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Abstract

This paper presents a memory-augmented control solution for the optimal reference tracking
problem for linear systems subject to adversarial disturbances. We assume that the dynamics
of the linear system are known and that the reference signal is generated by a linear system
with unknown dynamics. Under these assumptions, finding the optimal tracking controller
is formalized as an online convex optimization problem that leverages the memory of past
disturbance and reference values to capture their temporal effects on the performance. That
is, a (disturbance, reference)-action control policy is formalized, which selects the control
actions as a linear map of the past disturbance and reference values. The online convex
optimization is then formulated over the parameters of the policy on its past disturbance and
reference values to optimize general convex costs. It is shown that our approach outperforms
robust control methods and achieves a tight regret bound of O(

√
T ), where in our regret

analysis, we have benchmarked against the best linear policy.

1 Introduction

Reference tracking is one of the key concepts in control theory (Isidori, 1989; Huang, 2004). In the reference
tracking problem, the aim is to design a controller such that the state of the system tracks a desired reference
trajectory. There are typically two common approaches for the reference tracking problem (Isidori, 1989;
Huang, 2004). The first approach is called the “feedforward design”. In this approach, the controller is a
summation of i) a feedforward term depending on the reference signal, which is derived from the dynamics of
the system and reference generator, and ii) an internal state feedback to stabilize the system in the absence
of disturbances. The second approach is called the “internal model”. In this approach, a dynamic controller
contains an internal model of the reference signal, and the control signal is a feedback from the internal state
of the controller and the state of the system. As a specific internal model approach, a proportional-integrator
(PI) controller contains an integrator so it can be used for tracking a constant reference signal or rejecting
a constant disturbance. Both internal model and feedforward approaches require the full knowledge of the
system dynamics and reference signal generator dynamics.

The asymptotic reference following is the bare minimum requirement for the tracking control problem. To
account for the transient response and the overall performance of the control design, an optimal reference
tracking control problem is typically formalized and solved. One major factor that can adversely affect
the performance of the tracking controllers is the presence of disturbances, which is typically ignored in the
optimal reference tracking problem (Zhang et al., 2011; 2008; Huang & Liu, 2014; Kamalapurkar et al., 2015;
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Adib Yaghmaie et al., 2019; Modares & Lewis, 2014; Kiumarsi & Lewis, 2015; Kiumarsi et al., 2014; 2015;
2018; Vamvoudakis et al., 2017; Carrillo & Vamvoudakis, 2020; Vamvoudakis & Lewis, 2012). In practice,
dynamical systems might be affected by external disturbances originating from the environment or produced
by adversaries to deteriorate the tracking performance. To account for the effect of the disturbance, it is
common to assume one of the following: 1- the disturbance is generated by a dynamical system (Isidori, 1989;
Huang, 2004), 2- the disturbance is Gaussian (Bertsekas, 2012), and 3- the disturbance is energy bounded
and the effect of its worst-case realization is attenuated on the control performance in the robust control
terminology (Doyle, 1995). In most cases, however, the disturbance is neither Gaussian nor generated by a
dynamical system. Besides, the robust control approach yields conservative results because the disturbance
is most likely far away from its worst-case realization (Khalil, 2002). In the related works, we discuss each
case in detail.

In this paper, we design optimal tracking controllers for linear systems subject to adversarial disturbances.
The adversarial disturbances are arbitrary and thus are not limited to those that are generated by a dy-
namical system. The reference signal to be tracked is assumed to be generated by a linear system with
unknown dynamics. We assume that only the output of the reference is measurable. We design (distur-
bance, reference)-action control policies where a fixed-size history of disturbance and reference values are
used to parameterize the proposed policy. This is partially inspired by Agarwal et al. (2019); Zhao et al.
(2022), which are designed for solving the optimal regulation control problems. In contrast, we leverage the
past values of both of disturbances and reference values. Using the past history of reference values is moti-
vated by a classical result giving necessary and sufficient conditions for tracking in control theory. Indeed,
our proposed policy belongs with the feedforward approach to solve the tracking problem. Our approach
results in a neat parameterization of the control policy from which any general convex cost function can be
optimized using online convex optimization. Indeed, we prove that the cost function is convex with respect
to the parameters of the presented controller.

The resulting algorithm is online in contrast to rollout or batch-wise reinforcement learning (RL) algorithms,
where it is required to collect enough samples before updating the controller (Abbasi-Yadkori et al., 2014).
In sharp contrast to the robust control design approach, a history of fixed-size past disturbance and refer-
ences values are calculated, stored, and used by the control policy to avoid hedging against the worst-case
disturbances that rarely occur in reality (Khalil, 2002; Modares et al., 2015). We show that our proposed
algorithm achieves a tight regret bound. Simulation results compare the presented approach against the H∞
control as well as the LQR control to show its superiority.

2 Related works

In this section, we summarize related works to the problem of optimal tracking in the presence of disturbance.

2.1 Tracking in the presence of disturbance

Depending on the nature of the disturbance, different strategies can be followed.

Output regulation theory The output regulation theory (Isidori, 1989; Huang, 2004) has been widely used
to design model-free RL algorithms for solving the optimal tracking problem (Gao et al., 2017; Chen et al.,
2022; Jiang et al., 2020b). It has also been leveraged to attenuate the effect of disturbances (Chen et al., 2019;
Jiang et al., 2020a; Gao & Jiang, 2016; 2015). Even though RL and adaptive dynamic programming (ADP)
approaches based on the output regulation theory can deal with both the optimal tracking problem and
disturbance rejection, the disturbance is assumed to be generated by a dynamical system. This, however, is
rarely the case in most real-world applications, which limits the applicability of the output regulation theory.
Besides, ADP methods optimize a risk-neutral (expected) or risk-aware measure of the cost function under
the assumption that the noise is at least i.i.d and mostly Gaussian. This is because either the value function
is directly learned (policy interaction or value iteration methods) based on collected data to estimate the
expected or risk-aware accumulated rewards, or the expected or risk-aware cost function or its derivative
with respect to the control parameters is learned directly using data (policy gradient methods).
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Gaussian disturbance: For linear systems with Gaussian disturbance (noise) on the system dynamics and
no noise on the system’s state measurements, linear quadratic regulator (LQR) control can be used to design
an optimal controller for the regulation problem by minimizing a quadratic cost (Bertsekas, 2012). The
feedforward gain is then calculated using the full knowledge of the dynamics of the system and reference.
However, there are many control systems for which the distribution of the disturbance is not Gaussian.

Robust control design: For general but limited-energy disturbances, one can use the H∞-control theory to
guarantee an L2-gain performance bound (Doyle, 1995; Khalil, 2002; Modares et al., 2015). TheH∞ approach
is typically overly conservative as the resulting robust controller hedges against the worst-case disturbance
sequence, which rarely occurs in reality. A daunting challenge is to design non-conservative optimal tracking
controllers for systems with arbitrary adversarial disturbances that do not follow assumptions such as being
generated by an i.i.d. Gaussian noise sequence or by a dynamical system.

2.2 Notion of Optimality

To account for the transient response and the overall performance, one can introduce optimal control design
to the tracking controller problem. This is usually done by designing (some part of) the controller by
optimizing a performance index using the optimal control theory or reinforcement learning.

Average or discounted costs: In Zhang et al. (2011; 2008); Huang & Liu (2014); Kamalapurkar et al.
(2015); Dierks & Jagannathan (2010) a feedforward approach is used to solve the tracking problem. The
feedback part of the controller is designed by minimizing an average or discounted cost in reinforcement
learning frameworks, and the feedforward part of the controller is found by dynamic inversion, assuming
that the dynamics is known.

Similarly, Adib Yaghmaie et al. (2019); Modares & Lewis (2014); Kiumarsi & Lewis (2015); Kiumarsi et al.
(2014; 2015) consider a feedforward approach to solve the tracking problem. But this time, both feedback
and feedforward parts of the controller are designed optimally by minimizing average cost (Adib Yaghmaie
et al., 2019) or discounted cost (Modares & Lewis, 2014; Kiumarsi & Lewis, 2015; Kiumarsi et al., 2014;
2015).

Regret: The regret compares the performance of an online control algorithm with a fixed policy in hindsight.
In the context of control theory, the regret analysis is usually given in the regulation problem where there is
no reference signal to be tracked, and the aim is to make the state vector converges to zero (Agarwal et al.,
2019; Zhao et al., 2022).

In Abbasi-Yadkori et al. (2014), tracking adversarial reference trajectories with quadratic costs is considered.
There are no disturbances in the problem formulation, and the regret grows as O(log2 N), where N is the
number of rollouts. Tracking adversarial references with convex costs is considered in Zhang et al. (2022)
where an algorithm is given to estimate the state of the system based on observed data. The control signal
is then generated by an algorithm, however, in control theory, the control input is usually parameterized.
Examples of parameterized controllers are state feedback or disturbance-action policy (Agarwal et al., 2019)
where the control input is parameterized based on the state or disturbance and the parameters are gains
that are designed. Parameterization of the controller allows analysis in the context of control theory. Since
the control signal is not parameterized in Zhang et al. (2022), it is difficult to perform analysis in the context
of control theory. It is shown that the regret is O(

√
|I|) for time interval I in the time horizon [1, T ].

3 Optimal Reference Tracking Problem

Notations and preliminaries: Let I denote an identity matrix with appropriate dimension. Let 1 and 0
denote one and zero matrices with appropriate dimensions respectively. Let ∇xf denote the gradient of
function f(x) with respect to x. The L2-norm of x is denoted by ∥x∥L2 = (

∑+∞
k=0 ∥xk∥2) 1

2 where ∥xk∥ is
the instantaneous Euclidean norm of the vector xk. For matrix A, the spectral norm is denoted by ∥A∥ and
the Frobenius norm is denoted by ∥A∥F . Let IE be an indicator function on set E. For a time-dependent
variable xk, the notation xi:j , j ≥ i is defined as xi:j = {xi, xi+1, .., xj}. The notation O() is leveraged
throughout the paper to express the regret upper bound as a function of T .
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Definition 1 (Agarwal et al., 2019) Consider

xk+1 = Axk +Buk

and γ ∈ [0, 1), κ > 1. A linear controller K is (κ, γ)-stable if ∥K∥ ≤ κ and ∥Ãt
K∥2 ≤ κ2(1 − γ)t ∀ t ≥ 0

where ÃK = A+BK.

3.1 Dynamical System and Reference Signal

Consider the following linear dynamical system

xk+1 = Axk +Buk + wk, (1)

where xk ∈ Rn and uk ∈ Rm denote the state and the control input of the system, respectively. wk ∈ Rn

denotes the adversarial input, which is captured by a general (i.e., arbitrary and unknown) disturbance. The
only assumption on the disturbance is that it is bounded. We can assume without loss of generality that
x0 = 0 and push the initial condition into w0.

Assumption 1 (dynamical system) The pair (A,B) is known and stabilizable. Moreover, the system
matrices are bounded, i.e., ∥A∥ ≤ κa and ∥B∥ ≤ κb.

Assumption 2 (disturbance) The disturbance sequence wk is bounded, i.e., ∥wk∥ ≤ κw for some κw > 0.
Moreover, wk = 0 for k < 0.

Since the system dynamics are assumed to be known, at each time k, w1:k−1 are known. This is because
wk−1 = xk −Axk−1 −Buk−1 and the state xk is assumed measurable.

Remark 1 Assumption 1 is a standard one. If the dynamics are not known, one can use Algorithm 2 in
Hazan et al. (2020) and identify the dynamics by injecting random input to equation 1. In Assumption 2,
we make a standard assumption that the disturbance is bounded.

Our aim in this paper is to select the input uk such that the state of the system xk tracks an unknown linear
reference signal rk generated by

zk+1 = Szk,

rk = Fzk,
(2)

where zk ∈ Rp and rk ∈ Rn denote the state and output of the reference signal, respectively.

Assumption 3 (reference signal) The following assumptions are made on the reference signal

• The pair (S, F ) is unknown, but observable.

• The state of the reference signal zk is not measurable but the output rk is measurable.

• The reference signal rk is bounded, i.e., ∥rk∥ ≤ κr.

Remark 2 Even though this assumption does not cover all types of references, it can generate a large class
of useful command trajectories, including unit step, sinusoidal waveforms, damped sinusoids, etc. Assump-
tion 3 requires the reference signal to be bounded, because otherwise, the average cost defined later becomes
unbounded. Therefore, Assumption 3 is usually considered when studying average cost, see for example
Abbasi-Yadkori et al. (2014), Adib Yaghmaie et al. (2019). Tracking unbounded reference signals can be
studied in the discounted cost settings where it is possible to guarantee the boundedness of the discounted cost
by selecting the discounting factor properly, see for example Kiumarsi et al. (2014). Relaxing Assumption 3
is a direction of our future work.
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We first bring a classical result in Theorem 1 specifying the necessary and sufficient condition for the existence
of a linear feedback policy to solve the classical state tracking problem, i.e., to ensure that xk → rk, in the
absence of disturbances. A linear feedback policy is defined as follows

ulin
k (Kf ) = Kfbxk +Kffzk. (3)

where Kf = [Kfb Kff ] ∈ K and K = {Kf : A+BKfb is (κ, γ) − stable}.

The following theorem is based on Theorem 1.35 and Remark 1.36 in Huang (2004) and is modified according
to the problem setup in this paper.

Theorem 1 (Huang, 2004)[Theorem 1.35 and Remark 1.36] Consider the dynamical system in equation 1
and the reference signal in equation 2. Assume that wk ≡ 0, (A,B) is stabilizable and (S, F ) is detectable.
Select Kfb such that A+BKfb is strongly stable. Then, the controller

uk = Kfbxk + (Γ −KfbΠ)zk (4)

solves the classical state tracking problem xk → rk if and only if there exist matrices Π ∈ Rn×p and Γ ∈ Rm×p

such that

ΠS = AΠ +BΓ, Π − F = 0. (5)

We show in the next lemma that even though zk is not measurable, it can be extractable from the current
and past outputs of the reference if the dynamics of the reference are known.

Lemma 1 Assume that (S, F ) is observable. Let l denote the observability index of equation 2; i.e., the
smallest positive integer l ≥ 1 such that

Ol =

 F
...

FSl−1

 ∈ Rnl×p (6)

has full column rank. That is, rank(Ol) = p. Let

O+
l = (OT

l Ol)−1OT
l ,

N =
[
N [1] . . . N [l]] = Sl−1O+

l ,

N [s] ∈ Rp×n, s = 1, ..., l.
(7)

Then, the state of the reference signal can be expressed as a linear function of the current and l − 1 past
outputs of the reference

zk =
l−1∑
q=0

N [l−q]rk−q. (8)

Proof: See Appendix A.

The following corollary uses the results of this lemma to formalize the controller as a memory-augmented
controller, which depends on the past values of the reference outputs.

Corollary 1 Consider the dynamical system in equation 1, the reference signal in equation 2 and wk ≡ 0.
Assume that there exist matrices Π ∈ Rn×p and Γ ∈ Rm×p such that equation 5 holds. Select Kfb such that
A+BKfb is strongly stable. Then

ulin
k = Kfbxk +

l−1∑
s=0

(Γ −KfbΠ)N [l−s]rk−s (9)

solves the classical state-tracking problem xk → rk, where l is the observability index of equation 2 and N is
given in equation 7.
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Proof: The proof is based on Lemma 1 and Theorem 1.

The controller in equation 9 only guarantees asymptotic convergence of the system’s state to the reference
trajectory. To account for the performance, an optimal state tracking controller is typically designed by
optimizing a cost function with respect to the control gains. However, the controller in equation 4 (equation 9)
requires the knowledge of Π (Π and N), which is found by solving equation 5 (equation 5 and equation 7),
which in turns requires the complete knowledge of the reference dynamics. As stated in Assumption 3,
this knowledge is typically not available. Besides, the disturbance is either ignored in this control design
approach or attenuated using overly-conservative robust control design methods. Therefore, to account
for the unknown dynamics of the reference generator and to design non-conservative controllers against
adversarial disturbances, a new controller is designed in the subsequent sections that leverages the past
disturbances and reference values to capture their temporal effects on the performance.

3.2 Optimal (Disturbance,Reference)-Action Policy Design

The overall objective of this paper is to design a control policy π : (x1:k, w1:k−1, r1:k) → uk that optimizes an
average cost function that captures the intention of the designer. The average cost associated with a policy
π is defined as follows

JT (π) = 1
T

T∑
k=1

ck(ek, uk), (10)

where ck is the rolling cost, and

ek = xk − rk. (11)

is the state tracking error.

Assumption 4 (cost function) The cost ck(ek, uk) is convex in ek, uk. Moreover, when ∥e∥, ∥u∥ ≤ D, it
holds that |ck(ek, uk)| ≤ βD2 and ∥∇eck(e, u)∥, ∥∇uck(e, u)∥ ≤ GcD for some β > 0 and Gc > 0.

Assumption 4 limits the cost function to general convex functions, which is more general than typical
quadratic cost functions. To optimize this cost function, the following parameterization of the control policy
is leveraged.

Definition 2 (Memory-augmented Control Policy). A (disturbance-reference)-action policy π(K,M,P ) with
memory is specified by parameters M = [M [0], ...,M [mw−1]], P = [P [0], ..., P [mr−1]], and a fixed matrix K.
At every time k, this policy chooses the action uk at a state xk using the following parameterized controller

uπ
k (K,M,P ) = Kxk +

mw∑
t=1

M [t−1]wk−t +
mr−1∑
s=0

P [s]rk−s, (12)

Since the policy parameters will be learned, and thus are changing over time, we refer to Mk =
[M [0]

k , ...,M
[mw−1]
k ] and Pk = [P [0]

k , ..., P
[mr−1]
k ] as the policy parameters at time k.

We call the controller uπ
k in equation 12 a memory-augmented control policy which is linear in the state xk,

the history of the reference signal of length mr and the history of disturbance of length mw.

Similar to Agarwal et al. (2019); Zhao et al. (2022), we make the following assumption on the control
parameters M, P . This assumption is a prerequisite for proving the theoretical results related to our
algorithm. It is enforced by using projected gradient descent in the algorithm.

Assumption 5 The control policy π(K,M,P ) in Definition 2 satisfies

• The control gain K makes A+BK (κ, γ)-strongly stable.
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• The control parameters Y := [M,P ] satisfy Y ∈ Y with domain Y =
{
Y =

[M [0], ..,M [mw−1], P [0], ..., P [mr−1]]
∣∣ ∥M [t]∥, ∥P [t]∥ ≤ κb κ

3(1 − γ)t
}

.

Remark 3 In the absence of the reference signal rk ≡ 0, ∀k, the controller in equation 12 is simplified to
the disturbance-action policy in Agarwal et al. (2019). The optimal reference tracking problem leads to a
challenge of designing the controllers parameters such that the output regulator equations in equation 5 are
implicitly solved by solving the optimal control problem. Note that one does not need to know l to design the
controller. Indeed one can select mr large enough. In Theorem 4, we specify how to select mw, mr.

Problem 1 (Optimal Tracking Against Adversarial Disturbances): Consider the system in equation 1 under
Assumptions 1 and 2. Let the reference signal be generated by equation 2 under Assumption 3. Design an
algorithm or control policy that generates the control actions in the form of equation 12 to optimize the
convex cost function in equation 10.

As we discuss in the sequel, we aim to propose an algorithm to learn the parameters M and P in equation 12
to achieve optimality. Even though other control techniques, such as Lyapunov reconstruction and sliding
mode control (Khalil, 2002) can be leveraged to design robust tracking controllers, they typically only concern
the stability of the system and do not provide guaranteed performance with respect to a given cost.

4 Properties of Memory-augmented Control Policies

To solve Problem 1, we select the controller gain K in the controller in equation 12 to stabilize the dynamics
in the absence of disturbance wk and reference rk. We keep K unchanged and aim to learn M and P to
achieve optimality. The learning procedure is given and discussed in detail in Section 5. Before presenting
the learning algorithm and proving its regret analysis, the following results are needed.

For the standard linear controller in the form of equation 3, in the presence of an adversarial or arbitrary
disturbance, the H∞ control design finds the gains Kfb, Kff to attenuate the effect of the disturbance on the
cost function. However, besides its conservativeness, as shown next, the cost function ck(ek, uk) is not convex
in Kfb, Kff , which makes the online control design intractable. To circumvent this difficulty and to avoid
the design of an overly-conservative controller, a controller in the form of equation 12 is designed. We show
next that, first, the cost function ck(ek, uk) is convex in M, P (see Lemma 2), and, second, equation 12 can
approximate any linear feedback policy in the form of equation 3 (see Theorem 2). Therefore, the presented
memory augmented or (disturbance, reference)-action controller is favorable over the linear feedback policy
ulin

k .

Lemma 2 Consider the dynamical system and reference signal in equation 1-equation 2. Then, the cost
function ck(ek, uk) is convex in M, P for the memory-augmented controller in the form of equation 12, but
is not convex in Kfb, Kff for the memoryless controller in the form of equation 3.

Proof: See Appendix B.

Remark 4 Based on Lemma 2, the cost function ck(ek, uk) is convex with respect to the parameters of the
memory-augmented control policy in equation 12. This allows online optimization of the parameters of the
memory-augmented control policy for streaming settings using gradient descent. Nevertheless, as shown in
Lemma 2, the optimization problem in hand is not convex in the gains of the linear feedback policy, which
makes it intractable for online learning.

Since the policy parameters will be learned, they change over time. In this case, the following Lemma shows
that the state at time k depends on the entire past memory of the control parameters. Let ÃK = A+ BK
and define

ΨK,h
k,y (Mk−h−1:k−1) =Ãy

KIy≤h−1 +
h−1∑
j=0

Ãj
KBM

[y−j−1]
k−j−1 I1≤y−j≤mw

, (13)
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ψK,h
k,z (Pk−h−1:k−1) =

h−1∑
j=0

Ãj
KBP

[z−j−1]
k−j−1 I1≤z−j≤mr

. (14)

Lemma 3 Let xπ
k be the state attained upon execution of the policy π(K,M0:k−1, P0:k−1) that generates the

control input in equation 12 at time k. Then, assuming x0 = 0, one has

xπ
k = xK

k (M0:k−1, P0:k−1) =Ãh
Kx

π
k−h +

mw+h−1∑
y=0

ΨK,h
k,y (Mk−h−1:k−1)wk−y−1

+
mr+h−1∑

z=0
ψK,h

k,z (Pk−h−1:k−1)rk−z.

(15)

or equivalently

xπ
k = xK

k (M0:k−1, P0:k−1) =
k−1∑
y=0

ΨK,k
k,y (M0:k−1)wk−y−1 +

k−1∑
z=0

ψK,k
k,z (P0:k−1)rk−z. (16)

Proof: See Appendix C.

The result of Lemma 3 shows that the memory length grows with time, which is not feasible for developing
an online gradient descent-based algorithm for learning the policy parameters. Inspired by Agarwal et al.
(2019), we present a truncated method that truncates the state with fixed memory lengths for both the
disturbance and the reference. We also define a truncated cost accordingly.

More specifically, we truncate the state with a fixed memory length H. Let x̃π
k , ũ

π
k , fk denote the truncated

state, input and cost if the system would have started at x̃π
k−H = 0. By setting H = h in equation 15 and

using equation 12, x̃π
k , ũ

π
k read

x̃π
k (Mk−H−1:k−1, Pk−H−1:k−1) = (17)

mw+H−1∑
y=0

ΨK,H
k,y (Mk−H−1:k−1)wk−y−1 +

mr+H−1∑
z=0

ψK,H
k,z (Pk−H−1:k−1)rk−z,

ũπ
k (Mk−H−1:k, Pk−H−1:k) = (18)

Kx̃K
k (Mk−H−1:k−1, Pk−H−1:k−1) +

mw∑
t=1

M
[t−1]
k wk−t +

mr−1∑
s=0

P
[s]
k rk−s,

and the truncated cost fk reads

fk(Mk−H−1, ...,Mk−1,Pk−H−1, ..., Pk−1)
= ck(x̃π

k (Mk−H−1:k−1, Pk−H−1:k−1) − rk, ũ
π
k (Mk−H−1:k, Pk−H−1:k)).

(19)

Remark 5 To compute the truncated state, input and cost numerically, one starts from x̃π
k−H = 0 and steps

the following dynamics

x̃π
t+1 = Ax̃π

t +Bũπ
t + wt.

for H steps to get x̃π
k . At each t ∈ [k −H, k − 1], ũπ

t is calculated from equation 18 using the past values of
the disturbance and reference. Then, the truncated cost is calculated by using x̃π

k , ũ
π
k in ck.

In Appendix D, we bring several lemmas which will be used to prove the main results in Theorems 2-4.
Specifically,
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• Lemma 4 gives bounds for ΨK,h
k,y , ψ

K,h
k,z in equation 13-equation 14.

• Lemma 5 gives bounds on the states and inputs.

• Lemma 6 gives the tracking error bound.

• Lemma 7 defines the Lipschitz condition on the truncated cost.

• Lemma 8 gives a bound on the gradient of the truncated cost.

Theorem 2 Consider the dynamical system and reference signal in equation 1-equation 2. Let Assumptions
1-4 hold. Let l denote the observability index of equation 2. Let ulin

k in equation 3 be a linear feedback
policy with Kfb being (κ, γ)-strongly stable. Then, for any (κ, γ)-strongly stable K, there exists a memory-
augmented policy of form equation 12, with l ≤ mr and

M [t] =(Kfb −K)(A+BKfb)t, 0 ≤ t < mw (20)
P [0] =KffN

[l],

P [s] =
min(s−1,l−1)∑

q=0
(Kfb −K)(A+BKfb)s−q−1BKffN

[l−q]

+ I0<s<lKffN
[l−s], 0 < s < mr,

such that uπ
k in equation 12 approximates ulin

k in equation 3. Let Assumption 5 hold. For k > max(mw,mr)

∥ulin
k − uπ

k∥ ≤γ−1κbκ
3(1 − γ)mwκw + γ−1κbκ

3(1 − γ)mrκr.

Proof. See Appendix E.

Remark 6 In Theorem 2, we proved that equation 12 can approximate equation 3. According to equation 2,
since ∥ulin

k − uπ
k∥ is a function of (1 − γ)mw and (1 − γ)mr , the approximation error decreases for longer

history lengths mw, mr.

We have seen in Theorem 2 that a memory-augmented policy uπ
k can approximate the linear feedback policy

in equation 3. In the next theorem, we show that if we use ulin
k and uπ

k for the same system in equation 1
with the same sequences of disturbance, the corresponding trajectories xlin

k and xπ
k are close.

Theorem 3 Consider the dynamical system and reference signal in equation 1-equation 2. Let Assumptions
1-5 hold. Let l denote the observability index of equation 2. Assume that Kfb and K are (κ, γ)-strongly stable.
Let xπ

k denote the trajectory of the system using the memory-augmented control policy uπ
k in equation 12 with

the parameters in equation 20 and xlin
k denote the trajectory of the system using the linear policy ulin

k in
equation 3. Assume that wk−i, rk−i, i < k are the same in both cases. Then xπ

k is close to xlin
k . More

specifically for k > max(mw,mr)

∥xlin
k − xπ

k∥ ≤ γ−2κ2
bκ

5(1 − γ)mwκw + γ−2κ2
bκ

5(1 − γ)mrκr.

Proof. See Appendix F.

5 Memory-augmented online state-tracking algorithm

In this section, we will give an algorithm to tune the parameters of the linear memory-augmented policy uπ
k in

equation 12, namely M, P to provide optimality in terms of minimization of the average cost in equation 10.
Note that we consider optimizing over the class of memory-augmented policies uπ

k in equation 12 not the
class of linear feedback policy ulin

k in equation 3. The reason is that ck is convex with respect to M, P
appearing in uπ

k but is not convex in Kfb, Kff in ulin
k , see Lemma 2. The following Algorithm 1 optimizes

the truncated cost fk using the gradient descent method.

9
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5.1 The memory-augmented algorithm

Algorithm 1 summarizes the online state tracking procedure. In Line 1, the algorithm is initialized by
selecting a stabilizing controller gain K and setting M, P arbitrarily. One way to select K is by solving
a Linear Quadratic Regulator (LQR) problem. After initiating the algorithm, the online procedure starts.
In Line 3, the current output of the reference signal rk is recorded. Then, uπ

k in equation 12 is calculated
and applied to the system. Then, in Line 4, the next state of the system xk+1 is observed and the
disturbance wk is recorded. In Line 5, the algorithm suffers the cost ck(ek, uk). Then, the truncated state
and inputs are calculated from equation 17-equation 18 using the latest values of M,P and the truncated
cost fk(M, ...,M, P, ..., P ) is computed from equation 19. In Line 6, the weights M, P are updated using
projected gradient descent on the truncated cost fk(M, ...,M, P, ..., P ), see equation 21 where ΠM , ΠP

denote projection onto the set of matrices with appropriate dimensions and bounded norms as specified in
Assumption 5, and η is the learning rate.

Algorithm 1 Online state tracking algorithm
1: Initialize: Select a stabilizing K and set M, P arbitrarily.
2: for k = 1, .., T do
3: Record rk and execute uπ

k in equation 12.
4: Observe xk+1 and record wk = xk+1 −Axk −Buk.
5: Suffer ck(ek, uk). Compute fk(M, ...,M, P, ..., P ) in equation 17-equation 19.
6: Update M, P

M = ΠM (M − η∇Mfk(M, ...,M, P, ..., P )),
P = ΠP (P − η∇P fk(M, ...,M, P, ..., P )).

(21)

Remark 7 Algorithm 1 is online: it updates M, P in each time step to minimizefk(M, ...,M, P, ..., P ) =
ck(x̃π

k (M, ...,M, P, ..., P )−rk, ũ
π
k (M, ...,M, P, ..., P )). Since uπ

k approximates ulin
k (see Theorem 2), Algorithm

1 tries to approximate a linear feedback policy minimizing the cost ck. There are two important characteristics
for Algorithm 1. 1) The cost function ck does not need to be quadratic but convex. Note that in the classical
approaches the cost is quadratic (Bertsekas, 2012; Khalil, 2002). 2) Parameterization of the controller uπ

k

based on the recent values of wk and rk, and online tuning help us to approximate the best linear feedback
policy for the recent values of wk and rk. Clearly, it is less conservative than selecting the linear feedback
policy for the worst case disturbance in the H∞ method. This results in a lower average cost; see the
simulation results in Section 6.

Note that at each time step k, w1:k−1, r1:k are known (see Lines 3-4 in Algorithm 1) and wk, rk ≡ 0 for
k < 0 (see Assumptions 3 and 2). As such, equation 17-equation 19 are computable.

5.2 Regret Analysis

The standard measure for online control based on the gradient descent is the policy regret (Agarwal et al.,
2019), which is defined here as the difference between the cumulative cost of the designed parameterized
control policy π learned by Algorithm 1 and that of the optimal linear control policy in the form of equation 3.
The reason for selecting the class of linear policies as the baseline is twofold. Firstly, since we do not have
any information about the disturbance, we compare it against the best policy when there is no disturbance
in the system which is the class of linear policies. Secondly, we select the class of linear policies so that the
theoretical analysis of the regret is possible.

Definition 3 Consider the system in equation 1. Let the control policy be deigned to generate the control
action uk in equation 12 at time k. Let Algorithm 1 be used to update the parameters of uk. Then, its regret

10
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is defined as

Regret =
T∑

k=1
ck(ek, uk) − min

Kf ∈K
TJT (Kf ) (22)

where JT (Kf ) is the average cost in equation 10 of the linear feedback controller in equation 3.

The regret compares the performance of Algorithm 1 generating controllers from the class of feasible memory-
augmented control policies with the best linear control policy in hindsight.

Theorem 4 Suppose Algorithm 1 is executed under Assumptions 1-5. Let H = mw = mr. For a fixed T ,
select the learning rate η and the memory size H to satisfy η = O( 1√

T
) and H = O(log T ) to solve Problem

1. Then,

Regret = O(
√
T ) (23)

Proof: See Appendix G.

According to Theorem 4, the average cost; i.e. 1
T

∑T
k=1 ck(ek, uk) is always bounded when the parameters

are learned

1
T

T∑
k=1

ck(ek, uk) ≤ 1
T

min
Kf ∈K

T∑
k=1

ck(ek, uk) + O( 1√
T

). (24)

The above inequality gives an upper bound for the average cost by Algorithm 1.

6 Simulation results

In this section, we give our simulation results.

6.1 The dynamical system, reference and cost function

We consider the dynamical system as

xk+1 =
[
1 1
0 1

]
xk +

[
1 0
0 1

]
uk + wk, (25)

and the reference signal is generated by

zk+1 =

 0 1 0
−1 1.5 0
0 0 1

 zk, z0 = [1,−2, 0.5]T ,

rk =
[
1 0 0
0 0 1

]
zk.

(26)

where

xk =
[
x1k

x2k

]
, wk =

[
w1k

w2k

]
, rk =

[
r1k

r2k

]
, ek =

[
e1k

e2k

]
=

[
x1k − r1k

x2k − r2k

]
.

We consider a quadratic cost with Q = 20I2, R = I2; that is

ck = eT
kQek + uT

kRuk.

Note that the algorithm can handle any convex cost function. The choice of a quadratic cost is to enable
comparison with the classical control approaches like Linear Quadratic Regulator (LQR) and H∞ controllers.

11
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6.2 Disturbances

For the simulation, we consider 6 cases for the disturbance. In each case, we generate the disturbance in
the beginning of the simulation so the disturbance sequence is the same for all algorithms. In the first
three cases, the disturbance is randomly generated. They are useful for comparing algorithms for stochastic
disturbances. For the others, we consider continuous disturbances; they are useful to study the performance
of the algorithms when the disturbance is not stochastic.

• Gaussian disturbance: w1k ∼ N (0, 0.01), w2k ∼ N (0, 0.01). It is well known that the LQR is the
optimal controller for the stabilization of the system in equation 1 (Bertsekas, 2012). Note that the
support of the Gaussian noise is not finite, even though our theoretical results require the disturbance
to be bounded. This bound, however, does not need to be known and could be large. This is in
contrast to the robust control methods such as H∞. In our simulation results, the Gaussian noise
generator (numpy.random.normal) by Numpy in Python is used which generates bounded samples.

• Random walk disturbance: wk = 0.999wk−1 + ηk−1, ηk−1 ∼ N (0, 0.01). When the noise is
a random walk, the optimal controller is an LQR. To see this point, we replace the random walk
disturbance in equation 1

xk+1 = Axk +Buk + 0.999wk−1 + ηk−1.

Note that in each time step k, the state xk is measured and according to Assumption 1, wk−1 is
known. Introducing a new state variable x̄k = [xT

k , w
T
k−1], we have

x̄k+1 =
[
A 0.999I
0 0.999I

]
x̄k +

[
B
0

]
u+

[
I 0
0 I

]
ηk−1. (27)

Hence, equation 1 with a random walk disturbance can be seen as the extended system in equation 27
where the noise ηk−1 is Gaussian. As a result, the optimal controller is the LQR for the extended
system in equation 27.

• Uniformly sampled disturbance We assume that the disturbance is uniformly sampled from the
interval [0, 1].

• Constant disturbance: w1k = w2k = 1.

• Amplitude modulation disturbance: w1k = w2k = sin(6πk/500) sin(8πk/500).

• Sinusoidal disturbance: w1k = w2k = sin(8πk/100).

6.3 The compared control approaches

We compare our online tracking algorithm with some other linear control classes such as the LQR and H∞
control approaches: both of them optimize a quadratic performance index and they are also optimal for the
Gaussian and worst-case disturbances. As such, they present the best possible performance for an algorithm
for example when the disturbance is Gaussian or worst-case. We would like to remind the reader that LQR
and Linear Quadratic Gaussian (LQG) controller are sometimes used interchangeably when the system’s
states are assumed measurable. We use the terminology of LQR in this paper. We also compare our online
tracking algorithm with a combination of the online control algorithm in (Agarwal et al., 2019) and the
feedforward approach. Other adaptive algorithms which do not optimize a performance index or do not
consider disturbance in the dynamics are not included.

In our simulation results, we study the following algorithms:

• Online state tracking in Algorithm 1: Let Pr be the solution to the Algebraic Riccati Equation
ARE(A,B,Q,R). We select K in equation 12 as

K = −(R+BTPrB)−1BTPrA. (28)

12
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We keep K unchanged during running the algorithm. We set H = 5, mr = 5, mw = 5, η = 0.0001
and initialize M = 0, P = 0 . We do not use any information about the dynamics of the reference
signal; we only use measured outputs of the reference signal rk in this algorithm. We also do not
use any information about the disturbance in this algorithm.

• Online control algorithm with a fixed feedforward gain: It is possible to combine the online
control algorithm in (Agarwal et al., 2019) with a feedforward approach. We call this approach
Online control algorithm with a fixed feedforward gain:

1. Learn an observable canonical realization of the reference generator using measured data.
2. Select K to stabilize the system’s dynamics and compute Kff = Γ −KF offline. Keep K, Kff

unchanged during running the algorithm.
3. Run the Online control algorithm in (Agarwal et al., 2019) and learn M . Equivalently, one can

run Algorithm 1, by replacing uπ
k in line 3 with

uπ
k = Kxk +

mw∑
t=1

M [t−1]wk−t +Kffzk (29)

and skipping updating P in line 6.

The initial motivation for considering equation 29 is to decouple the feedback and feedforward
design, to design the feedforward gain offline and the feedback gains online. Let ek = xk − rk. Using
equation 5

ek+1 = xk+1 − rk+1 = Axk +BKxk +B

mw∑
t=1

M [t−1]wk−t +B(Γ −KF )zk − FSzk

= (A+BK)xk +B

mw∑
t=1

M [t−1]wk−t +B(Γ −KF )zk − (AF +BΓ)zk

= (A+BK)(xk − Fzk) +B

mw∑
t=1

M [t−1]wk−t = (A+BK)ek +B

mw∑
t=1

M [t−1]wk−t.

For our simulation results, we select K similar to Algorithm 1 K = −(R+BTPrB)−1BTPrA where
Pr is the solution to the Algebraic Riccati Equation ARE(A,B,Q,R).

• LQR and LQR for random walk: We apply the controller in equation 4. We select Kfb =
−(R+BTPrB)−1BTPrA where Pr = ARE(A,B,Q,R). We assume that we know the dynamics of
the reference in equation 26. We then compute Kff according to equation 4-equation 5. To apply
equation 4, we need to know the state of the reference zk. We use the dynamics of the reference in
equation 26 and build zk from rk according to Lemma 1.Then, we apply uk = Kfbxk +Kffzk.
Note that Kfb is the optimal feedback controller gain for stabilizing the system in equation 1 with
Gaussian disturbance wk and the quadratic cost using full information of the dynamics (Bertsekas,
2012).
We saw in Subsection 6.2 that when the disturbance is a random walk, one can extend the dynamics
according to equation 27. The extended dynamics has a Gaussian disturbance and as a result, LQR
for the extended dynamics is the optimal controller. In this case, we call the algorithm “LQR for
random walk”.

• H∞-control: In the H∞, the controller is defined to have a finite L2-gain with respect to the worst-
case disturbance. The H∞ controller is of the form in equation 4. We design Kfb for the system in
equation 1 such that ||

√
Qx||L2

||w||L2
≤ 1.5. Note that 1.5 is the best achievable L2-gain for this system.

We assume that we know the dynamics of the reference in equation 26. We then compute Kff

according to equation 4-equation 5. To apply equation 4, we need to know the state of the reference
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zk. We use the dynamics of the reference in equation 26 and build zk from rk according to Lemma
1.Then, we apply uk = Kfbxk +Kffzk.
The H∞-control results in a conservative controller as it guarantees a finite L2-gain for the worst-case
disturbance.

Remark 8 The online control algorithm with a fixed feedforward gain might not return an optimal solution.
Let K∗

fb denote the optimal linear feedback gain for the problem setup. If there is no disturbance in equation 1,
i.e. wk ≡ 0, the associated feedforward gain, according to the tracking theory in Theorem 1, is K∗

ff =
Γ−K∗

fbF . Now, assume that the disturbance is present and the online control algorithm is used to design the
controller. In the online control algorithm, the parameter M is learned such that Kxk +

∑mw

t=1 M
[t−1]wk−t

in equation 29 approximates K∗
fbxk, see Lemma 5.2 of (Agarwal et al., 2019) or Theorem 2 in this paper.

However, the feedforward gain in equation 29 is Kff = Γ−KF which is clearly different from K∗
ff . It means

that while the optimal linear feedback for the system equation 1 is learned, the associated feedforward does
not change. This may result in a higher cost, specifically when K is away from K∗

fb. Our simulation results
clearly confirm this claim.

6.4 Performance during learning

In this subsection, we discuss the performance of the algorithms in Subsection 6.3 for the 6 cases of distur-
bance in Subsection 6.2. In Table 1, we summarize the final average cost; 1

T

∑T
k=1 ck(ek, uk) suffered by the

algorithms for T = 10000. We use bold to refer to the algorithm with the lowest average cost in each case
of the disturbance.

In Fig. 1, the evolution of the average cost JT = 1
T

∑T
k=1 ck(ek, uk) in equation 10 vs. T for the 6 cases of

disturbance in subsection 6.2 has been shown. Algorithm 1 learns a memory-augmented policy in form of
equation 12 by minimizing the truncated cost equation 19 as discussed in Subsection 5.1. One can see that
the average cost for Algorithm 1 decreases as more iterations are done.

When the disturbance is Gaussian and assuming that the dynamics of the reference signal is known, the
best linear feedback policy can be found by first selecting Kfb = −(R + BTPrB)−1BTPrA where Pr =
ARE(A,B,Q,R) and then computing Kff according to equation 4-equation 5 using the dynamics of the
reference. This is the LQR controller which gives the best average cost. From Fig. 1a, we can see that the
average costs by the online control algorithm with a fixed feedforward gain and Algorithm 1 approach the
average cost with the best linear feedback policy, without knowing the nature of the disturbance. The online
control algorithm with a fixed feedforward gain has a slightly better performance. The reason is thatK = Kfb

is the optimal feedback gain. As a result, the feedforward gain is selected optimally while Algorithm 1 learns
the feedforward part of the controller. Note that the online control algorithm with a fixed feedforward gain
and Algorithm 1 cannot get exactly the performance of the LQR because the memory-augmented policy in
equation 12 is an approximation of the linear feedback policy in equation 3.

A similar discussion is also valid for the case of random-walk disturbance, see Subsection 6.2, where we
showed that the optimal controller for the system when the disturbance is a random walk, is obtained by
solving an LQR problem for the extended system.

When the disturbance is not Gaussian or random walk, there is no analytical way to determine the best
linear feedback policy. In such cases, usually, the H∞-controller is used to design a linear feedback policy
to guarantee a finite L2-gain for the worst-case disturbance, and as such it is conservative. Indeed, if the
disturbance is not the worst-case, the H∞-controller does not have the best performance. As one can see
in Table 1 and Fig. 1, Algorithm 1 has lower average costs for uniformly sampled, constant, amplitude
modulation, and sinusoidal disturbances.

6.5 Evaluation after learning

We further evaluate the performance of the learned controllers by Algorithm 1 by using them to control the
system in equation 1 for Teval = 30 steps. The reference trajectory for the evaluation is shown in Fig. 2.
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(a) Gaussian (b) Constant

(c) Random walk (d) Amplitude modulation

(e) Uniformly sampled (f) Sinusoidal

Figure 1: The evolution of the average cost JT = 1
T

∑T
k=1 ck(ek, uk) in equation 10 vs. T for the presented

Algorithm 1, versus, the online control algorithm with a fixed feedforward gain, the H∞ control and the LQR
for Gaussian, random walk, uniformly sampled, constant, amplitude modultion and sinusoidal disturbances.
In each case, we generate the disturbance in the beginning of the simulation so the disturbance sequence is
the same for all algorithms. Details regarding disturbances are given in Subsection 6.2. The final values of
the average costs are reported in Table 1.
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Table 1: The final average costs suffered by the algorithms for running each algorithm for T = 10000 steps.
Bold values show the lowest average cost for each case of disturbance. The algorithm LQR for random walk
is the optimal controller in the case of random walk disturbance and thus it is only evaluated in this case.

Disturbance Algorithm 1 Online control with
fixed feedforward
gain

LQR H∞ LQR for random
walk

Gaussian 5.58 5.42 5.29 6.93 N.A.
Random walk 15.19 46.67 219.85 83.26 14.50
Uniformly sam. 10.10 15.19 22.05 25.32 N.A.
Constant 8.02 13.78 57.77 19.75 N.A.
Amplitude mod. 5.94 6.17 17.55 8.21 N.A.
Sinusoidal 6.35 6.41 30.17 11.63 N.A.

Figure 2: The reference signals used for the evaluation and comparison of different approaches under different
disturbances.

We generate the disturbance in the beginning of the simulation so the disturbance sequence is the same for
all algorithms during the evaluation. In Fig. 3-8, one can see the state tracking error for different cases
of the disturbances using the methods in Subsection 6.3. Figures 3-8 also confirm the results in Table 1.
For amplitude modulation and sinusoidal disturbances, the tracking errors by Algorithm 1 and the online
control with a fixed feedforward gain are zero while other approaches have significant nonzero errors. For the
constant disturbance, the tracking error by Algorithm 1 is near zero while other approaches have nonzero
errors. For stochastic disturbances, it is more difficult to understand the behavior from the tracking error
plots and the performance is better understood by the numbers in Table 1, but we have kept the figures
for completeness of the results. For the Gaussian disturbance, the performance of Algorithm 1 is almost
identical to the LQR controller which is the optimal controller in this case.

7 Conclusion

In this paper, we have considered the problem of state tracking in the presence of general disturbances. We
have proposed a memory-augmented controller and given an online algorithm to tune the parameters of the
controller. Our proposed algorithm tunes the parameters of the controller online to achieve state tracking
and disturbance rejection while minimizing general convex costs. We have proved that the algorithm attains
O(

√
T )-policy regret. In our future works, we will consider partially observable dynamical systems and aim

to remove the bounded assumption on the reference signal.
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Figure 3: Tracking error for the Gaussian disturbance for the presented Algorithm 1, versus, the online
control algorithm with a fixed feedforward gain, the H∞ control and the LQR control using the reference
signals in Fig. 2.

Figure 4: Tracking error for the random walk disturbance for the presented Algorithm 1, versus the online
control algorithm with a fixed feedforward gain, the H∞ control, the LQR control, and the LQR for random
walk using the reference signals in Fig. 2.

Figure 5: Tracking error for the uniformly sampled disturbance for the presented Algorithm 1, versus the
online control algorithm with a fixed feedforward gain, the H∞ control and the LQR control using the
reference signals in Fig. 2.
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Figure 6: Tracking error for the constant disturbance for the presented Algorithm 1, versus the online control
algorithm with a fixed feedforward gain, the H∞ control and the LQR control using the reference signals in
Fig. 2.

Figure 7: Tracking error for the amplitude modulation disturbance for the presented Algorithm 1, versus
the online control algorithm with a fixed feedforward gain, the H∞ control and the LQR control using the
reference signals in Fig. 2.

Figure 8: Tracking error for the sinusoidal disturbance for the presented Algorithm 1, versus the online
control algorithm with a fixed feedforward gain, the H∞ control and the LQR control using the reference
signals in Fig. 2.
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A Proof of Lemma 1

Consider the current and the l − 1 past outputs of the system

rk−l+1 = Fzk−l+1,

zk−l+2 = Szk−l+1,

rk−l+2 = Fzk−l+2 = FSzk−l+1,

....

Continuing like this for l steps, we get at the end

zk = Sl−1zk−l+1,

rk = FSl−1zk−l+1.
(30)

Let r̄k =

rk−l+1
...
rk

 be the concatenation of the outputs from rk−l+1 to rk. We have r̄k = Olzk−l+1. Since

the matrix Ol has full column rank rank(Ol) = p, any p × p matrix can be spanned by columns of Ol. In
particular, there exists a matrix N such that Sl−1 = NOl−1 and N = Sl−1O+

l . Using this result in the first
equation in equation 30

zk = Sl−1zk−l+1 = NOl−1zk−l+1 = Nr̄k.

B Proof of Lemma 2

Let xlin
k (Kfb,Kff ) denote solution to the system in equation 1 using the linear feedback policy ulin

k (Kfb,Kff )
in equation 3 and xπ

k (K,M,P ) denote the solution to the system in equation 1 using the memory-augmented
policy uπ

k (K,M,P ) in equation 12. We drop the arguments in xlin
k , ulin

k , xπ
k , u

π
k for clarity in the proof. Using

ulin
k , the closed-loop system reads

xlin
k+1 = (A+BKfb)xlin

k +BKffzk + wk

= (A+BKfb)xlin
k +BKff

l−1∑
q=0

N [l−q]rk−q + wk,

where we have used equation 8 in Lemma 1 to replace zk in the second line. xlin
k reads

xlin
k =

k∑
i=1

(A+BKfb)i−1BKff

l−1∑
q=0

N [l−q]rk−i−q +
k∑

i=1
(A+BKfb)i−1wk−i

=
k∑

i=1

l−1∑
q=0

(A+BKfb)i−1BKffN
[l−q]rk−i−q +

k∑
i=1

(A+BKfb)i−1wk−i. (31)

Now, we change the index in the first summation; it will simplify our derivations in other proofs. Introduce
j = i+ q and let 1 ≤ j ≤ k. We have two bounds for i which give two bounds for q after the change of the
variable j = i+ q.
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• The lower bound on i = j − q ≥ 1. From this, one should have that q ≤ j − 1. Since q ≤ l − 1 also
in the summation, we will have that q ≤ min(l − 1, j − 1).

• The upper bound on i = j − q ≤ k. Since j ≤ k, we have q ≥ (a negative number). Since q ≥ 0 in
the summation, we will have that q ≥ 0.

Combining these two boundaries for q, we have 0 ≤ q ≤ min(l − 1, j − 1). As a result, the above equation
can be written as

xlin
k =

k∑
j=1

min (l−1,j−1)∑
q=0

(A+BKfb)j−q−1BKffN
[l−q]rk−j +

k∑
i=1

(A+BKfb)i−1wk−i. (32)

Note that ck is convex in xlin
k , but based on equation 32, xlin

k is not convex in Kfb, Kff . As a result, ck(ek, uk)
is not convex in Kfb, Kff in general.

Next, we study the solution to the system in equation 1 using the memory-augmented policy uπ
k . Using uπ

k ,
the closed-loop system reads

xπ
k+1 =ÃKx

π
k +B

mw∑
t=1

M [t−1]wk−t + wk +B

mr−1∑
s=0

P [s]rk−s.

As a result, xπ
k reads

xπ
k =

k∑
i=1

Ãi−1
K B

mw∑
t=1

M [t−1]wk−i−t +
k∑

i=1
Ãi−1

K wk−i

+
k∑

i=1
Ãi−1

K B

mr−1∑
s=0

P [s]rk−i−s =
k∑

i=1

mw∑
t=1

Ãi−1
K BM [t−1]wk−i−t

+
k∑

i=1
Ãi−1

K wk−i +
k∑

i=1

mr−1∑
s=0

Ãi−1
K BP [s]rk−i−s. (33)

Again, we change the indices in the summations. The reasoning is similar to what we discussed earlier. For
the first summation, introduce j = i+ t and let 1 ≤ j ≤ k. We have two bounds for i which give two bounds
for t after the change of the variable j = i+ t.

• The lower bound on i = j − t ≥ 1. From this, one should have that t ≤ j − 1. Since t ≤ mw also in
the summation, we will have that t ≤ min(mw, j − 1).

• The upper bound on i = j − t ≤ k. Since j ≤ k, we have t ≥ (a negative number). Since t ≥ 1 in
the summation, we will have that t ≥ 1.

Combining these two boundaries for t, we have 1 ≤ t ≤ min(mw, j− 1). For the third summation, introduce
j = i+ s and let 1 ≤ j ≤ k. We can follow a similar reasoning and show that 0 ≤ s ≤ min(mr − 1, j − 1).

xπ
k =

k∑
j=1

min(mw,j−1)∑
t=1

Ãj−t−1
K BM [t−1]wk−j +

k∑
i=1

Ãi−1
K wk−i (34)

+
k∑

j=1

min(mr−1,j−1)∑
s=0

Ãj−s−1
K BP [s]rk−j .

Note that ck is convex in xπ
k and xπ

k is linear in M, P . As a result, ck(ek, uk) is convex in M, P .
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C Proof of Lemma 3

Based on Lemma 2, the expression of the state at time k becomes,

xπ
k =

k∑
i=1

mw∑
t=1

Ãi−1
K BM

[t−1]
k−i wk−i−t +

k∑
i=1

Ãi−1
K wk−i +

k∑
i=1

mr−1∑
s=0

Ãi−1
K BP

[s]
k−irk−i−s. (35)

Forming xπ
k−h for any h ≥ 0, multiplying it by Ãh

K , and subtracting xπ
k from Ãh

Kx
π
k−h yields

xπ
k−Ãh

Kx
π
k−h =

k∑
j=1

Ãj−1
K wk−j −

k∑
j=h+1

Ãj−1
K wk−i +

k∑
j=1

mw∑
t=1

Ãj−1
K BM

[t−1]
k−j wk−j−t

−
k∑

j=h+1

mw∑
t=1

Ãj−1
K BM

[t−1]
k−j wk−j−t +

k∑
j=1

mr−1∑
s=0

Ãj−1
K BP

[s]
k−jrk−j−s −

k∑
j=h+1

mr−1∑
s=0

Ãj−1
K BP

[s]
k−jrk−j−s

=
h∑

j=1
Ãj−1

K wk−j +
h∑

j=1

mw∑
t=1

Ãj−1
K BM

[t−1]
k−j wk−j−t +

h∑
j=1

mr−1∑
s=0

Ãj−1
K BP

[s]
k−jrk−j−s

In the second summation, introduce y = j+t−1 and change the order of summations, so y = 0, ..., h+mw −1.
Similarly, introduce z = j + s so, z = 0, ..., h+mr − 1 and then j − 1 → j

xπ
k − Ãh

Kx
π
k−h =

h−1∑
j=0

Ãj
Kwk−j−1 +

mw+h−1∑
y=0

h∑
j=1

Ãj−1
K BM

[y−j]
k−j wk−y−1 +

h+mr−1∑
z=0

h∑
j=1

Ãj−1
K BP

[z−j]
k−j rk−z

=
h−1∑
a=0

Ãa
Kwk−a−1 +

mw+h−1∑
y=0

h−1∑
j=0

Ãj
KBM

[y−j−1]
k−j−1 wk−y−1 +

h+mr−1∑
z=0

h−1∑
j=0

Ãj
KBP

[z−j−1]
k−j−1 rk−z.

Then, based on equation 13, we have

xπ
k =xK

k (M0:k−1, P0:k−1) = Ãh
Kx

π
k−h +

mw+h−1∑
y=0

ΨK,h
k,y (Mk−h−1:k−1)wk−y−1

+
mr+h−1∑

z=0
ψK,h

k,z (Pk−h−1:k−1)rk−z.

Set h = k and note that y ≤ k − 1 and z ≤ k − 1. Then, equation 16 is concluded.

D Supporting Lemmas

Lemma 4 Let Assumptions 1-5 hold. Suppose that K is (κ, γ)-strongly stable. Then,

∥ΨK,h
k,y ∥ ≤ κ2(1 − γ)yIy≤h−1 +mwκ

5κ2
b(1 − γ)y−1,

∥ψK,h
k,z ∥ ≤ mrκ

5κ2
b(1 − γ)z−1.

(36)

Proof: To prove the first statement in equation 36 note that

∥ΨK,h
k,y ∥ ≤∥Ãy

KIy≤h−1∥ + ∥
h−1∑
j=0

Ãj
KBM

[y−j−1]
k−j−1 I1≤y−j≤mw ∥

≤κ2(1 − γ)yIy≤h−1 +
h−1∑
j=0

κ2κ2
bκ

3(1 − γ)y−1I1≤y−j≤mw

≤κ2(1 − γ)yIy≤h−1 +mwκ
5κ2

b(1 − γ)y−1,
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where the second inequality follows from (κ, γ)-stability of the controller gain K and Assumption 5 which
gives the bound for M . The proof of the second statement follows similarly.

Lemma 5 Let Assumptions 1-5 hold. Define

Y0:k := [M0:k, P0:k],
YH,k := [Mk−H:k, Pk−H:k].

(37)

D :=γ−1κwκ
3 + (κrmr + κwmw)(1 − γ)−1κ6κ2

b

1 − κ2(1 − γ)H
+ (κw + κbκnκr)κbκ

3

γ
,

where κn = ∥K∗
ff

∑l−1
q=0 N

[l−q]∥.

Suppose that K and K∗
fb are (κ, γ)-strongly stable. Define xlin

k (K∗
fb,K

∗
ff ) as the system state corresponding

to an optimal linear feedback controller. Then, one has

max(∥xπ
k (Y0:k−1)∥, ∥x̃π

k (YH,k−1)∥, ∥xlin
k (K∗

fb,K
∗
ff )∥) ≤ D, (38)

max(∥uπ
k (Y0:k)∥, ∥ũπ

k (YH,k)∥) ≤ D, (39)
∥xπ

k (Y0:k−1) − x̃π
k (YH,k−1)∥ ≤ κ2(1 − γ)HD, (40)

∥uπ
k (Y0:k) − ũπ

k (YH,k)∥ ≤ κ3(1 − γ)HD. (41)

Proof: Using equation 15, we have

∥xπ
k∥ ≤∥ÃH

K∥∥xπ
k−H∥ + κw

mw+H−1∑
y=0

∥ΨK,H
k,y (Mk−H−1:k−1)∥ + κr

mr+H−1∑
z=0

∥ψK,H
k,z (Pk−H−1:k−1)∥

≤κ2(1 − γ)H∥xπ
k−H∥ + κwγ

−1(κ2 +mwκ
5κ2

b(1 − γ)−1) + κrγ
−1(mrκ

5κ2
b)(1 − γ)−1.

The above recursion satisfies

∥xπ
k∥ ≤ γ−1κwκ

2 + (κrmr + κwmw)(1 − γ)−1κ5κ2
b

1 − κ2(1 − γ)H
.

Similarly, from equation 17, one has

∥x̃π
k (YH,k−1)∥ ≤

mw+H−1∑
y=0

∥ΨK,H
k,y (Mk−H−1:k−1)wk−y−1∥ +

mr+H−1∑
z=0

∥ψK,H
k,z (Pk−H−1:k−1)rk−z∥

≤ γ−1κwκ
2 + γ−1(κwmw + κrmr)κ5κ2

b(1 − γ)−1 ≤ D.

where the last inequality is obtained because 0 ≤ 1 − κ2(1 − γ)H ≤ 1. Moreover,

∥xlin
k (K∗

fb,K
∗
ff )∥ =∥

k−1∑
y=0

Ãy
K∗

fb
wk−y−1 +

k−1∑
i=0

Ãi
K∗

fb
BK∗

ffzk−i∥

≤∥
k−1∑
y=0

Ãy
K∗

fb
wk−y−1∥ + ∥

k−1∑
i=0

Ãi
K∗

fb
BK∗

ff

l−1∑
q=0

N [l−q]rk−i−q∥

≤γ−1κ2(κw + κbκnκr) ≤ D.
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Beside, one has

∥uπ
k (Y0:k)∥ = ∥Kxπ

k (Y0:k−1) +
mw∑
t=1

M [t−1]wk−t +
mr−1∑
s=0

P [s]rk−s∥

≤ κ∥xπ
k (Y0:k−1)∥ + κw

mw∑
t=1

κbκ
3(1 − γ)(t−1) + κr

mr−1∑
s=0

κbκ
3(1 − γ)s

≤ γ−1κwκ
3 + (κrmr + κwmw)(1 − γ)−1κ6κ2

b

1 − κ2(1 − γ)H
+ (κw + κr)κbκ

3

γ
≤ D.

Similarly,

∥ũπ
k (YH,k)∥ = ∥Kx̃π

k (YH,k−1) +
mw∑
t=1

M [t−1]wk−t +
mr−1∑
s=0

P [s]rk−s∥

≤ κ∥x̃π
k (YH,k−1)∥ + κw

mw∑
t=1

κbκ
3(1 − γ)(t−1) + κr

mr−1∑
s=0

κbκ
3(1 − γ)s

≤ γ−1κwκ
3 + γ−1(κwmw + κrmr)κ6κ2

b(1 − γ)−1 + (κw + κr)κbκ
3

γ
≤ D.

To bound the difference between the actual and truncated state, from equation 17 and equation 15, one has

∥xπ
k (Y0:k−1) − x̃π

k (YH,k−1)∥ = ∥ÃH
Kx

π
k−H(Y0:k−H−1)∥ ≤ κ2(1 − γ)HD

which gives

∥uπ
k (Y0:k) − ũπ

k (YH,k)∥ ≤ ∥K∥∥ÃH
Kx

π
k−H(Y0:k−H−1)∥ ≤ κ3(1 − γ)HD.

This completes the proof.

Lemma 6 Let Assumptions 1-5 hold. Suppose that K is (κ, γ)-strongly stable. Define

κz := ∥ψK,k
k,z (P0:k−1) − ΠN [l−z]∥.

Then, the tracking error bound is given by

∥ek∥ ≤ κwγ
−1(κ2 +mwκ

5κ2
b(1 − γ)) + κrγ

−1(1 − γ)l−1mrκ
5κ2

b + κr

l−1∑
z=0

κz. (42)

Proof: First, note that κz is bounded because ψK,k
k,z (P0:k−1) is bounded, see Lemma 4. Using equation 5, the

tracking error is defined as

ek = xπ
k (Y0:k−1) − Fzk = xπ

k (Y0:k−1) − Πzk

where xπ
k (Y0:k−1) is defined in equation 16. Using Lemma 1 to replace zk with a linear combination of the

outputs of the reference

ek =
k−1∑
y=0

ΨK,k
k,y (M0:k−1)wk−y−1 +

k−1∑
z=0

ψK,k
k,z (P0:k−1)rk−z − Π

l−1∑
q=0

N [l−q]rk−q

=
k−1∑
y=0

ΨK,k
k,y (M0:k−1)wk−y−1 +

l−1∑
z=0

(ψK,k
k,z (P0:k−1) − ΠN [l−z])rk−z +

k−1∑
z=l

ψK,k
k,z (P0:k−1)rk−z.
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Using the bounds in equation 4

∥ek∥ ≤
k−1∑
y=0

(κ2(1 − γ)yIy≤k−1 +mwκ
5κ2

b(1 − γ)y−1)κw +
l−1∑
z=0

∥ψK,k
k,z (P0:k−1) − ΠN [l−z]∥κr

+
k−1∑
z=l

mrκ
5κ2

b(1 − γ)z−1κr

≤κwγ
−1(κ2 +mwκ

5κ2
b(1 − γ)−1) + κr

l−1∑
z=0

κz + κrγ
−1(1 − γ)l−1mrκ

5κ2
b

where we have used the fact that
∑N

n=0(1 − γ)n ≤ 1
γ in the last inequality.

Lemma 7 Define YH,k = [Y1, ..., Yt, ..., Y2H ] = [Mk−H:k Pk−H:k] and ỸH,k = [Y1, ..., Ỹt, ..., Y2H ] where ỸH,k

has all its elements the same as YH,k, except one element. Then, the truncated cost function in equation 19
satisfies the following Lipschitz condition

|fk(Y1, , ..., Yt, ..., Y2H) − fk(Y1, , ..., Ỹt, ..., Y2H)| ≤ Lf ∥Yt − Ỹt∥

where

Lf := 3GcDκbκ
3(κr + κw). (43)

Proof: Based on Assumption 4, one has

|fk(Y1, , ..., Yt, ..., Y2H) − fk(Y1, , ..., Ỹt, ..., Y2H)| (44)
≤ GcD∥ẽπ

k (YH,k) − ẽπ
k (ỸH,k)∥ +GcD∥ũπ

k (YH,k) − ũπ
k (ỸH,k)∥.

where ẽπ
k = x̃π

k − rk. Using

ẽπ
k (YH,k) − ẽπ

k (ỸH,k) = x̃π
k (YH,k) − rk + x̃π

k (ỸH,k) − rk = x̃π
k (YH,k) − x̃π

k (ỸH,k)

in equation 44 yields

|fk(Y1, , ..., Yt, ..., Y2H) − fk(Y1, , ..., Ỹt, ..., Y2H)|
≤ GcD∥x̃π

k (YH,k) − x̃π
k (ỸH,k)∥ +GcD∥ũπ

k (YH,k) − ũπ
k (ỸH,k)∥.

Based on equation 17, if YH,k and ỸH,k differs in an Mt element, one has

∥x̃π
k (YH,k) − x̃π

k (ỸH,k)∥ = ∥Ãt
KB

mw+H−1∑
i=0

(
M i−t

t − M̃ i−t
t

)
wk−iI1≤i−t≤mw

∥

≤ κbκ
2(1 − γ)tκw

2H∑
i=1

∥Y [i]
t − Ỹ

[i]
t ∥. (45)

On the other hand, if YH,k and ỸH,k differs in an P element, one has

∥x̃π
k (YH,k) − x̃π

k (ỸH,k)∥ = ∥Ãt
KB

mr+H−1∑
i=0

(
P i−t

t − P̃ i−t
t

)
rk−iI1≤i−t≤mw

∥

≤ κbκ
2(1 − γ)tκr

2H∑
i=1

∥Y [i]
t − Ỹ

[i]
t ∥. (46)
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Combining equation 45-equation 46, one has

∥x̃π
k (YH,k) − x̃π

k (ỸH,k)∥ ≤ κbκ
2(1 − γ)t(κr + κw)

2H∑
i=1

(
Y

[i]
t − Ỹ

[i]
t

)
≤ κbκ

2(κr + κw)∥Yt − Ỹt∥. (47)

On the other hand, based on equation 18, one has

∥ũπ
k (YH,k) − ũπ

k (ỸH,k)∥ =∥K(x̃π
k (YH,k) − x̃π

k (ỸH,k)) +
mw+mr∑

i=1

(
Y

[i]
t − Ỹ

[i]
t

)
∥

≤
(
κbκ

3(1 − γ)t(κr + κw) + 1
) 2H∑

i=1
∥Y [i]

t − Ỹ
[i]

t ∥ ≤ 2κbκ
3(κr + κw))∥Yt − Ỹt∥

(48)

where the first equality is obtained based on the fact that K is (κ, γ)-stable (see Definition 1). Using
equation 47 and equation 48 in equation 44 completes the proof.

Lemma 8 Let Assumption 5 is satisfied. Then, the following gradient bound is satisfied

∥∇YH,k
fk(YH,k)∥F ≤ 6Hd2Gc (κr + κw)κbκ

3γ−1Gf (49)

where d = max(n,m).

Proof: To prove the claim, We bound ∇
Y

[l]
p,q
fk(YH,k) for every p ∈ {1, ...,m}, q ∈ {1, ..., n} and l ∈ {1, ..., 2H}.

We find the bound for the two cases: when Y
[l]

p,q = M
[l1]
p,q , for which l1 ∈ {1, ...,mw}, and when Y

[l2]
p,q = P

[l]
p,q,

for which l2 ∈ {1, ...,mr}. For the first case, similar to Zhao et al. (2022), one can show that

|∇
M

[l]
p,q
fk(YH,k)| ≤ 3Gcκwκbκ

3γ−1. (50)

For the second case, using the same procedure as in Zhao et al. (2022), one can show that

|∇
P

[l]
p,q
fk(YH,k)| ≤ 3Gcκrκbκ

3γ−1. (51)

Therefore, since pq ≤ max(n,m)2 = d2, and l1 + l2 = 2H, one has ∥∇YH,k
fk(YH,k)∥F ≤ 6Hd2Gc (κr +

κw)κbκ
3γ−1.

E Proof of Theorem 2

The solution to the system in equation 1 using the linear feedback controller in equation 3 is given in
equation 32. Using equation 32, the linear feedback controller in equation 3 reads

ulin
k =Kfbx

lin
k +Kff

l−1∑
j=0

N [l−j]rk−j

=
k∑

j=1

min(l−1,j−1)∑
q=0

Kfb(A+BKfb)j−q−1BKffN
[l−q]rk−j

+
k∑

i=1
Kfb(A+BKfb)i−1wk−i +

l−1∑
j=0

KffN
[l−j]rk−j . (52)
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We aim to approximate equation 52 with a memory-augmented policy in equation 12. Replacing equation 32
in the memory-augmented policy equation 12, we get

uπ
k =Kxk +

mw∑
i=1

M [i−1]wk−i +
mr−1∑
j=0

P [j]rk−j

=
k∑

j=1

min(l−1,j−1)∑
q=0

K(A+BKfb)j−q−1BKffN
[l−q]rk−j

+
k∑

i=1
K(A+BKfb)i−1wk−i +

mw∑
i=1

M [i−1]wk−i +
mr−1∑
j=0

P [j]rk−j . (53)

Now, we derive ulin
k − uπ

k

ulin
k − uπ

k =
mw∑
i=1

[(Kfb −K)(A+BKfb)i−1 −M [i−1]]wk−i

+
k∑

i=mw+1
(Kfb −K)(A+BKfb)i−1wk−i

+
k∑

j=1

min(l−1,j−1)∑
q=0

(Kfb −K)(A+BKfb)j−q−1BKffN
[l−q]rk−j

+
l−1∑
j=0

KffN
[l−j]rk−j −

mr−1∑
j=0

P [j]rk−j . (54)

Select M [i−1]
w = (Kfb −K)(A+BKfb)i−1 for i = 1, ...,mw. This makes the coefficients of wk−i equal to zero

for i = 1, ...,mw.

Similarly, we try to make the coefficients of rk−j equal to zero. We have three cases. a) j = 0. rk appears
in the fourth line of equation 54 and its coefficient becomes zero by selecting P [0] = KffN

[l]. b) 0 < j < l.
In this case, rk−j appears in the third and fourth lines of equation 54 and min(l− 1, j − 1) = j − 1. Setting
the coefficient of rk−j equal to zero

j−1∑
q=0

(Kfb −K)(A+BKfb)j−q−1BKffN
[l−q] +KffN

[l−j] − P [j] = 0,

we have

P [j] =
j−1∑
q=0

(Kfb −K)(A+BKfb)j−q−1BKffN
[l−q] +KffN

[l−j].

Finally c) l ≤ j < mr. In this case, rk−j appears in the third and forth lines of equation 54 and min(l −
1, j − 1) = l − 1. Setting the coefficient of rk−j equal to zero

l−1∑
q=0

(Kfb −K)(A+BKfb)j−q−1BKffN
[l−q] − P [j] = 0,

we have

P [j] =
l−1∑
q=0

(Kfb −K)(A+BKfb)j−q−1BKffN
[l−q].
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The aforementioned results are summarized in equation 20. If we select M, P according to equation 20, then
ulin

k − uπ
k reads,

ulin
k − uπ

k =
k∑

i=mw+1
(Kfb −K)(A+BKfb)i−1wk−i +

k∑
j=mr

l−1∑
q=0

(Kfb −K)(A+BKfb)j−q−1BKffN
[l−q]rk−j

=
k∑

i=mw+1
M [i−1]wk−i +

k∑
j=mr

P [j]rk−j . (55)

As a result

∥ulin
k − uπ

k∥ ≤
k∑

i=mw+1
κbκ

3(1 − γ)i−1κw +
k∑

j=mr

κbκ
3(1 − γ)jκr

=
k−mw−1∑

t=0
κbκ

3(1 − γ)t+mwκw +
k−mr∑

s=0
κbκ

3(1 − γ)s+mrκr

≤γ−1κbκ
3(1 − γ)mwκw + γ−1κbκ

3(1 − γ)mrκr.

where we changed the indices in the summations as t = i−mw − 1 and s = j −mr to get the equality and
used the fact that

∑N
n=0(1 − γ)n ≤ 1

γ to get the last inequality.

F Proof of Theorem 3

Using ulin
k in equation 3, xlin

k+1 can be written as

xlin
k+1 =Axlin

k +Bulin
k + wk = ÃKx

lin
k +B(Kfb −K)xlin

k +BKff

l−1∑
j=0

N [l−j]rk−j + wk. (56)

Using uπ
k in equation 12, xπ

k+1 can be written as

xπ
k+1 =ÃKx

π
k +B

mw∑
t=1

M [t−1]wk−t + wk +B

mr−1∑
s=0

P [s]rk−s. (57)

Based on equation 56-equation 57

xlin
k+1 − xπ

k+1 =ÃK(xlin
k − xπ

k ) +B(Kfb −K)xlin
k +BKff

l−1∑
j=0

N [l−j]rk−j

−B

mw∑
t=1

M [t−1]wk−t −B

mr−1∑
s=0

P [s]rk−s.

Replace xlin
k from equation 32 in B(Kfb −K)xlin

k

xlin
k+1 − xπ

k+1 =ÃK(xlin
k − xπ

k ) +B(Kfb −K)
k∑

j=1

min (l−1,j−1)∑
q=0

(A+BKfb)j−q−1BKffN
[l−q]rk−j

+B(Kfb −K)
k∑

i=1
(A+BKfb)i−1wk−i +BKff

l−1∑
j=0

N [l−j]rk−j

−B

mw∑
t=1

M [t−1]wk−t −B

mr−1∑
s=0

P [s]rk−s. (58)
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Using Mw in equation 20, the terms containing w in the above equation read

tw = B(Kfb −K)
k∑

i=1
(A+BKfb)i−1wk−i −B

mw∑
t=1

M [t−1]wk−t

= B(Kfb −K)
k∑

i=1
(A+BKfb)i−1wk−i −B(Kfb −K)

mw∑
t=1

(A+BKfb)t−1wk−t

= B(Kfb −K)
k∑

t=mw+1
(A+BKfb)t−1wk−t.

Using P in equation 20, the terms containing r in the above equation read

tr =B(Kfb −K)
k∑

j=1

min (l−1,j−1)∑
q=0

(A+BKfb)j−q−1BKffN
[l−q]rk−j +BKff

l−1∑
j=0

N [l−j]rk−j

−B

mr−1∑
s=0

P [s]rk−s = B(Kfb −K)
k∑

j=1

min (l−1,j−1)∑
q=0

(A+BKfb)j−q−1BKffN
[l−q]rk−j

+BKff

l−1∑
j=0

N [l−j]rk−j −B(Kfb −K)
mr−1∑
s=1

min(l−1,s−1)∑
q=0

(A+BKfb)s−q−1BKffN
[l−q]rk−s

−BKff

l−1∑
s=0

N [l−s]rk−s = B(Kfb −K)
k∑

s=mr

l−1∑
q=0

(A+BKfb)s−q−1BKffN
[l−q]rk−s.

Using tw, tr in equation 58, xlin
k+1 − xπ

k+1 reads

xlin
k+1 − xπ

k+1 =ÃK(xlin
k − xπ

k ) +B(Kfb −K)
k∑

t=mw+1
(A+BKfb)t−1wk−t

+B(Kfb −K)
k∑

s=mr

l−1∑
q=0

(A+BKfb)s−q−1BKffN
[l−q]rk−s.

Since ÃK is stable, xlin
k − xπ

k reads

xlin
k − xπ

k =
k∑

i=1
Ãi−1

K B(Kfb −K)
k−i∑

t=mw+1
(A+BKfb)t−1wk−i−t

+
k∑

i=1
Ãi−1

K B(Kfb −K)
k−i∑

s=mr

l−1∑
q=0

(A+BKfb)s−q−1BKffN
[l−q]rk−i−s.

Since it should hold that k − i ≥ mw + 1 in the second line and k − i ≥ mr in the third line,

xlin
k − xπ

k =
k−mw−1∑

i=1
Ãi−1

K B(Kfb −K)
k−i∑

t=mw+1
(A+BKfb)t−1wk−i−t

+
k−mr∑

i=1
Ãi−1

K B(Kfb −K)
k−i∑

s=mr

l−1∑
q=0

(A+BKfb)s−q−1BKffN
[l−q]rk−i−s.

Using equation 20, we have

xlin
k − xπ

k =
k−mw−1∑

i=1
Ãi−1

K B

k−i∑
t=mw+1

M [t−1]wk−i−t +
k−mr∑

i=1
Ãi−1

K B

k−i∑
s=mr

P [s]rk−i−s. (59)
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Based on (κ, γ)-stability of K and Assumption 5

∥xlin
k − xπ

k∥ ≤
k−mw−1∑

i=1
κ2κb(1 − γ)i−1

k−i∑
t=mw+1

κbκ
3(1 − γ)t−1κw

+
k−mr∑

i=1
κ2κb(1 − γ)i−1

k−i∑
s=mr

κbκ
3(1 − γ)sκr

=
k−mw−1∑

i=1
κ2κb(1 − γ)i−1

k−i−mw−1∑
p=0

κbκ
3(1 − γ)p+mwκw

+
k−mr∑

i=1
κ2κb(1 − γ)i−1

k−i−mr∑
q=0

κbκ
3(1 − γ)q+mrκr

≤
k−mw−1∑

i=1
κ2κb(1 − γ)i−1γ−1κbκ

3(1 − γ)mwκw

+
k−mr∑

i=1
κ2κb(1 − γ)i−1γ−1κbκ

3(1 − γ)mrκr

≤γ−2κ2
bκ

5(1 − γ)mwκw + γ−2κ2
bκ

5(1 − γ)mrκr.

where we changed the indices in the summations as p = t−mw − 1 and q = s−mr to get the equality and
used the fact that

∑N
n=0(1 − γ)n ≤ 1

γ in the last two inequalities.

G Proof of Theorem 4

Before proving the regret bound, we present Lemma 9 which provides an upper bound for the difference
between the costs using optimal linear controller and optimal memory-augmented control policy.

Lemma 9 Let Assumptions 1-5 hold. Let K∗
f = [K∗

fb K
∗
ff ] denote the optimal linear gain. Let xlin

k (K∗
f )

denote the state using the optimal linear controller ulin
k (K∗

f ). Set H = mw = mr and let Y ∗ =
[M [0]∗, ...,M [H−1]∗, P [0]∗, ..., P [H−1]∗] denote the optimal weights learned by Algorithm 1. Let x̃π

k (Y ∗), ũπ
k (Y ∗)

denote the truncated state and control using the optimal weights according to equation 17-equation 18. Then

|ck(x̃π
k (Y ∗) − rk, ũ

π
k (Y ∗)) − ck

(
xlin

k (K∗
f ) − rk, u

lin
k (K∗

f )
)
| ≤ 2GcDγ

−1H(κw + κr)κ6κ2
b(1 − γ)(H−1). (60)

Proof of Lemma 9:

By selecting K = K∗
fb, M = 0 and P [s] = K∗

ffN
[l−s], 0 ≤ s < l, equation 16 can be used to express xlin

k (K∗
f )

xlin
k (K∗

f ) =
k−1∑
y=0

ΨK∗
fb,k

k,y wk−y−1 +
k−1∑
z=0

ψ
K∗

fb,k

k,z rk−z =
H−1∑
y=0

ΨK∗
fb,k

k,y wk−y−1 +
H−1∑
z=0

ψ
K∗

fb,k

k,z rk−z

+
k−1∑
y=H

ΨK∗
fb,k

k,y wk−y−1 +
k−1∑
z=H

ψ
K∗

fb,k

k,z rk−z =
k−1∑
y=H

ΨK∗
fb,k

k,y wk−y−1 +
k−1∑
z=H

ψ
K∗

fb,k

k,z rk−z + xlin
H (K∗

f ).

As a result, ∥xlin
k (K∗

f ) − x̃π
k (Y ∗)∥ reads

∥xlin
k (K∗

f ) − x̃π
k (Y ∗)∥ ≤ ∥xlin

H (K∗
f ) − x̃π

H(Y ∗)∥ + ∥
k−1∑
y=H

ΨK∗
fb,k

k,y wk−y−1∥ + ∥
k−1∑
z=H

ψ
K∗

fb,k

k,z rk−z∥.
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By equation 59, ∥xlin
H (K∗

f ) − x̃π
H(Y ∗)∥ = 0. By Lemma 5

∥
k−1∑
y=H

ΨK∗
fb,k

k,y wk−y−1∥ ≤
k−1∑
y=H

Hκ5κ2
b(1 − γ)y−1κw ≤ γ−1Hκ5κ2

b(1 − γ)H−1κw,

∥
k−1∑
y=H

ψ
K∗

fb,k

k,z rk−z∥ ≤
k−1∑
y=H

Hκ5κ2
b(1 − γ)y−1κr ≤ γ−1Hκ5κ2

b(1 − γ)H−1κr.

(61)

Hence,

∥xlin
k (K∗

f ) − x̃π
k (Y ∗)∥ ≤ γ−1H(κw + κr)κ5κ2

b(1 − γ)H−1.

Next, we find ∥ulin
k (K∗

f ) − ũπ
k (Y ∗)∥. In equation 18, set K ≡ K∗

fb. Then, one has

ulin
k (K∗

f ) = K∗
fbx

lin
k +

H−1∑
s=0

P ∗rk−s =
k−1∑
y=H

K∗
fbΨK∗

fb,k

k,y wk−y−1 +
k−1∑
z=H

K∗
fbψ

K∗
fb,k

k,z rk−z +K∗
fbx

lin
H +

H−1∑
s=0

P ∗rk−s

=
k−1∑
y=H

K∗
fbΨK∗

fb,k

k,y wk−y−1 +
k−1∑
z=H

K∗
fbψ

K∗
fb,k

k,z rk−z + ulin
H (K∗

f ).

As a result, one can write

∥ulin
k (K∗

f ) − ũπ
k (Y ∗)∥ ≤ ∥ulin

H (K∗
f ) − ũπ

k (Y ∗)∥ +
k−1∑
y=H

∥K∗
fbΨK∗

fb,k

k,y wk−y−1∥ +
k−1∑
z=H

∥K∗
fbψ

K∗
fb,k

k,z rk−z∥.

By equation 55, ∥ulin
H (K∗

f ) − ũπ
k (Y ∗)∥ = 0. Using equation 61

∥ulin
k (K∗

f )−ũπ
k (Y ∗)∥ ≤ γ−1H(κw + κr)κ6κ2

b(1 − γ)H−1.

Therefore,

|ck(x̃π
k (Y ∗) − rk, ũ

π
k (Y ∗)) − ck

(
xlin

k (K∗
f ) − rk, u

lin
k (K∗

f )
)
|

≤GcD∥xlin
k (K∗

f ) − x̃π
k (Y ∗)∥ +GcD∥ulin

k (K∗
f ) − ũπ

k (Y ∗)∥
≤2GcDγ

−1H(κw + κr)κ6κ2
b(1 − γ)(H−1).

Proof of Theorem 4: The regret reads

Regret =
T∑

k=1
ck(ek, uk) − min

Kf ∈K

T∑
k=1

ck(ek, uk) (62)

=
T∑

k=1
ck(ek(Y0:k−1), uk(Y0:k−1)) −

T∑
k=1

fk(YH,k)︸ ︷︷ ︸
αT

+
T∑

k=1
fk(YH,k) −

T∑
k=1

fk(Y ∗)︸ ︷︷ ︸
βT

+
T∑

k=1
fk(Y ∗) − min

Kf ∈K

T∑
k=1

ck

(
ek, uk

)
︸ ︷︷ ︸

ζT
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where Y ∗ = [M [0]∗, ...,M [H−1]∗, P [0]∗, ..., P [H−1]∗] ∈ (Rm×n)2H denote the optimal weights learned by Algo-
rithm 1 satisfying Assumption 5.

The regret analysis is split into three parts: αT denotes the difference between the cost of Algorithm 1 and
the truncated cost. βT denotes the difference between the truncated and optimal truncated costs. ζT denotes
the difference between the optimal truncated cost and the optimal linear control policy.

We now bound the first term αT . One has

|ck(ek, uk) − fk(YH,k)| ≤ Gc D ∥(xK
k (Y0:k−1) − rk) − (x̃π

k (YH,k) − rk)∥ +GcD ∥uK
k (Y0:k−1) − ũπ

k (YH,k)∥
≤ 2GcD

2κ3(1 − γ)H

where we have used Lemma 5 to get the above result. Therefore,

∥αT ∥ = ∥
T∑

k=1
ck(ek, uk) −

T∑
k=1

fk(YH,k)∥ ≤ 2T GcD
2κ3(1 − γ)H = O(

√
T ) (63)

where the last equality is obtained based on H = O(log T ).

We can bound the term βT by Theorem 4.6 of Agarwal et al. (2019) and the results of Lemmas 7 and 8 as

T∑
k=1

fk(YH,k) −
T∑

k=1
fk(Y ∗) ≤ 1

η
M2

b + TG2
fη + LfH

2ηGfT (64)

where Mb := 2
√
dκbκ

3γ−1, d = max(n,m). By selecting η = O( 1√
T

), H = O(log T ), we have βT = O(
√
T ).

We now bound the third term ζT . Based on equation 63, one has,

∥
T∑

k=1
fk(Y ∗)−

T∑
k=1

ck

(
xlin

k (Kf ∗) − rk, u
lin
k (Kf ∗)

)
∥

≤ ∥
T∑

k=1
ck(x̃π

k (Y ∗) − rk, ũ
π
k (Y ∗)) −

T∑
k=1

ck

(
xlin

k (K∗
f ) − rk, u

lin
k (K∗

f )
)
∥ + 2T GcD

2κ3(1 − γ)H .

Using Lemma 9,

∥
T∑

k=1
fk(Y ∗) −

T∑
k=1

ck

(
xlin

k (Kf ∗) − rk, u
lin
k (Kf ∗)

)
∥ ≤2TGcDγ

−1H(κw + κr)κ6κ2
b(1 − γ)(H−1)

+ 2T GcD
2κ3(1 − γ)H = O(

√
T ) (65)

where the last equality is obtained based on H = O(log T ).

H Additional simulation results for changing reference generator dynamics

Our proof of the regret bound in Theorem 4, is independent of the dynamics of the reference signal generator
(S, F ). We make Assumption 3, stating that the reference signal is bounded and the output of the reference
signal is measurable. We also assume that the classical state-tracking problem is solvable, such that the
problem setup is meaningful. Since the information of (S, F ) is not used, we expect that our algorithm
works even if (S, F ) changes at some steps. Theoretical guarantees for changing (S, F ) however require
careful examination of the theories to define the minimum time intervals between dynamics changes and it
is out of the scope of this paper. In the sequel, we give some simulation results to show the performance of
Algorithm 1 against the other control approaches in Section 6.3.
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We consider the same problem setup as Section 6, including the same types of disturbances. We assume that
the dynamics of the reference generator changes at Tchange = 8000 from (S1, F1) in equation 26 to (S2, F2)

zk+1 =

 0 1 0
−1 0 0
0 0 0

 zk, zTchange = [1, 0,−1]T ,

rk =
[
0 0 −1
1 0 1

]
zk.

(66)

All control approaches in Section 6.3, namely the Online control algorithm with a fixed feedforward gain,
LQR, and H∞-control, require a method to detect when the dynamics of the reference generator changes to
learn the new dynamics and compute the new feedforward gain. However, our algorithm does not need such
a detection algorithm. In the simulation result, we have assumed the Online control algorithm with a fixed
feedforward gain, LQR, and H∞-control are aware of Tchange. Let Γ1, Π1 be the solution to the tracking
equation in equation 5 using (S1, F1) and Γ2, Π2 be the solution to the tracking equation in equation 5 using
(S2, F2). At the beginning of the simulation, the feedforward gain in the Online control algorithm with a
fixed feedforward gain is set to Kff1 = Γ1 − KF1. Similarly, we set Kff1 = Γ1 − KfbF1 in the LQR, and
H∞-control approaches. At k = Tchange, we change the feedforward gain according to the new dynamics to
Kff2 = Γ2 − KF2 and Kff2 = Γ2 − KfbF2 in the Online control algorithm with a fixed feedforward gain,
and the LQR and H∞-control approaches. Algorithm 1 is run as discussed in Section 6.3; i.e. no information
of Tchange or (S1, F1), (S2, F2) is used.

Table 2: The final average costs suffered by the algorithms for running each algorithm for T = 16000 steps.
At k = Tchange, the dynamics of the reference generator changes from (S1, F1) to (S2, F2). Bold values show
the lowest average cost for each case of disturbance. The algorithm LQR for random walk is the optimal
controller in the case of random walk disturbance and thus it is only evaluated in this case.

Disturbance Algorithm 1 Online control with
fixed feedforward
gain

LQR H∞ LQR for random
walk

Gaussian 3.83 3.74 3.65 5.25 N.A.
Random walk 16.65 36.39 283.79 109.01 16.12
Uniformly sam. 8.09 10.76 19.88 23.25 N.A.
Constant 5.82 8.65 55.09 17.30 N.A.
Amplitude mod. 4.10 4.17 15.91 6.58 N.A.
Sinusoidal 4.52 4.51 28.53 10.00 N.A.

In Table 2, we summarize the final average cost; 1
T

∑T
k=1 ck(ek, uk) suffered by the algorithms for T = 16000.

We use bold to refer to the algorithm with the lowest average cost in each case of the disturbance.

In Fig. 1, the evolution of the average cost JT = 1
T

∑T
k=1 ck(ek, uk) in equation 10 vs. T for the 6 cases of

disturbance in subsection 6.2 has been shown. The discussion regarding the performance of the algorithms
is similar to Section 6.2 and thus omitted.

We plot the reference trajectories and the tracking errors for Tchange − 30 to Tchange and T − 30 to T in Fig.
10-16. These time intervals are selected such that one can see the performance of Algorithm 1 and the online
control with a fixed feedforward gain when those algorithms converge.
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(a) Gaussian (b) Constant

(c) Random walk (d) Amplitude modulation

(e) Uniformly sampled (f) Sinusoidal

Figure 9: The evolution of the average cost JT = 1
T

∑T
k=1 ck(ek, uk) in equation 10 vs. T for the presented

Algorithm 1, versus, the online control algorithm with a fixed feedforward gain, the H∞ control and the LQR
for Gaussian, random walk, uniformly sampled, constant, amplitude modultion and sinusoidal disturbances.
At k = Tchange, the dynamics of the reference generator changes from (S1, F1) to (S2, F2). In each case, we
generate the disturbance in the beginning of the simulation so the disturbance sequence is the same for all
algorithms. Details regarding disturbances are given in Subsection 6.2. The final values of the average costs
are reported in Table 2.
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Figure 10: The reference signals over Tchange − 30 to Tchange and T − 30 to T .

Figure 11: Tracking error over Tchange − 30 to Tchange and T − 30 to T for the Gaussian disturbance for the
presented Algorithm 1, versus, the online control algorithm with a fixed feedforward gain, the H∞ control
and the LQR control using the reference signals in Fig. 10.
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Figure 12: Tracking error over Tchange − 30 to Tchange and T − 30 to T for the random walk disturbance
for the presented Algorithm 1, versus the online control algorithm with a fixed feedforward gain, the H∞
control, the LQR control, and the LQR for random walk using the reference signals in Fig. 10.

Figure 13: Tracking error over Tchange −30 to Tchange and T −30 to T for the uniformly sampled disturbance
for the presented Algorithm 1, versus the online control algorithm with a fixed feedforward gain, the H∞
control and the LQR control using the reference signals in Fig. 10.
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Figure 14: Tracking error over Tchange − 30 to Tchange and T − 30 to T for the constant disturbance for the
presented Algorithm 1, versus the online control algorithm with a fixed feedforward gain, the H∞ control
and the LQR control using the reference signals in Fig. 10.

Figure 15: Tracking error over Tchange − 30 to Tchange and T − 30 to T for the amplitude modulation
disturbance for the presented Algorithm 1, versus the online control algorithm with a fixed feedforward gain,
the H∞ control and the LQR control using the reference signals in Fig. 10.
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Figure 16: Tracking error over Tchange − 30 to Tchange and T − 30 to T for the sinusoidal disturbance for the
presented Algorithm 1, versus the online control algorithm with a fixed feedforward gain, the H∞ control
and the LQR control using the reference signals in Fig. 10.
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