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ABSTRACT

In large vision-language models (LVLMs), images serve as inputs that carry a
wealth of information. As the idiom “A picture is worth a thousand words” im-
plies, representing a single image in current LVLMs can require hundreds or even
thousands of tokens. This results in significant computational costs, which grow
quadratically as input image resolution increases, thereby severely impacting the
efficiency of both training and inference. Previous approaches have attempted
to reduce the number of image tokens either before or within the early layers of
LVLMs. However, these strategies inevitably result in the loss of crucial image in-
formation, ultimately diminishing model performance. To address this challenge,
we conduct an empirical study revealing that all visual tokens are necessary for
LVLMs in the shallow layers, and token redundancy progressively increases in
the deeper layers of the model. To this end, we propose PyramidDrop, a visual
redundancy reduction strategy for LVLMs to boost their efficiency in both train-
ing and inference with neglectable performance loss. Specifically, we partition
the LVLM into several stages and drop part of the image tokens at the end of each
stage with a pre-defined ratio, creating pyramid-like visual tokens across model
layers. The dropping is based on a lightweight similarity calculation with a neg-
ligible time overhead. Extensive experiments demonstrate that PyramidDrop can
achieve a 40% training time and 55% inference FLOPs acceleration of LLaVA-
NeXT with comparable performance. Besides, the PyramidDrop could also serve
as a plug-and-play strategy for inference acceleration without training, with better
performance and lower inference cost than counterparts. We hope that the insights
and approach introduced by PyramidDrop will inspire future research to further
investigate the role of image tokens in LVLMs and explore additional methods to
enhance their efficiency.

1 INTRODUCTION

In recent years, Large Vision-Language Models (LVLMs) have emerged as a central focus in deep
learning research(Liu et al.l 2024c; Dai et al., 2023 Bai et al., 2023} [Zhang et al.| 2024a; |Chen
et al.,[2023a). We have witnessed remarkable progress across various application domains, including
image and video understanding(OpenAl, 2024} |(Gemini Team), 2023)). The rapid development of
MLLMs is gradually paving the way for artificial intelligence to integrate into daily life(Li et al.,
2023c};|Zhu et al., 2023a}; Zhang et al., 2023} |Liu et al.|[2024e).

However, despite the advancements in large vision-language models (LVLMs), a significant chal-
lenge lies in the escalating computational costs. Images, as continuous and information-rich signals,
exhibit substantial spatial redundancy but are difficult to compress losslessly. It results in excessive
image tokens and a steep increase in training and inference costs, which becomes particularly pro-
nounced with higher image resolutions (Zhang et al., [2024a; Wang et al., 2024; [Hu et al.| [2024).
The number of image tokens increases quadratically with the resolution, driving the sequence length
into the tens of thousands(Li et al.,[2023a). Given that the computational complexity of transform-
ers scales with sequence length, the associated computational costs become prohibitively high(Liu
et al., 2024a; [Xu et al.| [2024). Consequently, there is a pressing need to reduce the redundancy in
visual information for more efficient LVLMs.
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Previous exploration of image token compression could be roughly categorized into two ideas: com-
pressing the token number before fed into the LVLM(Shang et al., [2024; |Arif et al., [2024; |L1 et al.,
2023d; | Yao et al.,|2024) or dropping part of the tokens at the very shallow layer of the LVLM(Chen
et al., 2024a). However, both ideas inevitably hurt the performance of LVLMs: the former suffers
from the information loss introduced by their compression, and the latter drops part of the informa-
tion before the LVLMs fully understand them.

To break through the limitations of the aforementioned ideas, we explore the nature of LVLMs in
understanding images from an intuitive question: are all image tokens necessary for all LVLM lay-
ers? We conduct an empirical study by removing different ratios of image tokens at different layers
of the LVLM at inference time and observing the benchmark performance change. As shown in Fig-
ure |1} the LVLMs are sensitive toward token dropping on shallow layers, regardless of the dropping
ratio. However, in deeper layers, image tokens gradually become less critical to the final results.
The results indicate that the LVLMs understand the image layer-by-layer and the redundancy within
image tokens increases correspondingly. We further visualize the attention between the instructions
and the image tokens, and we observed a consistent phenomenon that in shallow layers, the LVLMs
pay attention to most image tokens to understand the image globally. With the layer increasing, it
tends to focus on the few tokens that are related to the instruction and the rest are unnecessary.

Based on the observation, we introduce PyramidDrop, a simple yet effective image token reduction
strategy for LVLMs to accelerate both training and inference without performance loss. Pyramid-
Drop divides the LVLM into several stages, dropping a portion of the image tokens at the end of
each stage according to a predefined ratio. We employ a lightweight attention module to rank the
image tokens, which incurs negligible overhead. With this design, we retain all image tokens in the
shallow layers to avoid information loss, while progressively reducing the number of tokens as the
layers deepen to maximize training and inference efficiency.

Extensive experiments verify the effectiveness and efficiency of our PyramidDrop. For example,
LLaVA-NeXT-7B (Liu et al., [2024b) trained with PyramidDrop could reduce training time by 40%
without sacrificing performance across 15 Vision-Language tasks. Moreover, PyramidDrop enables
the LLaVA-NeXT model to be trained with doubled input resolution with only 269 GPU hours,
which is 70% of the vanilla LLaVA-NeXT, and reaches a better performance on high-resolution
benchmarks like DocVQA (Mathew et al.l 2021} and InfoVQA (Mathew et al., [2022). Furthermore,
PyramidDrop can function as a plug-and-play strategy for inference acceleration, offering enhanced
model performance and fewer FLOPs than FastV (Chen et al.| 2024a).

2 RELATED WORK

Token Reduction The large language model (LLM) realm has made several efforts in applying
token reduction for inference acceleration and KV cache compression(Han et al.| [2023). Stream-
LLM(Xiao et al., 2023)) only keeps attention sinks and the most recent tokens to reduce the size of
the KV cache. FastGen(Ge et al.| [2023) introduces an adaptive KV cache management approach
that optimizes memory usage by adjusting retention strategies according to the specific properties
of attention heads. Heavy-Hitter Oracle (H20)(Zhang et al., 2024b) employs a strategy that se-
lectively prunes key-value pairs (KVs) during generation, utilizing a scoring mechanism driven by
cumulative attention to inform the removal process. ScissorHands(Liu et al.,2024d)) concentrates on
identifying and retaining important tokens that show a consistent pattern of attention weight across
previous token windows during generation. These works attempt to address the redundancy of text
tokens during the inference process in LLMs. As for visual tokens, existing works (Liang et al.,
2022; [Kong et al. [2022; |Cao et al. 2023} Shi et al, 2024} Xiong et al.l 2024) make explorations
on Vision Language Models (VLMs) before the era of large vision-language models, focusing on
token reduction for vision transformers (ViTs). A recent work, FastV (Chen et al., [2024a), makes
an early attempt at visual token reduction in LVLMs, which drops visual tokens at the second layer
of LVLMs during inference. In contrast, our work makes a more comprehensive study of the visual
redundancy in LVLMs and proposes a pyramid visual token reduction solution for both training and
inference of LVLMs.

Large Vision Language Models Enabled by the open-sourcing of large language models like
LLaMA(Touvron et al.,2023) and Vicuna(Chiang et al.,2023), LVLMs(Chen et al.,[2023b) have ad-
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Figure 1: Observatioins about visual redundancy acoross layers. Left: TextVQA performance of
LLaVA-1.5 with varying ratio of retained image tokens at different layer. The preserved image
tokens are those that receive the highest attention from the text tokens. Right: Visualization of
attention map in shallow and deep layers.

vanced the ability to understand and generate diverse content by seamlessly integrating information
across multiple modalities, such as text, images, and audio. Models like LLaVA(Liu et al} 2024c),
InstructBLIP(Dai et all [2023)), and MiniGPT-4(Zhu et al. 2023b) have pushed the boundaries of

this field, enabling users to interact with these intelligent systems through multimodal prompts, in-
cluding images and text. Recent advances (Zhang et al, 20244; [Wang et al, 2024} [Hu et al.| 2024)
have significantly increased the number of image tokens for high-resolution image understanding,
resulting in substantial costs for training and inference in LVLMs. This underscores the critical
importance of developing more efficient training and inference methods for LVLMs.

3 METHOD

3.1 STUDY OF VISUAL TOKEN REDUNDANCY IN LVLMSs

The fundamental design of PyramidDrop stems from an intuitive question: are all image tokens
necessary for all LVLM layers? To explore it and reveal the nature of LVLMs, we conduct a two-
variable experiment by removing different ratios of image tokens at different layers of the LVLM at
inference time and observing the benchmark performance change.

In detail, we select LLaVA-v1.5-7B (Liu et al} [2024c) as the base model, and employ a popular
LVLM benchmark, TextVQA (Singh et al., [2019), as the evaluation data. TextVQA consists of
a substantial number of images that contain fine-grained information like text. The questions in
TextVQA focus on the textual elements within images, requiring LVLMs to capture the global image
information while mining the great detailed visual clues. This characteristic increases the model’s
sensitivity to image token compression, enabling a more precise evaluation of redundancy.

Considering LLaVA-v1.5-7B consists of 32 layers, we drop varying proportions of image tokens
during inference at layer 2, 8, 16, and 24 to assess redundancy at different layers. The ranking of
tokens is based on the attention values of text tokens towards image tokens, with the retained image
tokens corresponding to those with the highest attention values. As illustrated in Figure[I|a), at layer
2, the LVLMs are sensitive toward token dropping on shallow layers, regardless of the dropping
ratio. This indicates most of the image tokens in shallow layers play a important role in providing
information for answering the instruction. With the layer increases, the redundancy of image tokens
increases rapidly. At layer 16, even preserving only 10% of image tokens will not cause an obvious
performance decline. Notably, at layer 24, the model performance is nearly irrelevant to the image
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Figure 2: Overview of PyramidDrop. We divide the forward pass of the LLM into multiple stages,
and drop part of the image tokens at the end of each stage with a pre-defined ratio. The dropping
is based on a lightweight attention calculation with a negligible time overhead, and according to
this criterion, the LLM accurately selects important image tokens related to instruction. Due to the
efficient redundancy reduction strategy, the average sequence length decreases rapidly.

tokens, indicating that the model has already captured the necessary image information and the
image tokens are redundant for the model now.

We further validate our hypothesis with an attention map comparison between different layers. As
shown in Figure[T(b), the LVLM pays attention to most of the image tokens at shallow layers and the
attention to different tokens shows a uniform pattern. On the contrary, at the middle of the LVLMs,
the attention shows a sparse pattern and mainly focuses on the question related image local parts.

3.2 PYRAMIDDROP

Previous research on image token compression typically drops image tokens before passing them to
the language model or uses a fixed compression ratio across all language model layers. However,
as we analyzed in Sec [3.1] redundancy is not consistent across different layers. Redundancy of
image tokens is relatively minimal in the shallow layers and becomes progressively larger in deeper
layers. Thus, uniformly compressing image tokens across layers may lead to the loss of valuable
information in the shallow layers while retaining unnecessary redundancy in the deeper layers.

Inspired by this observation, we propose PyramidDrop, which fully leverages layer-wise redundancy
to compress image tokens. The pipeline of the proposed PyramidDrop is illustrated in Figure 2} To
maximize training efficiency while preserving the essential information of the image tokens, we
choose to divide the forward pass of the LLM into multiple stages. In the shallow layers, we retain
a higher proportion of image tokens to preserve the entire vision information. At the end of each
stage, we partially drop the image tokens, until nearly all the image tokens being eliminated in the
deeper layers. This approach allows us to optimize training efficiency while maintaining critical
information.
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LVLM Pre-fill Formulation. We denote the vision encoder as V), the vision-language projector
as P, the language model as L, a pretrained LVLM as M = (L,V,P), where L = (Lo, F).
The language model consists of tokenizer £y and J-layer transformer decoder . We formulate
an image-text pair as (), 7), where the text is composed with an instruction and an answer 7 =
{T;; Ta}[ﬂ The input of the transformer F contains both the image tokens vy = P(V(v)) and the
text tokens tg = Lo(T).

During the forward pass of tokens, we can obtain the hidden states v;, ¢; of vision tokens and text
tokens in layer j, formally:

vty = Fj(vj-1,tj-1) (1

Pyramid Visual Redundancy Reduction. We partition the language into S = {s, }5_, stages,
and remove the image tokens v with a pre-defined ratio A at the end of each stage. Formally, with
the image tokens v, as the input of stage s,,, we remove [(1 — A)|vs_ || tokens from the vs, and
treat the rest image tokens as the next stage input vy, , ;.

Following our observation in Sec 3.1, the attention value between image and text tokens could
reflect the image token importance properly, so we based on it to realize the drop operation. With
the concern of calculation efficiency and training-inference consistency, we calculate the attention
between all the image tokens and the last token of the instruction (we denote it as t§ , the last-
instruction token in the following).

Formally, we denote the last layer of stage s,, as Fj, we obtain key states of the image tokens as k7
and the query state of last instruction token q§1 with the following operation:

kY =Kj(v;), )" = Q;(t]). 2
where Q;, K; are the query matrix and the key matrix reused from the self-attention block of F}.

We calculate the similarity with q§1 X (k;-’)T and drop part of the image tokens based on the drop
ratio A\. The image token number decreases exponentially stage by stage, and close to zero in the
deeper layers. We denote the image token number of vy as V' = |vg|, and the image token number
at each stage Vs could be calculated as:

Vio=Vo- A1 s=1,2,...,8

Efficiency Analysis of PyramidDrop Here we analyze the efficiency from two parts: the compu-
tation overhead introduced by PyramidDrop, and the input sequence computation cost economized
by PyramidDrop.

The extra computation cost introduced by PyramidDrop mainly lay in the similarity computing for
image token ranking. Benefiting from our design, the calculation is only between a query toke and
V image tokens, so its computation complexity is O(n) and only S — 1 times in the forward process.
Further, we notice the importance of FalshAttention in practice, so we keep using it during training
and extract the query and key token from the original forward to calculate our lightweight similarity
matrix.

When it comes to the computation cost economized by PyramidDrop. With the consideration of
FlashAttn (Dao et al.,|2022), we roughly define the forward inference cost of a layer with /N image
tokens as a linear function with a constant factor c that ¢ - L, so the overall computation cost of an
LVLM with L layers is ¢- N - L. When using PyramidDrop with S stages and the ratio A, the overall
computation cost is:

1— )9
S-(1-X)
For example, if A = 0.5 and we reduce the redundancy with 4 stages, it could save nearly 53.2%

computation cost theoretically, and we find this setting has a neglectable performance influence for
models in practice.

¢ N-L 3)

"Here we omit the system prompt and chat format for illustrative purposes
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4 EXPERIMENT

4.1 SETUP

Models We verify the effectiveness and generalize of the proposed PyramidDorp by experiment on
LVLMs with different architectures and input resolution. In detail, we study LLaVA-1.5-Vicuna-7B
(Liu et al.l[2024c), LLaVA-NeXT-Vicuna-7B (Liu et al.}[2024b)). LLaVA-1.5 is the most widely used
open-source LVLM backbone for research, which is designed with a simple yet effective architecture
that maps the 576 image features from the CLIP encoder as the LLM input with a projector. LLaVA-
Next is the high-resolution extension of LLaVA-1.5, which supports at most 2880 image tokens and
has better high-resolution capability.

Benchmarks To thoroughly evaluate our image token compression strategy, we conduct experi-
ments across 14 benchmarks. The MME Benchmark (Fu et al., [2023) assesses the perception and
cognitive abilities of LMMs. MMBench and MMBench-CN (Liu et al., [2023)) are benchmarks
that manually craft questions to evaluate vision-related reasoning and perception in both English
and Chinese, respectively. SEED (L1 et al., [2023b), generated with the aid of GPT-4, comprises
a dataset of approximately 19,000 questions pertaining to images and videos. MM-Vet (Yu et al.}
2023)) leverages GPT-4 for a six-dimensional evaluation of LMM capabilities. In the realm of tradi-
tional VQA benchmarks, such as VQA-v2 (Goyal et al.,|2017) and VizWiz (Gurari et al., [2018)), are
also utilized. Additionally, several benchmarks featuring higher-resolution visual content, including
DocVQA (Mathew et al., [2021)), ChartQA (Masry et al., 2022), InfographicVQA (Mathew et al.,
2022)), and TextVQA (Singh et al., [2019)). Finally, MMStar (Chen et al.,|2024b) presents tasks with
strong visual dependency, minimal data leakage, and requires sophisticated multimodal capabilities.

Efficientness Evaluation We consider both the training time efficiency evaluation and inference
time throughout. For training efficiency, we report the real training GPU hours with the same de-
vices. For inference throughout, we follow the FastV(Chen et al., 2024a) and report the FLOPs of
the image token part. In detail, we consider the FLOPs of the multi-head attention and the feed-
forward network modules as 4nd? + 2n2d + 2ndm, where n is the number of tokens, d is the hidden
state size, and m is the intermediate size of the FFN. Considering there are three linear layers in
FFN of LLaMA, the FLOPs is modified as 4nd? + 2n%d + 3ndm. Our PyramidDrop has different
image token numbers at different stages and the FLOPS could be calculated by:

S—1
ZKS x (4nsd® +2n2d + 3ngdm) st ng=Axn, s=0,1,2,....S-1 (4
s=0

Implementation details Given that the LLM within the LVLM used in our experiments consists
of 32 layers, we employ a straightforward approach by fixing .S to 4, effectively dividing the LLM
into four equal parts. This segmentation allows the forward pass to be divided into four stages, with
the number of image tokens decreasing exponentially at each stage. During accelerated training, we
can adjust the value of A to control the proportion of image tokens that are pruned, and by default,
A = 0.5. We conduct all the experiments on 8 NVIDIA A100 80GB GPUs.

It is important to note that, since the LLaVA-NeXT model’s data and training code are not open-
source, we conduct training based on the open-source project Open-LLaVA-NeXT (Lin & Long,
2024). Due to differences in a portion of the training data, the benchmark performance may vary
compared to that of LLaVA-NeXT (Liu et al., 2024b) blog.

4.2 EFFICIENT OF PYRAMIDDROP IN TRAINING

PyramidDrop is effective for diverse architectures. We first study the PyramidDrop on both
LLaVA-1.5 and LLaVA-Next. As shown in Table [T} PyramidDrop reduces the training time (in-
cluding both pretraining and fine-tuning stages) of the LLaVA-Next from 366 to 218 GPU hours,
resulting in an impressive 40% reduction in overall time. Besides the promising efficiency improve-
ment, the model’s performance remains comparable to the original on 14 different benchmarks.
Notably, for fine-grained benchmarks like TextVQA, DocVQA, and OCRVQA, images contain a
large amount of text and even documents, which request a dense and fine-grained understanding of
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Table 1: LVLM w and w/o our method on 6 benchmarks. Benchmark names are abbreviated due to
space limits. MMB: MMBenchmark (Liu et al., [2023)); MMBC¢Y: MMBench-Chinese (Liu et al.
2023); SEED’: SEED-Bench (Image) (Li et al., 2023b)

Model | Train & Infer OLC #patches "' | MME MMB MMBCY SEED! MM popE Ave
hours Flops(T) Star
vanilla 366 5 208 |1534.1 687 605 711 411 86.1 67.4
LLaVA PDrop 218 5 946 |1540.8 67.8  60.6 699 417 865 67.3
NeXT-7B ) ™ onilla 483 9 40.6 | 15447 674 600 695 400 863 667
PDrop 269 9 18.1 | 15420 68.1 610 703 409 866 673
LLaVA vanilla 104 1 382 | 15107 643 583 661 332 859 639
-1.5-7B PDrop 79 1 178 | 14673 66.1 585 655 340 860 63.9

Table 2: LLaVA -NeXT-7B on other 8 benchmarks. We report more benchmarks which contain lots
of fine-grained content to examine the performance. We denote PyramidDrop as PDrop.

. GPU | Doc Info Text Chart OCR VQA Viz
Model | Train & Infer hours #patches VOA VQA VOA QA VOQA V2 Wiz GQA Avg
vanilla 366 5 | 700 333 672 640 637 817 596 642 63.0
LLaVA PDrop 218 5 | 690 317 677 630 631 815 61.0 639 626
NeXT-7B | ™ nilla 483 9 | 743 362 676 630 638 816 580 635 635
PDrop 269 9 | 750 374 684 643 635 817 60.6 64.1 644

the image. Even in this case, our approach still maintain performance at the original level. This
indicates that our method successfully compresses redundant information while preserving the most
critical image content.

In the case of LLaVA-1.5, which processes fewer image tokens per sample, the acceleration is not
as pronounced as with LLaVA-NeXT. However, it still offers a nearly 20% improvement in speed
with comparable performance. This underscores the potential of our method to enhance training
efficiency across different model configurations.

PyramidDrop enables larger resolution with constrained cost. The PyramidDrop is proposed
to reduce the redundancy within image tokens, and as we observed above, it enjoys higher speedup
with the increase of the image/text token ratio. In this part, we explore its performance with higher
image/text token ratio. In detail, LLaVA-NeXT is designed with a flexible image processing strategy
in which an image is divided into a maximum of four local patches and a global patch, leading to at
most 2880 image tokens. We denote it as LLaVA-NeXT-p5 and experiment on the LLaVA-NeXT-p9
by increasing the maximum local patches into 8 patches.

As shown in Table[2] with the increased image/text ratio, PyramidDrop reaches a higher speedup that
only 269 GPU hours is used for training, which is only 55% of the vanilla LLaVA-Next-p9. Besides
the superb speedup, the model trained with PyramidDrop achieves a slightly higher average per-
formance across the 14 benchmarks. We argue too many image tokens with redundant information
may confuse the LVLMs and hinder their performance, while our PyramidDrop efficiently reduce
the image tokens number and helps the LVLM to focus on the critical information. Furthermore, it
is worth noting that the training time is even 70% of the original LLaVA-Next-p5 but achieves better
performance on diverse tasks, showcasing the superb efficiency and effectiveness of PyramidDrop.

PyramidDrop training encourages LVLMs to understand images compactly. Then we dive
into the properties of the model trained with PyramidDrop and conduct experiments to investigate
the changes in image token redundancy. Two models are employed for this exploration: the vanilla
LLaVA-1.5 and the LLaVA-1.5 trained with our approach. As illustrated in Figure [3] we plot the
TextVQA scores against the retained image tokens at layers 2, 8, 16, and 24, maintaining the same
experimental settings as Sec We find that the curve of models trained with PyramidDrop keeps
higher than the vanilla one. The phenomenon suggests that, for a given proportion of retained image
tokens, model trained with PtramimdDrop preserves more image information and achieves better
performance. Alternatively, at equivalent performance levels, our method allows for a higher ratio of
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Figure 3: We compare the performance of the original LLaVA-1.5 and LLaVA-1.5 trained using
PDrop, where we preserve different ratios of image tokens at layer 2, 8, 16, and 24, respectively.
The horizontal axis represents the proportion of retained image tokens according to attention score.

Table 3: Performance gain with models trained with PyramidDrop. Directly applying efficient in-
ference strategies like FastV to models trained with PyramidDrop yields substantial improvement.

Model | Train Infer Flggse(rT) ChartQA DocVQA TextVQA MME SQA’ POPE Average

vanilla vanilla  20.8 64.0 70.0 672 15341 704 86.1 724

LLavA |PDrop PDrop 9.46 63.0 69.0 67.7 15408 70.1 865 722
NeXT-7B |vanilla FastV  10.6 55.9 62.1 66.0 14820 69.2 855 688
PDrop FastV — 10.6 59.9 63.9 65.6 14927 689 868  70.0

A +4.0 +1.8 04 +0.5 03  +1.3 +1.2

Table 4: Ablation studies results. We adjust A form 0.4 to 0.6 for investigating the influence on
performance and training time.

GPU Infer Doc Info
Model | A L VQA VQA

hours

20.8 | 1534.1 68.7 64.2 60.5 71.1 70.0 33.3 63.5
822 | 15584 68.1 63.7 60.5 69.5 66.6 31.8 62.6
9.46 |1540.8 67.8 639 60.6 69.9 69.0 31.7 62.8
11.0 | 15114 68.1 64.1 60.5 70.4  69.8 33.0 63.1

3.82 | 1510.7 643 62.0 583 66.1 214 204 526
1.54 | 14788 66.2 61.7 58.0 645 21.1 199 522
1.78 | 14673 66.1 619 58.5 65.5 215 202 524
206 |1471.8 659 62.0 58.9 65.1 225 21.0 527

MME MMB GQA MMB®Y SEED! Avg

vanilla 366

LLaVA 04 204
-NeXT-7B | 0.5 218
0.6 240

vanilla 104
LLaVA 0.4 75
-1.5-7B 0.5 79
0.6 82

——— = L

image tokens to compress. This improvement can primarily be attributed to the multi-stage training
strategy, which progressively prunes image tokens, encouraging the model to consolidate essential
information into a smaller set of tokens, resulting in more densely informative representations.

We further validate our hypothesis by replacing the inference strategy with FastV. As demonstrated
in Table [3] directly applying efficient inference strategies like FastV to models trained with Pyra-
midDrop yields substantial improvements. Notably, there is a 1.3% increase in POPE and a 0.5%
increase in MME, with even more pronounced gains observed on high-resolution benchmarks:
ChartQA shows an increase of 4%, while DocVQA improves by 1.8%. These results provide
compelling evidence for our hypothesis that training with PyramidDrop encourages the LVLMs
to understand images compactly, which is a generalized result, rather than an overfit to the training
strategy.

Balancing PyramidDrop performance and efficiency with A. )\ balances the performance and
efficiency of PyramidDrop, a larger A preserves more image information but slows down the training,
and a smaller A has higher speedup while may influence the model performance. In this part, we
study the influence of A\ on both LLaVA-1.5 and LLaVA-NeXT.
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Table 5: Inference acceleration performance. We compare PDrop, FastV and vanilla model, and find
PDrop outperforms FastV on almost all benchmarks. PDrop here is as an inference-only strategy.

Model I;‘fr‘jggye TFLOPS| MME SQA’ MMB®Y GQA POPE TextVQA ChartQA DocVQA Avg
vanilla ~ 20.8 [1534.1 704 605 642 861 672 640 700 69.9
LLaVA | FastV  10.6 |14820 692 60.0 630 855 660 559 621 67.0
NeXT-7B | PDrop 9.5 |1533.0 69.4 599 639 864 670  59.1 656 68.5
A +2.5 +0.2 +0.1 +0.9 +0.9 +1.0 +3.2 +3.5 +1.5

vanilla 3.82 |1510.7 66.8 58.3 62 859 58.2 18.2 214 558
LLaVA FastV 2.01 |1475.6 68.5 56.8 59.6 84.8 57.1 17.8 19.2 547
-1.5-7B PDrop 1.78 |1500.8 69.2 585 60.1 84.8 57.5 18.6 21.1 556
A +1.3 +0.7 +1.7  +0.5 +0.0 +0.4 +0.8 +1.9 +0.9

As shown in Table 4] we vary the A from 0.4 to 0.6 and report the model performance on both
general and high-resolution benchmarks. For the general benchmarks, we observe a relative robust
performance among different lambda, this indicates that for most questions, the information within
images is somewhat redundant. When it comes to the DocVQA, which requires a fine-grained
understanding on high-resolution images, the model performance shows a clear decline when the A
decreases to 0.4. It is reasonable as the loss of critical image information and we could anticipate a
more pronounced performance decline with the A keeps decreasing. Therefore, we opt for A = 0.5,
which maintains comparable performance to the baseline while also yielding a significant reduction
in processing time.

4.3 EFFICIENT OF PYRAMIDDROP IN INFERENCE

PyramidDrop outperforms SOTA methods as a inference-only strategy . As illustrated in Ta-
ble 5] we directly apply the multi-stage compression strategy during the inference phase of the
vanilla model, comparing it with the inference acceleration approach, FastV. The results on LLaVA-
Next demonstrate that our method significantly outperforms FastV across various critical bench-
marks. Specifically, we achieve an impressive score of 1533.0 on MME, surpassing Fastv by 2.5%,
while also exceeding it by 0.9% on both POPE and GQA. Notably, the advantages of our method
become even more pronounced in high-resolution benchmarks. For instance, on the relatively chal-
lenging DocVQA, our approach outperforms FastV by 3.5%, and on ChartQA and TextVQA, we
achieve improvements of 3.2% and 1% respectively.

Results from LLaVA-1.5 reveal similar trends across multiple benchmarks, including MME, Sci-
enceQA, and MMBenchCN, where our method not only demonstrates superior performance but
also achieves a greater reduction in FLOPs. When compared to the baseline, our approach consis-
tently reaches comparable performance levels across most benchmarks, while effectively mitigat-
ing information loss in high-resolution benchmarks. These findings indicate that FastV’s premature
compression of image tokens leads to inevitably image information loss and significant performance
declines in many benchmarks, whereas our multi-stage compression strategy preserves critical in-
formation from image tokens while maximizing the elimination of redundancy. The observation is
also consistent with our finding in Sec that in shallow layers, most image tokens are critical for
LVLMs to understand the image properly, while in the deep layers, most of them are redundant for
the LVLMs.

PyramidDrop enjoys a better trade-off between performance and inference cost. We further
compare PyramidDrop and FastV under a precise FLOPs-constrained setting with LLaVA-NeXT-
7B. In practice, we adjust the drop rate of FastV and the A\ of our PyramidDrop to control the model
inference FLOPs and evaluate the model benchmark performance. As the FLOPs-performance curve
shown in Figure 4] our PyramidDrop consistently outperforms FastV under different settings and
across diverse benchmarks. For example, under a constraint of 12 TFLOPs, PyramidDrop outper-
forms FastV with 3.0% on DocVQA and 2.6% on ChartQA. When we reduce the inference cost
to only 8 TFLOPs, the performance gap increases, with PyramidDrop surpassing FastV by 6% on
DocVQA, and 5.9% on ChartQA. The results further prove that our multi-stage redundant reduction
strategy matches the nature of LVLMs and enables the model to understand the image better under
constrained inference cost.
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Figure 4: The performance of LLaVA-NeXT-7B with different inference acceleration strategies.
PDrop (without training) outperforms FastV on DocVQA, ChartQA, and GQA with across various
inference cost budgets.

8 What is the year above the clock in the picture?
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The year above the clock in the picture is 1856.
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The girl on the left is wearing a green dress.

Figure 5: Visualization of token dropping in LLM of LLaVA -1.5. We compute the attention score
of image tokens received from the last instruction token as the ranking criterion, and find LLM
accurately retain image tokens according to instruction.

LVLM with PyramidDrop effectively preserves image tokens related to instruction. As shown
in Figure 5] we visualize the image tokens retained by LLaVA-1.5 with PyramidDrop in different
stages. It is evident that when the user asks about a small object in the image, the LLM accurately
identifies the region containing the relevant information based on the instructions and provides the
correct answer. This demonstrates that our method effectively leverages the LLM’s nature to under-
stand images. The token dropping in PyramidDrop applied during inference does not result in the
loss of valuable information.

5 CONCLUSION

We have introduced PyramidDrop, a simple yet effective strategy for reducing visual token redun-
dancy in large vision-language models (LVLMs) to enhance efficiency with negligible performance
loss. Our empirical study reveals that while all visual tokens are necessary in the shallow layers of
LVLMs, token redundancy progressively increases in deeper layers. Extensive experiments demon-
strate that PyramidDrop can achieve significant acceleration in both training and inference.

10
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