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ABSTRACT

Transformer models have achieved remarkable results in a wide range of applica-
tions. However, their scalability is hampered by the quadratic time and memory
complexity of the self-attention mechanism concerning the sequence length. This
limitation poses a substantial obstacle when dealing with long documents or high-
resolution images. In this work, we study the self-attention mechanism by analyz-
ing the distribution of the attention matrix and its concentration ability. Further-
more, we propose instruments to measure these quantities and introduce a novel
self-attention mechanism, Linear Log-Normal Attention, designed to emulate the
distribution and concentration behavior of the original self-attention. Our exper-
imental results on popular natural language benchmarks reveal that our proposed
Linear Log-Normal Attention outperforms other linearized attention alternatives,
offering a promising avenue for enhancing the scalability of transformer models.

1 INTRODUCTION

Transformer models, proposed by (Vaswani et al., 2017), have become widely used deep learn-
ing architectures that have achieved state-of-the-art performance in various fields, including Natural
Language Processing (NLP) (Brown et al., 2020; Devlin et al., 2018), Computer Vision (CV) (Doso-
vitskiy et al., 2020), Neural Machine Translation (NMT) (Chen et al., 2018), Document Summa-
rization (Zhang et al., 2019; Pilault et al., 2020), and Protein Structure Prediction (Bahdanau et al.,
2015). The main component of the Transformer model is an attention mechanism that identifies
complex dependencies between tokens and efficiently captures tokens’ correlation. However, stan-
dard self-attention suffers from quadratic memory and computation complexity, which arises from
the N×N attention matrix, where N is the sequence length. This problem is particularly significant
during training, as it requires storing the attention matrix for gradient computation. Consequently,
this significantly hinders the training of Transformer models with long sequences.

Recently, we have observed an increasing interest in training Transformer models with long se-
quences, especially when considering large language models (Scao et al., 2022; Zhang et al., 2022;
Chowdhery et al., 2022). Various approaches address the quadratic memory issue in self-attention.
One class of the methods is sparse-attention, which aims to perform only a subset of the attention
computations while preserving the softmax function (Child et al., 2019; Zaheer et al., 2020). Another
approach is Linearized Attention (LA), which replaces the softmax with a product of two functions
(Choromanski et al., 2020; Katharopoulos et al., 2020). These methods reduce the computational
and memory complexity of the attention mechanism while striving to maintain performance. One
of LA’s benefits is that it performs dense operations and does not require special HW or low-level
implementation. However, despite their efficiency, LA methods often underperform compared to
standard self-attention. Thus, understanding the reasons behind the superior performance of self-
attention is crucial for designing an effective LA method.

In this paper, we propose a systematic way to develop an LA method with comparable performance
to the Softmax Attention (SA). First, we define a holistic model of the SA and examine its char-
acteristics. Then, we analyze the SA from three different perspectives, focusing on its statistical,
informational, and algebraic properties. In particular, we characterize the probability distribution of
the attention matrix and prove its log-normal nature. Moreover, we study the concentration behav-
ior of the SA by analyzing its entropy and the spectral gap (Coste, 2017). Based on the proposed

1



Published as a conference paper at ICLR 2024

model, we develop an LA method that emulates the distribution and concentration behavior of the
SA, achieving comparable performance. Finally, we evaluate the effectiveness of our method on
popular NLP benchmarks and compare it with other state-of-the-art methods. In summary, our con-
tribution is as follows:

• We conduct an in-depth analysis of self-attention, characterizing its statistical, informa-
tional, and algebraic properties.

• Develop tools suitable for studying the concentration ability of the attention based on the
entropy and the spectral gap metrics.

• Using the developed model and tools, we design Linear Log-Normal Attention (LLN At-
tention) with comparable performance to SA while requiring linear memory and computa-
tional complexity in the sequence length.

We have made the code of our method available for MindSpore1 and PyTorch2 frameworks.

2 BACKGROUND AND RELATED WORK

In this section, we present a brief overview of the attention mechanism and various methods for
efficient and linearized attention. We review the most relevant works in the field, classifying them
into different types of attention methods such as sparse attention, low-rank projection, memory-
based, kernel-based approximations, and clustering-based methods.

2.1 BACKGROUND ON SELF-ATTENTION

In the seminal study of (Bahdanau et al., 2015), the authors proposed the attention mechanism,
which was subsequently incorporated into the Transformer model (Vaswani et al., 2017). Since
then, attention has become a fundamental building block for many Transformer-based models.

Consider a sequence of N tokens, where each token represented by d-dimensional query, key, and
value vectors, denoted as {qqqi}Ni=1, {kkki}Ni=1, and {vvvi}Ni=1, respectively. The SA is defined as:

Attn(qqqi, {kkk1, . . . , kkkN}, {vvv1, . . . , vvvN}) =
∑N

j=1 κexp(qqqi, kkkj)vvv
⊤
j∑N

l=1 κexp(qqqi, kkkl)
(1)

where κexp is an exponential kernel used in the softmax function:

κexp(qqqi, kkkj) = e
qqq⊤i kkkj√

d (2)

The recent study by (Wright & Gonzalez, 2021) has examined SA from the perspective of the kernel
method. Notably, the formulation of SA in eq. (1) can be seen as Nadaraya-Watson kernel regres-
sion (Nadaraya, 1964), where estimating some unknown function with joint distribution p(kkk,vvv) and
density p(kkk) with a kernel (Han et al., 2022). Moreover, as shown by (Tsai et al., 2019), other
popular kernels, such as polynomial or Radial Basis Function (RBF), can be used instead of the
exponential kernel. However, the performance may vary depending on the type of the kernel. A
kernel method perspective of the attention allows us to address the problem of attention lineariza-
tion by using the connection between any kernel and its feature embedding function Φ, described by
Mercer’s theorem (Mercer, 1909):

κ(qqqi, kkkj) = ⟨Φ(qqqi),Φ(kkkj)⟩ (3)

1gitee.com/ynahshan/linear-lognormal-attention-ms
2github.com/ynahshan/linear-lognormal-attention

2

https://gitee.com/ynahshan/linear-lognormal-attention-ms
https://github.com/ynahshan/linear-lognormal-attention


Published as a conference paper at ICLR 2024

2.2 LINEARIZED ATTENTION

In recent years, several techniques have been proposed to address the quadratic cost associated with
SA. Based on the taxonomy by (Zhu et al., 2021), these techniques can be categorized into five types:
i) sparse attention mechanisms with predefined patterns, including sliding window approaches such
as Sparse Transformer (Child et al., 2019), Axial Transformer (Ho et al., 2019), Blockwise Attention
(Qiu et al., 2019), Longformer (Beltagy et al., 2020), and BigBird (Zaheer et al., 2020), where some
of these works (Wang et al., 2021) manage to improve model convergence due to noise reduction;
ii) low-rank projection methods, including Linformer (Wang et al., 2020), Synthesizer (Tay et al.,
2020a), NystromFormer (Xiong et al., 2021), SkyFormer (Chen et al., 2021), and Cosformer (Qin
et al., 2022b); iii) memory-based methods, such as Set Transformer (Lee et al., 2018b) and Com-
pressive Transformers (Rae et al., 2019); iv) kernel-based approximation of the attention matrix,
including Performer (Choromanski et al., 2020), Linear Transformers (Katharopoulos et al., 2020),
and RFA (Peng et al., 2021); and v) similarity and clustering methods, including Reformer (Kitaev
et al., 2020), Routing Transformer (Roy et al., 2020), Sinkhorn Attention (Tay et al., 2020b), and
Clustered Attention (Vyas et al., 2020).

Some of these methods combine multiple types of efficient attention mechanisms. For instance,
(Zhu et al., 2021) suggested a combination of low-rank projection and local window attention. Sim-
ilarly, (Qin et al., 2022a) incorporate both kernel-based and block-wise attention in their approach.
Our method also integrates kernel and block-wise techniques while suggesting a novel kernel ap-
proach that differs from that of (Qin et al., 2022a). By leveraging the benefits of multiple attention
mechanisms, these techniques offer more efficient and accurate models for various NLP tasks.

Kernel-based attention requires selecting a feature embedding function Φ to compute the LA kernel
eq. (3). Linearized attention can then be defined as:

Attnlin(qqqi, {kkkj}Nj=1, {vvvj}Nj=1) =

∑N
j=1 ΦQ(qqqi)

⊤ΦK(kkkj)∑N
l=1 ΦQ(qqqi)

⊤ΦK(kkkl)
vvv⊤j =

ΦQ(qqqi)
⊤∑N

j=1 ΦK(kkkj)vvv
⊤
j

ΦQ(qqqi)
⊤∑N

l=1 ΦK(kkkl)
(4)

The choice of feature embedding function is crucial, as we demonstrate later in section 4. Differ-
ent works suggest different types of embedding functions for this purpose. For example, Performer
(Choromanski et al., 2020) uses an exponential function, Linear Transformers (Katharopoulos et al.,
2020) uses the ELU function, and RFA (Peng et al., 2021) uses trigonometric functions to approx-
imate the Gaussian kernel with Fourier features. However, none of these works have analyzed the
properties of the attention mechanism induced by these functions.

3 DISSECTING SOFTMAX ATTENTION

In the previous section, we discussed the LA concept. Although this concept may seem straight-
forward, creating an LA mechanism that effectively handles complex tasks presents a challenging
problem. Typically, the LA of the form in eq. (4) performs worse than the SA. To gain insight into
the superiority of the SA, we conduct a thorough analysis of its properties. We start by character-
izing the distribution of the attention matrix since it is a core element of the attention mechanism.
Then, we study the connection between its entropy, spectral gap, and concentration ability of the
self-attention.

We begin our analysis by formalizing a model based on the SA from Equation (1). Our model
assumes that queries and keys approximately follow a Gaussian distribution. This assumption is
reasonable due to the Central Limit Theorem (CLT) (Lee et al., 2018a) and accepted in literature
for tractability purposes (Ioffe & Szegedy, 2015; Banner et al., 2018). Moreover, let us assume
the mean of queries and keys is approximately zero, which is a valid assumption due to the layer
normalization presence in the Transformer models.

Model Definition. Let qqqi, kkkj ∈ Rd be a Gaussian vectors, where elements qiℓ ∼ N (0, σ2
q ) and

kjℓ ∼ N (0, σ2
k), ∀l. Let aij = qqq⊤i kkkj /

√
d the attention score of pair i, j, whose variance can be

expressed as σ2
sm = σ2

qσ
2
k +Ccross, where Ccross is the cross-covariance of the squared queries and

keys (Goodman, 1960). We define a temperature of the SA as:
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τsm =
1

σsm
=

1√
σ2
qσ

2
k + Ccross

(5)

Denote ãij = aij / σsm and let PPP (SM) ∈ RN×N the SA matrix, where N is sequence length such
that:

P (SM)
ij =

eãij/τsm∑N
l=1 e

ãil/τsm
(6)

The form in Equation (6) is significant as it demonstrates the connection between SA and implicit
temperature parameter imposed by the variance of attention inputs. We can draw an analogy be-
tween the SA training and stochastic processes, where controlling the temperature allows balancing
between exploration and exploitation. High temperature results in equal probabilities for all tokens
(exploration), whereas low-temperature results in a high probability for one or few tokens, empha-
sizing it (exploitation of this particular token).

3.1 CHARACTERIZING DISTRIBUTION OF SOFTMAX ATTENTION

Let us now characterize the probability distribution of the SA. By analyzing its probability distribu-
tion, we can gain valuable insights into the behavior of the SA and reveal its statistical properties.
In particular, the distribution ofPPP (SM) plays a crucial role in quantifying the variability of its entries.
This variability is closely related to the concentration ability of the SA, a topic that we will explore
in more detail in subsequent sections.

Proposition 3.1. Let qqq and kkk be Gaussian vectors, where qi ∼ N (0, σ2
q ) and kj ∼ N (0, σ2

k),
∀i, j. Then, for moderate values of σ2

q , σ
2
k and large enough N the distribution of PPP (SM) can be

approximated by a log-normal distribution with parameters µsm = − lnN − 1
2σ

2
sm and σ2

sm =

σ2
qσ

2
k + Ccross.

The key behind the proof is to approximate the denominator in eq. (6) with log-normal distribution
by (Fenton, 1960) theorem. Then, since the numerator is also log-normal by the CLT, the resulting
ratio can be approximated by a log-normal distribution. It leads to the log-normal distribution of the
PPP (SM). The detailed proof is given in Appendix A.5.

The log-normal probability distribution of the SA matrix helps us understand the attention mecha-
nism. The skewness of log-normal distribution emphasizes certain positions and enables concentra-
tion. The temperature parameter controls uncertainty, influencing the balance between exploration
and exploitation during training.

3.2 ANALYZING SELF-ATTENTION THROUGH MARKOV CHAIN PERSPECTIVE

To delve deeper into the self-attention mechanism, we draw inspiration from the principles of
Markov chains (Levin et al., 2006). Each row of the self-attention matrix represents the correlation
between a specific token and all other tokens. These correlations closely resemble transition prob-
abilities in classical Markov chains. The self-attention matrix continuously evolves during training,
eventually converging to a final model.

3.2.1 ENTROPY AND ATTENTION CONCENTRATION

A crucial parameter in understanding such a stochastic system is its entropy, a metric commonly
used to measure the uncertainty or randomness associated with the state transitions of a Markov
chain. In the context of self-attention, entropy serves as a valuable tool to evaluate the concentration
ability of the self-attention. We refer to this as Attention Concentration (AC), which essentially
measures the model’s ability to direct its focus toward specific tokens, thereby extracting relevant
information from the input sequence. Previous studies (Ghader & Monz, 2017; Vig & Belinkov,
2019) have proposed using entropy to measure the AC. Lower entropy indicates a greater focus on a
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Figure 1: Temperature (left), entropy (center), and spectral gap (right) during training of the small
RoBERTa model with a single head per layer in every training step (X-axis).

few tokens, while higher entropy indicates more uniformly distributed attention. To formally define
the entropy of the attention matrix PPP (SM) we average the entropy of individual rows as following:

H(PPP (SM)) = − 1

N

N∑
i=1

N∑
j=1

P (SM)
ij log2(P

(SM)
ij ) (7)

Note that by eq. (6), the attention matrix can be represented in terms of its temperature. To further
explore the connection between the AC and temperature, we present the following theorem, which
characterizes the relationship between the entropy of the SA and its temperature:

Theorem 3.2. The entropy in eq. (7) is monotonically increasing with temperature τsm.

To prove the theorem, we consider the derivative of the entropy with respect to the temperature and
show it is always positive. For detailed proof, refer to Appendix A.4.1.

According to Theorem 3.2, the entropy of the SA increases with the temperature, which controls the
concentration of the SA. Essentially, a higher temperature results in a more dispersed distribution of
attention. Conversely, a lower temperature makes it easier to focus on specific tokens. Moreover, the
temperature controls the exploration (higher entropy) and exploitation (lower entropy) of the states
within the chain. Figure 1a shows how temperature decreases during training, resulting in a more
confident state (lower entropy) Figure 1b. Notably, while the first layers of the model retain high en-
tropy, allowing exploration, the entropy of the middle layers decreases and becomes approximately
zero, leading to exploitation in those layers.

3.2.2 SPECTRAL GAP AND ATTENTION CONCENTRATION

In the analysis of Markov chains, the spectral gap is a valuable metric to consider because it pro-
vides insights into the speed at which the chain reaches its stationary state (Coste, 2017). In other
words, it quantifies the rate of convergence, where the larger values of the spectral gap indicate a
faster convergence process, while a smaller one suggests a slower one. When applied to attention
mechanisms, the spectral gap can provide insights into the rate at which the attention mechanism
focuses on specific elements within the input sequence. Including the spectral gap in our analysis
allows us a more comprehensive understanding of the SA mechanism from an algebraic perspective.

The spectral gap measures the difference between the first and the second largest eigenvalues. Since
the attention matrix is a stochastic matrix (Meyer, 2000), it follows from the Perron-Frobenius
theorem (Samelson, 1957) that its largest eigenvalue is λ1 = 1. Therefore, the spectral gap is
γ = 1−|λ2|, where λ2 is the second largest eigenvalue. In Theorem 3.3, we establish a relationship
between the variance of the attention matrix and the spectral gap.

Theorem 3.3. LetPPP ∈ RN×N right stochastic matrix with eigenvalues λ1, . . . , λN ordered by their
absolute values, where λ1 = 1 ≥ |λ2| ≥ · · · ≥ |λN |. Let v̄̄v̄vmax be the major principal component of
the centered version of PPP . Then, λ2

2 = σ2
v̄̄v̄vmax

, where σ2
v̄̄v̄vmax

represents the amount of variance in the
direction specified by the major principal component v̄̄v̄vmax.
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To prove this theorem, we deflate the λ1 of the attention matrix and express the variance in the
direction of the major principal component. The detailed proof is provided in Appendix A.4.2.

Theorem 3.4. The variance of the attention matrix PPP (SM) is monotonically decreasing with temper-
ature τsm.

To prove this theorem, we consider the derivative of the variance with respect to the temperature and
show it is always negative. For detailed proof, refer to Theorem A.3.

According to Theorem 3.3, the magnitude of variability in the direction of the major principal com-
ponent v̄̄v̄vmax is equal to λ2, consequently, the spectral gap increases as the variability decreases. To-
gether with the Theorem 3.4, we can conclude that the spectral gap increases with the temperature,
similarly to the entropy. However, biasing the stochastic matrix towards a particular column also af-
fects the variability. When PPP is biased toward a specific column, the variability within the columns
decreases, resulting in a smaller value of λ2 and a higher spectral gap, regardless of the temperature.
Therefore, we can conclude that the spectral gap only increases with temperature when the attention
matrix is unbiased. This phenomenon led us to refer to the spectral gap as a measure of Unbiased
Attention Concentration. Figure 1c depicts the change in the spectral gap during training. In most
layers, the spectral gap decreases during training, indicating improved AC. However, in some lay-
ers, the spectral gap increases while the temperature remains constant, suggesting that the attention
matrix is biased. This observation justifies that the spectral gap carries additional information to
entropy.

4 DESIGN OF LINEARIZED ATTENTION

In the previous section, we presented a holistic model of SA and conducted a thorough analysis of
its properties. Specifically, we identified the log-normal distribution of the SA matrix. Additionally,
we analyzed concentration behavior dictated by the temperature parameter. We can measure AC
using the entropy (biased) and the spectral gap (unbiased) metrics. In this section, we design the
LA method based on the defined model, which resembles similar characteristics and imitates SA
behavior. In particular, our LA model should have log-normal distribution with similar moments.
Moreover, it should emulate the concentration pattern of the SA by matching its entropy and spectral
gap curves. As a result, we expect our LA method to achieve performance comparable to the SA.

4.1 LINEAR LOG-NORMAL ATTENTION

Designing LA according to Equation (4) requires selecting a feature embedding function Φ, a core
element of this attention. The choice of this function has a crucial effect on the LA performance.
According to our model, we start by satisfying the log-normality requirement, as most functions do
not have this property. For example, the Rectified Linear Unit (ReLU) can not produce log-normal
distribution as being almost linear. On the other hand, the exponential function induces log-normal
distribution for Gaussian inputs, which justifies its selection as a feature embedding function Φ.
However, to match the concentration behavior of the SA, we must force the LA to produce similar
entropy and spectral gap curves with respect to the temperature as in SA. To achieve this goal,
we introduce additional parameters, which we tune to perform moment matching between the LA
distribution and that of the SA.

Accordingly, let us denote by ΦQ(qqq) = eαqqq and ΦK(kkk) = eβkkk the feature embedding functions,
where α, β ∈ R+ are hyper-parameters that must be carefully selected to ensure our LA closely
approximates the SA. We define the Linear Log-Normal (LLN) Attention as:

AttnLLN(qqqi, {kkk1, . . . , kkkN}, {vvv1, . . . , vvvN}) =
∑N

j=1 e
αqqq⊤i eβkkkj∑N

l=1 e
αqqq⊤i eβkkkl

vvv⊤j (8)

Where each entry of the LLN attention matrix can be expressed as:

P (LLN)
ij =

eαqqq
⊤
i eβkkkj∑N

l=1 e
αqqq⊤i eβkkkl

(9)

Similarly to the analysis of the SA model, we assume zero mean of queries and keys. Then, to show
that the LLN Attention matrix follows a log-normal distribution, we prove the following:
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Figure 2: Comparison of entropy (left) and spectral gap (right) for various types of attention kernels.
The figure shows that the entropy and spectral gap of the LLN Attention with the moment matching
is similar to those of the SA.

Proposition 4.1. Let qqq and kkk be Gaussian vectors, where qi ∼ N (0, σ2
q ) and kj ∼ N (0, σ2

k),
∀i, j. Then, for moderate values of σ2

q and σ2
k, the distribution of PPP (LLN) can be approximated by a

log-normal distribution with variance σ2
lln = a · (α2σ2

q + β2σ2
k) + b, where a and b are constants.

The main steps of the proof are approximating the numerator and denominator in eq. (9) using the
log-normal distribution, following the theorem by (Fenton, 1960). Then, split the analysis into three
cases to express the variance, as suggested by (Romeo et al., 2003). The detailed proof is given in
Appendix A.6.

Further, we have to ensure the concentration behavior of the LLN Attention is similar to that of the
SA. To that end, it is necessary to determine appropriate values for the hyperparameters α and β.
In the following, we estimate these parameters by performing moment matching to the distribution
of the SA. Since the log-normal distribution is parameterized only by the first and second moments,
we can align the LLN Attention distribution with the SA by ensuring equivalence of the first two
moments.

Interestingly, Proposition 4.1 implies linear dependency between the variance of queries and keys
and σ2

lln. This linear connection facilitates the calculation of constants a and b. It allows the appli-
cation of linear interpolation on the randomly generated Gaussian samples qqq and kkk to perform the
moment matching between LLN and SA. We provide a detailed description of the technical aspects
of this moment-matching technique in Appendix A.7.

Finally, by requiring σlln = σsm and expressing it in terms of α and β, we can determine a and b
parameters. We point out that there is no closed analytical solution for which both the mean and
variance of LLN and SA align. Yet, since the concentration is mostly affected by the variance of the
attention matrix, we only match the variances of the LLN and SA. Further, to simplify the solution,
we also let α2σ2

q = β2σ2
k = 1

2 σ̃
2. Hence, we obtain the following:

α =
σ̃√
2σq

; β =
σ̃√
2σk

; σ̃ =

√
1

a
(σ2

qσ
2
k − b) (10)

A detailed derivation of Equation (10) is given in Appendix A.7. Note that, like in the SA, we can
introduce a temperature parameter of the LLN Attention that controls the concentration. Specifically,
let us define the temperature of the LLN Attention to be:

τlln =
1√

a · (α2σ2
q + β2σ2

k) + b
(11)

In Figure 2, we demonstrate that the moment matching is essential to align the entropy and the
spectral gap of the LLN Attention with those of the SA to achieve the required concentration. More-
over, other popular kernels, such as quadratic, ReLU, and their linear counterparts, are indifferent to
the temperature, which may result in poor concentration and potentially degraded performance. In
conclusion, LLN Attention satisfies the desired log-normal distribution property and concentration
behavior required by the SA model. Therefore, it should achieve comparable results to the SA.
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4.2 THE OVERALL ARCHITECTURE

Figure 3: LLN Transformer layer architecture.

In this section, we present the experimental re-
sults of the LLN Attention method on NLP
tasks, while more experiments on Image Classi-
fication and LRA(Tay et al., 2020c) benchmark
available in the Appendix A.8.

The LLN Attention effectively scales to long
sequences while maintaining high concentra-
tion, allowing capturing long-range interac-
tions. However, for short-range connections,
it may be less effective. Recently, a study by
(Qin et al., 2022a) emphasized the attention di-
lution issue of LA methods. Specifically, LA
may overlook neighboring structures, leading
to the ”dilution” of short-range interactions. To
address this issue, the authors proposed a hy-
brid approach that combines LA with block-
diagonal attention, which retains the O(N) memory and computational complexity of LA. This
block-diagonal attention is a regular SA applied on smaller pieces of the input, computing only
the diagonal of the original attention matrix. Such block-diagonal attention can not scale to longer
sequences, but it is useful to improve the performance of the LA method.

We incorporate this technique into LLN Attention, combining the LLN and block-diagonal attention
into a unified layer by averaging the outputs of both components Figure 3. While the block-diagonal
mechanism effectively captures short-range interactions within its confined block scope, LLN excels
in catching broader, long-range connections. This combined approach enhances the performance of
LLN Attention and stabilizes training by reducing the magnitude of the gradients (Qin et al., 2022a).

5 EXPERIMENTS

We first pre-train the bidirectional RoBERTa encoder model (Liu et al., 2019) using LLN Attention
on the WikiText-103 corpus (Merity et al., 2018). During pre-training, we monitor the convergence
of the model and compare its performance to the SA model. In Appendix A.8.1, we show that
the loss of the LLN Attention closely follows the loss of the SA, indicating similar convergence
behavior.

Next, to evaluate the performance of LLN Attention on downstream tasks, we fine-tune our pre-
trained model on several NLP tasks from the General Language Understanding Evaluation (GLUE)
dataset (Wang et al., 2018). These tasks include Multi-Genre Natural Language Inference (MNLI),
Question-answering Natural Language Inference (QNLI), Quora Question Pairs (QQP), and Stan-
ford Sentiment Treebank (SST-2). For all our experiments, we use the Fairseq framework (Ott et al.,
2019) with the default configuration and hyperparameters of the RoBERTa-base model.3

Table 1 provides a detailed comparison of the accuracy achieved by each method on each task.
The LLN Attention method outperforms the other LA methods with an average accuracy of 86.9%.
These results confirm the superior capability of LLN Attention in achieving competitive perfor-
mance with SA on a range of NLP tasks.

5.1 SPEED AND MEMORY CONSUMPTION

In this section, we evaluate the training time and memory usage of the LLN Attention, comparing it
to the SA and Nyströmformer, which outperform most of the LA methods available. In the compar-
ison, we used the RoBERTa-base model with a batch size of one and performed all measurements
on a commodity GPU.

The results in Table 2 confirm that LLN Attention scales linearly with sequence length, as expected,
and can handle at least four times longer sequences than SA. Moreover, the LLN Attention method

3https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/README.md
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Method MNLI QNLI QQP SST-2 Avg ↑
SA baseline (Bahdanau et al., 2015) 80.3 87.2 89.9 90.6 87.0
Reformer (Kitaev et al., 2020) 35.4 - 63.2 50.9 49.8
Performer (Choromanski et al., 2020) 58.8 63.4 79.1 81.4 70.6
ELU (Katharopoulos et al., 2020) 74.8 82.5 86.9 87.2 82.8
Longformer (Beltagy et al., 2020) 77.2 - 85.5 88.6 83.7
Transformer LS (Zhu et al., 2021) 77.0 84.8 86.8 90.2 84.7
TNN (Qin et al., 2023) 76.72 85.06 88.3 90.6 85.17
T2 (Qin et al., 2022a) 77.28 85.39 88.56 90.71 85.48
CosFormer (Qin et al., 2022b) 76.7 - 89.2 91 85.6
T1 (Qin et al., 2022a) 79.06 87.0 88.61 91.17 86.46
Flash (Hua et al., 2022) 79.45 87.1 88.83 90.71 86.52
Nyströmformer∗ (Xiong et al., 2021) 80.9(-1.5) 88.7(-1.6) 86.3(-1.) 91.4(+1.4) 86.8(-0.7)
LLN Attention (Ours) 77.0 85.1 88.9 90.6 85.4
LLN+Diag Attention (Ours) 80.0 86.5 89.7 91.6 86.9

Table 1: Accuracy achieved by various LA methods on multiple NLP tasks from the GLUE dataset,
including MNLI, QNLI, QQP, and SST-2. The results of Nyströmformer are given in (Xiong et al.,
2021), while the results of the rest are given in (Qin et al., 2022a). Note that for methods marked
with ∗, which have a different baseline in the original paper, we also provide an accuracy drop in ().

sequence length
Method 512 1024 2048 4096 8192 16384

Memory [GB]

Softmax Attention 4. 5.5 12.6 32.1 OOM OOM
Nyströmformer 4. 4.5 5.5 7.3 11.6 19.1
LLN Attention 4.1 4.4 5.7 7.5 12. 20.1
LLN+Diag Attention 4.1 4.6 6.1 8.1 13.4 23.

Time [sec/it]

Softmax Attention 0.95 1.05 2.4 6.8 OOM OOM
Nyströmformer 1.8 1.9 2.6 4.7 8.8 16.7
LLN Attention 1. 1.05 1.6 3.2 6.1 11.8
LLN+Diag Attention 1.2 1.3 1.9 3.6 6.9 13.3

Table 2: Memory usage and training time per iteration of SA, Nyströmformer, LLN, and LLN+Diag
on RoBERTa model, with varying sequence lengths. ”OOM” indicates an ”Out Of Memory” error.

requires nearly the same amount of memory as Nyströmformer, with Diag Attention adding only a
10% memory overhead to the LLN Attention. Notably, both LLN and LLN+Diag Attention demon-
strate superior speed compared to Nyströmformer.

6 CONCLUSION

In this paper, we introduced a novel LLN Attention method that incorporates the essential properties
of the SA, such as the log-normal distribution of the attention matrix and its concentration behav-
ior, while offering linear time and memory complexity. Our approach includes a moment-matching
technique to match the attention matrix’s log-normal distribution with that of the SA, resulting in
improved attention concentration and model performance. In addition, we conducted a comprehen-
sive analysis of the SA, characterizing its distribution and suggesting entropy and the spectral gap
metrics for attention concentration analysis. To the best of our knowledge, this is the first work to
study self-attention from this perspective. Finally, our experimental results demonstrated that LLN
Attention outperforms many existing LA methods on several NLP tasks, demonstrating its competi-
tiveness and potential to enhance attention performance on long sequences. Overall, our contribution
provides a foundation for future research and improvements in attention mechanisms.
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(a) Softmax attention (b) Linear attention

Figure 4: A block diagram of the computational complexity for the Softmax Attention and Lin-
earized Attention.

A APPENDIX

A.1 FORMULATION OF THE SELF-ATTENTION (SA)

One of the most widely used variants of the self-attention mechanism is the scaled dot-product
attention (Vaswani et al., 2017). In this formulation, the input vectors [xxx1, . . . ,xxxN ]⊤ :=XXX ∈ RN×d

are projected into query, key, and value vectors as follows:

[qqq1, . . . , qqqN ]⊤ :=QQQ =XXXWWW⊤
q ∈ RN×d

[kkk1, . . . , kkkN ]⊤ :=KKK =XXXWWW⊤
k ∈ RN×d

[vvv1, . . . , vvvN ]⊤ := VVV =XXXWWW⊤
v ∈ RN×d

(12)

Here, WWW q,WWW k,WWW v ∈ Rd×d are learnable parameter matrices. The attention function is then com-
puted on the query, key, and value vectors using the following equation:

Attn(qqqi, {kkk1, . . . , kkkN}, {vvv1, . . . , vvvN}) =
N∑
j=1

softmax
(
qqq⊤i kkkj√

d

)
vvv⊤j (13)

The dot-product term is scaled by the factor 1√
d

to ensure the stability of computations. This scaling
factor accounts for the variance of the dot-product qqq⊤i kkkj , which grows with the dimensionality d. In
this paper, we refer to this scaled dot-product attention as ”softmax attention” or ”standard attention,”
which is defined in eq. (1).

A.2 LINEARIZED ATTENTION (LA)

Let QQQ,KKK,VVV ∈ RN×d denote the queries, keys, and values of the attention mechanism. Computing
softmax-attention with Equation equation 13 requires calculating the quadratic matrix QQQKKK⊤ =[
qqq⊤i kkkj

]
N×N

, which has a complexity of O(N2) with respect to the sequence length N as illustrated
in Figure 4a.

Alternatively, if we can decompose softmax
(
QQQKKK⊤

)
into QQQ′KKK ′⊤, we can use the associativity

property of matrix multiplication to compute QQQ′
(
KKK ′⊤VVV

)
from right to left. Such a decomposed

computation has a linear complexity in the sequence length N , as illustrated in Figure 4b. To obtain
this decomposition, the un-normalized matrix eQQQKKK⊤

is replaced with matrix Φ(QQQ)Φ(KKK)⊤, where
Φ is a feature map that is applied row-wise, i.e., QQQ′ = Φ(QQQ) and KKK ′ = Φ(KKK). This form of linear
attention can be expressed as follows:

Attnlin(qqqi, {kkk1, . . . , kkkN}, {vvv1, . . . , vvvN}) =
∑N

j=1 Φ(qqqi)
⊤Φ(kkkj)∑N

l=1 Φ(qqqi)
⊤Φ(kkkl)

vvv⊤j =
Φ(qqqi)

⊤∑N
j=1 Φ(kkkj)vvv

⊤
j

Φ(qqqi)
⊤∑N

l=1 Φ(kkkl)
(14)

Due to aggregation over N elements in both the numerator and denominator, the memory complexity
of this linearized attention mechanism is linear with respect to the sequence length N .
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A.3 KERNEL VIEW OF THE SELF-ATTENTION

The SA mechanism can be viewed as a Nadaraya-Watson kernel regression (Nadaraya, 1964) as
shown by Wright & Gonzalez (2021). Specifically, the kernel density estimation (KDE) of some
unknown function with joint distribution p(kkk,vvv) and density p(kkk) with a kernel κ (Han et al., 2022).
Therefore, the kernel function can be used to express the self-attention mechanism as follows:

Attn(qqqi, {kkk1, . . . , kkkN}, {vvv1, . . . , vvvN}) =
∑N

j=1 κ(qqqi, kkkj)vvv
⊤
j∑N

l=1 κ(qqqi, kkkl)
. (15)

he KDE form of Equation (15) is a generalization of softmax attention in Equation (13) where we
use a softmax kernel

κsm(qqqi, kkkj) = e
⟨qqqi,kkkj⟩√

d (16)

Interestingly, the kernel view of self-attention reveals that the functionality of the attention mecha-
nism remains intact even when the kernel is modified. However, the performance of the attention
mechanism can vary depending on the choice of the kernel function, as demonstrated by Tsai et al.
(2019). It emphasizes the significance of considering different kernels and their impact on the per-
formance of linearized attention. Additionally, the kernel view provides a valuable perspective for
tackling the linearization problem within the framework of the kernel method.

According to Mercer’s theorem (Mercer, 1909), any positive-definite kernel (Mercer kernel) can be
represented as an inner product of symmetric features. Let X ∈ RN×d, xxx1, ...,xxxN ∈ X with kernel
function κ : X × X → R, then

κ(xxxi,xxxj) = ⟨Φ(xxxi),Φ(xxxj)⟩FH
(17)

where Φ : X → FH is a function mapping the inputs to a Hilbert space of feature functions
FH. However, the dimensionality of FH can be large or infinite, making explicit computation
of the features infeasible. This is where the kernel trick comes in: the kernel function can be
computed without explicitly computing the features. However, storing the attention matrix still
requires O(N2) memory complexity. To address this issue, we can design a kernel function such
that the dimensionality of FH is much smaller than N , which allows for O(N) memory complexity.
For example, consider ΦQ : Q → Rd and ΦK : K → Rd for some d ≪ N , the attention can be
computed using the following linear kernel function:

κ(qqqi, kkkj) = ⟨ΦQ(qqqi),ΦK(kkkj)⟩ (18)

Consequently, using the associativity property described in section A.2 can be used to compute this
kernel function with O(N) memory complexity.

A.4 ANALYSIS OF THE ENTROPY, VARIANCE AND SPECTRAL GAP OF THE SOFTMAX
ATTENTION MARIX

We start our analysis by providing additional definitions which extend those in Section 3 and proving
a couple of lemmas. Denote by aaa ∈ RN a single row of the attention scores matrix AAA. By denoting
a corresponding row of the normalized attention scores matrix Ã̃ÃA by xxx, such that τaaa = xxx, we can
write ppp ∈ RN a single row of the softmax attention matrix from eq. (6) as:

ppp = softmax(xxx, τ) =
e

xxx
τ∑N

j=1 e
xj
τ

(19)

Where τ is the temperature of SA from eq. (5). Similarly to eq. (7), we define the entropy of a single
row ppp as:

H(ppp) = −
N∑
i=1

pi log2(pi) (20)
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Additionally, we define a variance of the single row ppp of the SA matrix as:

σ2
ppp =

1

N

N∑
i=1

pi −
1

N

N∑
j=1

pj

2

=
1

N

N∑
i=1

(
pi −

1

N

)2

(21)

Denote µ =
∑N

i=1 pixi

Lemma A.1. The following holds
∑N

i=1 pi(xi − µ) = 0

Proof.

N∑
i=1

pi(xi − µ) =

N∑
i=1

pixi − µ

N∑
i=1

pi︸ ︷︷ ︸
1

= µ− µ = 0

Lemma A.2. Let ppp as in eq. (19), then the following holds.

N∑
i=1

p2i (xi − µ) ≥ 0 (22)

Proof. By denoting δi = xi − µ and substituting it into Equation (22) together with eq. (19), we
obtain

N∑
i=1

p2i (xi − µ) =
1(∑N

j=1 e
xj
τ

)2 N∑
i=1

e
2xi
τ δi =

1(∑N
j=1 e

δj
τ

)2 N∑
i=1

e
2δi
τ δi

Note that we can replace xi by δi due to the translation invariance of the softmax. Thus, it remains
to show that:

N∑
i=1

e
2δi
τ δi ≥ 0

By expressing the equation from Lemma A.1 in terms of δi we get

N∑
i=1

pi(xi − µ) =
1∑N

j=1 e
xj
τ

N∑
i=1

e
xi
τ δi =

1∑N
j=1 e

δj
τ

N∑
i=1

e
δi
τ δi = 0

Thus,
N∑
i=1

e
δi
τ δi = 0 (23)

Split the sum in eq. (23) into two parts, first sum over the elements δi ≥ 0 and second over δi < 0,
as following:

0 =

N∑
i=1

e
δi
τ δi =

∑
δi≥0

e
δi
τ δi +

∑
δi<0

e
δi
τ δi ≤

≤
∑
δi≥0

e
δi
τ︸︷︷︸

≥1

e
δi
τ δi +

∑
δi<0

e
δi
τ︸︷︷︸

<1

e
δi
τ δi =

=

N∑
i=1

e
δi
τ e

δi
τ δi =

N∑
i=1

e
2δi
τ δi =

N∑
i=1

p2i (xi − µ)
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Theorem A.3. The variance σ2
ppp is monotonically decreasing with temperature τ .

Proof. By taking the derivative of the σ2
xxx with respect to the τ we get.

∂σ2
ppp

∂τ
= 2

1

N

N∑
i=1

(pi −
1

N
)
∂pi
∂τ

= −2
1

N

N∑
i=1

(pi −
1

N
)pi(xi −

N∑
j

xjpj)
1

τ2
=

= − 1

N

2

τ2

N∑
i=1

(
p2ixi −

1

N
pixi − p2iµ+

1

N
piµ

)
=

= − 2

τ2
1

N


N∑
i=1

p2ixi − µ

N∑
i=1

p2i −
1

N

N∑
i=1

pi(xi − µ)︸ ︷︷ ︸
0

 =

= − 2

τ2
1

N

N∑
i=1

p2i (xi − µ)︸ ︷︷ ︸
≥0

< 0

Note that
∑N

i=1 p
2
i (xi − µ) ≥ 0 as follows from the Lemma A.2.

Lemma A.4. The following holds

N∑
i=1

pix
2
i − µ2 =

N∑
i=1

pi(xi − µ)2

Proof.

N∑
i=1

pix
2
i − µ2 =

N∑
i=1

pi(xi − µ+ µ)2 − µ2 =

=

N∑
i=1

pi(xi − µ)2 + 2

N∑
i=1

pi(xi − µ)µ+ µ2 − µ2 =

=

N∑
i=1

pi(xi − µ)2 + 2µ

N∑
i=1

pi(xi − µ)︸ ︷︷ ︸
0

=

N∑
i=1

pi(xi − µ)2

A.4.1 PROOF OF THEOREM 3.2

Proof. To show that the entropy in eq. (7) is monotonically increasing with temperature, we first
show that the entropy of the single row eq. (20) of the SA matrix is monotonically increasing. To
that end, we take a derivative ∂H

∂τ of the entropy with respect to the temperature and show that is
always positive.

Denote S =
∑N

j=1 e
xj
τ
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The derivative of the single entry of ppp with respect to the temperature is given by:

∂pi
∂τ

=
(− xi

τ2 )e
xi
τ S − e

xi
τ

∑N
j=1 e

xj
τ (−xj

τ2 )

S2
=

= −xi

τ2
pi − pi

N∑
j=1

pj(−
xj

τ2
) =

= − 1

τ2
pi(xi −

N∑
j

xjpj) =

= − 1

τ2
pi(xi − µ)

The derivative of the entropy from eq. (20) with respect to the temperature:

∂H

∂τ
= −

N∑
i=1

(
log2(pi) +

1

ln 2

)
∂pi
∂τ

=

N∑
i=1

(
log2(pi) +

1

ln 2

)
1

τ2
pi(xi − µ) =

=
1

τ2

(
N∑
i=1

pixi log2(pi)−
N∑
i=1

pi log2(pi)µ+
1

ln 2

N∑
i=1

pixi −
N∑
i=1

pi
1

ln 2
µ

)
=

=
1

τ2

(
N∑
i=1

pixi log2(pi)− µ

N∑
i=1

pi log2(pi)

)
=

=
1

τ2

N∑
i=1

pi log2(pi)(xi − µ) =

=
1

τ2

N∑
i=1

pi

(xi

τ
− log2 S

)
(xi − µ) =

=
1

τ2

(
1

τ

N∑
i=1

pix
2
i − log2 S

N∑
i=1

pixi + log2 Sµ− 1

τ
µ

N∑
i=1

pixi

)
=

=
1

τ3

(
N∑
i=1

pix
2
i − µ2

)
=︸︷︷︸
∗

1

τ3

N∑
i=1

pi(xi − µ)2 > 0

Where, ∗ follows from Lemma A.4.

Finally, since the entropy in eq. (6) is the average entropy of the rows, the Theorem 3.2 follows.

H(PPP (SM)) =
1

N

N∑
i=1

H(pppi) (24)

A.4.2 PROOF OF THEOREM 3.3

The proof is based on the Principal Component Analysis (PCA) (Jolliffe, 2011) of the stochastic
matrix PPP .

Proof. To start our proof, we first need to center matrixPPP in eq. (6) by deflating the first eigenvalue.
Let µµµ = 1

NPPP⊤111 = 1
N

∑N
i=1PPP ij the vector mean of PPP . Note that vvv1 = 111 is the eigenvector of PPP

corresponding to the first eigenvalue λ1 = 1 for which the following holds:

µµµ⊤vvv1 =
1

N
111⊤PPP1 =

1

N

N∑
i=1

N∑
j=1

PPP ij = 1 (25)
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Thus, according to the Wielandt deflation theorem the eigenvalues of the matrix PPP = PPP − λ1vvv1µµµ
⊤

are 0, λ2, . . . , λN .

Furthermore, it is important to note that the matrix PPP is centered in both rows and columns as
follows:

N∑
i

PPP ij = 111⊤PPP = 111⊤PPP − λ1111
⊤vvv1µµµ

⊤ = 111⊤PPP −Nµµµ⊤ = 111⊤PPP − 111⊤PPP = 0

N∑
j

PPP ij = PPP111 = PPP111− λ1vvv1µµµ
⊤111 = 111− vvv1

1

N
111⊤PPP111 = 111− 111 = 0

Therefore, the empirical covariance matrix of PPP can be expressed as:

ΣΣΣPPP =
(
PPP − λ1vvv1µµµ

⊤)⊤ (PPP − λ1vvv1µµµ
⊤) = PPP

⊤
PPP

Denote by v̄̄v̄v1, . . . , v̄̄v̄vN the eigenvectors of PPP , where v̄̄v̄v1 corresponds to the eigenvalue λ1 = 0.

The variance in PPP along the direction of the principal component v̄̄v̄vi can be expressed as:

σ2
v̄̄v̄vi

=
v̄̄v̄v∗iΣΣΣPPP v̄̄v̄vi
v̄̄v̄v∗i v̄̄v̄vi

= v̄̄v̄v∗iPPP
⊤
PPPv̄̄v̄vi =

∥∥PPPv̄̄v̄vi∥∥2 = λ2
i ∥v̄̄v̄vi∥

2
= λ2

i

Therefore, the variance is maximized when v̄̄v̄vi = v̄̄v̄v2, and λ2
2 = σ2

v̄̄v̄v2
represents the amount of variance

in the direction specified by the largest principal component of PPP .

Thus, λ2 indicates the level of variability of matrix PPP along the direction specified by the major
principal component of PPP . Moreover, according to Theorem A.3, if the rank of matrix PPP remains
unchanged, the variability should decrease as the temperature increases. However, if the matrix PPP
is biased towards a particular column, the variability within the columns decreases, resulting in a
smaller value of λ2. Consequently, we can infer that the spectral gap, defined as γ = 1 − |λ2| =
1− σv̄̄v̄v2

≤ 1, increases with the temperature only when the stochastic matrix is unbiased.

A.5 PROOF OF PROPOSITION 3.1

Proof. Generally, the product of two independent Gaussian variables has a density in the form of
a modified Bessel function of the second kind (Weisstein, 2003). When the vector dimensions
are sufficiently large, the Central Limit Theorem implies that the distribution of the dot product
between qqq and kkk can be approximated by a Gaussian distribution with zero mean and variance
σ2. As mentioned in section 3, the variance of qqq⊤kkk can be expressed as σ2 = σ2

qσ
2
k + Ccross,

where Ccross = Cov(qqq2, kkk2) − Cov(qqq,kkk)2 is the cross-covariance of the squared queries and keys
(Goodman, 1960).

Therefore, due to the exponent in eq. (6), the numerator is approximately a log-normal variable with
zero mean and variance σ2. To address the denominator, we must consider a sum of log-normal
variables. Fortunately, Fenton (1960) theorem states that for moderate values of σ2, the sum of
zero-mean i.i.d. log-normal variables can be approximated by a log-normal variable with variance
σ2
Σ and mean µΣ where:

σ2
Σ = ln

(
1

N

(
eσ

2

− 1
)
+ 1

)
; µΣ = lnN + (σ2 − σ2

Σ)/2

For large N and moderate values of σ2, we have σ2
Σ ≪ σ2, and we can omit the σ2

Σ term for
simplicity. Finally, since the ratio of log-normal variables remains log-normal with mean −µΣ and
variance σ2, Proposition 3.1 follows.

To empirically validate the assumption made in Proposition 3.1, we measure the variance and mean
of the SA and compare them to the values predicted by the theory. The results are presented in
Figure 5a, which shows that the measured statistics closely match the theoretical predictions.
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Figure 5: (a) The variance and mean of the SA matrix with respect to the input variance. Measure-
ments perfectly match theoretical estimation. (b) The variance of the SA and LLN Attention before
and after performing the moment matching procedure.

A.6 PROOF OF PROPOSITION 4.1

Proof. To demonstrate that the LLN attention matrix approximately follows a log-normal distribu-
tion, we examine a single entry of the attention matrix, which is a dot product of two vectors qqq and
kkk. The nominator

〈
eαqqq, eβkkk

〉
=
∑d

i e
αqi+βki represents a sum of d log-normal variables with zero

mean and variance σ̃2, where

σ̃2 = α2σ2
q + β2σ2

k (26)

Similarly, the denominator
∑N

j=1

〈
eαqqq, eβkkkj

〉
of the LLN Attention matrix, which is also a sum of

log-normal variables. According to (Fenton, 1960), for moderate values of σ̃2, the distribution of the
sum of log-normal variables can be approximated by another log-normal distribution at the right tail.
Since the ratio of the log-normal variables is also log-normal, we can approximate the distribution
of the LLN Attention matrix by a log-normal distribution.

To determine the relationship between the variance of the LLN Attention matrix σ2
LLN and variances

of queries and keys σ2
q , σ2

k, we need to estimate the variance of a sum of log-normal variables.
Following the approach of (Romeo et al., 2003), we will divide our analysis into three cases: narrow
σ̃2 ≪ 1, moderate σ̃2 ≲ 1 and broad σ̃2 > 1.

Denote variance of the sum in nominator by σ2
nom and variance of the denominator by σ2

den.

NARROW CASE

If 0 < σ2
q , σ

2
k ≪ 1 then the values are small such that even close to zero, thus we can approximate

eαqi ≈ 1 + αqi and eβki ≈ 1 + βki, thus:

σ2
nom ≈ d(α2σ2

q + β2σ2
k) = dσ̃2; σ2

den ≈ N(α2σ2
q + β2σ2

k) = Nσ̃2 (27)

MODERATE CASE

When σ̃2 is relatively small (i.e., ≲ 1), we can use (Fenton, 1960) method. The approximation is
given by:

σ2
nom ≈ ln


(
eα

2σ2
q+β2σ2

k − 1
)

d
+ 1

 = ln


(
eσ̃

2 − 1
)

d
+ 1

 (28)
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Figure 6: The variance of the sum of d log-normally distributed inputs, each with a variance of σ2

and a zero mean, is effectively estimated by the (Fenton, 1960) method. (a) In moderate scenario
where σ2 lies within the range of [0.2, 1.2], theoretical estimations (depicted as dashed lines) aligned
with empirical results. (b) In the broad case, for sufficiently large σ2 the variance of the log-normal
sum grows linearly with the variance of the input variables.

Similarly, for the denominator:

σ2
den ≈ ln


(
eσ̃

2 − 1
)

N
+ 1

 (29)

In fig. 6a, we demonstrate the empirical evaluation of the correctness of Fenton approximation when
σ2 ∈ [0.2, 1.2].

BROAD CASE

In the broad case, when σ̃2 is large (i.e., σ̃2 ≫ 1), it is not possible to find a closed-form approxima-
tion for the log-normal sum. However, we can observe that the sum of exponents is dominated by the
largest term, which corresponds to the maximum value. This maximum value grows linearly with
the spread of queries and keys under the Gaussian assumption. Consequently, according to (Romeo
et al., 2003), the resulting variance σ̃2 is also linearly proportional to σ̃2 with some constants a1, a2
and b1, b2:

σ2
nom ≈ a1(α

2σ2
q + β2σ2

k) + b1 = a1σ̃
2 + b1 (30)

σ2
den ≈ a2(α

2σ2
q + β2σ2

k) + b2 = a2σ̃
2 + b2 (31)

We empirically evaluated the linear dependency assumption of the sum of log-normally distributed
inputs and showed its validity in fig. 6b.

Finally, the variance of the LLN Attention matrix is a sum of the nominator and denominator vari-
ances, i.e.:

σ2
lln = σ2

nom + σ2
den (32)

By denoting a = a1 + a2 and b = b1 + b2 for a broad case we get:

σ2
lln = aσ̃2 + b = a(α2σ2

q + β2σ2
k) + b (33)
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Figure 7: Histogram of the SA and LLN Attention before and after performing the moment match-
ing.

A.7 MOMENT MATCHING

As shown in Figure 5b, we are interested in handling a broad range of σ̃2 values, particularly those
in [1, 4]. Using Proposition 4.1, we can find the constants a and b that satisfy the requirement
σ2
lln = σ2

sm of the broad case through moment matching. To do this, we perform linear interpolation
between the variances of the LLN and Softmax Attention by injecting uncorrelated Gaussian inputs
to both attentions and measuring their output variances according to the following equation:

σ2
sm = σ2

lln = aσ̃2 + b (34)

Once we have determined the values for a and b, we can substitute them into Equation (10) to obtain
the optimal values for α and β.

As depicted in Figure 5b, the variance of the LLN Attention without moment matching (i.e.,
α = β = 1) is much smaller than that of the Softmax Attention and exhibits a nearly linear trend.
However, the variance of the LLN Attention with moment matching approximates that of the Soft-
max Attention. Additionally, the histogram shown in Figure 7 suggests that the LLN Attention
distribution closely follows that of the Softmax Attention. Despite that, the two distributions have
slightly different means because we only match their variances.

A.8 EXPERIMENTS

In this section, we present more experimental results and ablation studies of our method.

A.8.1 PRE-TRAINING OF ROBERTA MODEL

We train the bidirectional RoBERTa-base encoder model (Liu et al., 2019) using LLN Attention on
the WikiText-103 corpus (Merity et al., 2018). During pre-training, we monitor the convergence
of the model and compare its performance to the SA model. In Figure 8a we show the training
and validation loss of the RoBERTa-base model during pre-training with LLN Attention, as well as
its comparison to SA. The loss curve of LLN Attention closely follows the SA, indicating similar
convergence behavior. We used the Fairseq framework (Ott et al., 2019) for all experiments with the
default configuration and hyperparameters of the RoBERTa-base model.4

We perform the training with FP16 precision, which can cause instability during training. To test
the stability of the training, we also log the inverse loss scale parameter Figure 8b. Spikes in the
plot indicate a decrease in the loss scale due to large gradients. As can be seen from the figure,
the maximum inverse scale of LLN Attention does not exceed that of the SA, which is important to
ensure similar stability during training as with SA.

4https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/README.md
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Figure 8: (a) Training and validation loss comparison of RoBERTa-base model pre-training using
LLN Attention and SA. (b) Inverse of the loss scale during training of RoBERTa-base model.

A.8.2 IMAGE CLASSIFICATION

To test LLN Attention on Vision task, we evaluate it on the Vision Transformer model using vit-
pytorch 5 code base. Our ViT model consists of twelve layers and 128 embedding sizes. We train
this model for 100 epochs on Dogs vs Cats dataset 6 with LLN and Softmax Attention. The results
in Table 3 show that LLN Attention performs on par with SA while outperforming the Linformer
(Wang et al., 2020) method.

Softmax LLN+Diag Linformer
81.37 81.72 79.89

Table 3: Accuracy [%] of the ViT model trained on Dogs vs Cats dataset with Softmax, LLN (ours)
and Linformer (Wang et al., 2020) Attention.

A.8.3 LONG RANGE ARENA

Time[s] Memory[Mb]
method TC LO RE PF IC TC LO RE PF IC
Softmax 21468 5905 21866 6754 13228 17108 4458 8934 4817 9632
Reformer 4610 2439 4714 4694 8737 3261 1631 3008 3258 6514
Performer 3456 1966 3761 3553 13169 2176 1122 2178 2180 4353
Skyformer 4523 2970 5602 5240 9347 3068 1697 2974 4041 8079
LLN + Diag 3043 1774 3135 3042 4053 1641 821 1586 1639 3276

Table 4: Comparison of memory[Mb] and running time [s] of LLN Attention with Reformer(Kitaev
et al., 2020), Performer(Choromanski et al., 2020) and Skyformer(Chen et al., 2021) linear attention
methods and SA baseline.

We use the Long Range Arena (LRA) (Tay et al., 2020c) benchmark to evaluate LLN Attention on
longer sequences. LRA benchmark requires a sequence length between 1k and 4k, depending on the
task. To that end, we used a code base provided by Skyformer (Chen et al., 2021) 7. We compare
the LRA score in addition to the memory and computation complexity of LLN Attention with Re-
former(Kitaev et al., 2020), Performer(Choromanski et al., 2020), and Skyformer(Chen et al., 2021)
linear methods as well as regular SA. According to the Table 4, LLN Attention requires much less

5https://github.com/lucidrains/vit-pytorch
6https://www.kaggle.com/competitions/dogs-vs-cats-redux-kernels-edition/data
7https://github.com/pkuzengqi/Skyformer
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memory and time compared to other methods while achieving a similar average LRA score as SA
Table 5.

method Text (4k) ListOps (2k) Retrieval (4k) Pathfinder (1k) Image (1k) AVG
Softmax 60.41 38.05 79.95 71.3 37.2 57.38
Reformer 61.27 37.05 78.74 67.23 44.04 57.67
Performer 57.85 37.8 80.5 62.58 37.56 55.26
Skyformer 60.88 39.36 81.54 70.23 32.64 56.93
LLN + Diag 60.72 38.91 81.21 69.81 38.65 57.86

Table 5: LRA score of LLN Attention with Reformer(Kitaev et al., 2020), Performer(Choromanski
et al., 2020) and Skyformer(Chen et al., 2021) linear attention methods and SA baseline.

A.8.4 LLN ATTENTION CONCENTRATION - ABLATION STUDY

In this section, we analyze the impact of the LLN Attention temperature of the Vision Transformer
(ViT) model trained on the Dogs vs Cats dataset. First, we record the values of α and β produced
by the moment matching procedure during training. According to Figure 9, the values of α and β
obtained during moment matching lay within the range of (2; 2.2). Furthermore, since the tempera-
ture of the LLN Attention, as defined in Equation (11), decreases as the hyper-parameters α and β
increase. To assess the influence of the temperature, we train the model with various fixed values
of hyper-parameters α and β and record the resulting accuracy. In Figure 10a, we see that when α
and β values are smaller than the moment matching range, i.e., less than 2, the LLN Attention con-
centration is insufficient due to the high temperature, leading to accuracy degradation. Conversely,
when α and β values lay within the range of moment matching values or larger (α, β ≥ 2), the
concentration is sufficient for the model to achieve the desired accuracy.
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Figure 9: Change in the α parameter (a) and β (b) during training of ViT model on Dogs vs Cats
dataset.

We highlight the risks associated with surpassing the moment matching range by increasing α and
β. In particular, larger values of these parameters may risk the stability of the training process due to
increased gradients, a concern that becomes especially noticeable when training models in Float16
format. The risk of utilizing the Float16 data type stems from the reduced precision, smaller dy-
namic range, risks of gradient overflow, and the requirement to maintain the loss scaling. Moreover,
the lower precision of Float16 may result in information loss during computations and numerical
instability.

Accordingly, exceeding the moment matching values of α and β is practically undesirable, particu-
larly in the context of training with Float16. In Figure 10b, we illustrate this phenomenon by pre-
senting the loss scale during the training of the deit-tiny model(Touvron et al., 2020) in the Float16
format. We see that for large values of α = β = 4, the inverse of the loss scale is significantly larger,
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Figure 10: (a) Accuracy of ViT trained on Dogs vs Cats dataset with LLN Attention and different
values of α and β. (b) Inverse of the loss scale during training of deit-tiny model for different fixed
values of α and β as well as for moment matching.

compared to α = β = 2, indicating increased gradients and the potential of training instability or
even failure. Therefore, to achieve the desired accuracy and allow stable training, it is crucial to
maintain the temperature in the ”sweet spot” specified by the moment matching values.
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