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Abstract. Domain adaptation is a well-established field within com-
puter vision. Due to the common scenario of inaccessible target domain
data, zero-shot domain adaptation increasingly gets more attention. Ex-
isting methods, which primarily focus on optimizing an Empirical Risk
Minimization objective, tend to rely on training with discrete augmenta-
tions based on limited prompts. This strategy struggles to fully capture
the complexity of the target domain, consequently diminishing the trans-
ferred model’s effectiveness. In this paper, we introduce ProGBA, a novel
framework that adopts a Bayesian perspective to regard the learning pro-
cess in zero-shot domain adaptation as a variational inference problem.
This approach aims to comprehend the distribution of domain-adaptive
augmentations. Leveraging Bayesian methods’ regularization capabili-
ties, ProGBA refines the domain adaptation representation space, which
helps to mitigate the overfitting risks. Specifically, ProGBA adeptly in-
troduces the uncertainties associated with domain shifts through prob-
abilistic modeling of residuals between the source and target domains,
which reduces the model’s reliance on a specific set of weights, thereby en-
hancing performance in the target domain. Furthermore, we adopt a pre-
trained visual-language model alongside a novel text-based loss function
to more accurately align the learned distribution with the actual residual
distribution between the target and source domains. The comprehensive
validation showcases ProGBA’s potential to set a new benchmark in zero-
shot domain adaptation, demonstrating ProGBA’s efficacy in adapting
to the target domain. Moreover, extensive experiments on cross-domain
semantic segmentation also underscore our method’s generalizability.

Keywords: Zero-shot domain adaptation · bayesian learning · prompt
guided

1 Introduction

In recent years, supervised methods for semantic segmentation [6,11,48,80] and
detection [3, 45, 78] have undergone significant advancements in both perfor-
mance and computational efficiency [74, 87]. However, these improvements are
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Fig. 1: (a): Due to the learned discrete augmentations, methods based on the optimiza-
tion of the Empirical Minimization objective fail when evaluated in the unpredefined
target domain, even if it is similar to the existing target domain; (b): ProGBA de-
scribes the augmentation in terms of distribution to describe the domain shifts and
represent domain shifts within a range. For ease of presentation, we simplify the adap-
tation feature space to a single line.

contingent upon the stringent requirement that the context where the data used
for both training and testing originates from the same domain. The efficacy of
these methods sharply declines when applied to data from outside their training
distribution [55], especially unseen domains. This significant performance degra-
dation not only raises security concerns but also questions their reliability for
critical real-world applications, such as autonomous driving, where safety is of
paramount importance.

To alleviate the negative impact of domain drifts [2], a special case of un-
supervised domain adaptation where target-domain samples are unavailable for
training, named zero-shot domain adaptation, has gradually attracted attention.
Given the challenge of zero-shot domain adaptation, the exploration of leverag-
ing prior knowledge to synthetically generate data representative of the target
domain becomes crucial [22,68,90]. At the beginning, [33,42,83] focus on estab-
lishing learnable parameters or modules to synthesize data for the target domain
by integrating source data and description of other perspectives of target domain.
Recently, Clip the Gap [72] utilizes a pre-trained vision-language model to infuse
semantic concepts from the target domain through textual prompts, while Zhang
et al. [42] exploit a visual inductive prior derived from physics-based reflection
models for domain adaptation. Nonetheless, these methods primarily aim to
optimize an Empirical Risk Minimization(ERM) objective and constrained to
learning discrete adaptation features for a narrow range of predefined target do-
mains, facing difficulties in adapting to the dynamic real-world environments. As
depicted in Fig. 1 (a), simply sampling augmentation between dusk and night in
the feature space fails to accurately represent a twilight feature for adaptation,
often resulting in features with limited practical relevance.
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To overcome the challenges previously discussed, this study introduces the
ProGBA, a novel approach that adopts a Bayesian perspective for domain adap-
tation learning. ProGBA formulates the adaptation process as a variational infer-
ence problem, where the learning of domain adaptation is guided by principles
of Bayesian inference. By leveraging textual descriptions, ProGBA integrates
target domain information, modeling domain shifts from source to target as dis-
tributions — effectively treating these shifts as a form of data augmentation
for the source domain. Intuitively, the random sampling from this distribution
incorporates variability, thereby embedding uncertainty into the process. This
uncertainty fosters a more robust representation of the latent space, as it com-
pels the model to accommodate and depict the inherent variability in data.
Consequently, this strategy prevents the fixation on overly specific adaptation
parameters for unseen target domains, facilitating a broader, more generalized
representation. Furthermore, ProGBA’s approach to modeling augmentations
through distributions replaces traditional discrete encodings with a continuous,
more efficient representation, thus broadening the augmentation feature space
coverage. This method, illustrated in Fig. 1 (b), enables ProGBA to learn an
averaged representation of domain shifts. Moving towards this mean represen-
tation enhances the model’s adaptability to the intended domain, a feat not
attainable through discrete learning methods alone. Additionally, to ensure the
augmentation distribution accurately reflects the true domain shifts from source
to target, a novel loss function based on the Evidence Lower Bound (ELBO)
is introduced. This loss function facilitates a closer approximation of the actual
domain shifts, enhancing the model’s effectiveness in domain adaptation.

To sum up, our contributions can be presented as follows:

– We frame zero-shot domain adaptation learning from the Bayesian perspec-
tive and model the domain shifts from source to target as a distribution,
reducing the risk of overfitting and learning a more generalized augmenta-
tion across domains.

– A novel loss based on the ELBO is proposed to closely approximate the
actual domain shifts from the source to the target domain.

– Comprehensive experiments demonstrate ProGBA’s potential to promote
the performance of zero-shot domain adaptation, showing its adaptability
and generalizability on semantic segmentation.

2 Related Work

2.1 Domain adaptation

Due to its relevance in many practical applications, domain adaptation for se-
mantic segmentation has been widely studied in the last few years. Hoffman et
al. [26] first proposed a fully convolutional network for domain adaptive semantic
segmentation integrating a Mutual Information loss and Generative Adversarial
Networks (GANs) to realize domain feature alignment. Several works [8,9,34,52,
70,73] proposed to resort on adversarial learning and used a domain discriminator
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to alleviate the domain shift. Other approaches [10,20,25,32,66,67,75,76,79,91]
adopted an image translation strategy and employed a GAN network to gen-
erate target-style images given an annotated source image. Another category
of methods [4, 38, 41, 43, 49, 63, 77, 86] proposed to reduce the domain distribu-
tion mismatch by optimizing some divergence measures. More recent approaches
[23, 29, 37, 44, 85, 88, 92] considered self-training to get supervision of the tar-
get texture. The above methods are effective under independent and identically
distributed conditions, such as a synthetic-to-real or a cross-city. As a conse-
quence, their performances typically degrade in the presence of significant do-
main gap [64]. To improve model robustness against domain gap, the latest meth-
ods exploit the potential of Transformers for unsupervised domain adaptation
(UDA) semantic segmentation [27,28]. Furthermore, HGFormer [14] proposes a
novel hierarchical grouping transformer, which makes Domain Adaptation Se-
mantic Segmentation become classifications on all mask proposals. Nevertheless,
in the industrial context [15, 51, 54], obtaining data for uncommon or rare tar-
get domains e.g . typhoons and sandstorm, presents a significant challenge. This
issue is compounded by the high standards required for data quality and the
challenges in ensuring the reliability of data sourced from the internet. Con-
sequently, there’s a need for domain adaptation techniques that can operate
without actual target domain data, known as zero-shot domain adaptation.

2.2 Zero-shot domain adaptation

Zero-shot domain adaptation increasingly raise interest recently. Some works [33,
42] leverage extra information to accurately identify domain shifts that are ap-
plicable to the target domain. For instance, Yang et al. [83] employ data from
multiple sources and target domains characterized by continuous variable vec-
tors, while Ishii et al. [33] incorporate known attributes of the target domain
e.g . the pose and position of a camera. ZDDA [59] deviates by using additional,
unrelated source and target domain data pairs to better cater to domains rel-
evant to the task of interest. This method aids in aligning the representations
of source and target domains, yet its practical application is challenging. More-
over, domain generalization methods [12,30,58,72,89], which do not presuppose
knowledge of the target domain, are deemed too broad to yield satisfying perfor-
mance in specific target domains. Alternative strategies involve models that seek
to directly learn the domain shift [35,50,72]. ULDA [82] enables efficient adapta-
tion to multiple target domains. Their framework ensures semantic integrity by
aligning features at scene, region, and pixel levels and maintaining relational con-
sistency between visual representations and text embeddings. PØDA [18] marks
a novel direction by employing a pre-trained CLIP [60] for zero-shot domain
adaptation, using text descriptions of the target domain i.e. prompts, via the
PIN module to adapt a source-trained model to target domains. Nevertheless,
previous methods focus on optimizing an Empirical Risk Minimization objective,
which tend to overfit to the source domain, thereby hampering performance. In
contrast, our ProGBA leverages Bayesian methods based on prompts to regu-
larize the feature space of augmentation. This not only prevents overfitting but
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Fig. 2: Overview of ProGBA. ProGBA initially estimates the distribution augmen-
tation r for each the target domain, using textual domain prompts (Pt, ps) and images
from the source domain. This semantic enhancement aims to convert the embeddings
of source domain images to match the target domain indicated by the prompts. During
this distribution optimization phase, the loss LO is minimized.

also provides a more nuanced understanding of the discrepancies between the
source and target domains through a distribution-based approach.

2.3 Variational inference-based domain adaptation

Variational inference-based methods have proven effective in addressing domain
adaptation and generalization challenges, leveraging the strengths of variational
inference to enhance model robustness across different domains. MVI [5] aligns
source and target domains in an indirect approach by maximizing mutual in-
formation between latent variables. Jing et al. [36] focus on source-free domain
adaptation, using variational inference to generate perturbations that improve
model robustness without accessing source data.Some other works [47] leverage
variational inference to learn domain-invariant latent features. SIG [46] uses vari-
ational inference to identify a shared subspace, aligning multiple source domains
with the target domain. MAVBI [19] combines variational inference with adver-
sarial training to enhance generalization across multiple domains. However, these
methods primarily concentrate on invariant features of source and target domain
data or enhance model generalization [84] to adapt to the target domain, without
explicitly modeling the target domain data. This limitation affects their perfor-
mance in zero-shot domain adaptation. In contrast, ProGBA directly learns the
residuals between the source and target domains to better adapt to the target
domain, making it more suitable for zero-shot domain adaptation.

3 Proposed Method

3.1 Architecture

Distribution optimization In the context of zero-shot domain adaptation, our
method is constrained to utilizing images exclusively from the source domain.
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Our objective is to develop representations that remain effective despite varia-
tions in domain, achieved by simulating these domain shifts during the training
phase on source data. To this end, ProGBA leverages the joint representation
capability of CLIP [60] to approximate domain shifts within the visual domain
by employing textual prompts. This process is depicted at Fig. 2.

In a formal setting, T is defined as the text encoder of CLIP and V as its
image encoder. For clarity in our discussion, we further decompose V into two
components: V1, which acts as a feature extractor, and V2, which serves as a
projector into the CLIP embedding space, referring to [72]. The core training
objective of CLIP is to align image features closely with their corresponding text
prompts. This alignment is quantitatively measured by minimizing the distance
between the embedded image features V2(V1(I)) and the text encoding T (p),
for a given image I and its text prompt p. In the scenario of zero-shot domain
adaptation, either directly or indirectly acquiring information about the target
domain is essential. Fortunately, the linear word analogy property [17, 53] in-
herent in text embeddings allows for the use of algebraic operations to derive
semantically similar concepts (e.g . the vector operation akin to king - man +
woman closely aligns with the embedding for queen). This property of forming
semantic relationships is also applicable to CLIP embeddings [61], enhancing its
utility in domain adaptation tasks.

Leveraging the characteristic of word vectors, a relevant prompt ps is pre-
defined for the source domain, such as Driving in the daytime, and establish a
corresponding prompt Pt = {pti=1}T1 , where T stands for the number of target
domains, for target domains e.g . Driving at night. ProGBA subsequently con-
ceptualizes the augmentation space probabilistically as a distribution dγ , antic-
ipating that the bias introduced by r within dγ mirrors the semantic divergence
between the source prompt ps and the target prompt Pt. Orientedally, a learn-
able probability distribution dγ acts on the features F = V1(I) derived from
the intermediate layer of the backbone. Inspired from the property of text em-
beddings mentioned above, we assume that the intermediate visual embedding
within the target domain comprises two components: a fixed visual embedding F
from the source domain, and a residual augmentation r, which serves as a latent
variable over the target visual embedding. Based on such hypothesis, ProGBA
learns the latent distribution dγ over the augmentation r, i.e. r ∼ N (µ,Σ),
where µ and Σ are parameterized by two learnable vectors. Consequently, the
enhanced features can be expressed with r:

v̄t = V2 (F + r) , r ∼ dγ . (1)

to approximate the synthetic visual embedding

v̄′ = vs +
T (pt)− T (ps)

∥T (pt)− T (ps)∥2
, vs = V2 (F ) (2)

in the target domain through the textual residual of the text embeddings. Ulti-
mately, the augmentation distributions Dγ = {dTγ }Tt=1 of different target domians
are optimized through the loss function introduced in section 3.2.
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Training with augmentation The adaptation strategy is aligned with [72].
When adapting to semantic segmentation, we adopt the following approach dur-
ing each training iteration: the backbone network, initialized with pre-trained
CLIP [60], is kept frozen, while the model’s head is trained utilizing data from
the source domain, which is enhanced by the optimized distribution of the tar-
get domain. Specifically, for each chosen target domain, ProGBA generates L
Monte-Carlo samples from the target domain’s augmentation distribution. These
samples are then averaged to produce r, which is utilized to train the model’s
head. Similar to the distribution optimization phase, the augmentation r is added
to the intermediate layer outputs F of the backbone network. This output is then
processed through the remaining layers of the backbone and the task-oriented
head, encapsulating the process as follows:

F̄ = V2

(
V1(I) +

1

L

L∑
1

rl

)
, rl ∼ dγ . (3)

By enhancing the backbone network with low-level feature augmentations,
the high-level semantic content or features of the image avoid distortion. Conse-
quently, the original labels from the source domain are still applicable for training
purposes without necessitating any alterations. This characteristic facilitates the
application of ProGBA to various models with minimal adjustments required. In
the case of segmentation tasks, ProGBA is adapted for use with SAN [80], a seg-
mentation model that incorporates CLIP for classification purposes. Throughout
the training process, a specifically designed loss function is incorporated, which
will be elaborated upon subsequently, to ensure comprehensive coverage of the
target domain by the augmentation distribution. At the inference stage, the
model is deployed without applying any augmentation distribution, thereby not
introducing any additional complexity nor affecting the model’s inference speed.

3.2 Loss function

To achieve an augmentation r that closely approximates the actual distribution
of residuals between the target and source domains, we define our optimization
goal for a set of N annotated data {xi = (Ii,Pt, ps),yi}Ni=1 as follows:

r∗ = argmin
r

Exi,yi [− logP (yi | xi, r)] (4)

Denoting the augmented domain-specific feature as Vγ(I) = V2(V1(I) + r), the
marginal likelihood P , referring to [1], is then defined as

P (y | x) =
∫
γ

eVγ(I)
T T (pt)∑

t′ e
Vγ(I)T T (pt′)

P (Vγ(I)) dγ (5)

Addressing Eq. 4 using the marginal likelihood outlined in Eq. 5 proves to be
unfeasible, requiring the indeterminable dγ . Drawing inspiration from Variational
Autoencoders (VAE) [40], our strategy pivots to establishing a lower bound
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through the introduction of a variational distribution dϕ, enabling the sampling
of the residual r. This variational bound is articulated as:

logP (y | x) ≥ Edϕ(r)[logP (y | x, r)]−DKL [dϕ(r)∥dγ(r)] (6)

with logP (y | x, r) ∝ eVγ(I)
T T (pt), where the dependency on r originates from

the definition of Vγ(I). To maximize the expectation Edϕ(r)[logP (y | x, r)] in
Eq. 6, ProGBA minimizes the loss:

Lc = − 1

2N

N∑
i=1

(
log

exp (tivi/τ)∑N
j=1 exp (tivj/τ)

+ log
exp (tivi/τ)∑N
j=1 exp (tjvi/τ)

)
(7)

where τ is a temperature parameter referring to [60].
Adhering to [21, 40], we designate dϕ as a learnable Gaussian distribution,

as r ∼ N (µ,Σ), with both µ and Σ being vectors subject to learning. dγ(r) is
defined as a standard normal distribution N (0, I). Subsequently, a reparameter-
ization method is used to generate Monte Carlo samples from dϕ to minimize
DKL in Eq. 6. Consequently, our proposed loss function can be articulated as:

Lbayes = Lc +DKL [dϕ(r)∥dγ(r)] (8)

Inspired from [72], the loss function during the distribution optimization stage
further involves the cosine distance between v̄′ and v̄t, which is formulated as:

LD = D
(
v̄′, v̄t

)
+ ∥vs − v̄t∥1,D(x, y) = 1− x− y

∥x− y∥2
(9)

An l1 regularizer is utilized to ensure embeddings do not stray significantly from
their original values, thereby maintaining the integrity of image semantic content.
The overall loss LO in the distribution optimization stage can be expressed as:

LO = Lbayes + LD (10)

As for the loss during training with augmentation, DKL is also involved:

LT = λDKL [dϕ(r)∥dγ(r)] + Lspec (11)

where Lspec denotes the task-oriented loss. λ is set to 0.01 by default, as deter-
mined by the ablation experiments in the Suppl.

4 Experiments

4.1 Experimental setup

Datasets We utilize the Cityscapes dataset [13] as our primary source in se-
mantic segmentation, which consists of 2,975 training images and 500 valida-
tion images, spanning 19 semantic classes. However, since the validation set of
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Cityscapes is divided by cities like the training set, which is not applicable to
test domain adaptation methods due to its insignificant domain gap with the
training set, our primary results are benchmarked using the ACDC dataset [65],
selected for its collection of urban images under challenging weather conditions.
Furthermore, we explore the generalizability of ProGBA across two distinct sce-
narios: transferring from real to synthetic environments (using Cityscapes as the
source and GTA5 [62] for evaluation) and from synthetic to real (with GTA5
as the source and Cityscapes for assessment). Evaluations are conducted on the
provided validation sets. For GTA5, a randomly selected subset of 1,000 images
is used for analysis, referring to the settings of PØDA [18].

Adapting to continuously evolving environments represents a safety-critical
challenge for zero-shot domain adaptation methods. To assess the efficacy of
ProGBA in dynamic scenarios, we employed the SHIFT dataset [69]. SHIFT
is a synthetic dataset designed for autonomous driving, characterized by its
unique representation of continuous environmental variations, including changes
in cloudiness, precipitation, fog intensity, and time of day. The dataset comprises
4,850 sequences, with each sequence consisting of 500 frames recorded at a fre-
quency of 10 Hz. For a more targeted evaluation, we reorganized the validation
set into three subsets—Night, Fog, and Rain—based on the type of domain shift,
and subsequently assessed the performance of ProGBA on these subsets.

Evaluation metrics Our experiments utilize the Mean of class-wise Intersec-
tion over union (mIoU) metric to measure the performance of adaptation in
semantic segmentation. For PØDA and ProGBA, the mean and standard devi-
ation are reported over three models trained with different random seeds.

4.2 Implementation details

Distribution optimization As the benchmark dataset evaluates semantic seg-
mentation performance across various weather conditions, a collection of target
domain prompts Pt are crafted to align with the validation split’s weather con-
ditions, comprising snow, fog, rain, and sunshine, alongside three distinct times
of the day: day, night, and evening. The combination of sunshine are excluded
during the daytime from our prompts since it corresponds to the source domain.
This setup enables us to create M = 11 distinct prompts following the format an
image taken on a {weather} {time of the day}. For the source domain prompt
ps, we use an image taken during the day. The prompts used in Real→Synthetic,
Synthetic→Real in semantic segmentation are designed similarly.

To finetune the augmentations with these prompts, we generate random crops
from the source images, resizing them to 224 × 224 pixels. The mean µ and
variance Σ are set to 0 and 1 initially. The image encoder V is implemented as a
ViT-B/16 [16], and the text encoder T employs the transformer architecture [71],
both initialized with weights pre-trained using CLIP [60] and maintained frozen
throughout the training process. For the optimization phase, we use the Adam
optimizer [39], conducting the optimization over 2500 iterations with a learning
rate of 1e-4.
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Table 1: Zero-shot domain adaptation results on semantic segmentation.
The mIoU scores grouped by source domain and target domain are reported. Source-
only: SAN [80] which solely initialized using CLIP pre-training weights, without any
further domain adaptation. *: Our re-implementation with visual backbone ViT-B/16.

Source Target eval Method mIoU

Target domain = Night
Source-only [80] 26.36

PØDA* [18] 28.24 ± 0.47ACDC Night
ProGBA 30.18 ± 0.39

Target domain = Snow
Source-only [80] 47.47

PØDA* [18] 48.61 ± 0.41ACDC Snow
ProGBA 48.94 ± 0.34

Target domain = Rain
Source-only [80] 47.64

PØDA* [18] 47.89 ± 0.45ACDC Rain
ProGBA 49.65 ± 0.37

Target domain = Fog
Source-only [80] 59.83

PØDA* [18] 59.84 ± 0.49ACDC Fog
ProGBA 60.34 ± 0.35

Target domain = Synthesis
Source-only [80] 46.27

PØDA* [18] 46.46 ± 0.43

Cityscapes

GTA5
ProGBA 47.69 ± 0.36

Target domain = Real
Source-only [80] 43.13

PØDA* [18] 43.55 ± 0.44GTA5 Cityscapes
ProGBA 43.67 ± 0.30

Training with augmentation While training with augmentation, we largely
adhere to the SAN [80] with only minor adjustments to accommodate the adap-
tive segmenter. We process the input images by randomly resizing them to fall
within the short-side range of [320, 1024] before cropping them to [640, 640]. Both
the visual encoder V and text T encoders are initialized using weights from the
pre-training weights of CLIP [60] of ViT-B [16] version. Throughout the training
phase, we maintain the text encoder T and visual encoder V in a frozen state, fo-
cusing on training the side adaptive network and the augmentation distribution.
This training is conducted using the AdamW optimizer over 60,000 iterations,
starting with an initial learning rate of 1e-4, a weight decay of 1e-4 and the batch
size of 32. The learning rate follows a poly schedule with a decay power of 0.9.

4.3 Main results

ProGBA for semantic segmentation We compare performance of ProGBA,
which utilizes semantic augmentation, with that of the state-of-the-art PØDA
[18]. Additionally, we examine the efficiency of source-only as the baseline. Fo-
cusing on the semantic segmentation task, we train all model on Cityscapes
and assesse the adaptability in Table 1 to unseen target domains by evaluating
mIoU scores across various out-of-domain datasets, including conditions of night,
rain, snow, and fog. Our ProGBA, which integrates CLIP pre-training model
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Table 2: Zero-shot domain adaptation results on the continuous scenarios.
Performance grouped by target domain are reported in terms of mIoU scores. Source-
only: SAN [80] which solely initialized using CLIP pre-training weights, without any
further domain adaptation. *: Our re-implementation with visual backbone ViT-B/16.

Target eval Method mIoU

Target domain = Night
Source-only [80] 39.82

PØDA* [18] 41.88 ± 0.47SHIFT Night
ProGBA 42.53 ± 0.35

Target domain = Snow
Source-only [80] 43.19

PØDA* [18] 44.54 ± 0.44SHIFT Fog
ProGBA 46.65 ± 0.42

Target domain = Rain
Source-only [80] 36.89

PØDA* [18] 37.58 ± 0.40SHIFT Rain
ProGBA 39.89 ± 0.31

with Bayesian prompt guided augmentation, demonstrates superior performance
across all evaluated domains when compared to the source-only method. Despite
not tailoring the learning process to individual images, our method achieves an
improvement of approximate 2% mIoU over PØDA in challenging conditions
like night and rain, while maintaining similar performance in snow and fog situ-
ations. This indicates the effective coverage of the learned distributions over the
residual space between the source and target domains.

Transitioning from synthetic to real applications represents a common chal-
lenge in domain adaptation, especially in the autonomous driving. Since real
labelled data in driving scenarios is often costly to obtain and data in an un-
usual weather e.g . daytime foggy is difficult to obtain, models are often trained
on large amounts of synthetic data and eventually migrated to real scenarios.
Therefore, minimizing the domain gap between synthetic and real environments
is crucial. As presented in Table 1, ProGBA surpasses two baseline models by
a margin of almost 1.2 mIoU, showcasing its effectiveness in bridging the do-
main gap. Moreover, when adapting Real → Synthetic, our method continues
to outperform others, achieving the highest mIoU. Fig. 3 provides a qualitative
results on different target domains. In conditions like CS → ACDC Rain, ob-
jects detected by PØDA are frequently partial, while ProGBA achieves more
comprehensive segmentation for objects. As for CS → Synthesis, ProGBA more
effectively adjusts to the target domain and accurately classifies objects.

ProGBA for continuous scenarios To further assess the generalizability of
our approach, we conduct a comparative analysis with PØDA using the SHIFT
synthetic dataset [69]. As shown in Table 2, the mean Intersection over Union
(mIoU) is validated across three distinct domain shift types within the SHIFT
dataset, utilizing Cityscapes as the training source domain. ProGBA demon-
strates a mean improvement of 3.05 mIoU compared to the Source-only approach



12 J. Zou et al.
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Fig. 3: Qualitative examples on Cityscapes → GTA5(Synthesis) validation set and
Cityscapes → ACDC validation set.

across these scenarios, and an enhancement of up to 2.3 mIoU over PØDA, which
similarly employs a clip-based methodology. These results underscore the effec-
tiveness of the prompt-guided distribution learned by ProGBA in accommodat-
ing various levels of domain shifts. In contrast, PØDA utilizes a single optimal
augmentation feature per sample, derived from a singular textual description,
which may lead to overfitting at specific domain shift levels. Consequently, in
scenarios characterized by continuous variations encompassing multiple domain
shifts, PØDA achieves only an average mIoU improvement of 1.36%. The last
row of Fig 3 presents the visualization results of Cityscapes → SHIFT validation
set. Even in adverse weather conditions, such as heavy rain accompanied by fog,
ProGBA effectively segments the sky, etc., demonstrating the robustness of our
model in inclement weather.

4.4 Ablation study

Loss ablation The primary distinction between ProGBA and ERM-based do-
main adaptation approaches lies in the learning of distributions and the associ-
ated loss functions. Our loss ablation, detailed in Table 3, examines the effects
of the component in our specifically designed loss Lbayes. The data reveals that
relying solely on DKL for guidance actually decreases mIoU scores in target do-
mains characterized by fog and rain when compared to the methods where DKL

is omitted. This decline in performance can be attributed to the fact that exclu-
sively using DKL, each augmentation tend to learn as a standard normal distri-
bution, which inadequately represents the characteristics of the target domain.
However, incorporating both DKL and Lc leads to a consistent mIoU improve-
ment of approximately 1.6% across all target domains. This outcome validates
the effectiveness of our proposed Lbayes.

Selection of features to augment In Table 4, our analysis focuses on the
impact of different feature layer selections for augmentation. The results eval-
uated on the ACDC night split indicate that optimal performance, marked by
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Table 3: Ablation study of loss function. We study the influence for two differ-
ent components of the loss function: Both distribution optimization and training with
augmentation are performed on the Cityscapes train split, while the evaluation is con-
ducted on the ACDC validation set.

DKL Lc

Cityscapes →
mIoUACDC Night ACDC Fog ACDC Rain ACDC Snow

29.67 60.24 49.28 47.55 47.53
✓ 29.55 59.57 49.88 47.69 48.45
✓ ✓ 30.18 60.34 49.64 48.94 49.18

Table 4: Impact of selection of fea-
tures to augment. Performance on the
ACDC Night validation set is reported.

Description Layers mIoU

single-adaption
3rd layer 28.16
6th layer 30.18
9th layer 27.71

multi-adaption

{3,6}-layer 27.98
{3,9}-layer 26.29
{6,9}-layer 27.08

{3,6,9}-layer 27.00

Table 5: Performance with ResNet50
for DeepLabV3+ [7] head is reported.
Models are validated on the ACDC
Night split.

Method mIoU

Source-only [7] 20.1
IBN-Net [56] 21.3

InterNorm [31] 23.8
SW [57] 20.5

RobustNet(ISW) [12] 23.2
SAN-SAW [58] 24.5

DPCL [81] 24.9
PØDA [18] 25.0
ULDA [82] 25.4
ProGBA 25.5

a 30.18 mIoU score, is achieved when augmenting features from the 6th layer
of backbone. Moreover, it’s observed that augmenting features across multiple
layers yields inferior results compared to augmenting features from a single layer.
This performance drop could stem from the increased complexity in optimizing
the model when multiple layers are enhanced. Specifically, the increased opti-
mization challenge when augmentation r from the same distribution is added
to multiple backbone layers, e.g . 3rd and 6th, rather than single layer, e.g . 6th.
Moreover, r that sampled from the same distribution tends to be similar, which
would introduce much redundancy and disrupt to original semantic information.

Other architecture In Table 5, we report the performance using ResNet50 [24]
as a backbone in CS → ACDC Night. Compared to the Source-only, ProGBA
achieves a significant improvement of 5.4 mIoU, outperforming other SOTA zero-
shot domain adaptation methods and domain generalization approaches which
are similar to the zero-shot domain adaptation setups. Notably, ProGBA demon-
strates the consistent improvement with a very different backbone (ResNet50)
compared to ViT [16], further underscoring the generalizability of our method.

Number of Monte Carlo sampling The quantity of Monte Carlo samples
plays a crucial role in accurate log-likelihood approximation, with more samples
generally leading to more accurate approximations and better adaptation to
target domains. Table 6 delves into this aspect by altering the count of Monte
Carlo samples within the learned normal distribution N (µ,Σ). We observed a
consistent improvement as the number of samples is increased from 1 to 10,



14 J. Zou et al.

Table 6: Impact of the Monte Carlo
sampling on target domain. Mean: the
average mIoU of CS→ACDC Night and
CS→GTA5.

#Monte Carlo
sampling

CS →
ACDC Night

CS →
GTA5 Mean

1 29.67 46.79 38.23
5 30.20 46.95 38.58
10 30.18 47.69 38.94
20 29.22 47.86 38.54

Table 7: Impact of the variational
distribution on target domain. The
average mIoU of CS→ACDC Night and
CS→GTA5 is reported as Mean.

Variational
distribution

CS →
ACDC Night

CS →
GTA5 Mean

U(0, 1) 29.14 46.78 36.96
N (0, I) 29.66 47.15 38.41
N (µ,Σ) 30.18 47.69 38.94

beyond which the mIoU levels off. Consequently, we settled on 10 as the optimal
number of Monte Carlo samples for our augmentation module.

Variational distribution We ablate the effectiveness of the variational dis-
tribution by comparing the impact of sampling augmentations from different
distributions: the uniform distribution U(0, 1), the normal distribution N (0, I),
and the specifically tailored normal distribution N (µ,Σ). The results, detailed
in Table 7, reveal that samples drawn from N (µ,Σ) consistently outperform
those obtained from the uniform distribution U(0, 1) and the generic normal
distribution N (0, I). This superiority demonstrates the effectiveness of the en-
hancements produced by our prompt guided bayesian augmentation module,
highlighting its ability to generate informative adaptive augmentations.

5 Conclusion

ProGBA introduces a novel approach for zero-shot domain adaptation by em-
ploying prompt-guided bayesian augmentation, framing the adaptation learning
as a variational inference problem. Two principal innovations define this method:
firstly, the domain shift from source to target is modeled as a distribution, re-
ducing the risk of overfitting and learning more generalized augmentation across
domains; and secondly, a novel loss based on ELBO is proposed to closely ap-
proximate the actual domain shifts. Extensive experiments reveal marked en-
hancements, highlighting ProGBA’s adaptability and broad applicability.

Limitations The distribution parameters ProGBA uses are unconditional i.e.
they are learned across the whole dataset and fixed during testing, which restricts
the model’s potential. Additionally, the dependency on the latent space of visual-
language models means ProGBA cannot be applied to the backbone without
large-scale pre-training, narrowing its applicability.
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