
Integrated Task and Motion Planning for Real-World Cooking Tasks

Jeremy Siburian∗1, Cristian C. Beltran-Hernandez∗2, and Masashi Hamaya2

Abstract— To fully realize robots in household environments,
robots would need to be able to plan and execute a variety
of tasks autonomously. However, task and motion planning
for multi-step manipulation tasks is still an open challenge
in robotics, particularly for long-horizon tasks in dynamic
environments. This work proposes an integrated task and
motion planning (TAMP) robotic framework for real-world
cooking tasks using a dual-arm robotic system. Our framework
integrates PDDLStream, an existing TAMP framework, with
the MoveIt Task Constructor, a multi-stage manipulation plan-
ner, to enhance multi-step motion planning for interdependent
tasks. We augment our framework with various cooking-related
skills, such as object fixturing, force-based tip detection, and
slicing using Reinforcement Learning (RL). As a motivating
case study, we tackle the long-horizon task of preparing a simple
cucumber salad, consisting of slicing and serving it on a plate.
We demonstrate our framework both in simulation and real
robot demonstration.

I. INTRODUCTION

In order to realize general-purpose robots that can work
collaboratively with humans, robots need to be able to under-
stand instructions via natural language, then autonomously
plan actions and execute motions based on these instructions.
Consider a long-horizon task of preparing a meal or conduct-
ing a chemistry experiment, which may consist of multiple
subtasks, such as cutting, stirring, or pouring [1], [2]. In
such cases, the robot would need to simultaneously and
continuously plan for a high-level sequence of actions and
the corresponding low-level motions that must be executed
to achieve a given goal. In addition, augmenting robots with
the ability to understand linguistic instructions is essential
for the daily user to intuitively work together with robots.

Our ultimate research goal is to construct a robotic sys-
tem that can autonomously plan and execute long-horizon
tasks based on natural language instructions, particularly
for cooking tasks in a dynamic kitchen environment. To
this end, we divide our problem into two parts: natural
language translation to symbolic planning and task and
motion planning. In a previous study, we addressed the first
part by proposing the Vision-Language Interpreter (ViLaIn)
[3] framework, which generates a problem description (PD)
from linguistic instruction and scene observation. For a given
planning problem, the generated PDs define the objects of

*Equal contribution.
1Jeremy Siburian is with Waseda University, Tokyo 169-8555, Japan.

Work done during internship at OMRON SINIC X Corporation.
jeremydasa@akane.waseda.jp

2Cristian C. Beltran-Hernandez and Masashi Hamaya are with
the OMRON SINIC X Corporation, Tokyo 113-0033, Japan.
[cristian.beltran, masashi.hamaya]@sinicx.com

This work is supported by JST Moonshot R&D Grant Number JP-
MJMS2236 and JSPS KAKENHI Grant Number 21H04910.

Fig. 1: An overview of our dual-arm robotic system setup. The
dual-arm robot system places and fixtures the cucumber onto the
cutting board, slices the cucumber using a knife, and places the
slices on a plate.

interest, initial state, and desired goal state. A problem de-
scription is described using the Planning Domain Definition
Language (PDDL) [4], which can then be solved by modern
symbolic planners. This work focuses on the second part of
the problem, solving task and motion planning.

Several challenges must be addressed to connect task plan-
ning and motion planning for cooking tasks. Combined task
and motion planning, often referred to as Integrated Task and
Motion Planning (TAMP) [5], requires consideration of both
discrete and continuous parameters. For instance, discrete
tool states (equipped or unequipped) and the continuous state
of the robot joint configuration. Furthermore, as the dual
robot often manipulates tools or food items during cooking
tasks, collisions among the grasped objects, workspaces,
and other robots must be considered for safety. However,
most existing motion planners are often limited to pick-and-
place pipelines and do not consider interdependence between
subtasks, which is crucial for long-horizon manipulation.

In this study, we build upon our previous work by propos-
ing an integrated TAMP framework developed for robotic
cooking by leveraging an existing sampling-based TAMP
framework and a multi-stage motion planning framework.
To summarize, our paper has the following contributions:

• We present an integrated task and motion planning
framework for executing real-world cooking tasks. Our
framework integrates the MoveIt Task Constructor [6],
a multi-stage manipulation planner, into an existing
sampling-based TAMP solver, PDDLStream [7], as part
of its motion samplers to further enhance multi-step
motion planning for interdependent tasks.

• We demonstrate our framework in simulation and real-
robot experiments using a dual-arm robotic system as



Fig. 2: An overview of our proposed framework. The framework integrates the MoveIt Task Constructor motion planning framework into
PDDLStream as part of its motion samplers. Our framework receives a domain knowledge DK and a PDDLStream problem description
PD as initial inputs. A classical PDDL planner then solves the problem optimistically. After an optimistic task structure is found, the
planner samples for low-level action motions using the MTC-based streams. After a sequence of collision-free motion plans is found, the
framework returns a complete plan π. The found plan is then executed on a real robot with a variety of cooking-related skills.

shown in Fig. 1. Through a case study of slicing a cu-
cumber, we showcase cooking-related skills developed
for our strategy, such as force-based tip detection and
slicing using Reinforcement Learning (RL).

This paper is organized as follows: a detailed description
of our proposed framework is provided in Section II, the real-
robot experiment is described in Section III, and a summary
is provided in Section IV.

II. FRAMEWORK OVERVIEW

An overview of our proposed framework is shown in Fig.
2. As an initial input, the framework receives a domain
knowledge DK , which describes our cooking domain using
predicates P and actions A, and a problem description PD,
which represents the initial state I and desired goal state
G of a planning problem. The proposed TAMP framework
generates a high-level task plan while simultaneously plan-
ning for low-level motion actions. After a feasible plan π is
found, the plan is executed on the real robot. As a motivating
case study for our framework, we use the task of preparing a
simple cucumber salad, which consists of slicing a cucumber
and placing the slices on a plate.

A. PDDLStream Formulation
Our proposed system incorporates PDDLStream [7],

an open-source sampling-based TAMP framework. PDDL-
Stream extends PDDL [4] by introducing the concept of
streams, declarative sampling procedures that sample contin-
uous values such as robot joint configurations or candidate
grasp poses. As a result, PDDLStream can perform planning
over discrete and continuous parameters.

A PDDLStream problem can be represented as a tuple
(P,A,S,O, I,G) which is defined by a set of predicates P ,
actions A, streams S, initial objects O, an initial state I, and

a goal state G. We use the following parameters to represent
our PDDLStream problem: ?r for an available robot, ?q for
a robot configuration, ?o for the name of an object, ?tool
for the name of a cooking tool, ?p for an object or tool pose,
?g for a grasp pose, ?t for a robot trajectory, and ?loc for
a location in the workspace.

We use fluent predicates to model continuous parameters
that may change as actions are applied, such as robot configu-
rations, object poses, and gripper status. (AtConf ?r ?q)
represents an arm ?r at a configuration ?q. (AtPose ?o
?p) and (AtLocation ?o ?loc) represents an object
?o at a location ?loc in the workspace with a specific pose
?p. (HandEmpty) and (Holding) represent whether or
not an arm’s gripper is holding something or is empty. If an
arm is holding an object, (AtGrasp ?o ?g) represents
the object ?o that is attached to the arm using grasp ?g.

In our cooking domain, we define several types of actions
according to our proposed slicing strategy, such as pick,
place, equip-tool, fixture, check-extremity, slice, clean-up,
and serve-slices. An action operator is defined by a set of
free parameters (:param), a precondition to be satisfied
(:pre) before applying an action, and an effect formula
(:eff) which describes the change of state caused by the
action. For example, the following description shows the
parameters, preconditions, and effects for the slice action.

(:action slice
:param (?r ?q1 ?t ?q2)
:pre (and (Equipped ?r ?tool) (isHeldDown ?o)

(isWorkspace ?loc) (AtLocation ?o ?loc)
(isWhole ?o) (AtConf ?r ?q1)
(SlicingMotion ?r ?q ?tool ?o ?p ?g ?t ?q2)

:eff (and (isSliced ?o) (not (isWhole ?o))
(AtConf ?r ?q2) (not (AtConf ?r ?q1))))

We define several streams, including grasp sampling, mo-



tion planning, and collision checking. A stream is defined by
a generator function that receives input values (:inp) to gen-
erate a potentially infinite sequence of output values (:out).
For example, the plan-slicing-motion stream queries
a motion planner to produce trajectories ?t and an end
configuration ?q2 that certify the SlicingMotion pre-
condition of the slice action.

(:stream plan-slicing-motion
:inp (?r ?q ?tool ?o ?p ?g)
:dom (and (Robot ?r)(Conf ?q) (Pose ?o ?p)

(EquipGrasp ?tool ?g))
:out (?t ?q2)
:cert (and (Conf ?q2) (Traj ?t)

(SlicingMotion ?r ?q ?tool ?o ?p ?g ?t ?q2)))

An advantage of streams is that they allow for program-
matic implementation of functions in a general programming
language, such as Python. In our framework, we implement
our streams using a hierarchical multi-stage manipulation
planner described in more detail in Section II-B.

PDDLStream provides several algorithms that reduce con-
tinuous planning problems to a sequence of finite PDDL
problems, which a traditional PDDL task planner can solve.
In our implementation, we use the Adaptive algorithm, which
produces an optimistic task sequence using hypothetical
stream values before actually calling any stream procedures.
In a dynamic environment where uncertainty exists, exe-
cuting a found plan all at once may not be feasible. The
initial object pose provided to the planner may be imprecise
compared to the real scene, potentially causing errors when
grasping. Certain actions may induce changes to the state
of an object. For example, the slice action not only changes
the state of the cucumber (whole or sliced) but also adds to
the number of objects present (e.g., the number of slices
produced). These changes can not be anticipated by the
planner ahead of time, making one-time planning difficult
to realize. Inspired by the approach in [8], we adopt two
planning considerations: optimistic planning and replanning
from perception. We first optimistically plan using an initial
belief of the object pose to produce a full plan. Before any
state-changing actions (e.g., pick, slice) can be applied on
the object, the robot must first perform perception to register
the actual state and real pose of the object. The planner then
performs replanning to refine the task and motion plan using
the updated values from perception. We model predicates
isWhole, isSliced, Uncertain, and Registered
to reflect these changes in the planning domain.

B. Multi-Step Motion Planning
In long-horizon manipulation tasks, certain tasks are often

strongly interrelated and cannot be considered independently
from each other, particularly for dual-arm manipulation. For
example, in the context of our cooking task, certain fixture
grasps by an arm may interfere with slicing and cause
collisions with another arm. The most widely popular motion
planning framework is MoveIt [9], an open-source library
designed for motion planning and mobile manipulation,
commonly used with the Robotic Operating System (ROS).
However, the current MoveIt manipulation pipeline presents

Fig. 3: PDDLStream and MTC in simulation. After PDDLStream
finds a task plan, the MTC-based streams are called to perform
multi-step motion planning, producing motion plans for the previ-
ously found task plan. Both successful and failed motion plans are
published and can be visualized in RViz before actual execution.

several drawbacks. The framework is mostly restricted to
a single-arm pick-and-place pipeline, with limited functions
for dual-arm coordination [10]. Another major drawback is
that the provided pick and place stages are black-box imple-
mentations, reducing transparency and making it difficult to
evaluate planning failures. To overcome these shortcomings,
Gorner et al. [6] proposed the MoveIt Task Constructor
(MTC), an open-source motion planning framework for plan-
ning multi-stage manipulation actions with interdependent
tasks. MTC accounts for the interdependence of sub-tasks
bypassing the world state and the result of a sub-solution
between planning stages using the MoveIt Planning Scene
as a common interface. MTC also provides introspection
and failure visualization to allow for further analysis of
successful and failed solutions, addressing the previous issue
of transparency. However, the MTC framework currently
assumes that a high-level sequence of tasks is known and
defined in advance.

To address this current gap, we integrate MTC into our
PDDLStream implementation as part of its streams for
motion sampling. We modified the existing Pick and Place
containers provided with the open-source implementation to
satisfy our custom actions for a cooking task. A running ex-
ample of PDDLStream and MTC in simulation is depicted in
Fig. 3. First, PDDLStream performs symbolic planning using
a PDDL task planner and finds an optimistic task sequence.
After a task structure is found, PDDLStream calls upon the
MTC-based streams to find low-level action motions for the



Fig. 4: Full workflow of the cucumber slicing task. 1) The robot initially registers the cucumber pose using perception. 2) The robot
then picks and places the cucumber onto the cutting board. 3) A robot holds down the cucumber, while another robot equips a knife. 4)
The robot detects the extremity of the cucumber using force-based tip detection. 5) Once the extremity is reached, the robot performs
RL-based slicing. 6) After slicing is successful, the robot cleans up by returning the leftover cucumber to the tray. 7) Finally, the robot
performs perception again to detect the cucumber slices and 8) repeatedly performs pick and place until all slices are on the plate.

previously found task plan. Both successful and failed motion
plans are published, which can be visualized and validated
in RViz before the actual execution on the real robot.

III. ROBOT EXPERIMENTS

We demonstrate our framework in simulation and a real
robot experiment. The following sections describe in detail
the experimental setup, our learning-based slicing skill, and
the full workflow of our slicing task.

A. Experiment Setup
We demonstrate our framework on a real robotic system

initially introduced in [11]. The system is comprised of two
Universal Robot UR5e robotic arms. Each arm is equipped
with a parallel gripper and a force-torque sensor at the arm’s
end. The arm that is allocated for the slicing task is equipped
with a custom finger adapter on its fingertips to facilitate
attaching and detaching the kitchen knife.

B. Slicing using Reinforcement Learning
In our approach, our slicing method leverages Reinforce-

ment Learning (RL) and compliance control. We utilize
a framework that learns compliant control slicing motions
using deep RL in a real2sim2real formulation [12]. In a
previous study, we show that our method can adapt to unseen
objects and require as little as a single slicing motion to
acquire the force profile of the object.

C. Real-World Slicing Strategy
In the real world, there are numerous strategies for slicing

a vegetable. In general, the task consists of placing and
holding down the vegetable on the cutting board, locating
the extremity or tip of the vegetable, and slicing. Holladay
et al. [13] described slicing as a forceful manipulation task
and discussed various methods of holding down the objects,
which is referred to as fixturing. In forceful manipulation,
fixturing is essential to prevent the motion of the object that
force is being exerted to. In our strategy, we use a dual-arm
approach where a robot grasps and fixtures the object onto
the cutting board, while another robot performs the slicing
operation. Fig. 4 describes the full workflow of our slicing
task. Given an initial location of the cucumber at the tray, the

robot first performs perception and retrieves the initial pose
of the cucumber. After the cucumber pose has been updated,
the robot picks and places the cucumber onto the cutting
board. The robot fixtures the cucumber onto the cutting board
to prevent its motion, while another robot equips a knife to
perform slicing. Afterward, the robot locates the extremity
of the cucumber by performing force-based tip detection.
Once the extremity has been reached, the robot performs
the RL-based slicing until it reaches the desired number of
slices. After slicing is successful, the robot performs a clean-
up operation by returning the leftover cucumber to the tray.
As the state of the cucumber is now uncertain, the robot
again performs perception to detect the slices and update
their respective poses. Finally, the robot performs pick and
place repeatedly until all slices are served on the plate. Once
the cutting board is empty and all slices are on the plate, the
goal is achieved, and the task is deemed successful.

IV. SUMMARY

In this paper, we introduced an integrated task and motion
planning framework for executing real-world cooking tasks.
The key contribution of our framework is by integrating
PDDLStream, a sampling-based TAMP solver, with the
MoveIt Task Constructor, a multi-stage manipulation planner,
to further enhance multi-step motion planning for interdepen-
dent, long-horizon tasks. We demonstrated our framework
in simulation and a real-robot experiment through a case
study of slicing a cucumber. We incorporated a variety of
cooking-related skills into our framework, such as tool use,
force-based tip detection, and RL-based slicing. In future
work, we plan to fully integrate our TAMP framework with
our vision-language interpreter [3] to realize the execution
of natural language instructions. We also plan to consider
replanning from error or failure feedback to improve the
overall robustness of the framework [14].

REFERENCES

[1] N. Saito, J. Moura, T. Ogata, M. Y. Aoyama, S. Murata,
S. Sugano, and S. Vijayakumar, “Structured motion
generation with predictive learning: Proposing subgoal



for long-horizon manipulation,” in IEEE International
Conference on Robotics and Automation, 2023, pp.
9566–9572.

[2] N. Yoshikawa, A. Z. Li, K. Darvish, Y. Zhao,
H. Xu, A. Kuramshin, A. Aspuru-Guzik, A. Garg,
and F. Shkurti, “Chemistry lab automation via con-
strained task and motion planning,” arXiv preprint
arXiv:2212.09672, 2022.

[3] K. Shirai, C. C. Beltran-Hernandez, M. Hamaya,
A. Hashimoto, S. Tanaka, K. Kawaharazuka, K. Tanaka,
Y. Ushiku, and S. Mori, “Vision-language inter-
preter for robot task planning,” arXiv preprint
arXiv:2311.00967, 2023.

[4] M. Fox and D. Long, “Pddl2. 1: An extension to pddl
for expressing temporal planning domains,” Journal of
Artificial Intelligence Research, vol. 20, pp. 61–124,
2003.

[5] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Sil-
ver, L. P. Kaelbling, and T. Lozano-Pérez, “Integrated
task and motion planning,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 4, pp. 265–
293, 2021.

[6] M. Görner, R. Haschke, H. Ritter, and J. Zhang,
“Moveit! task constructor for task-level motion plan-
ning,” in IEEE International Conference on Robotics
and Automation, 2019, pp. 190–196.

[7] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling,
“Pddlstream: Integrating symbolic planners and black-
box samplers via optimistic adaptive planning,” in
International Conference on Automated Planning and
Scheduling, vol. 30, 2020, pp. 440–448.

[8] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kael-
bling, and D. Fox, “Online replanning in belief space
for partially observable task and motion problems,”
in IEEE International Conference on Robotics and
Automation, 2020, pp. 5678–5684.

[9] D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Re-
ducing the barrier to entry of complex robotic software:
a moveit! case study,” arXiv preprint arXiv:1404.3785,
2014.

[10] P. M. Fresnillo, S. Vasudevan, W. M. Mohammed,
J. L. M. Lastra, and J. A. P. Garcia, “Extending
the motion planning framework—moveit with ad-
vanced manipulation functions for industrial applica-
tions,” Robotics and Computer-Integrated Manufactur-
ing, vol. 83, p. 102559, 2023.

[11] F. von Drigalski, C. C. Beltran-Hernandez,
C. Nakashima, Z. Hu, S. Akizuki, T. Ueshiba,
M. Hashimoto, K. Kasaura, Y. Domae, W. Wan, et al.,
“Team o2ac at the world robot summit 2020: towards
jigless, high-precision assembly,” Advanced Robotics,
vol. 36, no. 22, pp. 1213–1227, 2022.

[12] C. C. Beltran-Hernandez, N. Erbetti, and M. Hamaya,
“Sliceit! - a dual simulator framework for learning
robot food slicing,” in IEEE International Conference
on Robotics and Automation, 2024, p. accepted.

[13] R. Holladay, T. Lozano-Pérez, and A. Rodriguez,

“Robust planning for multi-stage forceful manipula-
tion,” The International Journal of Robotics Research,
vol. 43, no. 3, pp. 330–353, 2024.

[14] M. Skreta, Z. Zhou, J. L. Yuan, K. Darvish, A. Aspuru-
Guzik, and A. Garg, “Replan: Robotic replanning
with perception and language models,” arXiv preprint
arXiv:2401.04157, 2024.


	INTRODUCTION
	FRAMEWORK OVERVIEW
	PDDLStream Formulation
	Multi-Step Motion Planning

	ROBOT EXPERIMENTS
	Experiment Setup
	Slicing using Reinforcement Learning
	Real-World Slicing Strategy

	SUMMARY

