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ABSTRACT

Models using parts of images as prototypes for interpretable image classification
are receiving increasing attention due to their abilities to provide a transparent
reasoning process in a ”this looks like that” manner. However, existing models
are typically constructed by incorporating an additional prototype layer before the
final classification head, which often involve complex multi-stage training proce-
dures and intricate loss designs while under-performing their black box counter-
parts in terms of accuracy. In order to guarantee the recognition performance, we
take the first step to explore the reverse direction and investigate how to turn a
trained black box model into the form of a prototype based model. To this end,
we propose to leverage the Non-negative Matrix Factorization (NMF) to discover
interpretable prototypes due to its capability of yielding parts based representa-
tions. Then we use these prototypes as the basis to reconstruct the trained black
box’s classification head via linear convex optimization for transparent reason-
ing. Denote the reconstruction difference as the residual prototype, all discovered
prototypes together guarantee a precise final reconstruction. To the best of our
knowledge, this is the first prototype based model that guarantees the recogni-
tion performance on par with black boxes for interpretable image classification.
We demonstrate that our simple strategy can easily turn a trained black box into a
prototype based model while discovering meaningful prototypes in various bench-
mark datasets and networks.

1 INTRODUCTION

In the past years, deep learning based models such as Convolutional Neural Networks (CNN) and
Vision Transformer (ViT) have achieved impressive performance in computer vision tasks (He et al.,
2016; Dosovitskiy et al., 2020; Girshick, 2015; Ronneberger et al., 2015). However, the inter-
pretability of these models has always been a major concern and limits their real-world deployments.

Among many works trying to tackle this problem, the prototype based models are receiving increas-
ing attention because they don’t require additional interpretability supervision while guaranteeing a
transparent reasoning process (Ukai et al., 2022). Moreover, the explanation offered in a ”this looks
like that” manner is easy for human to understand (Wang et al., 2021; Nauta et al., 2021; Rymarczyk
et al., 2022; Donnelly et al., 2022; Rymarczyk et al., 2021; Chen et al., 2019; Ukai et al., 2022). The
reasoning process includes the comparisons of extracted features with prototypes. The final deci-
sion is made via linear combination of feature similarities to different prototypes weighted by the
coefficients, where the contributions of different components can be clearly identified. Therefore,
these models are considered inherently interpretable as the interpretable decision making process is
incorporated into the model’s architecture design (Chen et al., 2019).

Existing prototype based models are typically constructed by additionally incorporating a prototype
layer, requiring complex training scheme, intricate loss designs, yet typically under-performing their
black box counterparts in terms of recognition accuracy. In this work, we try to explore the reverse
direction and aim to address the following question: can we turn a trained black box model into a
prototype based model while discovering interpretable prototypes for transparent reasoning?
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Inspired by psychological (Biederman, 1987) and physiological (Wachsmuth et al., 1994) study
that human recognize objects by components, we seek for discovering a set of prototypes which
could indicate different parts of the target object for each class. In addition, we encourage the
discovered prototypes to be diverse yet complete (We call it comprehensive for ease of description
in later sections). Take bird species classification as an example, an intuitive understanding is that
the discovered prototypes should indicate different body parts, yet sum together to cover the whole
bird body. For the diversity: it is straightforward to see that duplicate prototypes are unnecessary.
For the completeness: although incomplete prototypes may also be enough to discriminate one class
from another, a set of more complete prototypes offers users more chance for further improvement
of the model. For example, if the model wrongly relies on some discriminative but biased prototype
(e.g., background or some wrong concepts), human may conduct test-time intervention (Koh et al.,
2020) to manually suppress its contribution and increase the importance of the correct prototypes
using expert knowledge. This won’t be possible if the set of prototypes are less complete where the
correct prototype may not even exist in the discovered set.

To this end, we propose to leverage the popular signal decomposition technique called Non-negative
Matrix Factorization (NMF) (Lee & Seung, 1999) for the prototype discovery. Unlike principle
component analysis, NMF is known to offer parts based representations (Wang & Zhang, 2012),
making it suitable to serve as prototypes indicating parts of the target object. Moreover, the opti-
mization process of NMF explicitly optimizes the prototypes to be comprehensive. In the context
of prototype based models with transparent reasoning process, we propose to first apply NMF in
the features extracted by a trained model for the prototype discovery. Then we try to reconstruct
the black box’s classification head via a linear optimization process using the discovered prototypes
as the basis. We use the linear combination in order to follow the ”this looks like that” framework
(Chen et al., 2019) and enable the contribution of each component to be clearly identified. In the
end, we calculate the reconstruction difference and take it as the residual prototype to guarantee the
performance on par with the black box models. Our contributions are:

• We introduce ProtoNMF, the first prototype based model that guarantees the recognition
performance on par with black boxes for interpretable image classification.

• We propose to leverage NMF for the prototype construction and use the discovered proto-
types to build a transparent reasoning process. Since NMF offers parts based representa-
tions, they are suitable to indicate image parts as prototypes.

• We conduct extensive experiments to demonstrate that our simple strategy can easily turn
a trained black box into a prototype based model while discovering meaningful prototypes
in multiple benchmark datasets and network architectures.

2 RELATED WORKS

Prototype based models One prominent work designing prototype based models for interpretable
image classification is the ProtopNet (Chen et al., 2019). This work does not focus on offering
quantitatively better interpretability. Instead, it focuses on offering a transparent reasoning process.
Given an input image, the model compares image parts with the prototypes, and make the predictions
based on a weighted combination of the similarity scores between image parts (feature patches
from the input’s feature maps) and prototypes (one prototype is a specific feature patch from a
specific feature map). This model provides inherent interpretability of the decision making in a
”this looks like that” manner. Following this framework, many works are proposed to investigate
different aspects, such as discovering the similarities of prototypes (Rymarczyk et al., 2021), making
the prototype’s class assignment differentiable (Rymarczyk et al., 2022), making the prototypes
spatially flexible (Donnelly et al., 2022), combining it with decision trees (Nauta et al., 2021) or
K-nearest neighbors (KNN) (Ukai et al., 2022). Although above methods have different motivations
of improvement, their major evaluation metric is still the performance. Even though, none of these
methods can guarantee the performance on par with the black box counterparts.

Post-hoc methods These methods focus on explaining trained black box models. Therefore, our
model can be categorized to both a prototype based model and a post-hoc method. Prior post-hoc
methods can roughly be categorized to perturbation (Ribeiro et al., 2016; Zeiler & Fergus, 2014;
Zhou & Troyanskaya, 2015) based or backpropagation (Selvaraju et al., 2017; Zhang et al., 2018;
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Sundararajan et al., 2017) based. These methods primarily emphasize local interpretability, provid-
ing explanations specific to individual inputs. However, they often fall short in terms of capturing
global knowledge and utilizing it for transparent reasoning processes. In contrast, our method fo-
cuses on exploring the global knowledge for constructing a prototype based reasoning process in
interpretable image classification. This process brings more insights via pointing out to what proto-
type certain areas look similar to, while some attention based methods such as Grad-CAM (Selvaraju
et al., 2017) can only explain where the network is looking at (Rudin, 2019). Another related work
in audio processing (Parekh et al., 2022) utilizes NMF in post-hoc explanations. However, this work
is not designed for images and no transparent reasoning process is constructed.

Matrix factorization and basis decomposition It is not new to understand complex signals via
the decomposition. Conventional methods such as NMF (Lee & Seung, 1999), Principle Compo-
nent Analysis (Frey & Pimentel, 1978), Vector Quantization (Gray, 1984), Independent Component
Analysis (Hyvärinen & Oja, 2000), Bilinear Models (Tenenbaum & Freeman, 1996) and Isomap
(Tenenbaum et al., 2000) all discover meaningful subspace from the raw data matrix in an unsuper-
vised manner (Zhou et al., 2018). Among these works, NMF (Lee & Seung, 1999) stands out as
the only approach capable of decomposing whole images into parts based representations due to its
use of non-negativity constraints which allow only additive, not subtractive combinations. In the era
of deep learning, (Collins et al., 2018) finds that NMF is also effective for discovering interpretable
concepts in CNN features with ReLU (Nair & Hinton, 2010) as activation functions. However, this
work does not leverage the discovered concepts from the training data to construct a model with
transparent reasoning process. Moreover, the usage of NMF is not explored in more recent archi-
tectures which allow negative feature values (e.g., ViT (Dosovitskiy et al., 2020) or CoC (Ma et al.,
2023)). Another related work is (Zhou et al., 2018), which approximates the classification head
vector via a set of interpretable basis vectors to facilitate interpretable decision making. However,
this work leverages the concept annotations to obtain the interpretable basis rather than employing
an unsupervised approach.

Networks with additional interpreters These methods jointly learn a predictive model and an
associated interpretation model. This type of work shares similarity with our idea in the sense that
they learn interpretable components in an unsupervised manner and leverage them for a transparent
reasoning process. However, the interpretable components are learned via an auxiliary task such as
image reconstruction instead of directly explored in the learned features (Parekh et al., 2021; Sarkar
et al., 2022), making the training process more complicated. Moreover, these models empirically
perform worse than only training its predictive black box models by a large margin, which ours
guarantees the performance on par with black boxes.

Although we share some similarities with related works, our goal and overall methodology have no
overlap with them. Furthermore, to the best of our knowledge, this is the first work constructing a
prototype based model in a post-hoc manner, exploring a reverse direction compared to prior works.

3 METHOD

In this section, we first introduce our simple 2-step strategy to turn a black box model into a pro-
totype based model with transparent reasoning process. Then we compare the key difference with
prior prototype based models. Note that we do not claim to outperform all prior prototype based
models in all aspects. Instead, we show in this work that a simple strategy can readily turn a black
box model into a prototype based model bringing similar level of interpretability benefits as prior
works (e.g., transparent reasoning process based on comparison with interpretable prototypes) while
guaranteeing the recognition performance.

3.1 STEP1: PROTOTYPE CONSTRUCTION VIA NON-NEGATIVE MATRIX FACTORIZATION

Given n images from class c, the ith image’s features extracted by neural networks are flattened as
F c
i ∈ RHW×D, where H,W,D are height, width and channel dimension number of the extracted

feature maps, respectively. The features from n images stacked together are denoted as Ac =
[F c

1 , ..., F
c
n] ∈ RnHW×D. Matrix factorization tries to decompose Ac into an encoding matrix

Ec ∈ RnHW×p and a basis matrix Bc ∈ Rp×D, where p denotes the number of basis. Denote the
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Figure 1: Simple 2-step strategy to turn a black box into a prototype based model. Step 1: calculate
prototypes via NMF in features extracted by the black box backbone in each class. Step 2: recon-
struct the black box’s classification head via discovered prototypes. The importance a11, a12, a13 of
each prototype is obtained via convex optimization in step 2 and the residual prototype is calculated
via the reconstruction difference.

approximate decomposition results as Âc, the decomposition is expressed as follows:

Ac ≈ Âc = EcBc, Ac ∈ RnHW×D, Ec ∈ RnHW×p, Bc ∈ Rp×D (1)

In this way, each row of the feature matrix Ac is approximately described as the sum of row vectors
in Bc weighted by the values in corresponding rows of the encoding matrix Ec, as demonstrated in
Figure 1, where different colors in Ec indicate the weight of different row vectors in Bc. Ec can
also be understood as coordinates of Âc in the feature space spanned by the basis vectors (rows) in
Bc. If we can find a factorization such that the row vectors in Bc are prototypes with parts based
representations, we can successfully describe any feature belonging to a certain class as a weighted
combination of these prototypes. The columns of Ec with the shape nHW can also be reshaped
to n heatmaps with the shape H ×W for visualization, showing how strong and where a certain
prototype is present in n images.

To achieve parts based representations, a natural solution is conducting the NMF, which only al-
lows additive, and not subtractive combinations of components, removing complex cancellations
of positive and negative values in EcBc. Such a constraint on the sign of the decomposed matri-
ces is proved to lead to sparsity (Lee & Seung, 2000) and thus lead to parts based representations
(Wang & Zhang, 2012), which are therefore suitable to serve as prototypes to indicate individual
components of the target object under the ”this looks like that” framework. Moreover, an example
of interpretability benefit from the non-negative sign is that it’s more meaningful to describe a bird
as a combination of a head plus the body and a wing instead of a head plus the body minus a wing.

Efficient multiplicative update For the ease of reading, we omit the upper index c of Ec, Ac, Bc

in this paragraph. NMF is a very efficient parameter-free method for decomposing multivariate data
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into strictly positive encoding matrix E and basis matrix B. Compared to standard gradient descent,
the efficient multiplicative update rules of NMF can guarantee the convergence and no step size
parameter is needed. These update rules are computationally inexpensive (Eggert & Korner, 2004).
Given a data matrix A with positive values, we randomly initialize the matrices E and B using
standard Gaussian distributions while setting all negative values to zero, and then apply the update
rules towards optimizing the Euclidean distance ||A− EB||22 as follows (Lee & Seung, 2000):

Eij ← Eij
(ABT )ij
(EBBT )ij

, Bjk ← Bjk
(ETA)jk
(ETEB)jk

(2)

The i, j, and j, k are indices of corresponding rows and columns in the matrices E,B respectively.
The above update rules guarantee that the Euclidean distance ||A − EB||22 is non-increasing and
we refer to (Lee & Seung, 2000) for the convergence proof. The update will stop when the relative
error change is small enough (e.g., 10−4) or maximum iteration times (e.g., 200) is reached. The
relative error change is calculated as the error difference between 2 updates divided by the initial
error calculated using randomly initialized prototypes, where the error is calculated via:

err = ||A− EB||22 (3)

How to handle negative values CNN architectures (He et al., 2016; Simonyan & Zisserman, 2014)
typically use ReLU (Nair & Hinton, 2010) as the activation functions and naturally obtain non-
negative features. However, more recent architectures such as ViT (Dosovitskiy et al., 2020) or CoC
(Ma et al., 2023) use GeLU (Hendrycks & Gimpel, 2016) as activation functions and thus allow
negative feature values, making NMF not directly appliable. We note that there are variants of NMF
such as semi-NMF and convex-NMF which could handle negative input values (Ding et al., 2008).
However, for consistency in the evaluation across different architectures, we simply set all negative
features to zero and conduct NMF on extracted deep features. We demonstrate in later sections
that this simple strategy empirically also leads to meaningful parts based representations, probably
because most information are already expressed by the non-negative part of the features.

3.2 STEP2: CLASSIFICATION HEAD RECONSTRUCTION VIA TRANSPARENT REASONING

A transparent reasoning process requires the final decision to be clearly attributed to the contribution
of each interpretable component additively, and the number of components should be small to keep
the explanation easily digestable (Alvarez Melis & Jaakkola, 2018). Therefore, we adopt the linear
combination of a small number of prototypes for the classification head reconstruction. As shown
in Figure 1, we compare the features with each prototype belonging to a certain class and average
the weighted sum of similarity scores for the prediction, obtaining a transparent reasoning process.
Denote the classification head for class c as V c ∈ R1×D, we seek for a reconstruction of V c via a
linear combination of p interpretable basis in B ∈ Rp×D:

min
Cc
||V c − CcBc||22 (4)

where Cc ∈ R1×p is the coefficient indicating the importance of prototypes with respect to the class
c. Since V c and Bc are fixed, this is a convex optimization and thus Cc has a global optimum. As
we constrain the number of prototypes p to be a small number (e.g., p=3) for the ease of human
understanding, while the feature dimension is typically high in modern neural networks (e.g., 512
in ResNet34), there is no guarantee that the basis consisting of these p prototypes can precisely
reconstruct the black box’s classification head. Thus we further introduce the residual prototype as:

Rc = V c − Cc
optB

c (5)

where Copt is the optimal coefficient obtained in the optimization objective 4. First optimizing Cc
opt

and then calculating Rc instead of directly calculating V c − Bc enables the discovered residual
prototype to only represent what the basis Bc can not represent. The interpretability of this residual
prototype is visualized via the optimal Hc ∈ RnHW through the following convex optimization:

min
H
||Ac − Ec

optB
c −HcRc||22 (6)

where Hc is optimized to optimally reconstruct the features that are not modeled by NMF prototypes
(Ac − Ec

optB
c) using the discovered residual prototype Rc. The obtained Hc ∈ RnHW can be
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visualized via n heatmaps of the shape H×W , showing where and how strong the residual prototype
is present in the features not modeled by NMF prototypes. Surprisingly, these discovered prototypes
are not random signals. Instead, as shown in next section, they are mostly present in the foreground,
offering insights such as there are still undiscovered discriminative patterns in these areas. Final
visualizations are created by upsampling these heatmaps back to the original image resolution for
the ease of reading.

3.3 OVERVIEW OF THE INFERENCE PROCESS

The interpretability benefit of our method compared to a black box comes from the following clas-
sification head decomposition during the inference (an illustrative figure is offered in A.3):

V c = Cc
optB

c +Rc = a1b1 + a2b2 + ...+ apbp +Rc (7)

where ai are the scalers in Cc
opt ∈ R1×p indicating the importance of each prototype, bi ∈ R1×D

indicates the ith NMF prototype obtained in Bc ∈ Rp×D. Since the residual prototype might be
less intperpretable, we further propose the following strategy to distribute the residual prototype’s
parameters to p NMF prototypes and remove the explicit inference dependence on it:

V c = a1(b1 +
Rc∑p
i=1 ai

) + ...+ ap(bp +
Rc∑p
i=1 ai

) (8)

Similar to equation 1, the visualization of p augmented prototypes in the form of bi + Rc∑p
i=1 ai

could

be obtained via Ec′ ∈ RnHW×p in the following convex optimization:

min
E′
||Ac − Ec′Bc′ ||22 (9)

where the rows of Bc′ ∈ Rp×D are the augmented NMF prototypes bi + Rc∑p
i=1 ai

. We refer to the
section A.2 of appendix to show that the augmented prototypes are still interpretable.

3.4 COMPARION WITH A PREVIOUS PROTOTYPE BASED MODEL

The key difference of our ProtoNMF compared to prior prototype based methods lives in the pro-
totype obtaining process. We take ProtopNet (Chen et al., 2019) as our major baseline as other fol-
lowing works employ the same prototype obtaining process. ProtopNet (Chen et al., 2019) includes
a periodic three-stage training scheme: (1) fix the final classification head and train the prototype
layer as well as the backbone. (2) replace the latent vectors in prototype layer with closest feature
patch from the training set. (3) fine-tuning the final classification head. Three stages are repeated
multiple times until convergence.

It’s straightforward to see that in the second stage, each prototype corresponds to the feature of
a single image patch. However, this may make the meaning of the prototype ambiguous (e.g., is
the shape or the texture or the color of this patch important?). In contrast, the meaning of our
prototype can be identified via observing the shared features among a set of images, making it easier
for human to understand. In addition, we note that our latent representations of prototypes may
have other advantages, such as being more stable and comprehensive during the training compared
to ProtopNet (Chen et al., 2019). It’s also easy to change the prototype number to offer richer
explanations, while prior models must be retrained to achieve this.

4 EXPERIMENTS

The experiments are conducted in both fine-grained (e.g., CUB-200-2011 (Wah et al., 2011)) and
general classification datasets (e.g., ImageNet (Deng et al., 2009)), where CUB-200-2011 (200 bird
spieces) (Wah et al., 2011) is a benchmark dataset in prototype based models and ImageNet (1000
classes) (Deng et al., 2009) is less evaluated by prior prototype based models. In addition, we
demonstrate qualitatively that our proposed ProtoNMF also yield interpretable prototypes in more
recent architectures such as ViT (Dosovitskiy et al., 2020) and CoC (Ma et al., 2023). Extensive
evaluations and in-depth analysis are offered discussing the interpretability and the performance.
We follow (Chen et al., 2019) in CUB preprocessing/augmentation and leverage publicly available
checkpoints in the ImageNet (Deng et al., 2009) for analysis.
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Table 1: NMF obtained prototypes serve as better
basis towards a lower class features’ reconstruc-
tion error. The values are the mean and standard
deviation of the error across all classes and 3 runs.

Training cycle ProtopNet NMF

Cycle 1 43.5±10.2 24.9±6.5
Cycle 2 99.0 ±10.6 25.7±1.4
Cycle 3 110.2±14.8 25.1±2.7

Table 2: Performance comparison in CUB-200-
2011 (Wah et al., 2011).

Methods Acc

ProtoPNet (Chen et al., 2019) 79.2
ProtopShare (Rymarczyk et al., 2021) 74.7
ProtoPool (Rymarczyk et al., 2022) 80.3
Def. ProtoPNet (Donnelly et al., 2022) 76.8
ProtoKNN (Ukai et al., 2022) 77.6
ResNet34 (He et al., 2016) (ProtoNMF) 82.3

4.1 CUB-200-2011

How comprehensive is the reasoning base? Since it’s even hard to compare whether one set of
prototypical images selected by one expert is more comprehensive than another expert considering
the unlimited variations in angles, lighting conditions and bird actions, we compare whether a set
of prototypes is more comprehensive than another set quantitatively in the latent space. Assume
all features from all images of a class build a complete description of that class, we measure how
well a set of prototypes could serve as the basis to reconstruct all features belonging to a certain
class via the feature reconstruction error. Concretely, we leverage the equation 3 and compare the
optimal reconstruction errors using NMF’s calculated prototypes and ProtopNet’s Chen et al. (2019)
selected prototypes. We use 10 prototypes in both settings for fair comparisons (default setting of
ProtopNet). The Table 1 demonstrates quantitatively that prototypes obtained via NMF consistently
leads to a lower reconstruction error in different training cycles (one cycle is one iteration of 3
training stages) of the ProtopNet. This indicates that they serve as better basis vectors to reconstruct
all features belonging to a class. We evaluate the first 3 cycles because we empirically observe
that the checkpoint with the best validation accuracy could possibly appear in any one of the first 3
cycles. Figure 2 demonstrates qualitatively that the prototypes obtained by our ProtoNMF are more
comprehensive (e.g., diverse and complete). For the ease of visualization, we take 3 prototypes as
an example: in the last two rows, the areas colored green, blue and red are easily separable and
consistently indicate the bird head, belly and wing in all images. Besides, the areas corresponding
to these three prototypes cover the bird’s whole body in a more complete manner compared to the
areas indicated by the yellow bounding boxes in the first two rows. Over the course of training,
ProtopNet’s prototypes are becoming less diverse while ProtoNMF’s prototypes remain diverse.

How stable is the reasoning base? For fair comparison, we generate ProtoNMF visualizations
based on the ResNet34 checkpoints under the same epochs of ProtopNet (Chen et al., 2019). These
checkpoints are trained using the same learning rate schedule as ProtopNet. We demonstrate the
stability qualitatively in Figure 2: compare the first two rows with the latter two rows, it is evident
that ProtopNet exhibits significant variations in the selected prototypes throughout different cycles.
Conversely, our ProtoNMF showcases only slight differences in the prototypes’ present areas.

Performance For fair comparison, all performances are reported based on the backbone ResNet34,
as it is commonly evaluated in prior papers. Table 2 shows that ResNet34 outperforms all prior
prototype based models. Since our ProtoNMF is a precise reconstruction of ResNet34, ProtoNMF
enjoys the same performance.

4.2 IMAGENET

Prior works may have different reasons not to evaluate in this large scale dataset with very distinct
classes. For example, the idea of sharing prototypes may be less meaningful when classes are very
different (Rymarczyk et al., 2021) and Ukai et al. (2022) points out that the computation load may be
too heavy for their model. Since comprehensive evaluation of all prior works is out of the scope of
this paper, we focus on the in-depth analysis of our proposed method in this dataset and compare with
our major baseline ProtopNet (Chen et al., 2019), which do not suffer from above difficulties. We
evaluate multiple architectures including ResNet34 (He et al., 2016), ViT (ViT-base with patch size
32) (Dosovitskiy et al., 2020) and CoC (Coc-tiny) (Ma et al., 2023). A brief summary of different
architectures is shown in the Figure 3. We fix p = 3 in the comparison for ease of understanding
unless otherwise indicated.

Qualitative comparison of NMF prototypes in 3 architectures The areas that our ProtoNMF are
present are visualized in Figure 3 by different colors. It could be seen that even if we remove the
negative feature values in ViT and CoC, NMF still leads to reasonable parts based representation.
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Figure 2: In the first two rows, 10 bounding boxes indicate 10 prototypes selected by ProtopNet
(Chen et al., 2019) in each cycle for one class. In the last two rows, each color indicates a different
discovered prototype of our ProtoNMF. We randomly choose 10 images to indicate the consistency
and diversity of prototypes across images. During the training, the selected prototypes of ProtopNet
has a large difference across cycles and tend to indicate the same semantic meaning in later cycles.

This indicates that the non-negative feature values already capture the major representations of the
corresponding image parts. Moreover, the areas of different prototypes from ViT are less separable,
probably because the ViT architecture has less inductive bias. This may make the spatial relationship
in the original image less maintained in the feature map.

ProtoNMF
(Resnet34)

ProtoNMF
(CoC-tiny)

NMF prototypes Residual prototypes

ProtoNMF
(ViT-base)

Properties of 3 architectures

Allow
Neg.
Feat.

Induct.
Bias

#Para.

Res34 No Yes 21.8M

ViT-base Yes No 88M

CoC-tiny Yes Yes 5.3M

Figure 3: Comparison of 3 architectures and their prototypes in ImageNet (Deng et al., 2009). We
visualize the presence areas of 3 prototypes in 3 example images from the class ”sled dog”.

Performance comparison We run the ProtopNet (Chen et al., 2019) using the officially released
code in ImageNet (Deng et al., 2009). The Protopnet is trained using an ImageNet pretrained
ResNet34 (He et al., 2016) as the backbone. ProtopNet exhibits a strong performance drop in terms
of top1 accuracy (65.5) while our ProtoNMF can maintain the performance of ResNet34 (75.1).

What’s the influence of different number of NMF prototypes? As could be seen in the Figure
5, more NMF prototypes would lead to both smaller feature reconstruction error and classification
head reconstruction error in all architectures. However, an limitation is that a larger number may also
make the visualization harder for human to interpret, as human generally won’t segment an image
into too many parts for classification, as shown in Figure 4 (Figures generated using CoC-tiny).

How discriminative are discovered prototypes? Table 3 shows the performance of only using
NMF/residual/augmented NMF prototypes for classification. Although the presence areas of NMF
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Figure 4: Visualization using different number of prototypes (e.g., p=1,3,5,10.). In each image, a
different color indicates the presence area of a different prototype.
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Figure 5: More NMF prototypes reduce both feature and classification head reconstruction errors.

prototypes enjoy semantic meanings due to parts based representations, using them alone for the
classification is not discriminative enough. This may due to the fact that the pretrained feature ex-
tractor is optimized towards the pretrained classifier allowing negative values, and generally a basis
consisting of small number of non-negative prototypes may not be precise enough to recover the dis-
criminative capability of the original high-dimensional classification head. Thanks to the parameter
distribution strategy, the augmented NMF prototypes are both discriminative and interpretable.

Table 3: Performance using only NMF/residual/augmented NMF prototypes. Note that the result
76.3 of ViT comes from averaged features of the last layer into the classification head for fair com-
parison. Using the ViT’s classification token reaches 80.7 Top1 accuracy.

ResNet/ViT/CoC Origin. NMF only Residual only NMF+residual/Aug. NMF

p=1 1.3 / 55.1 / 50.7 74.8 / 80.1 / 71.7 75.1 / 76.3 / 71.9
p=3 16.4 / 50.8 / 45.1 72.6 / 79.1 / 60.3 75.1 / 76.3 / 71.9
p=5 20.4 / 52.1 / 49.3 72.0 / 78.5 / 56.9 75.1 / 76.3 / 71.9
p=10 28.4 / 54.8 / 54.3 71.0 / 77.3 / 48.3 75.1 / 76.3 / 71.9

How to interpret coefficients of Cc
opt during classification head reconstruction?As a case study,

we examine the class ”sled dog” in Figure 3. The raw coefficients we obtained for the red, green
and blue prototypes (corresponding to background, human, dog) are −0.004,−0.007, 0.014 for
ResNet34, 0.0007,−0.00006, 0.01 for ViT-base and −0.0176, 0.016, 0.019 for CoC-tiny. Interest-
ingly, these numbers indicate that in ResNet34 and ViT-base architectures, the dog prototype is the
most discriminative one, although three interpretable prototypes are found. These numbers also re-
veal that CoC-tiny’s reasoning strongly relies on both human and dog prototypes (0.016 vs 0.019),
which may be a correlation bias as sled dogs are often captured sledding for human. In addition, it
also relies on the negative reasoning process of background, saying an image is more likely to be
a sleg dog if it looks less similar to the background. In general, our method could find which pro-
totypes are more discriminative among all interpretable prototypes, offering a more comprehensive
understanding of the reasoning process. This may potentially ease the human debugging/debiasing
or test-time intervention of the model. We refer to the appendix A.4 for an example usage.

5 CONCLUSION

Prior prototype based interpretable models typically under-perform black box models. Therefore,
we take the first step to explore the reverse direction and aim to answer: can we turn a trained
black box model into a prototype based model while discovering interpretable prototypes for trans-
parent reasoning? To this end, we propose a simple 2-step strategy to first construct prototypes
from backbone’s extracted features via NMF and then reconstruct the classification head via discov-
ered prototypes. We demonstrate competitive interpretability benefits of this approach (e.g., offer
transparent reasoning with meaningful prototypes) while guaranteeing the recognition performance.
Extensive evaluations are offered to discuss both benefits and limitations of the method.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The implementation details of step 1: prototype reconstruction via NMF are already described
in the method part of the main text and we refer to Collins et al. (2018) for the NMF code base.
Here we offer the code for step 2: classification head reconstruction via transparent reasoning. The
obtained W or residual-coeff may be bilinearly interpolated back to the resolution of the original
input images for visualization of NMF prototypes and residual prototypes.

Figure 6: Code for classification head reconstruction.
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Figure 7: Interpretability comparison between original NMF prototypes and re-parameterized NMF
prototypes.

A.2 INFLUENCE OF RE-PARAMETERIZATION ON THE INTERPRETABILITY

Empirical evidence Fig. 7 shows that the prototypes with enhanced discriminative power still de-
liver interpretable parts based representations. In architectures with inductive bias such as ResNet34
and CoC-tiny, the re-parameterized prototypes in the foreground become even better separated from
the background prototype, compare blue/green areas with red areas.

Theoretical analysis We focus the analysis on the difference between encoding matrix Ec and Ec′

for interpretability visualization. Observe the equation 8 for re-parameterization, we are actually
shifting every axis of the coordinate system consisting of p prototypes by the vector Rc∑p

i=1 ai
. There-

fore, the change in the interpretability visualization is reflected by the change of the coordinates of
all features in this coordinate system. For the ease of analysis, first assume each prototype is orthog-
onal to each other. Consider any prototype bi, the strength of the mth feature patch Ac

m from class
c along the kth prototype bk is Ac

mbTk before re-parameterization. After the re-parameterization,
the projected strength becomes Ac

mbTk +Ac
m( Rc∑p

i=1 ai
)T . Therefore, the change of the visualization

completely depends on the term Ac
m( Rc∑p

i=1 ai
)T . Fortunately, it’s reasonable to expect this term to

be very small compared to the first term Ac
mbTk especially in the salient areas where the first term

is large and contribute the most to the interpretability visualization. This is because original NMF
prototypes Bc are explicitly optimized to approximate the features Ac. Though we use the assump-
tion that prototypes are strictly orthogonal to derive this conclusion, a similar logic also applies to
not strictly orthogonal NMF prototypes, because NMF is exactly an optimization process to make
the prototypes as diverse/orthogonal as possible, yet serving as a good basis to span a feature space
covering the features of the target class.
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Figure 8: Comparison of the reasoning process of our ProtoNMF, ProtopNet and black box.

A.3 COMPARISON OF THE REASONING PROCESS

Both our ProtoNMF and the baseline ProtopNet follows the reasoning process based on the com-
parison with a set of prototypical parts, while the black box compares the features with a single
class vector for the classification logit of each class. A slight difference between the ProtoNMF and
ProtopNet is that after obtaining the similarity map of each feature patch to a prototype, we average
the similarities of the map and linearly combine these similarities of all prototypes belonging to a
class for the class logit, while the ProtopNet takes the maximum value of the similarity map and
linearly combine these similarities. Another difference is that ProtopNet leverages the prototypes
of all classes for the class logit of a single class, while we only leverage a small set of prototypes
belonging to each individual class. However, we argue that these slight differences (e.g., average
versus maximum, less versus more prototypes) do not influence the fact that the overall inference
framework is still based on the comparison with prototypes.

A.4 CASE STUDY OF PROTOTYPE BASED TEST-TIME INTERVENTION

The figure 9 demonstrates an example of how experts could leverage the prototypes to conduct test-
time intervention to correct the model’s prediction. (1) The red prototype corresponds more to the
background. (2) The green prototype is more in the shape of a long thin pipe, which confuses the
model when the input is an instrument with the similar shape. (3) The blue prototype corresponds
more to a trigger. So a human expert could intervene the green prototype by setting the contribution
from this prototype to zero and the model can now correctly predict the input image to obe, hautboy,
hautbois.

Looks like

-4.45     13.27 -0.68… …
Wrong

Rifle 

e.g.

Intervention

-4.45        0 -0.68… …

Correct 
oboe

hautboy 
hautbois

e.g.

……

Figure 9: A successful example of test-time intervention.
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Quantitative evaluation As explained in section 1, 5th paragraph of ProtopNet Chen et al. (2019),
even if some datasets have interpretable attribute annotations, since the discovered concepts by pro-
totype based models may not exist in the existing dataset’s pre-defined attributes, it’s hard to evaluate
quantitatively how good are the discovered prototypes. However, we try to offer some quantitative
results to bring more insights of the advantage of our method compared to a black box under some
assumptions. Assume in all wrong predictions, an expert exist that is allowed to intervene one pro-
totype for one time in each prediction, and this expert always intervenes the prototype with highest
importance of the predicted class (indicated by max(Cc

opt)) by setting the contribution of this pro-
totype to 0, the Top1 accuracy of the model will increase by 10.8% (Tab. 4). Note that in practice,

Table 4: Performance of CoC-tiny before and after human intervention in ImageNet.
Top1 Acc without intervention Top1 Acc with intervention

71.9 82.7

experts may apply a much more complicated intervention strategy such as multiple interventions or
intervene multiple prototypes simultaneously to further increase the performance. We leave design-
ing effective and efficient intervention strategy to future work.
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