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ABSTRACT

Visual recognition models are prone to learning spurious correlations induced by a
biased training set where certain conditions B (e.g., Indoors) are over-represented
in certain classes Y (e.g., Big Dogs). Synthetic data from generative models of-
fers a promising direction to mitigate this issue by augmenting underrepresented
conditions in the real dataset. However, this introduces another potential source
of bias from generative model artifacts in the synthetic data. Indeed, as we will
show, prior work uses synthetic data to resolve the model’s bias toward B, but it
doesn’t correct the models’ bias toward the pair (B,G) where G denotes whether
the sample is real or synthetic. Thus, the model could simply learn signals based
on the pair (B,G) (e.g., Synthetic Indoors) to make predictions about Y (e.g., Big
Dogs). To address this issue, we propose a two-step training pipeline that we call
From Fake to Real (FFR). The first step of FFR pre-trains a model on balanced
synthetic data to learn robust representations across subgroups. In the second step,
FFR fine-tunes the model on real data using ERM or common loss-based bias mit-
igation methods. By training on real and synthetic data separately, FFR avoids the
issue of bias toward signals from the pair (B,G). In other words, synthetic data in
the first step provides effective unbiased representations that boosts performance
in the second step. Indeed, our analysis of high bias setting (99.9%) shows that
FFR improves performance over the state-of-the-art by 7-14% over three datasets
(CelebA, UTK-Face, and SpuCO Animals).

1 INTRODUCTION

Visual recognition models are prone to learning spurious correlations (Bias) (Wang et al., 2020a;
Zhao et al., 2021; Meister et al., 2022). These correlations frequently arise due to an imbalance in
the training set. For example, given a dataset with classes Y (e.g. Smiling vs Not Smiling), there ex-
ists a confounding bias variable B (Gender: Male and Female) in the training set such that one bias
group (e.g. Male) is represented in one class more than others (e.g. most males are Smiling). This
leads models to use the bias signal B (gender) mistakenly to predict Y (Smiling). Rapid progress
in generative models, most notably diffusion-based models (Ho et al., 2020; Saharia et al., 2022),
provides a clear mitigation method that alleviates bias using synthetic data. For example, Additive
Synthetic balancing (ASB) (Ramaswamy et al., 2021) augments the biased real dataset with a bal-
anced synthetic dataset. Uniform Synthetic Balancing (USB) generates enough data to uniformly
balance the dataset subgroups (Wang et al., 2020b; Mondal et al., 2023), i.e., each subgroup will
have the same number of samples. However, by training the real and synthetic data samples at the
same time, a model may simply learn to identify correlations between bias B and whether the data
was real or generated G by using generative model artifacts (Corvi et al., 2023). For example, in the
setting where the training data contained mostly smiling men but few smiling women, prior work
may simply learn that synthetically generated women may smile (but images of real women do not).
Thus, as shown in Figure 1(a) and (b), models trained using strategies of prior work (e.g., ASB and
USB) may focus on unrelated features for the target task. In addition, we provide theoretical analysis
where we prove that every possible augmentation of a biased dataset with synthetic data is going to
exhibit some bias toward (B,G). Refer to Section 3.1 for more details.

To mitigate this problem, we rethink how synthetic data is used for bias mitigation by developing a
two-stage training pipeline that we call From Fake to Real (FFR). The first step involves pre-training
on balanced synthetic data where we learn robust representations across subgroups, thus ensuring,
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Figure 1: Saliency maps produced when predicting the attribute Smiling obtained using RISE (Pet-
siuk et al., 2018). The model for (a) was trained using ASB (Ramaswamy et al., 2021), (b) was
trained with USB (Mondal et al., 2023), whereas (c) was trained with our FFR approach. We find
that our method ignores background features and, thus, can make better use of synthetic data to
mitigate spurious behavior.

PD(Y |B) = PD(Y ). In the second step, FFR fine-tunes the model on real data using ERM or
common loss based bias mitigation methods (Hong & Yang, 2021; Kim et al., 2019; Ryu et al.,
2017; Tartaglione et al., 2021; Sagawa et al., 2020a). By separating the two data sources (i.e. Real
and Synthetic) into two different training steps, FFR avoids the issue of bias that might arise from
training on these two sources of data together due to distributional differences between real and
synthetic data (e.g. generative model artifacts (Corvi et al., 2023)). Effectively, the synthetic data
acts as a source of unbiased representations for each subgroup, leading to improved performance
when training with the real data using ERM or loss-based bias mitigation methods in the second
step. As shown in Figure 1(c), this enables FFR to learn more relevant features rather than focusing
on spurious background features.

To evaluate our approach, we expand on the experimental frameworks used in prior work which are
limited to one bias rate per dataset (Sagawa et al., 2020b; Qraitem et al., 2023; Joshi et al., 2023).
Instead, we conduct systemic analysis over three datasets, CelebA HQ (Lee et al., 2020), UTK-Face
(Zhang et al., 2017), and SpuCO Animals (Joshi et al., 2023), and a range of bias rates. We find our
approach is especially beneficial for datasets with high levels of bias.

Our contributions are summarized below:

• We introduce a simple, yet effective, two-step training pipeline (FFR) that uses synthetic data to
alleviate the issue of spurious correlations (Bias). Our pipeline, unlike prior work, avoids the issue
of bias to distributional differences between real-synthetic data (e.g. generative model artifacts)
and thus is more effective at mitigating bias.

• We provide a theoretical analysis on how augmentation with synthetic data results in an unex-
pected bias toward synthetic artifacts.

• Comprehensive experiments over three datasets (UTK-face, CelebA HQ, and SpuCO Animals)
and four bias strengths per dataset validate our method’s effectiveness. Indeed, FFR improves
performance over state-of-the-art by 7-13% in high-bias settings.

2 RELATED WORK

Mitigating Bias with Synthetic Data. As noted in the Introduction, there is some limited work on
using synthetic data augmentation for addressing issues stemming from imbalanced training data.
This includes Uniform Synthetic Balancing (USB) (Wang et al., 2020b; Mondal et al., 2023), which
can be used to balance underrepresented subgroups, where subgroups are the intersection of classes
Y and bias groups B. This, in turn, effectively ensures that Y is statistically independent from B,
i.e., PD̄(Y |B) = PD̄(Y ) where D̄ is the combined dataset of real and synthetic data. Additive Syn-
thetic Balancing (ASB) (Ramaswamy et al., 2021) augments a biased real dataset with a balanced
synthetic dataset. In our work, we show how both approaches (USB and ASB) result in models
that are biased toward (B,G) where G = {Real, Synthetic}, i.e., the variable that differentiates
between real and synthetic data. We could attempt to mitigate this issue by combining USB and
ASB with loss-based bias mitigation methods (e.g., (Hong & Yang, 2021; Kim et al., 2019; Ryu
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et al., 2017; Tartaglione et al., 2021; Sagawa et al., 2020a)). However, in order to account for the
new source of bias from (B,G) where G = {Real, Synthetic}, this approach doubles the number
of bias groups (|(B,G)| = |B||G| = 2|B|) which increases the optimization difficulty, reducing
performance. Instead, our two-stage training pipeline addresses the issue of new biases being intro-
duced from using synthetic data by training both real and generated data separately.

Non-Generative Mitigation Methods. Also related to our are methods that use architecture
changes and/or alters the training procedures to mitigate dataset bias (Ryu et al., 2017; Kim et al.,
2019; Wang et al., 2020c; Hong & Yang, 2021; Tartaglione et al., 2021; Sagawa et al., 2020b). For
example, Sagawa et al. (2020b) presents GroupDRO (Distributionally Robust Neural Networks for
Group Shifts), a regularization procedure that adapts the model optimization according to the worst-
performing group. Our work complements these efforts by introducing a novel pipeline for using
synthetic data that further boosts the performance of these methods especially in high bias settings.

Uncovering Spurious Correlations. In our work, we are interested mitigating spurious correla-
tions; a spurious correlation results from underrepresenting a certain group of samples (e.g. samples
with the color red) within a certain class (e.g. planes) in the training set. This leads the model to
learn the false relationship between the class and the over-represented group. Prior work has docu-
mented several occurrences of this bias. For example, Singh et al. (2020); Hendrycks et al. (2021);
Xiao et al. (2020); Li et al. (2020) showed that state-of-the-art object recognition models are biased
toward backgrounds or textures associated with the object class. Agrawal et al. (2018); Clark et al.
(2019) showed similar spurious correlations in VQA. Most recently, Meister et al. (2022) demon-
strates how biases toward gender are ubiquitous in the COCO and OpenImages datasets. As the
authors demonstrate, these artifacts vary from low-level information (e.g., the mean value of the
color channels) to higher level (e.g., pose and location of people).

3 SYNTHETIC DATA FOR ROBUST REPRESENTATIONS AGAINST BIAS

Visual classification models can often rely on ”spurious” correlations encoded in the training set that
don’t reflect their real-world distributions. More concretely, given a dataset of images X , classes Y ,
and bias signal B (e.g., Gender: Male/Female), a biased model relies on the signal in X that infer B
to make predictions Ŷ . This is often because the distribution PD(Y |B) ̸= PD(Y ), i.e., the training
set encodes some correlation between the classes and the biases. For example, given a particular
class y (e.g., Smiling), a certain bias group b (e.g., Male) might be over-represented when compared
to others. Therefore, a model might mistakenly predict the class of an image (e.g., Not Smiling) as
the wrong class (e.g., Smiling) because the signal b (Male) is present in the image (e.g., Man is Not
Smiling).

To address this issue, our work explores the usage of synthetic data from generative models. In
Section 3.1, we explore how augmenting the real dataset with synthetic data results in a bias towards
distributional differences between synthetic and real data. In Section 3.2, we introduce From Fake
to Real (FFR); novel two-stage pipeline that addresses this issue. Finally, in Section 3.3, we describe
our systematic experimental framework and note how it expands on prior work.

3.1 MOTIVATION

In this section, we explore a critical problem with the class of solutions that mitigates dataset bias
by augmenting biased datasets with synthetic data, e.g., Additive Synthetic Balancing (ASB) (Ra-
maswamy et al., 2021) and Uniform Synthetic Balancing (USB) (Mondal et al., 2023). These ap-
proaches don’t consider the fact that the distribution of synthetic data is not the same as the dis-
tribution of real data. Indeed, while research on generative models has made significant progress
in producing ever more realistic images, especially with the recent advent of diffusion models (Ho
et al., 2020; Saharia et al., 2022), there might still be some distributional differences between the
real and synthetic data. For example, Corvi et al. (2023) demonstrates how state-of-the-art diffu-
sion models leave fingerprints in the generated images that could be used by recognition models to
differentiate between real and synthetic data.

Assuming real and synthetic data are drawn from different distributions, and we are given a biased
dataset D, i.e. PD(Y |B) ̸= PD(Y ), we argue that it is impossible to guarantee that we can create
D̄ where Y is not biased toward the pair (B,G). Formally:
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Figure 2: An overview of From Fake to Real (FFR) that incorporates synthetic data to mitigate
bias. In Stage 1, we pretrain on a balanced synthetic dataset where we learn robust representations
across subgroups. In Stage 2, we fine-tune the model on real data using ERM or common non-data-
based bias mitigation methods. By training on real and synthetic data separately, we avoid the issue
of bias between the two data sources. Moreover, synthetic data act as an initial source of robust
representation that improves the performance of the fine-tuning method in the second step. Refer to
Section 3.2 for further discussion.

Theorem 1. Assume we are given dataset D where PD(Y |B) ̸= P (B) such that Y are target labels
and B are biased group labels (i.e. dataset is biased). Assume D̄ represent all possible versions of
the dataset augmented with synthetic data such that G = {Real, Synthetic}, then for every D̄ ∈ D̄,
PD̄(Y |B,G) ̸= PD̄(Y ) where G are the synthetic/real labels.

Refer to Appendix C for proof. Indeed, this Theorem guarantees that it is impossible to create
an augmented version of the dataset D, i.e. D̄ without D̄ exhibiting some bias toward (B,G).
Therefore, this implies that both methods from prior work, ASB (Ramaswamy et al., 2021) and USB
(Wang et al., 2020b; Mondal et al., 2023), may rely on signals from (B,G) to make predictions.

To gain some intuition, consider the following illustrative example for Uniform Synthetic Balancing
(USB): in an attempt to mitigate the dataset bias of class Landbirds being mostly on Land and
Waterbirds being most Water, a significant number of synthetic samples of Landbirds on Water
and Waterbirds on Land are added to the dataset. While this means that there is an equal number
of Landbirds and Waterbirds on Land and on Water in the combined dataset, i.e., PD̄(Y |B) =
PD̄(Y ), this also means that there are significantly more Synthetic Landbirds on Water than there
are Synthetic Landbirds on Land. Assuming that the model could differentiate between real and
synthetic images, then it is likely advantageous to learn the signal pair (Water, Synthetic) in order to
predict the class Landbird while the signal (Water, real) predicts the class Waterbirds.

3.2 FROM FAKE TO REAL (FFR): A TWO-STAGE TRAINING PIPELINE

Our approach, From Fake to Real (FFR), aims to address the issue that arises in prior work where
models learn a bias between the target labels Y and the pair labels (B,G) as outlined in Section 3.1.
The key to our approach is the separation of training on the two data sources, real and synthetic, into
two different stages. The model is exposed to one data source at a time, which effectively prevents
the use of signals from the pair (B,G) to make predictions as neither appear in the same training
step. We provide additional details on our two training stages below:

Step 1: FFR pretrains a model M on a balanced synthetic dataset Dsyn where PDsyn
(Y |B) =

PDsyn(Y ). To obtain this distribution, we simply deploy a generative model to generate the same
number of synthetic data per bias subgroup. This step enables the model M to learn robust initial
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representations for each subgroup. Refer to Figure 2 (Stage 1) for an overview of this step. Denote
the resulting model from this step as M̄ .

Step 2: While Step 1 learns valuable unbiased representations, there are still a distribution shift
going from real to synthetic datasets (Sariyildiz et al., 2023). Therefore, we fine-tune the model
from Step 1, i.e. M̄ on the real dataset to better fit to its distribution. We find that even a simple
empirical-risk minimization fine-tuning using the model M̄ as an initialization is sufficient to boost
performance. However, the real dataset’s distribution D is biased, i.e., PD(Y |B) = PD(Y ). Thus,
some of the benefit of our first stage pretraining is undone as the model might simply relearn the
bias. To address this, we combine our two stage training pipeline with loss-based bias mitigation
methods (e.g., (Hong & Yang, 2021; Kim et al., 2019; Ryu et al., 2017; Tartaglione et al., 2021;
Sagawa et al., 2020a)). Refer to Figure 2 (Stage 2) for an overview of this step. As we note in our
experiments, regardless of the method used in Step 2, we note a significant performance boost using
Step 1’s model M̄ for initialization.

In a nutshell, note how our method is a flexible framework that rethinks the use of synthetic data
for bias mitigation. Indeed, our framework deploys synthetic data to learn initial unbiased represen-
tations to improve the performance of training on real data regardless of the method used to train
on real data. Therefore, it is generalizable to any bias mitigation method and easy to implement
no matter the model architecture. Finally, our framework effectively avoids the issue of bias to
distributional differences between real and synthetic data, unlike prior work methods.

3.3 SYSTEMIC ANALYSIS OF THE EFFECTIVENESS OF SYNTHETIC DATA IN BIAS
MITIGATION

We hypothesize our method is most effective in high-bias settings where the majority subgroups
constitute most of the class’s data. In these settings, we expect loss-based bias mitigation methods
to struggle in alleviating the bias using the very few samples in the minority subgroups. To verify
this claim, we expand on the experimental analysis of prior work bias mitigation efforts (Sagawa
et al., 2020b; Qraitem et al., 2023; Joshi et al., 2023) by considering a wider range of bias rates
per dataset. Indeed, we create four splits of each dataset where each split reflects a bias that ranges
from moderate to severe. We achieve this by simply dropping samples from each dataset until the
majority groups in each class represent x% of the class where x denotes the ”bias level”.

4 EXPERIMENTS

Datasets We use three datasets 1) CelebA HQ (Lee et al., 2020) where we use the gender attribute as
the bias variable and smiling as the target attribute 2) UTK-Face dataset (Zhang et al., 2017) where
we use age as the bias attribute and gender as the target attribute. 3) we use the recently introduced
SpuCO Animals dataset (Joshi et al., 2023) specifically designed to test spurious correlations where
the bias attributes are {Indoors, Outdoors, Land, Water} and target attributes are {Small dogs, Big
Dogs, Landbirds, Waterbirds }. Moreover, for each dataset, we train on 4 different splits where we
vary the bias of the majority groups between {95%, 97%, 99%, 99.9%}.

Metrics Following Sagawa et al. (2020b), we use Worst Accuracy (WA) to measure the models’
spurious behavior. This metric returns the accuracy of the worst performing subgroup where the
subgroup is defined as the intersection of class and bias group. In addition, we use balanced accuracy
(BA) which averages the accuracies of all subgroups (Qraitem et al., 2023). BA reflects the overall
performance of the model while not being biased by the majority subgroups.

Implementation Details We train Resnet50 (He et al., 2016) models on every datasets. For opti-
mization, we use ADAM optimizer (Kingma & Ba, 2015) where we grid search the learning rate
over the validation set. We use default values for the other parameters. We do not use any learning
rate scheduler or augmentations. Refer to the Appendix A for the exact choices of each method. For
generation, we use Stable Diffusion V1.4 (Rombach et al., 2022) where we use the prompt template
A photo of {bias} {class}.

Baselines We report the performance of training with Empirical Risk Minimization (ERM) and
several popular state-of-the-art bias mitigation methods. Denote the set of these methods as X , we
report the performance of four variations of each x ∈ X:
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(a) ERM (b) Group DRO (c) DFR

Figure 3: Comparison of performance averaged over three datasets: UTK-Face (Zhang et al., 2017),
CelebA HQ (Lee et al., 2020), and SpuCO Animals (Joshi et al., 2023) between the effect of three
different modes of training: (None) no synthetic data is used, (USB) synthetic data is used to uni-
formly balance the distribution (extension of prior work on imbalanced classification (Mondal et al.,
2023)), (ASB) balanced synthetic data is added to the real dataset (ASB) (Ramaswamy et al., 2021)
and (FFR) our method where pretrain on balanced synthetic data and fine tune on real data on three
different training algorithms: ERM, Group DRO (Sagawa et al., 2020b) and DFR Kirichenko et al.
(2023). Refer to Section 4.1 for discussion.

• No synthetic data is used (None)
• Synthetic data is used to uniformly balance the distribution (USB)
• A balanced synthetic dataset is added to the real dataset (ASB)
• Our method (FFR) where we first pre-train on balanced synthetic data using ERM and then

fine-tune on each x ∈ X

With respect to the bias mitigation methods, we report the performance of Group DRO (Sagawa
et al., 2020b), Resampling, and Deep Feature Reweighting (DFR) (Kirichenko et al., 2023). Group
DRO is an optimization technique where the contribution of each subgroup loss is weighted by
their performance. Resampling oversamples minority subgroups such that each subgroup is equally
represented per batch. DFR trains a model with ERM and then trains a linear layer over the feature
space on a balanced validation set.

4.1 SYSTEMIC ANALYSIS OF SYNTHETIC DATA USAGE ACROSS SEVERAL BIAS RATIOS

To gain a holistic understanding of the methods’ performance, we average our results over the three
datasets and report them in Figure 3. Due to space constraints, we provide the results of Resampling
in the Appendix. First, note that FFR overall is better than ASB and USB at improving perfor-
mance, regardless of the method used to train the model (i.e. ERM, DFR, GroupDRO), especially at
high bias settings. This is evident from the large gap in worst accuracy (top row) on bias settings
{99%, 99.9%}. This is likely because, as we discussed in 3.2, our method is more effective at fixing
the issue of bias between real and synthetic data.

For individual methods we find FFR obtains the highest gains using ERM. This is likely because,
as we discussed in 3.2, our method effectively fixes the issue of bias between real and synthetic
data without the intervention of any loss-based bias mitigation methods. Moreover, even though our
method, in its second step, fine-tunes the model on the real biased distribution, the model doesn’t
fully relearn the bias and is able to outperform USB and ASB. This is likely because the robust
representations from the first step make it easier and, thus, more advantageous to learn generalizable
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Method Synthetic
Data Usage

Utk-Face CelebA HQ SpuCo Animals
WA BA WA BA WA BA

(a) ERM

None 5.9 51.3 37.6 57.3 3.7 57.6
USB 33.0 56.8 51.3 72.2 54.7 78.9
ASB 23.2 60.1 57.3 78.0 39.9 73.4
FFR (ours) 42.9 65.3 77.1 86.8 74.9 84.5

(b) Resampling
None 29.9 56.4 44.4 63.9 44.0 75.3
USB 31.2 58.5 57.4 70.0 69.9 80.0
ASB 31.1 59.2 54.0 73.6 62.1 80.2
FFR (ours) 49.3 69.0 86.4 89.7 74.5 84.4

(c) GroupDRO None 23.3 55.1 55.2 80.1 8.4 53.0
USB 34.6 59.7 66.2 83.7 48.5 74.3

(Sagawa et al., 2020b) ASB 42.3 62.2 60.0 81.4 51.4 79.1
FFR (ours) 47.2 66.4 83.3 89.3 75.1 84.3

(d) DFR None 35.2 59.4 57.6 61.4 53.7 75.0
USB 45.8 56.5 64.5 76.2 69.8 84.9

(Kirichenko et al., 2023) ASB 46.8 59.2 72.3 80.8 67.7 84.5
FFR (ours) 55.3 69.2 85.1 88.3 75.4 85.3

Table 1: Comparison over three datasets: UTK-Face (Zhang et al., 2017), CelebA HQ (Lee et al.,
2020), and SpuCO Animals (Joshi et al., 2023) between the impact of four synthetic data augmenta-
tion methods: no synthetic data is used, synthetic data is used to uniformly balance the distribution
(USB) ((Mondal et al., 2023)), balanced synthetic data is added to the real dataset (ASB) (Ra-
maswamy et al., 2021) and FFR (ours) (ours) where the model is pretrained on balanced synthtetic
data. We study the effect of each method on the performance of ERM and several bias mitigation
methods (Group DRO, Resampling, and DFR). Bolded Numbers reflect best performance across
methods. Underlined numbers reflects the best performance per method. Note how the best perfor-
mance is achieved when our method (FFR) is used. Refer to Section 4.2 for discussion.

features than relearning the bias. Nevertheless, note that prior work synthetic augmentation meth-
ods (USB and ASB) also manage to improve the performance of ERM over each bias ratio. This
indicates that, indeed, synthetic data augmentation is able to alleviate bias as noted in (Ramaswamy
et al., 2021). Overall, note that these improvements (From USB, ASB and our method FFR) are
most significant in a high bias ratio, namely, {99%, 99.9%} where augmenting with real data is
really helpful for learning good generalizable representations.

We now shift our focus to Figure 3(b) and (c), which use GroupDRO (Sagawa et al., 2020b) and
DFR (Kirichenko et al., 2023), respectively. We find our method (FFR) obtains best performance,
especially in high bias settings. Note, however, how the use of synthetic data through either USB,
ASB, or FFR doesn’t meaningfully impact the performance of these methods over moderate amounts
of bias, e.g., {95%, 97%}. This means that at these bias ratios, DFR and GroupDRO are robust
enough to alleviate the bias without the intervention of synthetic data. Thus, this suggest that the
high bias setting is where synthetic data is most helpful.

4.2 A CLOSER LOOK INTO A CHALLENGING HIGH-BIAS SETTINGS

In Table 1, we report performance when majority subgroups represent 99.9% of their respective
class’s data. We make three major observations from this data. First, methods that use FFR obtain
the best performance overall, namely combining FFR with Resampling on CelebA HQ (Table 1(c))
and combining FFR with DFR for UTK-Face and SpuCo Animals (Table 1(d). Overall, note that
our method improves worst group accuracy by 7 − 14% when compared to the next best synthetic
data augmentation method for each dataset. In addition, each individual method second stage miti-
gation method (ERM, Resampling, GroupDRO, and DFR) is improved by first using our first stage
pretraining method. This demonstrates that our FFR method generalizes across datasets and bias
mitigation methods.
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(a) CelebA HQ (Lee et al., 2020) (b) UTK-Face (Zhang et al., 2017)

Figure 4: Comparison over (a) CelebA HQ and (b) UTK-Face between the Synthetic Augmentation
nethods: Uniform Synthetic Balancing (USB) (Mondal et al., 2023), Additive Synthetic Balancing
(ASB) (Ramaswamy et al., 2021) and ours (FFR) where synthetic data is scaled up to 6 times the
size of each dataset. Note how our method consistently performs better than USB and ASB even as
data is scaled. Refer to Section 4.3 for further discussion.

As we discuss in the Introduction, one could improve USB and ASB by combining them with bias
mitigation methods (i.e. GroupDRO, Resampling, and DFR). As shown in Table 1, they do obtain
a performance boost but perform worse than our FFR method. This is likely due, in part, to the
fact FFR automatically mitigates and resolves the issue of bias to distributional differences (e.g.
synthetic artifacts) via our two stage training process. In addition, combining USB and ASB is more
challenging as both the bias and the data source (synthetic vs. real) must be taken into account for
methods like GroupDRO and Resampling, resulting in double the number of bias subgroups.

4.3 EFFECT OF SCALING SYNTHETIC DATA ON PERFORMANCE

In Section 4.1 and Section 4.2, we fixed the size of synthetic data used during training according
to the constraint of Unfiorm Synthetic Balancing (USB). In this Section, we relax this constraint;
we study the effect of scaling synthetic data on prior work methods: Uniform Synthetic Balancing
(USB), Additive Synthetic Balancing (ASB), and our method From Fake to Real (FFR), each trained
with ERM. We perform this analysis on CelebA HQ (Lee et al., 2020) and UTK-Face (Zhang et al.,
2017) where we scale synthetic data up to 6 times the size of each dataset. Figure 5 reports our re-
sults, where we find our method (FFR) continues to achieve the best performance over both datasets
even as we scale the data. This is likely because our method effectively addresses the issue of bias
to distributional differences between real and synthetic data. Moreover, we report that our method
performance plateaus at an earlier than either USB or ASB. Thus, this shows our method is more
data efficient while also achieving the best results.

4.4 QUALITATIVE ANALYSIS

In this Section, we conduct a qualitative comparison between ERM without any synethic data, Ad-
ditive Synthetic Balancing (ASB), Uniform Synthetic Balancing (USB), and our method From Fake
to Real (FFR) on the SpuCO Animals dataset (Joshi et al., 2023) with bias rate 99.9%. Note that the
dataset contains four classes: Big Dogs, Small Dogs, Landbirds, and Waterbirds. In this section, we
focus on the minority subgroups ”Big Dogs Indoors” and ”Small Dogs outdoors” and sample a real
and synthetic image from each subgroup. For each image and model, we produce a saliency map
using RISE (Petsiuk et al., 2018). Figure 5 reports our results, where we find FFR is the only method
that is able to focus on the dog features while disregarding features from the background in both the
synthetic and real images. For example, in the second row, both ASB and USB pay attention to the
man’s feet as well as the ground floor and what seems the bottom of a couch to make predictions.
Whereas our method (FFR) only focuses on the dog features. More interestingly, note how for the
synthetic images in rows 1 and 3, prior work methods (ASB and USB) use generative artifacts (e.g.
three ”toes” for the dog rather than four) to make predictions whereas our method (FFR) ignores
these features. This helps validate our hypothesis that our method is effective at resolving the issue
of bias toward the distributional differences between real and synthetic data.
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Figure 5: Saliency maps produced when predicting Big Dogs (top two rows) and Small dogs (bottom
two rows) obtained using RISE (Petsiuk et al., 2018) using ERM, ASB (Ramaswamy et al., 2021),
USB (Wang et al., 2020b; Mondal et al., 2023) and our method FFR to augment the dataset with
synthetic data. The real images are from the dataset SpuCO Animals Joshi et al. (2023) and the
synthetic data is from Stable Diffusion v1.4 Rombach et al. (2022). Note how our method (FFR) is
the only method that is able to localize the relevant features (dog features) and not get distracted by
spurious background features. Refer to Section 4.4 for discussion.

5 CONCLUSION

In this work, we investigated the use of synthetic data augmentation for bias mitigation. We provided
a theoretical argument that demonstrates how methods that augment biased datasets with synthetic
data do not fully mitigate the original dataset bias (Ramaswamy et al., 2021). In fact, they result in
a new bias that is a function of the original data bias as well as synthetic data artifacts. To address
these issues, we rethought the way biased data is used for bias mitigation by developing a two-step
pipeline that we called From Fake to Real (FFR). The pipeline separates training on synthetic data
from training on real data, thus, avoiding the bias toward synthetic artifacts. As a result, synthetic
data is used as an initial source of robust representations that improve the performance of training
on biased real data regardless of the method used (e.g. ERM, GroupDRO (Sagawa et al., 2020b),
DFR (Kirichenko et al., 2023), etc). Our systemic analysis over three datasets and four bias settings
per dataset demonstrated how our method is more effective at using synthetic data than prior work
methods and thus undoing the bias. Indeed, FFR outperforms prior work state-of-the-art by 7−14%
on high bias settings. We then demonstrated how our method is more data efficient; it requires less
synthetic data to achieve the best performance. Finally, we provided an extensive qualitative analysis
using saliency maps where we demonstrated how our method is able to disregard spurious features,
unlike other synthetic augmentation methods.

Limitations and Future Work As discussed in our work, we use large pre-trained text-to-image
models to generate synthetic data. While the property of controllable generation using text allows
us to generate data that undoes the bias of the real dataset, the generative model might nevertheless
inject some biases into the generated data that are not accounted for by the text used to generate. For
example, Stable Diffusion (Rombach et al., 2022) used in this work has been demonstrated to exhibit
several biases (Luccioni et al., 2023; Bianchi et al., 2023). Therefore, future research that focuses on
training fairer generative models would alleviate some of these issues. Moreover, even though we
make sure to use the latest datasets for benchmarking bias mitigation methods, we note that these
datasets are nevertheless smaller than modern datasets used to train large-scale recognition systems.
Therefore, future work could benefit from collecting larger datasets to evaluate the robustness of
bias mitigation methods.

9
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6 CODE OF ETHICS STATEMENT

Our work addresses a critical problem with recognition models: spurious predictive behavior. We
measure this behavior by calculating the accuracy of dataset’s subgroups. While this metric aligns
with our goal of preventing spurious behavior, we emphasize that the metric is not exhaustive of
other fairness concerns. We refer the reader to (Kleinberg et al., 2017) for a broader discussion of
fairness metrics. Additionally, though our suggested approach seeks to learn resilient representations
for minority subgroups within a given dataset, we recognize the potential for these representations
to be inappropriately employed in subsequent applications (e.g. surveillance).
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A HYPERPARAMETERS

For experiments in Sections 4.1 and 4.2, we provide the learning rates used to train our models for
each dataset in Table 2 following a grid search over the validation set. Note that for weight decay,
we use 1e − 05 for UTK-Face, CelebA-HQ and 1e − 03 for SpuCO Animals following Joshi et al.
(2023). For the experiment in Section 4.3, we use the same learning rate from Table 2 across the
different data scales.

B SYNTHETIC DATA AUGMENTATION EFFECT ON RESAMPLING

In Section 4.1, we omit the results of Resampling combined with Synthetic Data Augmentation
methods due to space constraints. Observe the results here in Figure 6. Similar to the discussion
with respect to GroupDro and DFR in Section 4.1, we note that our method (FFR) is better than Uni-
form Synthetic Balancing (USB) and Additive Synthetic Balancing (ASB) at improving resampling
performance on high bias settings, i.e., {97%, 99%, 99.9%}. On moderate bias settings, i.e., {95%},
we note that Resampling without synthetic data is sufficient to achieve the best performance.

C PROOFS

We first prove the following helpful Lemma:
Lemma 1. Assume that PD(Y |B) = PD(Y ), then for any y, y′ ∈ Y and b ∈ B, we get PD(B =
b|Y = y) = PD(B = b|Y = y′)

Proof. Given any b ∈ B:

PD(B = b|Y = y) =
PD(Y = y|B = b)PD(B = b)

PD(Y = y)
(1)

=
PD(Y = y)PD(B)

PD(Y = y)
(2)

= PD(B = b) (3)

Note that (2) simply follows by definition of PD(Y |B) = PD(Y ). Similarly:

PD(B = b|Y = y′) =
PD(Y = y′|B = b)PD(B = b)

PD(Y = y′)
=

PD(Y = y′)P (B)

PD(Y = y′)
= PD(B = b) (4)

Thus,

PD(B = b|Y = y) = PD(B = b) = PD(B = b|Y = y′) (5)
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Figure 6: Comparison of performance averaged over three datasets: UTK-Face (Zhang et al., 2017),
CelebA HQ (Lee et al., 2020), and SpuCO Animals (Joshi et al., 2023) between the effect of three
different modes of training: (None) no synthetic data is used, (USB) synthetic data is used to uni-
formly balance the distribution (extension of prior work on imbalanced classification (Mondal et al.,
2023)), (ASB) balanced synthetic data is added to the real dataset (ASB) (Ramaswamy et al., 2021)
and (FFR) our method where pretrain on balanced synthetic data and fine tune on real data on Re-
sampling. Refer to Appendix B for discussion

Now, we proceed to prove Theorem 1:

Theorem 1. Assume we are given dataset D where PD(Y |B) ̸= P (B) such that Y are target labels
and B are biased group labels (i.e. dataset is biased). Assume D̄ represent all possible versions of
the dataset augmented with synthetic data such that G = {Real, Synthetic}, then for every D̄ ∈ D̄,
PD̄(Y |B,G) ̸= PD̄(Y ) where G are the synthetic/real labels.

Proof. We will prove this by contradiction. Assume that PD̄(Y |B,G) = PD̄(Y ). By Definition of
the biased dataset, there exists b, b′ ∈ B and y, y′ ∈ Y such that

1. PD(B = b|Y = y) > PD(B = b′|Y = y)

2. PD(B = b′|Y = y′) > PD(B = b|Y = y′)

Now, assume CountD(Y = y,B = b,G = g) is an operator that returns the number of sam-
ples given class y, bias b and real/synthetic label g in dataset D. Moreover, denote the following
variables:

1. M = CountD̄(B = b, Y = y,G = real)

2. N = CountD̄(B = b′, Y = y,G = real)

3. M ′ = CountD̄(B = b, Y = y′, G = real)

4. N ′ = CountD̄(B = b′, Y = y′, G = real)

Then it follows that given any D̄ ∈ D̄, then:

1. M > N

2. N ′ > M ′

Now, observe:
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PD̄(B = b,G = real|Y = y) =
M∑

b CountD̄(B = b, Y = y,G = Real)
+

∑
b CountD̄(B = b, Y = y,G = Synthetic)

(6)

>
N∑

b CountD̄(B = b, Y = y,G = Real)
+

∑
b CountD̄(B = b, Y = y,G = Synthetic)

(7)

= PD̄(B = b′, G = real|Y = y) (8)

Similarly:

PD̄(B = b′, G = real|Y = y′) =
N ′∑

b CountD̄(B = b, Y = y′, G = Real)
+
∑

b CountD̄(B = b, Y = y′, G = Synthetic)

(9)

>
M ′∑

b CountD̄(B = b, Y = y′, G = Real)
+
∑

b CountD̄(B = b, Y = y′, G = Synthetic)

(10)

= PD̄(B = b,G = real|Y = y′) (11)

In order to satisfy the main assumption in our proof, i.e., PD̄(Y |B,G) = PD̄(Y ), then following
the contrapositive of Lemma 1:

PD̄(B = b′, G = real|Y = y′) = PD̄(B = b′, G = real|Y = y) (12)

PD̄(B = b,G = real|Y = y′) = PD̄(B = b,G = real|Y = y) (13)

To that end, we can change the term:
∑

b CountD̄(B = b, Y = y,G = Synthetic) by adding more
synthetic data to the dataset. We can’t change

∑
b CountD̄(B = b, Y = y,G = Real) because we

don’t have access to more real data.

Therefore, according to the results in (8) and (11), adding more synthetic data to achieve (12) implies
that:

PD̄(B = b,G = real|Y = y) > PD̄(B = b,G = real|Y = y′) (14)

which breaks (13). Similarly, achieving (13) by adding more synthetic data implies that:

PD̄(B = b′, G = real|Y = y′) > PD̄(B = b′, G = real|Y = y) (15)

which breaks (12). Thus, arriving to a contradiction.
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95% 97% 99% 99.9%

None
ERM 1.0e-03 1.0e-03 1.0e-04 1.0e-02
G-DRO 1.0e-03 1.0e-03 1.0e-03 1.0e-04
Resampling 1.0e-02 1.0e-02 1.0e-03 1.0e-02

USB
ERM 1.0e-03 1.0e-02 1.0e-03 1.0e-03
G-DRO 1.0e-03 1.0e-02 1.0e-03 1.0e-03
Resampling 1.0e-03 1.0e-02 1.0e-07 1.0e-07

ASB
ERM 1.0e-03 1.0e-03 1.0e-03 1.0e-02
G-DRO 1.0e-03 1.0e-02 1.0e-03 1.0e-03
Resampling 1.0e-02 1.0e-07 1.0e-07 1.0e-07

FFR

ERM (Pretrain) 1.0e-05 1.0e-04 1.0e-04 1.0e-04
ERM 1.0e-07 1.0e-07 1.0e-07 1.0e-07
G-DRO 1.0e-03 1.0e-03 1.0e-07 1.0e-07
Resampling 1.0e-07 1.0e-06 1.0e-07 1.0e-07

(a) CelebA HQ

95% 97% 99% 99.9%

None
ERM 1.0e-03 1.0e-03 1.0e-03 1.0e-03
G-DRO 1.0e-04 1.0e-04 1.0e-04 1.0e-03
Resampling 1.0e-02 1.0e-02 1.0e-02 1.0e-02

USB
ERM 1.0e-04 1.0e-02 1.0e-02 1.0e-02
G-DRO 1.0e-05 1.0e-04 1.0e-02 1.0e-02
Resampling 1.0e-03 1.0e-02 1.0e-02 1.0e-02

ASB
ERM 1.0e-03 1.0e-04 1.0e-02 1.0e-02
G-DRO 1.0e-04 1.0e-04 1.0e-03 1.0e-02
Resampling 1.0e-06 1.0e-06 1.0e-06 1.0e-02

FFR

ERM (Pretrain) 1.0e-04 1.0e-04 1.0e-04 1.0e-04
ERM 1.0e-05 1.0e-06 1.0e-06 1.0e-06
G-DRO 1.0e-04 1.0e-06 1.0e-06 1.0e-06
Resampling 1.0e-05 1.0e-06 1.0e-06 1.0e-06

(b) UTK-Face

95% 97% 99% 99.9%

None
ERM 1.0e-05 1.0e-05 1.0e-04 1.0e-04
G-DRO 1.0e-05 1.0e-05 1.0e-04 1.0e-04
Resampling 1.0e-05 1.0e-05 1.0e-04 1.0e-04

USB
ERM 1.0e-05 1.0e-07 1.0e-07 1.0e-07
G-DRO 1.0e-07 1.0e-07 1.0e-07 1.0e-07
Resampling 1.0e-07 1.0e-07 1.0e-07 1.0e-07

ASB
ERM 1.0e-06 1.0e-05 1.0e-05 1.0e-07
G-DRO 1.0e-07 1.0e-06 1.0e-07 1.0e-07
Resampling 1.0e-07 1.0e-07 1.0e-07 1.0e-07

FFR

ERM (Pretrain) 1.0e-06 1.0e-05 1.0e-05 1.0e-05
ERM 1.0e-07 1.0e-07 1.0e-07 1.0e-07
G-DRO 1.0e-05 1.0e-07 1.0e-07 1.0e-07
Resampling 1.0e-06 1.0e-07 1.0e-07 1.0e-07

(c) SpuCO Animals

Table 2: Learning Rates forexperiments in Sections 4.1 and 4.2,. Refer to Appendix A for further
details.
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