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Abstract

Existing bias mitigation methods for DNN models primarily work on learning debi-
ased encoders. This process not only requires a lot of instance-level annotations for
sensitive attributes, it also does not guarantee that all fairness sensitive information
has been removed from the encoder. To address these limitations, we explore the
following research question: Can we reduce the discrimination of DNN models
by only debiasing the classification head, even with biased representations as in-
puts? To this end, we propose a new mitigation technique, namely, Representation
Neutralization for Fairness (RNF) that achieves fairness by debiasing only the
task-specific classification head of DNN models. To this end, we leverage samples
with the same ground-truth label but different sensitive attributes, and use their
neutralized representations to train the classification head of the DNN model. The
key idea of RNF is to discourage the classification head from capturing undesirable
correlation between fairness sensitive information in encoder representations with
specific class labels. To address low-resource settings with no access to sensitive
attribute annotations, we leverage a bias-amplified model to generate proxy an-
notations for sensitive attributes. Experimental results over several benchmark
datasets demonstrate our RNF framework to effectively reduce discrimination of
DNN models with minimal degradation in task-specific performance.

1 Introduction

Deep neural networks (DNNs) have made significant advances in recent times [1, 2, 3], and have
been deployed in many real-world applications. However, DNNs often suffer from biases and
show discrimination towards certain demographics, especially in high-stake applications, such as
criminal justice, employment, loan approval, credit scoring, etc [4, 5, 6]. For example, COMPAS, an
algorithmic recidivism predictor, is likely to associate African-American offenders with higher risk
scores compared to Caucasians while having a similar profile [7]. This brings significant harm to
both society and individuals, thus leading to recent focus on mitigation techniques to alleviate the
adverse effects of DNN biases.

Existing debiasing methods usually work on learning debiased representations at the encoder-
level. One representative family of methods perform mitigation by explicitly learning debiased
representations, either through adversarial learning [8, 9, 10] or invariant risk minimization [11, 12].
Another family of methods [13, 14, 15] implicitly learn debiased representations by incorporating
explanation during model training to suppress it from paying high attention to biased features in the
original input. Essentially, the above methods aim to remove the bias from deep representations.

Learning debiased representations is a technically challenging problem. Firstly, it is hard to remove
all fairness sensitive information in the encoder. The suppression of fairness sensitive information
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might also remove useful information that is task relevant. Secondly, most existing debiasing methods
assume access to additional meta-data such as fairness sensitive attributes and a lot of annotations
corresponding to the protected groups to guide the learning of debiased representations. However,
such resources are expensive to obtain, if not unavailable, for most real world applications.

To address these limitations, we explore the following research question: Can we reduce the discrim-
ination of DNN models by only debiasing the task-specific classification head, even with a biased
representation encoder? Our work is motivated by the empirical observation that standard training
can result in the classification head capturing undesirable correlation between fairness sensitive
information and specific class labels. Some recent works [16, 17, 18] have explored such spurious
or shortcut learning behavior of DNNs in various applications. To this end, we propose the RNF
(Representation Neutralization for Fairness) framework for mitigation, motivated by the Mixup
work [19, 20]. We first train a biased teacher network via standard cross entropy loss. In the second
stage, we freeze the representation encoder of the biased teacher, and only update the classification
head via representation neutralization. This discourages the model from associating biased features
with specific class labels, and enforces the model to focus more on task relevant information. To
address low-resource settings, our RNF framework does not require any access to the protected
attributes during training. To this end, we train a bias-amplified model using generalized cross
entropy loss that is used to generate proxy annotations for sensitive attributes. Experimental results
over several benchmark tabular and image datasets demonstrate our RNF framework to significantly
reduce discrimination of DNN models with minimal degradation of the task performance. The major
contributions of our work can be summarized as follows:

• We analyze bias propagation from the encoder representations to the final task-specific layer
demonstrating that DNN models heavily rely on undesirable correlations for prediction.

• We introduce RNF, a bias mitigation framework for DNN models via representation neutralization.
Our RNF framework achieves mitigation without any access to instance-level sensitive attribute
annotations, and instead relies on self-generated proxy annotations.

• Experimental results on several benchmark datasets demonstrate the effectiveness of our RNF
framework via debiasing only the classification head while using biased representations as input.
Additionally, we show RNF to be complementary to existing methods that learn debiased encoders
and can be further improved within our framework.

2 Related Work

We briefly review bias mitigation and broader robustness literature which are most relevant to ours.

Bias Mitigation. Recent studies have indicated that DNN models exhibit social bias towards certain
demographic groups. This has led to increased attention to bias mitigation techniques in recent
times [21, 22, 23]. Existing mitigation methods can be generally grouped into three broad categories.
The first one is based on adversarial training [8, 9, 10]. It leads to a fair classifier as the predictions
cannot carry any group discrimination information that the adversary can exploit. However, this
method assumes that the sensitive attribute annotations are known, and uses those annotations to
learn debiased representations. The second representative family of mitigation methods is based
on explainability [13, 14, 15, 24]. These methods require fine-grained feature-level annotations to
specify which subset of features are fairness sensitive. The third category falls under the umbrella
of causal fairness [25, 11, 12]. The main idea is to enforce the model to concentrate more on task
relevant causal features, and getting rid of superficial correlations [26]. This results in the model
capturing debiased representations. For instance, [27] minimizes the correlation between sentence
representations and bias words using a contrastive learning framework. We can typically decouple
the classification problem into representation learning and classification as the two major parts [28].
Different from the above-mentioned methods that mainly aim to train the debiased representations,
our work focuses on the classification head and aims to suppress it from capturing undesirable
correlation between fairness sensitive attributes and class labels.

Shortcut Learning in DNNs. Our work is motivated by the observation that DNNs with standard
training are prone to exploit undesirable correlations (or shortcuts in the dataset) for prediction [16, 29].
Beyond algorithmic discrimination, recent studies show that shortcut learning [17] can result in other
undesirable consequences like poor generalization and adversarial vulnerability. Specifically, this
leads to a high performance degradation for previously unseen inputs, especially for those data beyond
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Figure 1: Representation analysis of z using Kernel PCA. (a) Protected attribute a (i.e., gender) is a
discriminative feature. In this plot, the male group primarily lies in the lower left interval, whereas
the female group is located primarily on the upper right interval. (b) Predicted positive label and
negative task-label distribution. (c) Representation neutralization (please refer to Sec. 3.3) to reduce
the discriminative power of a for dimensions relevant to the sensitive information, comparing to the
distribution in (a). (d) Neutralization still preserves the useful task relevant information.

held-out test set. Representative tasks depicting such behavior include reading comprehension [30],
natural language inference [18], visual question answering[31] and deepfake detection [32].

The most similar work to ours also regularizes the model training using interpolated samples between
groups [33]. Similar to the aforementioned solutions, this work also heavily relies on sensitive
attribute annotations in the training set. This limits the application scenarios of the mitigation
algorithms, especially for many real-world applications without readily available annotations dealing
with sensitive attributes. Our representation neutralization framework achieves comparable or better
performance to such techniques without relying on such sensitive annotations by leveraging proxy
annotations obtained from a bias-intensified version of our framework, thereby, making it broadly
applicable to arbitrary real-world applications.

3 Representation Neutralization for Fairness

In this section, we first analyze the task-specific classification head of a DNN to examine how bias
is propagated from the encoder representation layer to the task-specific output layer (Section 3.2).
We empirically demonstrate the undesirable correlation between fairness sensitive information in
representations with specific class labels. Based on the observation, we introduce the Representation
Neutralization for Fairness (RNF) framework to debias DNN models (Section 3.3). Finally, we pro-
pose an approach to generate proxy annotations for sensitive attributes, enabling the RNF framework
to be applicable to low-resource settings with no access to sensitive attribute annotations (Section 3.4).

3.1 Notations

We first introduce the notations used in this work. Let X = {xi, yi, ai}, i ∈ 1, ..., N be the training
set, where xi is the input feature, yi denotes the ground truth label, and ai represents the sensitive
attribute (e.g., gender, race, age). For ease of notation, in the following sections, we consider
binary sensitive attributes2. Nevertheless, our proposed mitigation framework can also be applied to
non-binary sensitive attributes (e.g., age).

Consider the classification model f(x, θ) = c(g(x)), parameterized with θ as the model parameters.
Here g(x) : X → Z represents the feature encoder, and g(x) = z is the representation for x obtained
from a DNN model. The predictor c(z) : Z → Y is the multi-layer classification head. It is depicted
by the top layer(s) of the DNN, which takes the encoded representation z as input and maps it to
softmax probability. The final class prediction is denoted by ỹ = arg max c(z). In this work, we aim
to reduce the discrimination of DNN models by only debiasing the classification head c(z), with the
biased representation encoder g(x) as input.

2Gender is not binary in reality as there are many different gender identities, such as male, female, transgender,
to name a few. In this work, we consider gender as a binary sensitive attribute due to the limitation of the
benchmark dataset that encodes gender as a binary variable.
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3.2 Analysis of the Classification Head

In this section, we examine how bias manifests in the representation space Z as well as how the
classification head c(z) obtained with standard training scheme propagates bias from the representa-
tion layer to the model output layer. To this end, we train a biased network fT (x) via standard cross
entropy loss, where the following experiment is performed using the Adult dataset [34].

Representation Probing Analysis. For the Adult training set, we generate representation vectors
for 500 training samples using the biased network fT (x) and project them in 2D for visualization. To
this end, we utilize the Kernel Principal Component Analysis (KPCA) [35] with a sigmoid kernel,
which is a tool to visualize high-dimensional data. Since the classification head c(z) contains multiple
non-linear layers, we choose kernel PCA instead of a linear dimensionality reduction method such as
linear PCA. The visualization is shown in Figure 1 (a). The plot depicts that the low dimensional
projection separates the two protected groups in two areas, where the male group is primarily located
in the lower left area, whereas the female group primarily occupies the upper right area. Comparing
the task-label y distribution in Figure 1 (b) with the protected group distribution in Figure 1 (a), we
observe that the protected attribute information is a discriminative feature that could be exploited by
the task classification head for prediction.

Role of the Biased Classification Head. The above demonstrative analysis indicates that the model
representation captures both useful task relevant classification information as well as bias information
from protected attributes. Specifically, the model captures strong correlation between the fairness
sensitive information and the class labels. On analyzing the data distribution, we observe this to be
an artifact of the conditional label distribution with respect to the sensitive attributes being skewed.
The model relies on this shortcut for prediction, resulting in bias amplification. We observe the
male neurons to positively correlate to the desirable label (also refer to the experimental analysis
in Sec. 4.3), whereas the female neurons positively correlate to undesirable label. This depicts an
undesirable correlation between sensitive information with certain class labels in the model.

Our Motivation. Based on the above empirical observations, we propose to neutralize the training
samples (Fig 1 (c)) so as to reduce the discriminative power of the fairness sensitive information,
while at the same time preserving task relevant information (Fig 1 (d)). With the neutralized training
data, we propose to re-train the classification head. Our goal is to adjust the decision boundary to
implicitly de-correlate the fairness sensitive information in the representation space with class labels.

3.3 Representation Neutralization for Debiasing Classification Head

Based on the aforementioned empirical observations, in this section we propose a simple yet effective
bias mitigation framework via Representation Neutralization for Fairness (RNF). RNF does not
require any prior knowledge about existing bias in the representation space; nor does it require any
knowledge about specific dimension(s) encoding the sensitive attributes – making it widely useful
for arbitrary applications. Our goal is to encourage the model to ignore the sensitive attributes and
instead focus more on task relevant information.

RNF is implemented in two steps (see Figure 2). In the first step, we train the model using cross
entropy loss, and obtain a biased teacher network fT (x). During the second step, we freeze the
encoder g(x) for fT (x), and use it as our backbone encoder for learning representations. We then
re-train only the classification head c(z) using feature neutralization (see Figure 2 (b)).

Representation Neutralization. To this end, while training the classification head, for an input
sample {x1, y, a1}, we randomly select another sample {x2, y, a2}, with the same class label y but a
different sensitive attribute a2 compared to a1 in the input sample. Now we compute the corresponding
representations z1 = g(x1) and z2 = g(x2) and re-train the classification head using the neutralized
representation z = z1+z2

2 as input. For the supervision label y for the classification head, we utilize
the neutralized soft probability y = p1+p2

2 after temperature scaling obtained as follows. Given the
logit vector z1 for input x1, the probability for class i is computed as p1,i =

exp(z1,i/T )∑
j exp(z1,j/T ) , where

T ≥ 1. This can be regarded as a form of knowledge distillation [36], where T > 1 softens the
softmax score. A larger temperature prevents the model from assigning over-confident prediction
probabilities. A special case for RNF is when T = 1, where p1 and p2 are the standard softmax
probabilities obtained from the biased teacher network fT (x).
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Figure 2: Debiasing with representation neutralization. (a) We first train a biased teacher network
using only cross entropy loss. For two inputs x1 and x2 that with the same class label y and different
sensitive attribute a, we obtain the representations z1 and z2, and softened probabilities p1 and p2.
(b) We freeze parameters of the biased encoder and only re-train the classification head using the
neutralized representation z1+z2

2 as input, and softened probability p1+p2
2 as supervision signal.

We use the knowledge distillation loss. In particular, the mean squared error (MSE) loss is used as a
distance-based metric to measure the similarity between model prediction and the supervision signal.

LMSE = (ŷi − y)2 = {c(1

2
z1 +

1

2
z2)− (

1

2
p1 +

1

2
p2)}2. (1)

where, c is the classification head to project representations to softmax prediction probability.

There are two main benefits of the aforementioned training scheme. From the input perspective, the
neutralization of representations suppresses the model from capturing the undesirable correlation
between fairness sensitive information in the representation with the class labels. From the output
perspective, the softened label encourages the model to assign similar predictions to different sensitive
groups. Optimizing Eq. (1) can lead to reduced generalization gap between the two groups.

Theorem 1 Given a well-trained representation encoder g(x) = z satisfying ||z1 − z2||2 ≤
λz|p1 − p2| for x1, x2 ∈ X and a bounded loss function L(c(zi), pi) = (1 − pi)l(c(zi), y =
0) + pil(c(zi), y = 1), where l(c(zi), y = j) ≤ εL for xi ∈ X and j = 0, 1; if the clas-
sification head c minimizes the loss between neutralized representation and soft probabilities,
i.e.

∣∣∣∣∣∣∇zL(c(z), p)
∣∣
z=

z1+z2
2 ,p=

p1+p2
2

∣∣∣∣∣∣
2
≤ εc, where z = g(x), x1 ∼ P (x1 | ai = 0),

x2 ∼ P (x2 | ai = 1), |p1 − p2| ≤ εp, the gap of generalization loss between groups a = 0
and a = 1 is bounded by:∣∣∣Exi∼P (xi|ai=0)L(c(zi), pi)− Exj∼P (xj |aj=1)L(c(zj), pj)

∣∣∣ ≤ εp(λzεc + εL) (2)

Here “well-trained” means that the model has learned reasonably good representations to encode
sufficient task relevant information. Essentially, after training for a sufficient number of epochs until
the validation loss has converged, we have access to a reasonably good representation space (although
it might encode a lot of fairness sensitive information). If we use the RNF loss function to further
train the classification head, the generalization gap between the different protected groups would be
small. For more detailed proof, please refer to Section A in the Appendix.

Smoothing Neutralization. To further enforce the model to ignore sensitive attributes, we construct
augmented training samples using a hyper-parameter λ to control the degree of neutralization
of the samples {z1, p1, y} and {z2, p2, y}. The augmented neutralized sample is given by z =
λz1 + (1− λ)z2, λ ∈ [ 12 , 1). We encourage the classification head to give similar prediction scores
for the augmented and the neutralized sample (with λ = 1

2 ). The regularization loss is given by:

LSmooth =
∑

λ∈[ 12 ,1)

|c(λz1 + (1− λ)z2)− c(1

2
z1 +

1

2
z2)|1. (3)

By varying λ we control the degree of sensitive information for the augmented samples. It is utilized
to penalize the large changes in softmax probability when we move along the interpolation between
two samples. We linearly combine the MSE loss in Eq. (1) with the regularization term as follows:

L = LMSE + αLSmooth. (4)
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We train the classification head using the loss function in Eq. (4). Eventually we combine the original
encoder of fT (x) and re-trained classification head as the debiased student network fS(x). The
teacher fT (x) is later discarded and the debiased student network fS(x) is used for prediction.

3.4 Generating Proxy Annotations for Sensitive Attributes

The aforementioned feature neutralization is limited in that it requires instance-level sensitive attribute
annotations {ai}Ni=1 for all training samples. Such resource-extensive annotations are difficult to
obtain for many practical applications particularly due to the nature of the sensitive attributes. To
address this limitation, we propose a method to generate proxy annotations {âi}Ni=1 for the sensitive
attributes based on the model uncertainty. The key idea is that a biased model generates over-confident
predictions for one demographic group, while giving much lower scores for the alternative group.
Particularly, the bias-amplified model tends to assign the privileged group more desired outcome,
while assigning the under-privileged group less-desired outcome. For instance in the Adult dataset,
the average prediction probability of the desired label (higher income) for the male group is much
higher than that of the female group. In contrast, the average probability of the less-desired label for
the female group is much higher than that of the male group.

To better facilitate the model to generate uncertainty scores, we train another biased model by
intentionally amplifying the bias via generalized cross entropy loss (GCE) [37]. The bias-amplified
model is denoted as fB(x) and the loss function is given as follows:

GCE(f(x; θ), y) =
1− fy(x; θ)q

q
, (5)

where fy(x; θ) denotes the output probability for ground truth label y. The hyper-parameter q ∈ (0, 1]
controls the degree of bias amplification. When limq→0, the GCE loss in Equation (2) approaches
−logp which is equivalent to standard cross entropy loss. The core idea is that for more biased
samples, i.e., samples with larger fy(x; θ) value, the model assigns higher weights fqy while updating
the gradient.

∂GCE(p, y)

∂θ
= fqy

∂ CE(p, y)

∂θ
. (6)

In this setup, the model fB(x) learns more from bias-amplified samples compared to the model fT (x)
trained with standard cross entropy loss.

The confidence score of fB(x) is used to indicate whether a sample belongs to a privileged or
unprivileged group. Specifically, for a desired ground truth label, samples with over-confident scores
are grouped into the privileged group, whereas subsets of samples with low prediction scores are
grouped into the unprivileged group. In contrast, for the undesired ground truth label, samples with
over-confident scores are grouped into the unprivileged group, and vice versa. Based on this criterion,
we generate proxy sensitive attribute annotation â for each training sample x to split samples into
two groups, which are subsequently used for feature neutralization.

Algorithm 1: RNF mitigation framework.

Input: Training data D = {(xi, yi)}Ni=1.
1 Set hyperparameter q, α.
2 while first stage do
3 Train teacher network fT (x) and

bias-amplified network fB(x).
4 while second stage do
5 Determine the splitting threshold γ for fB(x);
6 Calculate proxy annotation âi for each training

sample {(xi)}Ni=1 based on γ and fB(x);
7 Use loss function in Eq. (4) to re-train

classification head c(z) of fT (x).

Output: The debiased student network fS(x).

The overall process of our RNF mitigation
framework is given in Algorithm 1, which con-
tains two stages. In the first stage, we train
the biased teacher network fT (x) and the bias-
amplified network fB(x). In the second stage,
we first use fB(x) to generate proxy sensitive at-
tribute annotations for all training samples. We
use the ratio γ to partition the training set to gen-
erate proxy annotations for protected attributes
that are subsequently used for feature neutraliza-
tion. Note that the ratio γ is determined by the
fairness-accuracy trade-off on the validation set.
Then we use representation neutralization and
the loss function in Eq. (4) to re-train the classi-
fication head of fT (x). Eventually, we combine
the original encoder g(x) of fT (x) and the re-
fined classification head c(z) to give us the debiased student network fS(x). It is worth noting that
the neutralization is merely performed during the training stage for only debiasing the classification
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head. At inference time, the features just come in as encoded, and the classification head has learned
to not exploit any of the information correlated with the sensitive attribute for prediction.

4 Experiments

In this section, we conduct experiments to evaluate the effectiveness of our RNF framework.

4.1 Experimental Setup

4.1.1 Fairness Metrics, Benchmark Datasets and Baselines

We use two group fairness metrics: Demographic Parity [38] and Equalized Odds [39]. Demographic
Parity (DP) measures the ratio of the probability of favorable outcomes between unprivileged and
privileged groups: DP = p(ŷ=1|a=0)

p(ŷ=1|a=1) . Equalized Odds (∆EO) require favorable outcomes to be
independent of the protected class attribute a, conditioned on the ground truth label y. Specifically, it
calculates the summation of the True Positive Rate difference and False Positive Rate difference:

∆EO = {P (ŷ = 1 | a = 0, y = 1)− P (ŷ = 1 | a = 1, y = 1)}+ {P (ŷ = 1 | a = 0, y = 0)− P (ŷ = 1 | a = 1, y = 0)}. (7)

Under the above metrics, it is desirable to have a DP value closer to 1 and ∆EO value closer to 0.

Table 1: Dataset statistics.
Adult MEPS CelebA

# Training 33120 11362 194599
# Validation 3000 1200 4000

# Test 9102 3168 8000

We use two benchmark tabular datasets and one image dataset to
evaluate the effectiveness of RNF. For the Adult income dataset
(Adult), the goal is to predict whether a person’s income exceeds
$50K/yr [34]. We consider gender as the protected attribute
where vanilla trained models show discrimination towards the
female group by predicting females to earn less. For the Medical
Expenditure dataset (MEPS), we consider two groups white and non-white [40]. Here the task is to
predict whether a person would have a ‘high’ utilization, where vanilla DNN shows discrimination
towards the non-white group. The CelebFaces Attributes (CelebA) dataset is used to predict whether
the hair in an image is wavy or not [41]. We consider two groups male and female, where vanilla
trained models show discrimination towards the male group. We split all datasets into three subsets
with statistics reported in Table 1. More details of the datasets are included in Sec. C in the Appendix.

We compare two variants of our framework RNF (using proxy sensitive attribute annotations) and
RNFGT (using ground truth sensitive attribute annotations) against baselines such as DNNs trained
using only cross entropy loss (referred as Vanilla) and two regularization based mitigation methods,
namely, adversarial training (Adversarial) [42] and Equalized Odds Regularization (EOR) [43].
Among them, the Adversarial method achieves fairness via learning debiased representations, whereas
EOR directly optimizes the EO metric in Eq. (7). All three baselines control the fairness-accuracy
trade-off via hyper-parameters. More details on the baselines are included in Sec. D in the Appendix.

4.1.2 Implementation Details

For the image classification task, we use ResNet-18 [1] (we add one more fully connected layer).
We set the representation encoder g(x) as the convolutional layers and use the remaining two fully
connected layers as the classification head c(z). For tabular datasets, we use a three-layer MLP
(multilayer perceptron) as the classification model, where the first layer is set as the encoder and the
remaining two layers are used as the classification head. Dropout is used for the first two layers with
the dropout probability fixed at 0.2. We use the same batch size of 64 for tabular datasets and 390 for
the image dataset. For selecting another random sample {x2, y, a2} to be neutralized with current
sample {x1, y, a1}, we perform the selection within the current batch of training data. The hyper-
parameters (e.g., learning rate and training epoches) are determined based on the model performance
on the validation set, and early-stopping based on validation performance is used to avoid overfitting.
The optimal temperature T used to calculate the probability is set as 2.0, 5.0, 2.0 for Adult, MEPS
and CelebA datasets respectively. For Eq. (3), we sample λ from the list [0.6, 0.7, 0.8, 0.9]. The
hyper-parameter q in Eq. (5) is set as 0.2, 0.6, 0.3 for Adult, MEPS and CelebA datasets respectively.
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(a) Adult (c) CelebA(b) MEPS

Figure 3: The fairness-accuracy curve comparison of RNF and other baselines. The first and second
row depict the DP accuracy and ∆EO accuracy trade-off curves, respectively. Note that there is a
certain level of variance for each baseline method, and we report the average over 10 runs.

4.2 Mitigation Performance Analysis

We compare the mitigation performance of RNF (with proxy attribute annotations) and RNFGT (with
ground-truth attribute annotations) with other competing methods and illustrate their fairness-accuracy
curves for the three datasets in Figure 3. The hyper-parameter α in Eq. (4) controls the trade-off
between accuracy and fairness for RNF. For Adversarial and EOR, we vary their regularization
weights to obtain the corresponding performance curves. As the random seeds lead to variance in the
accuracy and fairness metrics (please refer to Section E.4 in the Appendix for detailed analysis of the
variability effect), we train the model for 10 times with different seeds and report the average result.
Overall, we make the following key observations.

• Even though RNF does not rely on annotations for the sensitive attributes, it performs similar to
baseline methods with access to such information, e.g, Adversarial training, or better than them in
some cases. This makes RNF readily usable for real-world applications where protected attributes
are not available in the training set.

• RNFGT improves mitigation performance over RNF by 10% on an average across all datasets and
metrics, thereby, demonstrating the benefit of using ground truth sensitive attribute annotations.

• The soft labels of RNF and RNFGT (obtained using a higher temperature T ) discourage the model
to assign overconfident predictions, thereby, suppressing it from capturing undesirable correlation
between fairness sensitive information and class labels. Penalizing the large changes of probability
as we move along the interpolation between two samples further suppresses the model from
capturing the undesirable correlation.

• Direct optimization of the equality of odds metric (i.e., EOR) achieves comparable performance
to RNFGT for all the datasets. However, it has limited improvement in terms of the demographic
parity metric. Note that EOR requires instance-level annotations for the protected attributes.

• We observe that Adversarial training also performs effective mitigation by learning debiased
representations. However, this happens at the expense of a higher accuracy drop for the task
performance. This likely results from the loss of task relevant information while suppressing
sensitive information from the representations. Additionally, we observe adversarial training to be
unstable, especially for relatively complex task like image classification.
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4.3 Classification Head Analysis

In this section, we use explainability and an auxiliary prediction task to analyze the classification head
c(z) for the Adult dataset. Particularly, we leverage explainability as a debugging tool to analyze the
attention difference between Vanilla and RNF model with respect to the representations.

Auxiliary Sensitive Attribute Prediction Task. We perform a representation analysis using an
auxiliary prediction task. To this end, we train another linear classifier to predict sensitive attributes
using the biased representation g(x) = z as input and the sensitive attribute annotations {ai}Ni=1
as the supervision signal. The linear classifier is denoted by LSENS(z) = Wz + b, where W and b
represent the weight matrix and bias for the linear classifier respectively. The weight matrix W can
be used to measure the degree of bias in each dimension of the representation z.

Explanation Analysis. We use post-hoc explainability [44] to analyze the contribution of the
classification head c(z). Our goal is to figure out the contribution of each dimension within the biased
representation g(x) = z towards the model prediction f(x, θ) = c(g(x)). We train a linear classifier
Lexplan(z) = Wz + b to mimic the decision boundary of the multi-layer classification head c(z).

Figure 4: Analysis for the
classification head.

We compare the weight matrix of the two linear classifiers LSENS(z)
and Lexplan(z) using cosine similarity. For models trained using Adult
dataset, we extract the weight matrix corresponding to the protected
attribute Male and task label Positive, and then we calculate the cosine
similarity between the Male vector and the Positive vector. This fol-
lows from our observation in Figure 1 that the vanilla model makes
use of male relevant information to make positive predictions. For the
Vanilla model and RNF models listed in Figure 3 (a), we calculate the
cosine similarity and report the DP-Similarity performance in Figure 4.
We observe that RNF dramatically reduces the cosine similarity be-
tween positive predictions and male relevant information compared
to Vanilla (from 0.272 to 0.075), by adjusting the decision boundary.
This eventually helps the head c(z) to shift its attention from fairness sensitive information to task
relevant information.

4.4 Effectiveness of GCE Loss

Table 2: Ablation analysis.
MEPS

Models Accuracy DP ∆EO

Vanilla 0.862 0.866 -0.210
GCE 0.860 0.839 -0.249

RNF-GCE 0.839 0.964 -0.099
RNF-CE 0.842 0.936 -0.128
RNF-Random 0.856 0.902 -0.163

We use MEPS dataset to examine the GCE loss in terms of
generating proxy annotations for the protected attributes. The
results are shown in Table 2. Firstly, we compare the fairness
performance of GCE loss with standard CE loss (Vanilla). As
expected, we observe that GCE is more biased than Vanilla in
terms of the fairness metrics with 0.2% accuracy difference.
Secondly, we compare RNF with several of its variants: 1)
replacing GCE loss with cross entropy (CE) loss to generate
proxy labels, and 2) using random annotations for the pro-
tected attributes. For a fair comparison, except for the protected attribute annotations, we use the
same set of hyper-parameters for different variants. Even though the same level of regularization is
performed for the three RNF variants, RNF-GCE has a higher mitigation performance than RNF-CE
with 3.0% DP improvement and only 0.3% accuracy difference, thereby, demonstrating the effective-
ness of GCE in terms of separating protected groups. Another observation is that even using random
annotations, our RNF framework could achieve certain level of mitigation. This is because partial
samples contain different sensitive attributes, which still could serve neutralization purpose.

4.5 Varying Layers for the Classification Head

Table 3: Varying the layers for classification head.
MEPS CelebA

Models Accuracy DP ∆EO Accuracy DP ∆EO

RNF 0.839 0.964 -0.099 0.668 0.836 -0.290
RNF-Last 0.837 0.971 -0.076 0.641 0.966 -0.052

We use MEPS and CelebA two datasets to study
the effect of an important hyper-parameter of
our framework in terms of which layers to use
for the encoder. Our classification model f(x)
contains the encoder g(x) and task predictor
c(z). In this experiment, we vary the depth of
the representation layer to examine the effect of
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layer selection. In particular, we investigate the question: can we debias only the very last layer,
with the remaining layers as the biased encoder? We report the results for MEPS and CelebA
datasets in Table 3, where the second row depicts the result of debiasing only the last layer. On
MEPS dataset, RNF-Last has better performance in terms of the two fairness metrics with only 0.2%
accuracy difference. Similarly, for CelebA dataset, with 2.7% accuracy difference, RNF-Last has
better fairness performance (with 13% DP improvement). This demonstrates that debiasing only the
last layer can achieve similar performance compared to debiasing the last several layers.

4.6 Representation Neutralization with Debiased Encoder

Table 4: RNF with debiased encoder.
MEPS

Models Accuracy DP ∆EO

Vanilla 0.862 0.866 -0.210
RNF 0.839 0.964 -0.099
RNF_EOR 0.834 0.980 -0.049
RNF_Adversarial 0.826 0.971 -0.085

In the discussions so far, we reported the performance of
RNF while debiasing only the classification head. In this
section, we analyze the impact of RNF built on top of a
debiased encoder. We first use Adversarial or EOR training
to learn a debiased encoder – which is subsequently used as
the backbone encoder for updating the classification head
using RNF. This experiment is performed on the MEPS
dataset where both Adversarial and EOR methods achieve
competitive performance. We use the same hyper-parameters for different RNF variants and report a
single point in the fairness-accuracy curve. The results are shown in Table 4. We observe RNF_EOR
to achieve better fairness performance over RNF, with DP metric improvement of 1.6% and ∆EO
metric moves closer to 0. However, such improvement in the fairness metrics incur some loss in
the task performance – where the accuracy reduces by 0.5%. We observe a similar trend with the
combination of RNF and Adversarial training, where the joint combination improves the fairness
metrics DP and ∆EO. Similar to the previous case, this fairness improvement is achieved at the
expense of some task performance degradation, where the accuracy drops by 1.3%. This indicates
that our RNF is complementary to using a debiased encoder where the joint combination performs
better than either of them in terms of the fairness metrics with some loss in task performance.

5 Conclusions and Future Work

In this work, we demonstrate that even when input representations are biased, we can still improve
fairness by debiasing only the classification head of the DNN models. We introduce the RNF
framework for debiasing the classification head by neutralizing training samples that have the same
ground truth label but with different sensitive attribute annotations. To reduce the reliance on sensitive
attribute annotations (as used in existing works), we generate proxy annotations by training a bias-
intensified model and then annotating samples based on its confidence level. Experimental results
indicate our RNF framework to dramatically reduce the discrimination of DNN models, without
requiring access to annotations for the sensitive attributes for all the training samples. Experimental
analysis further demonstrates our RNF framework to further improve in conjunction with other
debiasing methods. Specifically, our RNF framework built on top of a debiased backbone encoder
leads to better mitigation performance with negligible accuracy drop in the task performance. It is
worth noting that our RNF framework could help alleviate the discrimination rather than eliminate it.

On the other hand, the experimental analysis indicates a mitigation gap between RNF and RNFGT.
This is because we assume zero access to the protected attribute annotations when using GCE
framework. It is desirable to further boost the quality of the generated proxy annotations. In real-
world applications, domain experts could be involved to annotate a small ratio of the samples for the
training set. Equipped with this small ratio of high quality protected attribute annotations, we could
generate proxy annotations for other training samples with a higher accuracy compared to the proxy
annotations generated by GCE framework. As such, we can further boost the mitigation performance
of RNF. This is a challenging topic and would be explored in our future research.
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