

Multimodal representation learning. Multimodal representation learning aims to unify inputs from278

different modalities into a coherent embedding space, with early work exploring early fusion and late279

fusion techniques [25, 18, 5]. Recently, multimodal contrastive learning has emerged as a powerful280

framework, aligning paired image-text representations through contrastive objectives [10, 26, 33, 6].281

Models like CLIP [26], trained on millions of paired examples, have shown remarkable ability to282

learn semantically aligned embeddings across modalities. More recently, there is growing interest283

in adapting generative vision-language models (VLMs) for retrieval [14, 8], by repurposing them284

as embedding models [2, 24]. These models are more flexible and capable of handling diverse285

multimodal inputs, but often require significantly more computation. In this work, we evaluate both286

paradigms—CLIP [26] and VLM2Vec [14]—under the mixed modality retrieval setting. Surprisingly,287

we find that a simple calibration method applied to CLIP can outperform VLM2Vec, despite using288

far less compute.289

Modality gap in multimodal contrastive learning. Recent studies [19, 36, 35] have revealed a290

persistent modality gap in contrastive multimodal embedding spaces: image and text embeddings291

tend to cluster separately, even though contrastive learning is designed to align them. This gap has292

been attributed to a combination of model initialization and contrastive optimization. Theoretically,293

the modality gap has been characterized as a constant vector orthogonal to both the image and294

text subspaces [36, 35]. Building on this insight, we adopt a simple but effective mean-reduction295

calibration, which removes the modality-specific means from embeddings before computing similarity.296

This lightweight, post-hoc procedure removes the modality gap and leads to substantial gains in the297

mixed modality search setting.298

7 Conclusion299

This work addresses the realistic yet underexplored problem of mixed modality search, where queries300

must retrieve semantically relevant content from a heterogeneous corpus containing multimodal301

documents. We analyze the behavior of CLIP-based models in this setting and identify a key limitation:302

a modality gap in the embedding space hinders both cross-modal alignment and multimodal fusion.303

To address this, we introduce GR-CLIP, a simple yet effective method that removes the modality304

gap and substantially improves retrieval performance. Our findings highlight the importance of truly305

unified multimodal representations for reliable and efficient mixed modality search.306
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Question: Do the main claims made in the abstract and introduction accurately reflect the381

paper’s contributions and scope?382

Answer: [Yes]383

Justification: Supporting results are provided in §3, §4, and §5.384

2. Limitations385

Question: Does the paper discuss the limitations of the work performed by the authors?386

Answer: [Yes]387

Justification: Limitations are discussed in the Appendix.388

3. Theory assumptions and proofs389

Question: For each theoretical result, does the paper provide the full set of assumptions and390

a complete (and correct) proof?391

Answer: [NA] .392

Justification: The paper does not include new theoretical results.393

4. Experimental result reproducibility394

Question: Does the paper fully disclose all the information needed to reproduce the main ex-395

perimental results of the paper to the extent that it affects the main claims and/or conclusions396

of the paper (regardless of whether the code and data are provided or not)?397

Answer: [Yes]398

Justification: Experimental details are provided in §3, §4, §5, and the Appendix.399

5. Open access to data and code400

Question: Does the paper provide open access to the data and code, with sufficient instruc-401

tions to faithfully reproduce the main experimental results, as described in supplemental402

material?403

Answer: [Yes]404

Justification: Code is provided via an anonymous GitHub link in the Appendix.405

6. Experimental setting/details406

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-407

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the408

results?409

Answer: [Yes]410

Justification: Experimental details are provided in §3, §4, §5, and the Appendix.411
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Limitations475

While our work demonstrates that removing the modality gap enables GR-CLIP to achieve substantial476

performance gains in the mixed modality search setting across diverse datasets, model variants, and477

modalities, several limitations remain, highlighting valuable directions for future research. First,478

although we consider a realistic scenario in which documents include both image and text modalities,479

each document is restricted to a single image and a single text segment. Extending the evaluation to480

more complex, interleaved multi-image and multi-text documents—such as web pages or scientific481

articles—could provide a more rigorous and comprehensive assessment. Second, although GR-482

CLIP outperforms the generative embedding model VLM2Vec while requiring significantly less483

computation, it builds on CLIP, which does not model fine-grained modality interaction, and may484

miss opportunities for deeper cross-modal integration that generative embedding models can capture.485

Given this, investigating the causes of the modality gap in generative embedding models such as486

VLM2Vec and developing methods to reduce it presents an important and underexplored research487

direction toward more powerful and unified multimodal representations.488

Nonetheless, our work makes several significant contributions: (1) we are the first to formally489

define and investigate the mixed modality retrieval setting, where documents of different modalities490

are retrieved for the same query; (2) we identify the modality gap as a key challenge degrading491

performance; (3) we propose a simple, theoretically grounded post-hoc calibration that effectively492

mitigates this gap, consistently boosting performance across CLIP variants and datasets; (4) we493

introduce MixBench, a benchmark for evaluating retrieval in mixed-modality contexts. Together,494

these contributions lay a foundation for future advances in this important, emerging area.495

Code Availability496

All code is available at an anonymous GitHub repository, which reproduces all experiments in the pa-497

per: https://anonymous.4open.science/r/mixed_modality_search_nips25_workshop_498

ReFM.499

Data Availability500

All datasets used in this study are hosted anonymously on Hugging Face to facilitate future re-501

search in this emerging area: https://huggingface.co/datasets/mixed-modality-search/502

MixBench2025.503

Compute Resource504

All experiments were conducted using a single NVIDIA A100 GPU with 40GB of memory. All505

experiments are inference-only and require minimal computational resources.506

Overview507

We provide an overview of the Appendix below:508

• §A presents additional generalization results across modalities and evaluation metrics.509

• §B demonstrates the robustness of our method under different settings, including supervised510

fine-tuning, mean computation, and benchmarks.511

• §C details the methods and includes pseudo-code for reproducibility.512

• §D describes the details of the models used.513

• §E explains the evaluation metrics, including NDCG.514

• §F outlines the datasets used and the associated preprocessing steps.515

• §G includes case studies comparing CLIP and GR-CLIP on MixBench.516
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A Generalization across Modalities and Metrics517

In the main paper, we show that closing the modality gap significantly improves mixed modality518

search performance for image-text data, using NDCG@10 as the evaluation metric. Here, we provide519

additional results to demonstrate: (1) the generalization of our method to modalities beyond image520

and text, and (2) the robustness of our conclusions under alternative evaluation metrics.521

A.1 Generalization across Modalities522

Figure 2e in the main paper presents results for the image-text modality. In Figure 5, we extend this523

analysis to additional modality pairs. Specifically, we report retrieval performance (NDCG@10) for524

video-text (ViCLIP [31] on the MSVD dataset), audio-text (CLAP [32] on the Clotho [7] dataset), and525

an additional image-text setting (OpenAI CLIP [26] on the Nights [9] dataset). Across all cases, we526

observe a consistent U-shaped curve in the original CLIP-based results, which becomes significantly527

flatter after applying GR-CLIP to remove the modality gap. This trend closely mirrors the behavior528

observed in the image-text and screenshot experiments in Figure 2e, providing strong evidence of the529

modality gap’s impact and the broad applicability of our method across diverse modalities.530

N
D
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@
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ViCLIP - MSVD CLAP - Clotho CLIP - Nights

CLIP GR-CLIP

Recover to: 0.66 

Min: 0.02  

Recover to: 0.31 
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Recover to: 0.59 

Min: 0.01  

Figure 5: Generalization across modalities. GR-CLIP consistently mitigates the U-shaped curve
caused by the modality gap and significantly improves performance, demonstrating strong generaliz-
ability across diverse modality pairs.

A.2 Generalization across Metrics531

In the main paper, we adopt NDCG@10 as the primary evaluation metric. To further assess the532

robustness of GR-CLIP, we extend our analysis to additional metrics, including NDCG@100 and533

Recall@1. Table 1 reports results on MixBench across all three metrics, demonstrating that the534

improvements observed with GR-CLIP are consistent regardless of the evaluation criterion. Figure 6535

and Figure 7 further extend the analysis in §3 and §4 using NDCG@100 and Recall@1, respectively,536

and similarly confirm the consistency of our findings.537

Method Google WIT MSCOCO OVEN VisualNews

CLIP-B/16 0.478/0.505/0.443 0.388/0.426/0.292 0.354/0.398/0.209 0.563/0.604/0.498
CLIP-L/14 0.505/0.516/0.454 0.426/0.490/0.329 0.389/0.431/0.253 0.596/0.656/0.525
OpenCLIP-B/16 0.551/0.563/0.519 0.570/0.615/0.489 0.385/0.426/0.229 0.643/0.693/0.543
OpenCLIP-L/14 0.566/0.585/0.536 0.605/0.662/0.540 0.387/0.445/0.265 0.653/0.733/0.567
SigLIP-400m 0.546/0.566/0.523 0.327/0.374/0.260 0.372/0.428/0.271 0.385/0.475/0.366

VLM2Vec(LLaVANext) 0.586/0.616/0.481 0.769/0.798/0.645 0.398/0.443/0.254 0.744/0.794/0.662
VLM2Vec(Qwen) 0.632/0.660/0.519 0.753/0.778/0.633 0.412/0.467/0.244 0.734/0.784/0.653

GR-CLIP-B/16 0.603/0.642/0.524 0.636/0.690/0.523 0.406/0.459/0.240 0.726/0.768/0.645
GR-CLIP-L/14 0.648/0.678/0.555 0.656/0.708/0.547 0.465/0.523/0.296 0.754/0.770/0.661
GR-OpenCLIP-B/16 0.636/0.666/0.572 0.668/0.751/0.589 0.434/0.490/0.253 0.758/0.783/0.664
GR-OpenCLIP-L/14 0.678/0.704/0.604 0.699/0.784/0.629 0.467/0.525/0.282 0.796/0.814/0.715
GR-SigLIP-400m 0.692/0.722/0.608 0.696/0.732/0.548 0.532/0.581/0.328 0.769/0.793/0.671

Table 1: Detailed results across all metrics on MixBench. Each cell reports NDCG@10,
NDCG@100, and Recall@1. Best results are highlighted in bold. The consistent performance
across metrics demonstrates the robustness of our approach to different evaluation criteria. GR-CLIP
underperforms VLM2Vec on MSCOCO because VLM2Vec was trained on MSCOCO.
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Figure 6: Reproduction of Figure 2 in the main paper using NDCG@100 as the evaluation
metric.
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Figure 7: Reproduction of Figure 3 in the main paper using NDCG@100 and Recall@1 as
evaluation metrics.
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B Method Robustness538

B.1 Method Robustness to Supervised Fine-Tuning539

To assess the applicability of our method after supervised fine-tuning, we fine-tuned the OpenAI540

CLIP model on the MSCOCO training set (denoted as “-SFT”) using a batch size of 64, a learning541

rate of 5e-5, and the default temperature. We then applied our method to these fine-tuned models.542

The NDCG@10 scores on MixBench are shown in Table 2.543

Model Google WIT MSCOCO OVEN VisualNews

CLIP-B-SFT 0.489 0.513 0.358 0.588
GR-CLIP-B-SFT 0.617 0.727 0.412 0.745
CLIP-L-SFT 0.514 0.538 0.396 0.612
GR-CLIP-L-SFT 0.656 0.792 0.474 0.772

Table 2: GR-CLIP remains effective with supervised fine-tuned models.

As Table 2 shows, our method consistently improves retrieval performance across all domains, even544

after supervised fine-tuning, suggesting that the modality gap persists and that our approach remains545

effective in practical deployment scenarios.546

B.2 Method Robustness to Mean-Embedding Computation547

To examine our method’s robustness to mean-embedding computation, we recomputed the mean548

embeddings without using any MSCOCO data and then applied GR-CLIP to the MSCOCO dataset.549

As shown in Table 3, consistent performance improvements were observed across models. Each cell550

reports NDCG@10 for the base CLIP model, GR-CLIP with MSCOCO access, and GR-CLIP using551

means computed without MSCOCO. Importantly, the gains persist even when MSCOCO itself is552

excluded from the mean computation, demonstrating that our approach requires access only to data553

with the same modality and a similar style, not necessarily the same dataset.554

Model CLIP-B CLIP-L OpenCLIP-B OpenCLIP-L SigLIP

CLIP 0.388 0.426 0.570 0.605 0.327
GR-CLIP 0.636 0.656 0.668 0.699 0.696
GR-CLIP (w/o access to MSCOCO) 0.624 0.648 0.659 0.687 0.683

Table 3: NDCG@10 on MSCOCO using mean embeddings estimated with and without
MSCOCO. GR-CLIP improves over CLIP even without direct access to MSCOCO during mean
computation.

We further assessed cross-dataset transfer by computing the query, text, and image embedding means555

using only 1,000 items from MSCOCO and applying them to VisualNews. As shown in Table 4,556

we still observed meaningful gains, indicating that our mean-estimation procedure is lightweight,557

data-efficient, and generalizable across datasets.558

Model CLIP-B CLIP-L OpenCLIP-B OpenCLIP-L SigLIP

CLIP 0.563 0.596 0.643 0.653 0.385
GR-CLIP 0.726 0.754 0.758 0.796 0.769
GR-CLIP (using 1k items in MSCOCO) 0.678 0.694 0.712 0.742 0.732

Table 4: NDCG@10 on VisualNews using mean embeddings estimated from MSCOCO. GR-
CLIP maintains strong performance even when the means are estimated from a small subset (1,000
samples).
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B.3 Method Robustness on Benchmarks559

To further demonstrate the robustness of GR-CLIP, we evaluated it on the MMEB benchmark, which560

contains subsets involving both text–only and image–text retrieval tasks. Unlike our main setting,561

which focuses on mixed-modality retrieval, MMEB assumes homogeneous corpora in which all562

candidates share the same modality. Nevertheless, as shown in Table 5, GR-CLIP consistently563

improves upon CLIP-family baselines across a wide range of subsets. The improvements are564

particularly strong on datasets containing image–text pairs, such as VisualNews, MSCOCO, and565

WebQA.566

Subset CLIP-B CLIP-L OpenCLIP-B OpenCLIP-L SigLIP VLM2Vec

VisualNews_t2i 74.1 / 78.1 76.4 / 79.6 75.4 / 79.3 79.4 / 82.3 52.4 / 57.7 74.4
VisualNews_i2t 73.2 / 77.0 81.3 / 85.3 79.5 / 84.2 82.4 / 86.4 51.3 / 56.4 80.1
MSCOCO_t2i 55.3 / 58.2 58.0 / 63.3 62.4 / 66.5 66.5 / 70.9 58.3 / 64.4 74.5
MSCOCO_i2t 52.8 / 57.4 56.1 / 61.2 60.3 / 64.2 63.2 / 68.4 54.3 / 65.5 72.8
Nights 56.3 / 60.1 67.1 / 69.0 61.7 / 67.1 70.6 / 73.2 63.4 / 68.9 65.5
WebQA 61.0 / 78.3 62.4 / 80.4 64.8 / 82.5 65.2 / 84.3 59.7 / 71.3 86.6
OVEN 42.3 / 66.5 48.5 / 67.9 48.7 / 69.8 50.3 / 71.2 55.3 / 70.7 56.3
FashionIQ 9.7 / 11.5 13.9 / 14.9 12.2 / 16.9 15.4 / 16.7 20.3 / 20.8 16.1
EDIS 75.3 / 90.1 78.9 / 90.7 80.1 / 93.5 82.3 / 92.5 23.7 / 58.7 87.9
WikiSS-NQ 50.6 / 54.2 46.4 / 49.4 54.3 / 57.8 44.0 / 46.2 56.3 / 59.4 58.8

Average (Multimodal Doc Subsets) 59.5 / 78.3 63.3 / 79.7 64.5 / 81.9 65.9 / 82.7 46.2 / 66.9 76.9
Average (All) 55.1 / 63.4 59.5 / 66.4 59.4 / 67.7 61.9 / 69.2 49.5 / 60.0 67.3

Table 5: Recall@1 results on MMEB datasets. Each entry is shown as base model / GR-model.
GR-CLIP consistently improves CLIP-family models, with the strongest gains on image–text retrieval
datasets. Note that VLM2Vec is trained on MSCOCO and WebQA, whereas the CLIP models are
not; this in-domain training likely accounts for its superior performance on these benchmarks.

GR-CLIP is evaluated in a zero-shot setting, whereas VLM2Vec is fine-tuned. Subsets such as567

VisDial and CIRR require dialog understanding or instruction following—tasks that go beyond568

CLIP’s training paradigm. Hence, modality-gap removal alone cannot bridge those task-specific gaps.569
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C Details of Methods570

As introduced in §2.3, GR-CLIP mitigates the modality gap by subtracting global mean vectors for571

each modality. Specifically, we compute three mean vectors: the query mean ēq, the document text572

mean ēT , and the document image mean ēI :573

ēq = Eq∼Q[f
T (q)], ēT = EdT∼Dtext [f

T (dT )], ēI = EdI∼Dimage [f
I(dI)]. (1)

We distinguish the query mean ēq from the text document mean ēT to account for structural and574

semantic differences: queries are often short and interrogative, whereas documents are typically575

longer and descriptive. This distinction is crucial for reducing alignment bias and improving retrieval576

performance.577

To ensure generalization across datasets and prevent test-set leakage, we compute unified mean578

vectors from the training sets of multiple datasets, rather than estimating separate means for each579

dataset using their respective test sets. These unified means are then applied consistently across all580

test sets.581

Query mean (ēq): We sample approximately 10000 text queries from the training splits of MSCOCO,582

Google WIT, NFCorpus, and VisualNews. These are encoded using fT and averaged to produce the583

global query mean ēq .584

Document text mean (ēT ): We sample approximately 10000 long-form text documents or descriptive585

captions from the training splits of MSCOCO, OVEN, Google WIT, and VisualNews. These are586

encoded using fT and averaged to obtain the document text mean ēT .587

Document image mean (ēI ): To compute ēI , we sample 10000 images from the training splits of588

MSCOCO, OVEN, Google WIT, and VisualNews. These are encoded using f I and averaged to589

produce the document image mean.590

OVEN-Specific Query Mean (ēOVEN
q ): Since queries in OVEN are particularly short, we construct a591

dataset-specific query mean by sampling 2000 queries from the OVEN training split.592

Other Modality Means: For non-image-text datasets—such as MSVD (video-text), Clotho (audio-593

text), and screenshot-style documents (screenshot-text) in SciFact and NFCorpus—we compute594

modality-specific means using 2500 training examples per modality.595

We summarize the full GR-CLIP algorithm as follows:596

Algorithm 1 GR-CLIP Algorithm

Require:
1: Calibration sets: Q′, D′

2: Query set Q = {q1, . . . , qn} (text only)
3: Document set D = {d1, . . . , dm} (text, im-

age, or both for each)
4: Pretrained encoders fT , f I , interpolation fac-

tor α ∈ [0, 1]
// Step 1: Pre-compute global means from
Q′,D′

5: ēq ← Eq∼Q′ [fT (q)]
6: ēT ← EdT∼D′

text
[fT (dT )]

7: ēI ← EdI∼D′
image

[f I(dI)]

// Step 2: Encode query embeddings
8: for all qi ∈ Q do
9: eqi ← fT (qi)− ēq

10: end for

// Step 3: Encode document embeddings
11: for all dj ∈ D do
12: if dj is text then
13: edj ← fT (dj)− ēT

14: else if dj is image then
15: edj

← f I(dj)− ēI

16: else if dj = (dTj , d
I
j ) then

17: edj ← αfT (dTj ) + (1−α)f I(dIj )

18: −[αēT + (1−α)ēI ]
19: end if
20: end for

// Step 4: Retrieval
21: s(qi, dj)←

eqi ·edj
∥eqi∥·∥edj ∥

22: Ranks← argsort(s, descending)
23: return Ranks
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D Details of Models597

In this section, we provide the exact versions and checkpoint links for all models used in our598

experiments. For CLIP-based models, we include two variants of OpenAI CLIP [26], two variants599

of OpenCLIP [6], and SigLIP-400M [33].600

For the VLM2Vec framework, we use two variants: one based on LLaVA-Next [22], which serves601

as the backbone for the results reported in the main paper [14]; and another based on the latest602

officially released Qwen-VL [1], which achieves the best performance on the MMEB [14] benchmark603

according to its official repository.604

Additionally, for non-image-text modalities, we use ViCLIP[31] for video-text retrieval and605

CLAP[32] for audio-text retrieval tasks.606

All model checkpoint links are listed below:607

• OpenAI CLIP-B/16: https://huggingface.co/openai/clip-vit-base-patch16608

• OpenAI CLIP-L/14: https://huggingface.co/openai/clip-vit-large-patch14-336609

• OpenCLIP-B/16: https://huggingface.co/laion/CLIP-ViT-B-16-laion2B-s34B-b88K610

• OpenCLIP-L/14: https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K611

• SigLIP-400m: https://huggingface.co/google/siglip-so400m-patch14-384612

• VLM2Vec (LLaVA-Next): https://huggingface.co/TIGER-Lab/VLM2Vec-LLaVa-Next613

• VLM2Vec (Qwen-VL): https://huggingface.co/TIGER-Lab/VLM2Vec-Qwen2VL-7B614

• ViCLIP-L/14: https://huggingface.co/OpenGVLab/ViCLIP-L-14-hf615

• CLAP: https://huggingface.co/laion/clap-htsat-fused616
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E Details of Evaluation Metrics617

In the main paper, we use the widely adopted NDCG@10 as the evaluation metric. Here, we provide618

the detailed computation process for this metric.619

Given a ranked list of retrieved items up to position K, NDCG@K is computed as:620

NDCG@K =
1

IDCG@K

K∑
i=1

2reli − 1

log2(i+ 1)
(2)

where reli denotes the relevance score of the item at rank i, and IDCG@K is the ideal DCG—that is,621

the maximum possible DCG for the top K items—computed by sorting the items by relevance in622

descending order:623

IDCG@K =

K∑
i=1

2rel⋆i − 1

log2(i+ 1)
(3)

where rel⋆i is the i-th highest relevance score in the ideal ranking.624

NDCG@10 ranges from 0 to 1, with 1 indicating a perfect ranking.625
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F Details of Datasets626

In this section, we provide additional details on how each dataset is processed to support our retrieval627

experiments in §3, 4, and 5. For each dataset, we distinguish between the original data format (Before)628

and the modified version used in our framework (After). We also describe the key post-processing629

steps.630

NFCorpus [3], SciFact [30]:631

Before: A short text query paired with a relevant long text document.632

After: We retain the short text query and render the long text document into a screenshot using633

OpenCV. This allows retrieval of either the original text document or its rendered screenshot given634

the query.635

Google WIT [28]:636

Before: Each sample includes a page title, a long page description, a reference image, and a reference637

description for the image.638

After: We concatenate the page title and image reference description to form the query. The page639

description is used as the long text document, and the associated image serves as the image document.640

OVEN [11]:641

Before: Each query consists of an image-text pair, and the retrieval target is also an image-description642

pair.643

After: Since either the image or text component can independently answer the query, we treat both644

the image and caption as valid standalone documents. The query remains unchanged.645

MSCOCO [20]:646

Before: Each image is paired with five captions.647

After: One caption is sampled as the query. The remaining captions are used to construct a long-form648

description via GPT-4o, with the content of the sampled caption preserved. This long description649

becomes the text document, and the associated image serves as the image document.650

VisualNews [21]:651

Before: Each image is paired with a short news-style caption.652

After: We use GPT-4o to jointly analyze the image and its associated article from the original653

VisualNews dataset. Based on both the visual content and article text, GPT-4o generates a detailed654

descriptive paragraph that expands upon the original caption, which we use as the text document. The655

image serves as the image document, and the original caption is retained as the query.656

Clotho [7]:657

Before: Each audio clip is paired with several semantically similar captions.658

After: One caption is selected as the query, and another semantically similar caption (chosen by659

GPT-4o) is used as the text document. The audio clip itself is used as the audio document.660

MSVD [4]:661

Before: Each video is paired with several semantically similar captions.662

After: One caption is used as the query, and another semantically similar caption (chosen by GPT-4o)663

serves as the text document. The video is treated as the video document.664

Nights [9]:665

Before: Each image is paired with a visually similar image.666

After: One image is used as the query. GPT-4o observes this image and generates a concise title,667

which we use as the text document. The paired image serves as the image document.668

VLM2Vec input format: For VLM2Vec [14], prompts are required to serve as instructions for gener-669

ating embeddings. Specifically, for each Query, we use the prompt “Retrieve a relevant item670

that represents: {Query}\n” in settings 1 and 3, which involve retrieval from a heterogeneous671

corpus composed of multiple modalities. In Setting 2, where retrieval is over a homogeneous corpus of672

fused image-text pairs, we use “Retrieve an image-description pair that represents:673

{Query}\n”. Documents follow the format specified in the original datasets.674

CLIP input format: For CLIP-based models [26, 33, 6, 31, 32] and GR-CLIP, we do not apply675

any instructions. Queries and documents are directly passed to the respective CLIP text and image676

encoders without modification.677
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Table 6 summarizes the key characteristics of each dataset, including the retrieval setting, the modality678

composition of queries and corpora, and the total number of evaluation examples.679

Dataset Queries Documents Setting No. # of Queries # of Documents

Google WIT [28] T T / I / I + T 1,2,3 1000 4423
OVEN [11] T + I T / I / I + T 1,2,3 1000 1000
MSCOCO [20] T T / I / I + T 1,2,3 984 984
VisualNews [21] T T / I / I + T 1,2,3 981 981
SciFact [30] T T / S 1 300 5183
NFCorpus [3] T T / S 1 323 3633
MSVD [4] T T / V 1 670 670
Clotho [7] T T / A 1 1046 1046
Nights [9] I I / T 1 1000 1000

Table 6: Overview of datasets used in our experiments. For each dataset, we indicate the retrieval
setting, the modalities involved in queries and documents (T = text, I = image, S = screenshot, V =
video, A = audio), and the number of query-document pairs used for evaluation.
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G Case Studies680

Below, we present case studies from each subset of MixBench, which also serve as visualizations of681

our dataset. For each example query, we display the Top-5 retrieved results from both the baseline682

OpenAI CLIP-L/14 and our proposed GR-CLIP-L/14 model. Each retrieved document is annotated683

with its modality (text, image, or multimodal), its cosine similarity to the query, and whether it is a684

ground-truth relevant item.685

These example results illustrate both the diversity of the MixBench datasets and the effectiveness686

of GR-CLIP in mixed modality search. Unlike the original CLIP model, which tends to retrieve687

documents matching the query’s modality, GR-CLIP successfully bridges the modality gap, retrieving688

results that more accurately reflect the semantic intent of the query—regardless of modality.689
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G.1 Google WIT690

Query: List of Jews in sports, Nate Ebner691

692

CLIP Top-5 Results693

Rank No.1, Cosine Similarity = 0.5430, Modality = text694

This is a list of individuals currently serving in the United States House of Representatives.695

696

Rank No.2, Cosine Similarity = 0.5355, Modality = text697

This is a list of notable Austrians.698

699

Rank No.3, Cosine Similarity = 0.5227, Modality = text700

This is a list of vehicles manufactured by the Buick Motor Division of General Motors.701

702

Rank No.4, Cosine Similarity = 0.5181, Modality = text703

This is a list of notable alumni and faculty of Golden Gate University.704

705

Rank No.5, Cosine Similarity = 0.5101, Modality = text706

Puthenchira is a village in Thrissur district in the state of Kerala, India.707

708

GR-CLIP Top-5 Results709

Rank No.1, Cosine Similarity = 0.3403, Modality = Image (Ground Truth)710

711

Rank No.2, Cosine Similarity = 0.1798, Modality = text712

This is a list of notable Austrians.713

714

Rank No.3, Cosine Similarity = 0.1774, Modality = text715

The Lebanon national football team, controlled by the Lebanese Football Association, have repre-716

sented Lebanon in association football since their inception in 1933. The squad is governed by the717

Asian Football Confederation continentally, and FIFA worldwide. While Lebanon have yet to qualify718

for the FIFA World Cup, they have participated twice in the Asian Cup: in 2000, when they hosted the719

event, and in 2019, the first time through regular qualification. Lebanon’s main venue is the Camille720

Chamoun Sports City Stadium in Beirut; however they also play in other locations such as the Saida721

International Stadium in Sidon. In 1934, Lebanon played their first match against the Romanian side722

CA Timis, oara, but it was not ratified by FIFA. Lebanon played their first FIFA-recognised game723

in 1940 against Mandatory Palestine. During their 2014 qualification campaign for the World Cup,724

Lebanon reached the final qualifying round for the first time thanks to a 2–1 victory against South725

Korea at home in 2011, but failed to qualify for the 2014 FIFA World Cup finishing bottom of their726

group. At the 2019 Asian Cup, Lebanon were close to qualifying to the knock-out stages for the first727

time.728
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729

Rank No.4, Cosine Similarity = 0.1723, Modality = text730

This is a list of properties and historic districts in Winchester, Massachusetts, that are listed on the731

National Register of Historic Places. The locations of National Register properties and districts may732

be seen in an online map by clicking on "Map of all coordinates." This National Park Service list is733

complete through NPS recent listings posted July 17, 2020.734

735

Rank No.5, Cosine Similarity = 0.1708, Modality = multimodal736

This list is of that portion of the National Register of Historic Places
designated in Essex County, Massachusetts. The locations of these
properties and districts for which the latitude and longitude coordi-
nates are included below, may be seen in a map. There are more than
450 designated properties in the county, including 25 that are further
designated as National Historic Landmarks. The municipalities of
Andover, Gloucester, Ipswich, Lawrence, Lynn, Methuen, and Salem
are to be found on a separate list of the more than 200 identified here,
except two properties are split between Methuen and Lawrence, and
one between Lynn and Nahant; these entries appear on more than
one list. This National Park Service list is complete through NPS
recent listings posted August 14, 2020.

737
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G.2 MSCOCO738

Query: A woman in a room with a cat.739

740

CLIP Top-5 Results741

Rank No.1, Cosine Similarity = 0.5044, Modality = text742

A kitchen featuring light wood cabinets and a black granite countertop. It includes a black stove with743

four burners, an over-the-range microwave, and a black refrigerator. The flooring is a warm wooden744

tone.745

746

Rank No.2, Cosine Similarity = 0.4605, Modality = text747

A cat is perched on the closed lid of a toilet, appearing somewhat perturbed. The toilet is located in a748

bathroom with a light-colored wall. Next to the toilet, there is a basket or container. The cat’s tail is749

visible, and it seems to be alert or possibly startled.750

751

Rank No.3, Cosine Similarity = 0.4445, Modality = text752

A long hot dog is placed in a bun on a white paper plate, which sits on a wooden table. The hot dog753

extends beyond the ends of the bun.754

755

Rank No.4, Cosine Similarity = 0.4160, Modality = multimodal756

The warm and cozy living room is adorned with Christmas decorations, fea-
turing a silver tinsel Christmas tree by the fireplace. The room is filled with
a variety of gift-wrapped presents scattered around on the red carpet. On
the mantelpiece, festive ornaments and stockings add to the holiday spirit. A
comfortable beige sofa with cushions sits alongside a coffee table with maga-
zines. The ceiling is decorated with shimmering golden stars, and a television
displaying a dartboard game adds to the lived-in, festive atmosphere. The soft
lighting from lamps enhances the room’s inviting ambiance.

757

758

Rank No.5, Cosine Similarity = 0.4126, Modality = text759

A delicious Italian pizza is presented on a white plate, topped with slices of fresh tomatoes, green760

olives, and thinly sliced onions. The pizza is garnished with herbs and seasonings, adding a colorful761

and flavorful touch to the dish.762

763

GR-CLIP Top-5 Results764

Rank No.1, Cosine Similarity = 0.3012, Modality = multimodal (Ground Truth)765

A woman is standing in a kitchen, smiling and holding a cat. She is
wearing a brown sweater and a blue plaid skirt. The kitchen has wooden
cabinets and a countertop with a potted plant and a bowl of oranges.
There is a sink with dishes on one side and a white refrigerator on the
other. A clock is visible on the wall, and there are various items on the
counter and a small rug on the floor.

766

767

Rank No.2, Cosine Similarity = 0.2924, Modality = multimodal768

A person wearing glasses and a black shirt is sitting by a window with
closed blinds, brushing a cat that is sitting on a purple blanket draped
over a radiator. The cat is facing away, and the brush is Magenta with a
grey bristle area. The floor is wooden, and the cat seems relaxed.

769

770
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Rank No.3, Cosine Similarity = 0.2780, Modality = text771

A cat is perched on the closed lid of a toilet, appearing somewhat perturbed. The toilet is located in a772

bathroom with a light-colored wall. Next to the toilet, there is a basket or container. The cat’s tail is773

visible, and it seems to be alert or possibly startled.774

775

Rank No.4, Cosine Similarity = 0.2745, Modality = multimodal776

A gray armchair and a black armchair are positioned next to each other
in a room. A small lamp is placed on a table next to the black chair.
Partially visible from behind the armchair is a cat peeking out, adding a
playful touch to the setting. In front of the chairs, there is a wooden table
with a remote control on it.

777

778

Rank No.5, Cosine Similarity = 0.2612, Modality = image779

780
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G.3 OVEN781

Query:
What is the name of this building?

782

783

CLIP Top-5 Results784

Rank No.1, Cosine Similarity = 0.5340, Modality = multimodal785

Clérigos Church. The Clérigos Church is a Baroque church in the city of
Porto, in Portugal. Its 75-meter-tall bell tower, the Torre dos Clérigos, can be
seen from various points of the city and is one of its most characteristic symbols.
History: The church was built for the Brotherhood of the Clérigos (Clergy)
by Nicolau Nasoni, an Italian architect and painter who left an extensive body
of work in the north of Portugal during the 18th century. Construction of the
church began in 1732 and was finished in 1750, while the bell tower and the
monumental divided stairway...

786

787

Rank No.2, Cosine Similarity = 0.5321, Modality = image788

789

790

Rank No.3, Cosine Similarity = 0.5276, Modality = multimodal791

St. Peter’s Basilica. The Papal Basilica of Saint Peter in the Vatican,
or simply Saint Peter’s Basilica, is a church built in the Renaissance
style located in Vatican City. It was initially planned by Pope Nicholas
V and then Pope Julius II to replace the aging Old St. Peter’s Basilica,
which was built in the fourth century by Roman emperor Constantine the
Great. Construction of the present basilica began on 18 April 1506 and
was completed on 18 November 1626. Designed principally by Donato
Bramante, Michelangelo, Carlo Maderno, and Gian Lorenzo Bernini...

792

793

Rank No.4, Cosine Similarity = 0.5274, Modality = multimodal794

Coit Tower. Coit Tower is a 210-ft tower in the Telegraph Hill neighborhood
of San Francisco, California, offering panoramic views over the city and the
bay. Built between 1932 and 1933 using Lillie Hitchcock Coit’s bequest to
beautify the city, it was added to the National Register of Historic Places in
2008. The unpainted reinforced concrete tower, designed by Arthur Brown, Jr.
and Henry Howard, features American fresco mural paintings by 25 different
onsite artists...

795

796

Rank No.5, Cosine Similarity = 0.5252, Modality = multimodal797

Ilinden (Memorial). Also known as Makedonium, Ilinden is a monument in
Kruševo, North Macedonia. Officially opened on August 2, 1974, it commem-
orates the Second Session of the Anti-fascist Assembly and the 1903 Ilinden
uprising. Designed by Jordan and Iskra Grabuloski, it honors fighters in the
National Liberation Struggle from 1941–1944. Description. The monument
covers 12 acres and features a rounded architectural style...

798

799
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GR-CLIP Top-5 Results800

Rank No.1, Cosine Similarity = 0.3153, Modality = text (Ground Truth)801

Canadian National Vimy Memorial. The Canadian National Vimy Memorial is a war memorial site802

in France dedicated to the memory of Canadian Expeditionary Force members killed during the First803

World War. It also serves as the place of commemoration for Canadian soldiers of the First World804

War killed or presumed dead in France who have no known grave. The monument is the centrepiece805

of a 100 (ha) preserved battlefield park that encompasses a portion of the ground over which the806

Canadian Corps made their assault during the initial Battle of Vimy Ridge offensive of the Battle of807

Arras.808

809

Rank No.2, Cosine Similarity = 0.2795, Modality = image810

811

812

Rank No.3, Cosine Similarity = 0.2762, Modality = multimodal813

Mary, Queen of the World Cathedral. Mary, Queen of the World Cathedral
or in full Mary, Queen of the World and St. James the Great Cathedral is
a minor basilica in Montreal, Quebec, Canada, and the seat of the Roman
Catholic archdiocese of Montreal. It is the third largest church in Quebec after
Saint Joseph’s Oratory (also in Montreal) and the Basilica of Sainte-Anne-de-
Beaupré east of Quebec City. The building is 101 m (333 ft) in length, 46 m
(150 ft) in width, and a maximum height of 77 m (252 ft) at the cupola, the
diameter of which is 23 m (75 ft).

814

815

Rank No.4, Cosine Similarity = 0.2744, Modality = image816

817

818

Rank No.5, Cosine Similarity = 0.2590, Modality = multimodal819

Sydney Town Hall. The Sydney Town Hall is a late 19th-century heritage-listed
town hall building in the city of Sydney, the capital city of New South Wales,
Australia, housing the chambers of the Lord Mayor of Sydney, council offices,
and venues for meetings and functions. It is located at 483 George Street,
in the Sydney central business district opposite the Queen Victoria Building
and alongside St Andrew’s Cathedral. Sited above the Town Hall station and
between the city shopping and entertainment precincts, the steps of the Town
Hall are a popular meeting place. It was designed by John H. Wilson, Edward
Bell, Albert Bond.
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G.4 VisualNews821

Query: Former California officer Jay Cicinelli puts his head in his hands immediately after hearing822

the not guilty verdict in murder trial of a homeless man.823

824

CLIP Top-5 Results825

Rank No.1, Cosine Similarity = 0.4364, Modality = text826

In this courtroom sketch, a solemn scene unfolds as the individual is depicted during the sentencing827

phase of a high-profile trial. The person was sentenced to death, marking a significant moment in828

the judicial process. The courtroom, filled with tension and gravity, reflects the serious nature of829

the proceedings. The sketch captures the atmosphere and the weight of the decision rendered by the830

court.831

832

Rank No.2, Cosine Similarity = 0.4186, Modality = text833

The image shows a former general, who has been sentenced to life in prison for his role in the murder834

of a Catholic bishop during Argentina’s 1976–83 military dictatorship. The trial revealed documents,835

including letters from the Vatican archives provided by Pope Francis, which showed the bishop’s836

denunciation of the regime’s abuses. The general was found guilty of ordering the murder of Bishop837

Enrique Angelelli in 1976, marking a significant conviction of a junta-era official for the killing of a838

high-ranking cleric.839

840

Rank No.3, Cosine Similarity = 0.3994, Modality = text841

On October 3, 2011, in a courtroom filled with emotional tension, Amanda Knox’s father is embraced842

by his wife following the announcement that Amanda had won her appeal against her murder843

conviction. The atmosphere is charged with relief and joy as supporters and family members react to844

the verdict. The image captures a poignant moment of familial support and celebration amidst the845

wider context of a highly publicized and dramatic legal battle.846

847

Rank No.4, Cosine Similarity = 0.3718, Modality = text848

Sudheendra Kulkarni was attacked with black ink, leaving his face and head covered. This incident849

occurred in public, attracting media attention and police presence, as seen in the image. Kulkarni850

was subsequently taken to a hospital to have the ink removed. The event highlighted tensions and851

provoked widespread reactions, underscoring the volatile nature of public discourse.852

853

Rank No.5, Cosine Similarity = 0.3698, Modality = text854

The Rev Sidney Davis leads mourners in a community prayer service at Second Presbyterian Church855

in Charleston, following the tragic shooting that claimed the lives of nine black worshipers. This856

gathering reflects the communal grief and solidarity in the face of violence, as mourners join hands in857

prayer. The event underscores ongoing discussions about race and gun control, issues highlighted858

during President Obama’s presidency. The somber atmosphere is a reminder of the challenges and859

unresolved issues surrounding racial tensions and gun violence in America.860

861

GR-CLIP Top-5 Results862

Rank No.1, Cosine Similarity = 0.4265, Modality = image (Ground truth)863
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865

Rank No.2, Cosine Similarity = 0.3605, Modality = text866

In this courtroom sketch, a solemn scene unfolds as the individual is depicted during the sentencing867

phase of a high-profile trial. The person was sentenced to death, marking a significant moment in868

the judicial process. The courtroom, filled with tension and gravity, reflects the serious nature of869

the proceedings. The sketch captures the atmosphere and the weight of the decision rendered by the870

court.871

872

Rank No.3, Cosine Similarity = 0.3365, Modality = text873

The image shows a former general, who has been sentenced to life in prison for his role in the murder874

of a Catholic bishop during Argentina’s 1976–83 military dictatorship. The trial revealed documents,875

including letters from the Vatican archives provided by Pope Francis, which showed the bishop’s876

denunciation of the regime’s abuses. The general was found guilty of ordering the murder of Bishop877

Enrique Angelelli in 1976, marking a significant conviction of a junta-era official for the killing of a878

high-ranking cleric.879

880

Rank No.4, Cosine Similarity = 0.3224, Modality = multimodal881

MPs are raising concerns about the lack of access to inpatient mental
health services for young people, highlighting cases like Nikki Mat-
tocks, who faced significant delays and inadequate support. Despite
her struggles with severe mental health issues, she experienced a
fragmented care system, resulting in repeated emergency visits and
admissions to distant psychiatric units. This lack of continuity and
proximity to family exacerbated her condition. The parliamentary
report underscores the urgent need for early intervention and better
resource allocation to prevent further harm to vulnerable youths.

882

883

Rank No.5, Cosine Similarity = 0.2956, Modality = text884

On October 3, 2011, in a courtroom filled with emotional tension, Amanda Knox’s father is embraced885

by his wife following the announcement that Amanda had won her appeal against her murder886

conviction. The atmosphere is charged with relief and joy as supporters and family members react to887

the verdict. The image captures a poignant moment of familial support and celebration amidst the888

wider context of a highly publicized and dramatic legal battle.889
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