
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS FILES, VOL. 14, NO. 8, AUGUST 2015 1

GrapHiC: An integrative graph based approach
for imputing missing Hi-C reads
Ghulam Murtaza, Justin Wagner, Justin M. Zook, Ritambhara Singh

Abstract—Hi-C experiments allow researchers to study and understand the 3D genome organization and its regulatory function.
Unfortunately, sequencing costs and technical constraints severely restrict access to high-quality Hi-C data for many cell types. Existing
frameworks rely on a sparse Hi-C dataset or cheaper-to-acquire ChIP-seq data to predict Hi-C contact maps with high read coverage.
However, these methods fail to generalize to sparse or cross-cell-type inputs because they do not account for the contributions of
epigenomic features or the impact of the structural neighborhood in predicting Hi-C reads. We propose GrapHiC, which combines Hi-C
and ChIP-seq in a graph representation, allowing more accurate embedding of structural and epigenomic features. Each node
represents a binned genomic region, and we assign edge weights using the observed Hi-C reads. Additionally, we embed ChIP-seq
and relative positional information as node attributes, allowing our representation to capture structural neighborhoods and the
contributions of proteins and their modifications for predicting Hi-C reads. We show that GrapHiC generalizes better than the current
state-of-the-art on cross-cell-type settings and sparse Hi-C inputs. Moreover, we can utilize our framework to impute Hi-C reads even
when no Hi-C contact map is available, thus making high-quality Hi-C data accessible for many cell types.
Availability: https://github.com/rsinghlab/GrapHiC

Index Terms—Graph Neural Networks, Chromosome Conformation Capture, Hi-C, Hi-C read imputations, Modality Integration
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1 INTRODUCTION

R Esearch on genome organization has established its role
in gene expression regulation [1], and how perturba-

tions in this organization can lead to disease onset [2]. Hi-
C, a high-throughput chromosome conformation capture
experiment, allows researchers to understand and study
genome organization. The Hi-C experiment produces an
array of paired-end reads, representing the 3D structure
of the genome (or chromatin) shown as an input to our
pipeline in Fig. 1. Each paired-end read contains sequences
of DNA interacting in the 3D space. A common way to
aggregate the data produced by the Hi-C experiment is to
store it in a contact map of size N×N . Each row and column
correspond to fixed-width N windows (“bins”) in the range
of 1 Kbp to 1 Mbp depending on the number of reads tiled
along the genomic axis. The values in the contact map are
counts of read pairs that fall into the corresponding bins.
The study of these contact maps has revealed important
structural features such as topologically associated domains
(TADs) [3] and enhancer-promoter interactions [4] that are
involved in gene regulation. Therefore, Hi-C experiments
have proven to be crucial in helping us understand the
interplay of spatial structure and gene regulation.

Unfortunately, due to the quadratic scaling of reads in
the Hi-C protocol, most experiments produce sparse read
counts that require a larger bin size (typically more than ≥
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40 Kbp [5]) to account for the experimental noise. Conse-
quently, any downstream analysis on such maps misses out
on the finer structural features, such as enhancer-promoter
interactions that typically occur in the 5 Kbp to 10 Kbp range
[4]. Constructing Hi-C contact maps with sufficient reso-
lution often requires billions of reads [4], which typically
exceeds experimental budgets. This technical limitation of
the Hi-C protocol restricts the thorough analysis of the 3D
conformation of DNA.

To make Hi-C analysis more accessible, researchers have
proposed several methods to impute the value of unde-
tected reads in the Hi-C protocol. These methods can be
classified into two categories; the first set of methods, HiC-
to-HiC, uses a sparse Hi-C contact map and imputes the
missing Hi-C reads by formulating it as an image resolution
improvement task [5], [6], [7], [8], [9], [10]. The second
set of methods, Seq-to-HiC uses cheaper-to-acquire data
modalities such as DNA sequence [11], ChIP-seq signals [12]
or a combination of both [13] to impute Hi-C contact maps.
While Seq-to-HiC methods have fine-grained information
about the proteins and their modifications that are known
to mediate genome organization, they are inherently limited
to not account for structural features such as A/B compart-
ments [14] and TADs [3]. HiC-to-HiC methods, on the other
hand, implicitly rely on these structures to be available in
the input contact map. However, they struggle to impute
Hi-C reads when the contact maps are too sparse, and the
structure is degraded [15].

We propose GrapHiC that combines both Hi-C and
ChIP-seq data in a single graph-based representation to
overcome both limitations. We formulate Hi-C data as a
graph with nodes representing genomic loci, and the ob-
served Hi-C reads as an edge (with weights) between them.

https://github.com/rsinghlab/GrapHiC
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Fig. 1. A Inputs and pre-processing pipeline: In this portion of the pipeline, we normalize Hi-C contact maps and create a Hi-C graph using Hi-C
data as its edges and genomic loci as the nodes, with auxiliary genomic signals and positional encodings as node attributes. B GrapHiC: we use the
sparse input Hi-C graph to generate a denser Hi-C graph. The Graph encoder takes in the Hi-C graph and generates latent node representations
that our graph decoder utilizes to impute a dense Hi-C contact matrix.

We embed ChIP-seq signals and relative graph positional
encodings as the node’s input features (or attributes) as
summarized in Fig. 1 A. The positional encodings intuitively
arrange nodes with the same structural features closer, such
as TADs or A/B compartments, as node attributes. For our
GrapHiC architecture, we implement a generative graph-
based autoencoder that first encodes the input graph into
a latent representation. This latent representation encodes
the likelihood of two nodes interacting in the genome con-
ditional on which TAD and A/B compartment they reside
in, their structural neighborhood (edge weight), and the
proteins/epigenome mediating the structure around them
(via the 1D signals as node attributes). Then the graph
decoder applies a UNet [16] on this latent representation
to impute a denser Hi-C contact map.

In this work, we make the following key contributions:
(1) We propose an end-to-end graph generative framework
that outperforms the existing state-of-the-art methods by
21% on average (using a Hi-C similarity metric) when
provided with five different sparse GM12878 inputs and
14% on average in cross-cell-type inputs.
(2) We show the value of adding relative graph positional
encodings in the Hi-C graph formulation through our
ablation analysis. Positional encodings improved our
performance by 24% over a Graph formulation without
positional encodings.
(3) We provide a proof-of-concept result demonstrating
that we can use a Hi-C map with expected reads (whose
probability decays exponentially with distance from the
diagonal) with ChIP-seq data to impute high-read-count
Hi-C contact maps reliably when a low-coverage Hi-C input
is unavailable.

2 RELATED WORKS

Existing HiC-to-HiC methods use low-coverage1 Hi-C
contact maps to impute high-coverage (or high-read-count)
outputs. These methods formulate this imputation as an
image resolution improvement task [17] by treating the Hi-
C contact maps as images. Convolutional Neural Networks
(CNNs) extract a feature set from the input low-read-count
contact map and then use those features to predict a high-
read-count contact map. HiCPlus [5] utilized a 3-layer CNN
and optimized this model using a Mean Squared Error
(MSE) loss. Later methods extended over HiCPlus by stack-
ing more layers [6], [7], employing Generative Adversarial
Networks (GAN) style training [8], [9] or by using nuanced
biologically-grounded loss functions [10] to impute more
realistic contact maps.

On the other hand, existing Seq-to-HiC methods use
cheaper-to-conduct 1D genomic signals as inputs, such as
DNA [11], ChIP-seq [12] or a combination of both [13],
to predict Hi-C reads using decision trees [12] or deep
learning based approaches [11], [13]. Even though Seq-to-
HiC methods have fine-grained positions of proteins (or
their modifications) that are known to mediate the genome
conformation, they miss out on the structural neighbor-
hood. While HiC-to-HiC methods capture this structural
neighborhood, they struggle to generalize when the input
Hi-C contact map becomes too sparse and the structure
degrades significantly [15]. To overcome both limitations,
we propose combining low-read-count Hi-C contact maps
and the cheaper-to-conduct ChIP-seq signals in a single
graph-based representation.

Other related efforts have also suggested formulating
Hi-C data as a graph. For example, Hi-C graph formulation
has been previously used for gene expression prediction
[18], chromatin state prediction [19], Micro-C prediction
[20], and many other tasks including computing similarity

1. synonymous with low-read-count, low-resolution, or low-quality
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between two Hi-C contact maps [21]. Our method resembles
Caesar [20], but we make a few critical methodological
innovations and changes. First, Caesar applies an ensemble
model that predicts the Micro-C contact map and Chromatin
Loops independently of each other, while we propose to
utilize a single model. We believe our formulation
allows our model to learn robust internal representations
because both tasks rely on the same underlying features.
Secondly, we use a UNet to decode the Hi-C contact map
because a UNet architecturally mimics the hierarchical
organization of the chromatin and can potentially learn
better internal representations. Lastly, we use eigenvectors
of the Laplacian of our Hi-C graph as graph positional
encodings that, intuitively, positions the nodes belonging
to the same graph communities, clusters, or structures
closer together in the graph space. In the biological context,
particularly the sign of the eigenvectors divides the genome
into two A/B compartments, where genomic loci in A
compartment are more likely to interact with each other
and vice-versa [14], and these structures inform the global
organization of the genome [4]. From a graph learning
perspective, positional encodings are helpful in all tasks
that formulate Hi-C as a graph because they expand the
theoretical expressiveness of graph-convolutional operators
beyond the 1-Weisfeiler-Lehman (1-WL2) isomorphism test,
allowing GrapHiC to tell apart similar structures, such as
TADs in the latent space based on their position in the
chromatin [22].

3 METHODS

Our method aims to impute a high-resolution Hi-C
contact map Himputed given a sparse Hi-C contact map
Hsparse. We develop GrapHiC, shown in Fig. 1, which has
three main components. First, we develop a Graph creator
module, depicted in Fig. 1 A, that models Hi-C contact maps
as graphs, with graph positional encodings and ChIP-seq
signals as node attributes, and observed Hi-C reads as edges
connecting those nodes. Second, we implement a Graph
Autoencoder, shown in Fig. 1 B, that produces a dense
Hi-C graph when provided with a sparse Hi-C input. The
Graph encoder utilizes Graph Transformer convolutions
that explicitly attend to both the node features and edge
weights to learn latent node embeddings. Last, our Graph
decoder uses these latent node embeddings to impute a
dense Hi-C contact map Himputed using a UNet architecture.

3.1 Graph Creator
Given a sparse Hi-C contact map Hsparse, Graph Creator
module defines a Hi-C graph G = (X,E), with a node
attribute set X and an edge set E connecting those. Here,
a node i ∈ X corresponds to genomic loci and an edge
ei,j ∈ E connecting them, provided through observed reads
in our sparse contact map Hsparse. Most existing Hi-C
graph formulations define X to be a constant set [23], [24]
and more recently capture their genomic profiles [18], [20].
We believe this node attribute set X should also include
the relative node position because, for example, loci that

2. WL algoritm tries to assign a unique color to each node based on
its neighborhood.

are further apart are less likely to interact [4]. In contrast,
loci belonging to the same A/B chromatin organizational
compartments or TADs are more likely to interact with each
other [3], [14].

We compute the relative position of the nodes using the
graph positional encoding scheme [25], that decomposes the
Laplacian of the input sparse Hi-C contact map Hsparse into
the spectral domain that provides us a set of N eigenvectors
V , where top k components of the eigenvector V k

i corre-
sponds to the relative position of node i in the input Hi-
C contact map domain. Intuitively, these positional encod-
ings assign the node a unique position in the graph space
with similar values to nodes belonging to the same sub-
structures, such as TADs and A/B compartments. Lastly, to
integrate the genomic information of a locus, we take the
average reads for that region from five ChIP-Seq signals
(DNAse-Seq, CTCF, H3K4ME3, H3K27ME3, H3K27AC) to
define a feature set C . Finally, we concatenate V with C to
get our node attribute set X .

3.2 Graph Encoder

The Graph Encoder constructs latent representations of each
node that is a weighted aggregation of its features and
the node features of its neighboring nodes. We use graph
transformer convolutions [26] in the graph encoder. Graph
transformer convolutions learn the new latent attribute set
X ′

i of the node i, x′
i, by aggregating over all N nodes with

features xi ∈ X as follows:

x′
i = W1xi +

∑
j ̸=i

ai,j(W2xj +W5ei,j) (1)

ai,j = softmax(
(W3x

T
i )(W4xj +W5ei,j)√

d
) (2)

Here, ei,j ∈ E are edge weights connecting node i and j, ai,j
are attention coefficient attributes, d is a scaling parameter,
and W1 to W5 are learnable parameters. W5 is shared in
calculation of both the attention coefficients ai,j and the new
latent attributes set x′

i. The graph transformer convolution
operation updates the representation of the current node by
combining the current node’s features xi with node features
of neighboring nodes j ̸= i and edge weight connecting
them ei,j (Eq. (1)). This combination is scaled by their
attention coefficient ai,j (Eq. (2)). Attention allows the model
to focus on the most relevant node interactions by weighing
them differently, with weights ranging between 0 − 1 due
to the softmax function. In the biological context, this
latent representation encodes the likelihood of two nodes
given their structural neighborhood (encoded through rela-
tive positioning) and the genomic landscape mediating the
structure around them.

3.3 Graph Decoder

Graph Decoder module starts off by taking the inner product
of the latent node embeddings X ′ with the transpose of
themselves to get a contact probability map P that is of
shape N ×N as follows:

P = X ′X ′T (3)
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Graph Decoder then applies a UNet [16] to transform the
contact probability map into observed Hi-C reads contact
map by first extracting a feature set F l

D using 3 Down Blocks,
that work by applying Downsampling convolutions. At the
Middle Block we transform the feature set F l

D to F l
M by

applying self attention:

F l
M = softmax(

(WQF l
D)(WKF l

D)T√
dk

)WV F l
D (4)

Here WQ,WK ,WV are learnable parameters and dk is a
scaling parameter. This self-attention operation in a bio-
logical context learns the relationships between how the
properties of sub-structures such as sub-TADs relate to other
sub-TADs in the neighborhood and the overall structure of
the genome. Next, UNet uses this feature set F l

M to impute
a dense Hi-C contact map by applying 3 Up Blocks that use
Deconvolutions (that are inverse of convolutions in Down
Blocks) to impute a Hi-C contact map. Up Blocks in com-
parison to Down Blocks have an additional cross-attention
operation that learns the relationships from the feature set
from the previous Up Block (or Middle Block) and the features
from the same level Down Block highlighted as dotted gray
connections in the Fig. 1. This cross-attention operation in a
biological context allows higher-order chromatin organiza-
tion features extracted in the upper level Down Blocks, such
as A/B compartments, that might get lost in the bottleneck
Middle Block to inform Hi-C read imputations. Lastly, Graph
Decoder applies a group norm, swish activation [9], and last
convolution operation to project the output of the last Up
Block to our final imputed Hi-C contact map Himputed.

We jointly optimize both the Graph Encoder and the
Graph Decoder, GrapHiC, with MSE loss as follows:

LMSE(Htarget, Himputed) =

N∑
i,j=1

(Htargeti,j −Himputedi,j)
2

(5)

We selected MSE loss because it has been shown [27] that
having complex, nuanced loss functions increases the like-
lihood of the model overfitting to the training objective.
This problem is more relevant in the graph domain because
graph convolutions tend to overfit the underlying geometry
[28].

3.4 Implementation Details

We use an ADAM optimizer with a 0.0001 learning rate to
optimize both the encoder and the decoder. We implement
the entire pipeline in Python (version 3.9.0), Pytorch (2.0.0),
and Pytorch Geometric. We show the details of the model
architecture in Supplementary Table S1. GrapHiC takes in a
256×256 sized Hi-C sub-matrix corresponding to 2.56 Mpb
regions (because of the 10 Kbp resolution). GrapHiC also
requires a 256 × 5 ChIP-seq profile of the same genomic
region to produce a Hi-C graph G with 256 nodes, and
each node has an attribute vector of size 13 (5 ChIP-seq
signals and top 8 components of the eigenvectors). The
size of 256 serves two purposes. First, it allows us to
include all the biologically informative interactions in
the 2 Mbp range around the diagonal. Second, it ensures
that we can downsample by a factor of 2 three times

(number of Down Blocks) in our UNet architecture. To
predict intra-chromosomal contact maps (similar to our
related works [5], [6], [9], [10], [13], [20]), we predict along
the diagonal by sampling 2.56 Mbp sub-matrices with a
0.3 Mbp stride length. We average all the overlapping
predictions to account for the border effect and produce our
final intra-chromosomal contact map. We trained GrapHiC
with 10 random seeds and found a standard deviation of
0.004 on validation chromosomes on SSIM (mentioned in
the next section). We trained GrapHiC on another random
seed and used that for the rest of the evaluations.

4 EXPERIMENTAL SETUP

4.1 Datasets and pre-processing
Following existing Hi-C read imputation methods [5], [6],
[7], [8], [9], [10], we used GM12878, IMR90, and K562 cell
line datasets from Rao et al. [4] as our target high-read-count
(HRC) matrices. Given the technical constraints in acquiring
and reprocessing (both Hi-C and ChIP-seq data), we leave
cross-species analysis as future work to ensure the data dis-
tributions match. These are the ground-truth high-quality
datasets in our experiments that we would like GrapHiC to
impute using the low-quality Hi-C contact maps as inputs
(as done in previous works). As summarized in Table. 1
we collected eight low-read-count (LRC) Hi-C contact maps
from the ENCODE [29] and the NCBI [30] public reposito-
ries with read coverage in the range of 1

9 to 1
100 of the reads

in comparison to the appropriate HRC Hi-C contact maps.
We also include a dataset from the 4DN portal for additional
evaluations on GRCh38 (for additional results) shown in the
Supplementary Table. S2. We removed spurious and incor-
rectly mapped reads by applying a MAPQ filter of ≥ 30.
We binned the remaining reads at 10 Kbp resolution (size of
genomic loci) to create our two-dimensional contact maps.
We performed KR-normalization of these contact maps to
balance reads across all the bins. Moreover, we filtered out
all inter-chromosomal contacts and confined our analysis to
autosomal chromosomes. We normalized each contact map
between 0 and 99.9th percentile values following DeepHiC’s
normalization procedure.

Reads Sparsity Source
GM12878-HRC 1,844,107,778 1 GSE63525

IMR90-HRC 735,043,093 1 GSE63525
K562-HRC 641,402,880 1 GSE63525

GM12878-LRC-1 202,380,884 9 GSE63525
GM12878-LRC-2 70,138,184 25 ENCSR968KAY
GM12878-LRC-3 42,453,795 44 ENCSR382RFU
GM12878-LRC-4 37,079,587 50 ENCSR382RFU
GM12878-LRC-5 18,696,952 100 GSE63525

IMR90-LRC-1 75,193,876 10 GSE63525
K562-LRC-1 44,882,605 14 GSE63525

TABLE 1
Summary of the datasets and their sources. HRC refers to

high-read-count, and LRC refers to low-read-count Hi-C contact
matrices. Sparsity represents the fraction of reads compared to the

relevant HRC Hi-C contact map.

For our auxiliary genomic signals, we used 5 out of
the 14 1D inputs used by HiCReg [12]. HiCReg curated
a collection of ChIP-Seq experiments targeting ten histone
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marks (notably H3K27AC and H3K27ME3), three transcrip-
tion factors (RAD-21, CTCF, and RNA-Pol2), and one chro-
matin accessibility marker (DNAse-Seq), essentially forming
a comprehensive set of features related to the 3D organiza-
tion of the DNA. Like our Hi-C data, we binned all the
1D data in 10 Kbp genomic bins, normalized them in the
0 to 99.9th percentile range, and cropped them into sub-
ranges of size 2 Mbp that aligned with Hi-C submatrices.
As done in previous works, we divided chromosomes [chr1-
chr8, chr12-chr18] as training, [chr8, chr10, chr19, chr22] as
validation, and [chr9, chr11, chr20, chr21] as testing sets. All
of our results are on cross-chromosome evaluations (on the
testing set), at no point during the training procedure we
use data from these chromosomes.

4.2 Baselines
We compare our method against two state-of-the-art Hi-
C read imputation frameworks. We train baselines with
all the pre-processed data (including normalizations) with
the same pipelines we use for GrapHiC to ensure a fair
comparison of our outputs.
HiCNN: A recent evaluation [15] showed that HiCNN [6]
provides the best imputation generalizability across a broad
range of sparse real-world Hi-C datasets in comparison
to rest of the HiC-to-HiC imputation methods (including
DeepHiC). HiCNN relies on a 54-layer CNN that takes
in 40 × 40 sparse Hi-C contact map sub-matrices and
predicts high-resolution Hi-C sub-matrices across 2 Mbp
distance from the diagonal. HiCNN then assembles those
sub-matrices into intra-chromosome contact maps.
HiCReg: We include HiCReg, a Seq-to-HiC baseline, that
uses 14 ChIP-seq signals as input to impute Hi-C reads using
a random-forest model. Similar to GrapHiC and HiCNN, we
use HiCReg to predict intra-chromosomal contact maps in
the 2 Mbp range along the diagonal to ensure a comparable
output.

Note, we exclude Caesar [20] and Origami [13] from our
baselines because we were unable to obtain the same quality
Hi-C (or Micro-C) contact maps. Origami produced a Hi-
C contact map with large regions with no observed reads,
as shown in Supplementary Fig. S1 when provided with
hg19 reference genome3 aligned DNA sequences, CTCF, and
ATAC-Seq data. When provided with a real-world sparse
Hi-C contact map, the matrices produced through Caesar ( a
Micro-C contact imputation framework) show severe degra-
dation in genome structure compared to when we input a
dense Hi-C contact map as depicted in Supplementary Fig.
S2.

4.3 Evaluation Metrics
We compare the imputed Hi-C contact maps Himputed

against the target Hi-C contact maps Htarget using the
following three evaluation metrics:
Structural Similarity Index Metric (SSIM) compares the
visual similarity of two images by comparing the luminance
and contrast of small patches across the entire image to

3. All of our datasets are aligned with the hg19 reference genome,
and we show minor difference ( 2%) in performance when we provide
a grch38 aligned inputs as shown in Supplementary Table. S3.

GrapHiC-Basic

GrapHiC Target

GrapHiC-Pos

A

B

Fig. 2. Positional Encodings improve the quality of imputed Hi-C
reads A A visual comparison of the Hi-C contact map for the region
chr11:20.1.5-22.1 Mbp generated by various versions of GrapHiC shows
that as we add, relative positional encodings GrapHiC can impute a
more realistic Hi-C contact map, and as we add ChIP-seq signals
GrapHiC can recover finer architectural features better highlighted with
a dotted blue rectangle. B Our quantitative analysis on SSIM and
GenomeDISCO show similar scores for GrapHiC-Pos and GrapHiC, but
Chromatin loop recall scores confirm our visual hypothesis suggesting
that adding more ChIP-seq signals help GrapHiC to recover finer archi-
tectural features

compute a score between 0 and 1, with 1 given to identical
images. We use SSIM to compare the visual similarity of
Hi-C contact maps similar to our related efforts [9].
GenomeDISCO [21] utilizes random graph walks of in-
creasing lengths to compare the similarity of the underly-
ing graph structural features. These graph structural fea-
tures are known to be associated with higher dimensional
chromatin features. GenomeDISCO produces a similarity
score between -1 and 1, where the higher score represents
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higher similarity. We show GenomeDISCO scores because
it computes similarity based on the structure rather than
observed Hi-C reads distribution. Moreover, the random
walk algorithm not only smooths out Hi-C protocol noise
but also makes GenomeDISCO more robust to Hi-C read
depth [21].
Chromatin Loops F1 score: To estimate the biological utility
of our imputed chromatin maps, we compare the positions
of the Chromatin Loops in the imputed Hi-C contact map
against their position in the high-resolution Hi-C contact
map. First, we call loops for both high-read-count matrices
and imputed matrices using Chromosight [31], and then
we compute F1 scores by counting: 1) True positives (TP)
features that overlap in both matrices. 2) False Positives (FP),
features that are called on the imputed matrices but are not
present in the high-read-count matrices. 3) False Negatives
(FN), features in high-read-count matrices that were absent
in imputed matrices. Then we compute the F1 score using
the following:

F1 score =
2 · TP

2 · TP + FP + FN

We include the other metrics in the Supplementary
Section to benchmark our method thoroughly like HiCRep
[21], Pearson Correlation Coefficient (PCC), and F1 scores
for TAD boundaries (borders) and DNA-Hairpins. Hi-C-
specific similarity metrics and feature recovery analysis
metrics perform their own Hi-C normalizations and read
downsampling procedures to ensure a fair comparison of
Hi-C contact maps.

5 RESULTS

5.1 Ablation analysis demonstrates the importance of
positional encoding in graph formulation
We conducted an ablation analysis on our proposed
graph formulation by comparing performance on the test
chromosomes of the GM12878-LRC-3 dataset to investigate
our design choices. We compare our imputed Hi-C contact
maps against the GM12878-HRC-1 test chromosomes to
evaluate performance. Here we compare three relevant
versions of GrapHiC:
GrapHiC-Basic: The simplest graph formulation without
any positional information or auxiliary ChIP-Seq
experiments as node features. GrapHiC-Basic only uses the
sparse Hi-C contact map embedded as edge weights to
impute a Hi-C contact map.
GrapHiC-Pos: GrapHiC-Pos, similar to GrapHiC-Basic, also
only takes in the sparse Hi-C contact map, but it generates
graph positional encodings from the sparse contact map
and embeds them as node attributes.
GrapHiC: Our default version takes in sparse Hi-C contact
map and five ChIP-seq experiments CTCF, DNASE-Seq,
H3K4ME3, H3K27AC, H3K27ME3. It generates graph
positional encodings through sparse Hi-C contact maps and
embeds them with ChIP-seq as node attributes.

Qualitatively, in Fig. 2(A), we compare the imputed Hi-
C contact maps for the region chr11:20.1 Mbp-22.1 Mbp;
we picked this region because it shows a high density of
chromatin features, including TADs and Chromatin Loops

4. GrapHiC-Basic generates a contact map that resembles the
expected contact map without any higher-order chromatin
features. Although adding graph positional encodings in
GrapHiC-Pos improves the structure we recover, adding
auxiliary ChIP-Seq signals allows GrapHiC to recover the
finer architectural features, particularly Chromatin Loops,
as highlighted with a blue dotted rectangle. We quantify
this improvement by showing the performance by com-
paring performance on three metrics (on the x-axis) SSIM,
GenomeDISCO, and Chromatin Loops F1 score (on the y-
axis) on test chromosomes of GM12878-LRC-3 dataset (train-
ing dataset) Fig. 2(B). Our results show that adding graph
positional encodings improves SSIM and GenomeDISCO
scores by 9% and 25% over the GrapHiC-Basic, respectively,
highlighting the utility of relative positional encodings
in recovering higher-order chromatin structure. Moreover,
adding graph positional encodings improves Chromatin
Loops recovery F1 scores by a substantial 88% showing
their utility in recovering finer structural features. Adding
ChIP-seq signals in the node attribute vectors marginally
improves the SSIM and GenomeDISCO scores by 0.4% and
2.0%, respectively. However, adding five ChIP-seq signals,
including CTCF, a protein known to mediate chromatin
organization via forming chromatin loops by binding with
cohesin [32], improves Chromatin Loops F1 score scores by
an additional 20%. We perform further ablation studies,
including how GrapHiC scales to the number of ChIP-
seq signals, and validate our results across other datasets
and metrics. GrapHiC’s scores are robust to the number
of ChIP-seq signals across various metrics and datasets, as
summarized in Supplementary Tables S4, S5, S6, S7, S8. This
ablation analysis highlights the importance of including
relative positional information as node attributes in formu-
lating Hi-C as a graph and its utility in recovering biolog-
ically informative Hi-C contact maps. For the rest of our
evaluations, we use the GrapHiC variant, which includes
five ChIP-seq signals and relative positional information, to
impute Hi-C contact maps unless stated otherwise.

5.2 GrapHiC outperforms existing methods on Hi-C
datasets with varying levels of sparsity
We compare the performance of GrapHiC with HiCNN
and HiCReg, which are HiC-to-HiC and Seq-to-HiC read
imputation methods, respectively. We train both HiCNN
and GrapHiC with GM12878-LRC-3 Hi-C contact map as
input, and we test them both on the GM12878 cell line
with five sparsity levels ranging from a 1

9 to a 1
100 of the

total reads in the target HiC map (GM12878-HRC-1). Note
we show the same scores for HiCReg for all five GM12878
sparse inputs because HiCReg relies only on ChIP-seq data
to impute missing reads and is agnostic to Hi-C reads
sparsity.

As shown in Fig. 3 A, we visualize an imputed re-
gion chr11:20.1Mbp-22.1Mbp because it captures a cluster
of TADs, sub-TADs, and Chromatin Loops. In the section
highlighted with the blue dotted rectangle, we observe that
GrapHiC can more accurately capture Chromatin Loops [33]
compared to both HiCReg and HiCNN. To quantitatively

4. Our GitHub repository contains a link that includes visualizations
of all regions of the test chromosomes
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InputA HiCReg HiCNN GrapHiC Target

B

Fig. 3. GrapHiC generalizes better to sparse GM12878 datasets A Visual comparison of Hi-C contact map for the region chr11:20.1Mbp-22.1Mbp
generated by HiCReg, HiCNN, and GrapHiC shows that GrapHiC can better recover finer chromatin architectural features highlighted with a dotted
blue rectangle. B Our quantitative evaluation using SSIM, GenomeDISCO, and Chromatin Loops F1 scores (on the y-axis) suggests that GrapHiC
outperforms the other methods in at least four out of five datasets across all metrics (on the x-axis) while showing most improvements in the
sparsest input 1

100
case.

evaluate these methods, we compare SSIM, GenomeDISCO,
and chromatin loop F1 scores in Fig. 3 B. GrapHiC out-
performs HiCNN by 11%, 21%, 12% and HiCReg (when
comparing GrapHiC’s performance on GM12878 dataset 1

100
of reads) by 22%, 26%, 89% on SSIM, GenomeDISCO and
Chromatin Loop F1 scores respectively. GrapHiC shows the
highest performance improvement on the most sparse input
Hi-C contact map ( 1

100 of reads) against HiCNN by 32%,
69% and 53% on SSIM, GenomeDISCO, and Chromatin
Loops F1 scores highlighting GrapHiC’s capabilities to com-
bine multiple modalities5 of data and impute biologically
informative reads, especially when provided with a highly
sparse Hi-C input. Our results on the other metrics in
Supplementary Table S9 show similar trends that GrapHiC
outperforms the baseline methods for the most sparse Hi-C
datasets. However, HiCNN performs similarly or slightly
better than GrapHiC for less sparse datasets (GM12878-
LRC-2) because they have more genome structure in the
input. This structure is also similar to the training samples,
which supports HiCNN in good Hi-C read imputation and
feature recovery. Based on these results, we conclude that
GrapHiC can learn robust internal representations even
when provided with 1

100 sparse (GM12878-LRC-5) input and
can generalize to a wide range of sparse inputs.

5.3 GrapHiC trained on GM12878 generalizes well to
IMR90 and K562
Next, we demonstrate that our GrapHiC model, trained on
the GM12878 cell line, can impute the Hi-C maps of different

5. Integrating different types of datasets or modalities

cell lines. We input the LRC Hi-C contact maps and ChIP-
seq signals for K562 and IMR90 and impute Hi-C contact
maps using GrapHiC, HiCNN, and HiCReg.

First, we show the imputed Hi-C contact maps from
region chr20:49.2-51.2 Mbp generated for IMR90 LRC Hi-
C in Fig. 4 A and K562-LRC Hi-C in Fig. 4 B that have 1

10
and 1

14 of the read coverage in comparison to their corre-
sponding HRC Hi-C contact maps, respectively. GrapHiC
imputes the most similar Hi-C contact map across both cell
samples compared to the target HRC Hi-C contact map.
Moreover, GrapHiC can recover cell-specific sub-TADs in
the K562 sample and accurately predict its absence in the
IMR90 sample, as highlighted with a blue rectangle in
Fig. 4. Our quantitative analysis, shown in Fig. 4 C, on
SSIM, GenomeDISCO, and Chromatin Loops F1 score shows
that GrapHiC can generalize better to other cell lines than
HiCNN and HiCReg. Specifically, GrapHiC improves SSIM
scores by 19% and 27%, GenomeDISCO scores by 19% and
9%, and Chromatin Loops F1 scores by 61% and 26% on
IMR90 and K562 cell lines, respectively, in comparison to
HiCNN. Our results on other metrics (Supplementary Table
S10) report that GrapHiC outperforms HiCNN on most met-
rics except HiCRep, QuASAR-Rep, and TAD recovery F1
scores, which are metrics that tend to assign more value to
features that exist closer to the diagonal [3], [21]. Given there
is a higher density of reads around the diagonal because of
the distance effect in Hi-C protocol [34], HiCNN can impute
Hi-C better reads in that region in comparison to GrapHiC
that first maps the inputs into a latent representation and
then impute Hi-C reads. Our qualitative and quantitative
evaluations conclude that GrapHiC, trained on GM12878,
can generalize to other cell lines substantially better than
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Input HiCReg HiCNN GrapHiC TargetA:IMR90

B:K562

C

Input HiCReg HiCNN GrapHiC Target

Fig. 4. GrapHiC generalizes better than existing methods to IMR90 and K562 cell-lines This figure shows the visual comparison of imputed
Hi-C samples from GrapHiC, HiCNN, and HiCReg from IMR90-LRC-1 A and K562-LRC-1 B inputs for the region chr20:49.2Mbp-51.2Mbp to show
cell-specific features. We show that GrapHiC cannot only impute a highly similar contact map but also recovers cell line-specific features highlighted
with the dotted blue rectangle. C We compare the SSIM, GenomeDISCO, and Chromatin Loop F1 scores of GrapHiC, HiCNN, and HiCReg in a
cross-cell type imputation scenario. We find that GrapHiC is able to generalize better than both HiCNN and HiCReg.

the baseline methods. Note that we observe a performance
decrease compared to its performance on the GM12878 cell
line datasets partly because GrapHiC generates reads that
mimic GM12878’s higher sequencing depth and partly be-
cause of the significant distributional shift in Hi-C samples
(particularly IMR90) between cell types [15]. Cell type tends
to have a higher impact on graph-based formulations given
their theoretical formulations forcing them to overfit to the
underlying graph geometry [28].

5.4 GrapHiC can produce high-fidelity Hi-C contact
maps with missing Hi-C input
Given the unique multimodal nature of GrapHiC, we can
impute Hi-C contact maps even in the absence of input
LRC Hi-C data. Because our model learns representations
based on multiple datasets it can potentially show resilience
to the lack of one data type, for example, as we show in
our ablations that we can impute high fidelity Hi-C contact
maps without ChIP-Seq (GrapHiC-Pos). Note, this a task
that HiC-to-HiC methods (such as HiCNN) are unable to
perform because they require a sparse Hi-C contact map.
To test how GrapHiC performs without a Hi-C contact
map, we impute GM12878, IMR90, and K562 cell line Hi-

C contact maps using cell line-specific ChIP-seq signals and
an expected Hi-C contact map. We construct this expected
Hi-C contact map using a simple prior that captures the like-
lihood of observing a Hi-C read, which decays exponentially
as the distance between the loci increases. Under the graph
structure learning frameworks, we can rely on the expected
Hi-C to provide structural topology similar to a sparse
Hi-C map coupled with ChIP-seq can provide sufficiently
informative representations. We retrain a GrapHiC version
that only takes a ChIP-seq and an expected Hi-C contact
map to impute GM12878, K562, and IMR90 Hi-C contact
maps.

Our quantitative results in Table 2 detail the performance
of GrapHiC across all the predicted samples when provided
an expected Hi-C contact map. Across the three cell lines,
we observe that using an expected Hi-C contact map
as a structural prior improves the performance scores
on average over HiCReg (a Seq-to-HiC) baseline by a
significant 1.4, 2 and 2 times on SSIM, GenomeDISCO, and
Chromatin Loops F1 scores. This substantial improvement
can be attributed partly to the graph representation we
employ in GrapHiC (Graph autoencoder vs. Random
Forest in HiCReg) and partly to the value of providing the
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SSIM GenomeDISCO Chromatin Loops
F1 Scores

HiCReg GrapHiC-
Without HiC

GrapHiC-
With HiC HiCReg GrapHiC-

Without HiC
GrapHiC-
With HiC HiCReg GrapHiC-

Without HiC
GrapHiC-
With HiC

GM12878 0.73768 0.90830 0.92244 0.63565 0.84428 0.91000 0.18041 0.36520 0.52160
IMR90 0.51890 0.77460 0.78031 0.18240 0.57363 0.61493 0.15290 0.37280 0.47150
K562 0.54135 0.82800 0.82780 0.36215 0.80279 0.84704 0.19952 0.33050 0.45220

TABLE 2
HiCReg, GrapHiC with a Hi-C contact map and GrapHiC without a Hi-C contact map (with a structural prior) scores on SSIM, GenomeDISCO, and

Chromatin Loop recall analysis on GM12878, IMR90 and K562. GrapHiC without a Hi-C contact map is able to achieve substantially better than
HiCReg a Seq-to-HiC method across all metrics on all three cell lines.

structural neighborhood information through an expected
Hi-C contact map. Conversely, we do observe a reduction
in performance on average across all three cell lines by
0.75%, 6.4%, 26% on SSIM, GenomeDISCO, and Chromatin
Loops F1 score in comparison to the scenario where we do
provide a Hi-C contact map. This reduction in performance
can be further bridged by implementing more accurate
priors based on known mediators of structural interactions.
For instance, genomic loci with high GC content density
[35] are more prone to interact, which can improve the
prior we provide to GrapHiC. In favor of saving space,
we show the visualizations of some selected regions in the
Supplementary Fig. S3, which shows that GrapHiC with
an expected Hi-C contact map is able to better recover
chromatin features in comparison to HiCReg.

6 DISCUSSION AND CONCLUSION

We present a robust method, GrapHiC, to formulate the
Hi-C data as a graph, which is an accurate representation
of the chromatin structure. GrapHiC allows us to integrate
multiple types of diverse information signals, such as DNA
accessibility information, TF binding sites, histone modi-
fications, and spatial arrangement of DNA, into a single
representation learning framework. This formulation can
be utilized for tasks other than Hi-C read imputation, such
as cell-phase identification, cell clustering, chromatin loops,
and TAD boundary identification because GrapHiC con-
structs an information-rich representation.

Our evaluations show that GrapHiC is resilient against
the sparsity of the real-world input Hi-C data and can
reliably impute Hi-C reads that are biologically informative
even in cases when Hi-C experiment data is unavailable.
Currently, we are using a simple structural prior; we can im-
prove on that substantially by incorporating the influence of
known features such as GC content. GrapHiC can extend the
efforts of Avocado [36] to impute missing Hi-C experiments
for all the cell lines on the ENCODE portal [29]. We plan to
investigate how GrapHiC generalizes to data generated by
different Hi-C protocol variations, such as Pore-C [37] and
single-cell Hi-C, where the Hi-C reads tend to be very sparse
and can potentially develop a bridge between the learning
that happens on bulk experiments to the learning we are
required to do for single-cell experiments. We plan to tackle
these tasks in future investigations as they bring challenges
that require data-specific modeling and handling.
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Component Layer Input
Shape

Output
Shape

Graph Encoder
TransformerConv(13, 32, heads=4) (-1, 256, 13) (-1, 256, 32)
Linear(in features=128, out features=32, bias=True) (-1, 256, 32) (-1, 256, 32)
GraphNorm(32) (-1, 256, 32) (-1, 256, 32)

Graph Decoder

InnerProductDecoder InnerProduct (-1, 256, 32) (-1, 1, 256, 256)
Conv2d(1, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)) (-1, 256, 256) (-1, 32, 256, 256)

DownBlock

GroupNorm(8, 128, eps=1e-05, affine=True) (-1, 32, 256, 256) (-1, 32, 256, 256)
Conv2d(128, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)) (-1, 32, 256, 256) (-1, 32, 256, 256)
GroupNorm(8, 64, eps=1e-05, affine=True) (-1, 32, 256, 256) (-1, 32, 256, 256)
Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)) (-1, 32, 256, 256) (-1, 32, 256, 256)
Conv2d(32, 32, kernel size=(3, 3), stride=(2, 2), padding=(1, 1)) (-1, 32, 256, 256) (-1, 32, 128, 128)

DownBlock

GroupNorm(8, 128, eps=1e-05, affine=True) (-1, 32, 128, 128) (-1, 32, 128, 128)
Conv2d(128, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)) (-1, 32, 128, 128) (-1, 32, 128, 128)
GroupNorm(8, 64, eps=1e-05, affine=True) (-1, 32, 128, 128) (-1, 32, 128, 128)
Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)) (-1, 32, 128, 128) (-1, 32, 128, 128)
Conv2d(32, 32, kernel size=(3, 3), stride=(2, 2), padding=(1, 1)) (-1, 32, 128, 128) (-1, 32, 64, 64)

DownBlock

GroupNorm(8, 128, eps=1e-05, affine=True) (-1, 32, 64, 64) (-1, 32, 64, 64)
Conv2d(128, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)) (-1, 32, 64, 64) (-1, 32, 64, 64)
GroupNorm(8, 64, eps=1e-05, affine=True) (-1, 32, 64, 64) (-1, 32, 64, 64)
Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)) (-1, 32, 64, 64) (-1, 32, 64, 64)
Conv2d(32, 32, kernel size=(3, 3), stride=(2, 2), padding=(1, 1)) (-1, 32, 64, 64) (-1, 64, 32, 32)

Middle Block SelfAttention() (-1, 64, 32, 32) (-1, 64, 32, 32)

UpBlock

Concatenate(Downblock + Previous Block) (-1, 64, 32, 32)*2 (-1, 128, 32, 32)
GroupNorm(8, 64, eps=1e-05, affine=True) (-1, 128, 32, 32) (-1, 128, 32, 32)
Conv2d(128, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)) (-1, 128, 32, 32) (-1, 64, 32, 32)
GroupNorm(8, 64, eps=1e-05, affine=True) (-1, 64, 32, 32) (-1, 64, 32, 32)
Conv2d(64, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)) (-1, 64, 32, 32) (-1, 32, 32, 32)
SelfAttention() (-1, 32, 32, 32) (-1, 32, 32, 32)
ConvTranspose2d(32, 32, kernel size=(4, 4), stride=(2, 2), padding=(1, 1)) (-1, 64, 32, 32) (-1, 32, 64, 64)

UpBlock

Concatenate(Downblock + Previous Block) (-1, 32, 64, 64)*2 (-1, 64, 64, 64)
GroupNorm(8, 64, eps=1e-05, affine=True) (-1, 64, 64, 64) (-1, 64, 64, 64)
Conv2d(64, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)) (-1, 64, 64, 64) (-1, 32, 64, 64)
GroupNorm(8, 32, eps=1e-05, affine=True) (-1, 32, 64, 64) (-1, 32, 64, 64)
Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)) (-1, 32, 64, 64) (-1, 32, 64, 64)
SelfAttention() (-1, 32, 64, 64) (-1, 32, 64, 64)
ConvTranspose2d(32, 32, kernel size=(4, 4), stride=(2, 2), padding=(1, 1)) (-1, 32, 64, 64) (-1, 32, 128, 128)

UpBlock

Concatenate(Downblock + Previous Block) (-1, 32, 128, 128)*2 (-1, 64, 128, 128)
GroupNorm(8, 64, eps=1e-05, affine=True) (-1, 64, 128, 128) (-1, 64, 128, 128)
Conv2d(64, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)) (-1, 64, 128, 128) (-1, 32, 128, 128)
GroupNorm(8, 32, eps=1e-05, affine=True) (-1, 32, 128, 128) (-1, 32, 128, 128)
Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)) (-1, 32, 128, 128) (-1, 32, 128, 128)
SelfAttention() (-1, 32, 128, 128) (-1, 32, 128, 128)
ConvTranspose2d(32, 32, kernel size=(4, 4), stride=(2, 2), padding=(1, 1)) (-1, 32, 128, 128) (-1, 32, 256, 256)

Final Projection
GroupNorm(8, 32, eps=1e-05, affine=True) (-1, 32, 256, 256) (-1, 32, 256, 256)
Conv2d(32, 1, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)) (-1, 32, 256, 256) (-1, 1, 256, 256)
Sigmoid() (-1, 1, 256, 256) (-1, 1, 256, 256)

TABLE S1
This table provides the detailed breakdown of all the layers in our GrapHiC model.

Reads Sparsity Source
GRCh38-GM12878-HRC 6,524,520,477 1 ENCFF555ISR
GRCh38-GM12878-LRC 283,697,048 23 ENCFF216ZNY

GRCh38-K562-HRC 2,188,905,398 1 ENCFF080DPJ
GRCh38-K562-LRC 608,231,511 4 4DNESI7DEJTM

TABLE S2
We add four Hi-C datasets, two from GM12878 and two from K562 that are aligned to the GRCh38 assembly to evaluate how GrapHiC generalizes

to different assemblies.

MSE SSIM PCC HiCRep GenomeDISCO HiCSpector QuASAR-Rep TAD Boundaries Chromatin Loops DNA Hairpins

GM12878 hg19 0.0009 0.9224 0.9797 0.8008 0.9100 0.4614 0.8609 0.6648 0.5216 0.5272
grch38 0.0016 0.9053 0.9544 0.7933 0.8822 0.4367 0.8699 0.6514 0.5119 0.4946

K562 hg19 0.0047 0.8278 0.8731 0.7088 0.8470 0.3252 0.7342 0.5388 0.4522 0.3703
grch38 0.0024 0.8747 0.9262 0.7127 0.7753 0.3152 0.7848 0.5698 0.4386 0.4297

TABLE S3
We compare the performance of GrapHiC trained on hg19 aligned datasets on Hg19 and GRCh38 aligned datasets for GM12878 and K562 cell

lines. We observe a minor decrease in the GM12878 cell line scores; we believe this change arises because the GRCh38 GM12878 HRC dataset
has a substantially higher number of reads in comparison to Hg19 GM12878 HRC (1.8 billion vs. 6.4 billion reads). The Hi-C contact maps

generated by GrapHiC match the feature distribution of the 1.8 billion reads contact map and have a smaller set of features compared to the 6.4
billion reads contact map. This difference manifests as a degradation in scores. Conversely, we observe an improvement in scores on the K562

dataset because now the GRCh38 K562 Hi-C dataset has a sequencing depth more similar to the number of reads in the Hg19 Hi-C contact map
(1.9 billion vs. 2.2 billion), and this similarity of feature density in both contact maps manifests as improvement in scores. There are distributional

differences in both Hg19 assembled Hi-C contact maps, and GRCh38 assembled contact maps that we plan to investigate in more detail as part of
our future work. We have also released the GrapHiC weights trained for GRCh38 model available.



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS FILES, VOL. 14, NO. 8, AUGUST 2015 12

MSE SSIM PCC HiCRep GenomeDISCO HiCSpector QuASAR-Rep TAD Boundaries Chromatin Loops DNA Hairpins
graphic-basic 0.00181278963 0.838731225 0.9556718263 0.3561238127 0.6889723173 0.2561238791 0.6187238192 0.456128371 0.1251243891 0.101512812
graphic-pos 0.001040138886 0.9118280711 0.9744101287 0.8011612903 0.8011612903 0.4349677419 0.8416831613 0.599158595 0.4393064431 0.4483152259
graphic-ctcf 0.000885409594 0.923217525 0.9793579727 0.831483871 0.8572446452 0.4888709677 0.8572446452 0.6730900735 0.5416144993 0.5285637621
graphic 0.0008290408296 0.9239148305 0.9805694712 0.8364516129 0.9089642857 0.4707096774 0.8614972581 0.6757557069 0.5484932834 0.5475020008
graphic-large 0.0008437751676 0.9226424879 0.9802531959 0.8576774194 0.8943636364 0.4867419355 0.8756502903 0.7003308268 0.5374315339 0.5385440433

TABLE S4
This table shows detailed ablations results on the GM12878-LRC-1 Hi-C dataset.

MSE SSIM PCC HiCRep GenomeDISCO HiCSpector QuASAR-Rep TAD Boundaries Chromatin Loops DNA Hairpins
graphic-basic 0.00171278963 0.8461231251 0.955657121 0.3912381273 0.7081230912 0.263891273 0.6571283012 0.4981237819 0.2025871212 0.179289931
graphic-pos 0.0009828922339 0.9128129021 0.9760758355 0.783516129 0.8600357143 0.4607419355 0.8362809677 0.6173654048 0.4367204234 0.4443665519
graphic-ctcf 0.0008680545725 0.9223760309 0.9798637377 0.7907096774 0.8942413793 0.4751612903 0.8521077742 0.6845039088 0.5351110329 0.5324476257
graphic 0.0008289036923 0.9228198434 0.9805673792 0.8179032258 0.9030384615 0.457 0.8575350323 0.6821782829 0.5365461676 0.5487044283
graphic-large 0.000847046962 0.922221218 0.9803199076 0.8322580645 0.8888636364 0.4499032258 0.8671765161 0.6968594479 0.5194946749 0.5372154113

TABLE S5
This table shows detailed ablations results on the GM12878-LRC-2 Hi-C dataset.

MSE SSIM PCC HiCRep GenomeDISCO HiCSpector QuASAR-Rep TAD Boundaries Chromatin Loops DNA Hairpins
graphic-basic 0.0017591283 0.8451236123 0.9563819028 0.4015812312 0.7123019823 0.268317541 0.6667238192 0.5123871251 0.2312873196 0.191512812
graphic-pos 0.0009522660403 0.9186408093 0.9774438178 0.8046774194 0.8921034483 0.4806129032 0.8345150968 0.5999143664 0.4356771671 0.39638861
graphic-ctcf 0.0009 0.9222859577 0.9793420255 0.8116451613 0.9049285714 0.4852903226 0.8512654516 0.6683 0.5164511455 0.5167336452
graphic 0.0008672421682 0.9224354332 0.9797065909 0.8007741935 0.91 0.4613548387 0.8608621613 0.6647960639 0.5216039742 0.52716
graphic-large 0.0008528126054 0.9224282913 0.9801922214 0.8458709677 0.8855833333 0.4707741935 0.8617122903 0.6885320461 0.5096508442 0.525595418

TABLE S6
This table shows detailed ablations results on the GM12878-LRC-3 Hi-C dataset.

MSE SSIM PCC HiCRep GenomeDISCO HiCSpector QuASAR-Rep TAD Boundaries Chromatin Loops DNA Hairpins
graphic-basic 0.00171278591 0.8356182415 0.9551293856 0.3981293789 0.7032179831 0.2695812031 0.6538921731 0.5021987451 0.2212873126 0.171512812
graphic-pos 0.0009809146868 0.9193714093 0.9764888496 0.7997096774 0.8847586207 0.4398064516 0.838564129 0.5726642243 0.3868603552 0.4073110319
graphic-ctcf 0.0009762486443 0.9200183289 0.9776983314 0.8104193548 0.8972068966 0.4779354839 0.8548853548 0.6748089642 0.5089955344 0.5018595278
graphic 0.0009478544234 0.920667914 0.9779336097 0.8148064516 0.9058461538 0.4660322581 0.8636027333 0.6639213627 0.5150424406 0.5337003302
graphic-large 0.0008896560175 0.9204220266 0.9792669186 0.8453225806 0.88308 0.4606451613 0.8677272903 0.6812338361 0.4997126192 0.5250535956

TABLE S7
This table shows detailed ablations results on the GM12878-LRC-4 Hi-C dataset.

MSE SSIM PCC HiCRep GenomeDISCO HiCSpector QuASAR-Rep TAD Boundaries Chromatin Loops DNA Hairpins
graphic-basic 0.00201278963 0.828128741 0.9467128312 0.3017892319 0.625198231 0.2561238791 0.5517238112 0.430897451 0.1181023712 0.101512812
graphic-pos 0.001829135232 0.8873864556 0.9519068669 0.4235806452 0.7322068966 0.276516129 0.7074913548 0.3248079352 0.155861061 0.1206382959
graphic-ctcf 0.001466627116 0.8959276496 0.9661399373 0.5114516129 0.75724 0.2982258065 0.7384491667 0.4848169158 0.3012013986 0.3201851551
graphic 0.001204534899 0.9005296682 0.9698582723 0.5322903226 0.8051363636 0.3179677419 0.7461324138 0.5386603403 0.3410283165 0.3874506211
graphic-large 0.001106260577 0.902333818 0.9728707875 0.5829677419 0.8374375 0.3242903226 0.7815497333 0.5535101466 0.3868443661 0.4281288537

TABLE S8
This table shows detailed ablations results on the GM12878-LRC-5 Hi-C dataset.

MSE SSIM PCC HiCRep GenomeDISCO HiCSpector QuASAR-Rep TAD Boundaries Chromatin Loops DNA Hairpins

GM12878-
LRC-1

HiCReg 0.00525 0.73768 0.86519 0.37990 0.63565 0.24605 0.68039 0.41440 0.18041 0.22014
HiCNN 0.00150 0.90890 0.97770 0.90182 0.80220 0.46291 0.87124 0.71041 0.53060 0.52280

GrapHiC 0.00083 0.92391 0.98057 0.83645 0.90896 0.47071 0.86150 0.67576 0.54849 0.54750

GM12878-
LRC-2

HiCReg 0.00525 0.73768 0.86519 0.37990 0.63565 0.24605 0.68039 0.41440 0.18041 0.22014
HiCNN 0.00135 0.92020 0.97455 0.80125 0.91780 0.45215 0.00000 0.71103 0.51860 0.54050

GrapHiC 0.00083 0.92282 0.98057 0.81790 0.90304 0.45700 0.85754 0.68218 0.53655 0.54870

GM12878-
LRC-3

HiCReg 0.00525 0.73768 0.86519 0.37990 0.63565 0.24605 0.68039 0.41440 0.18041 0.22014
HiCNN 0.00414 0.83110 0.92730 0.79512 0.82610 0.45613 0.00000 0.72110 0.52150 0.51940

GrapHiC 0.00087 0.92244 0.97971 0.80077 0.91000 0.46135 0.86086 0.66480 0.52160 0.52716

GM12878-
LRC-4

HiCReg 0.00525 0.73768 0.86519 0.37990 0.63565 0.24605 0.68039 0.41440 0.18041 0.22014
HiCNN 0.00456 0.81420 0.91770 0.79124 0.79340 0.46215 0.00000 0.70990 0.50560 0.45070

GrapHiC 0.00095 0.92067 0.97793 0.81481 0.90585 0.46603 0.86360 0.66392 0.51504 0.53370

GM12878-
LRC-5

HiCReg 0.00525 0.73768 0.86519 0.37990 0.63565 0.24605 0.68039 0.41440 0.18041 0.22014
HiCNN 0.00809 0.68010 0.83977 0.47193 0.47380 0.28129 0.00000 0.43825 0.22160 0.15606

GrapHiC 0.00120 0.90053 0.96986 0.53229 0.80514 0.31797 0.74613 0.53866 0.34103 0.38745
TABLE S9

We show the performance of GrapHiC when provided with five different sparse GM12878 datasets. We compare the performance of GrapHiC
against HiCReg, HiCNN and bold score of the best performing method.

MSE SSIM PCC HiCRep GenomeDISCO HiCSpector QuASAR-Rep TAD Boundaries Chromatin Loops DNA Hairpins

IMR90
HiCReg 0.05150 0.51890 0.26980 0.13090 0.18240 0.10670 0.17740 0.35420 0.15290 0.08620
HiCNN 0.00510 0.65370 0.56760 0.80790 0.51510 0.24840 0.00000 0.56030 0.29290 0.26730

GrapHiC 0.00750 0.78031 0.80270 0.69055 0.61493 0.28152 0.77327 0.55940 0.47150 0.47480

K562
HiCReg 0.05656 0.54135 0.48524 0.27575 0.36215 0.15900 0.51221 0.42812 0.19952 0.27708
HiCNN 0.01100 0.64760 0.61870 0.87120 0.77460 0.29510 0.00000 0.58190 0.35720 0.26500

GrapHiC 0.00470 0.82780 0.87310 0.70884 0.84704 0.32516 0.73423 0.53880 0.45220 0.37030
TABLE S10

We show the performance of GrapHiC when provided with two different cell line datasets. We compare the performance of GrapHiC against
HiCReg, HiCNN and bold score of the best performing method.
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Origami output with hg19 assembled
DNA sequence, CTCF and ATAC seq

Origami output with grch38 assembled
DNA sequence, CTCF and ATAC seq

Fig. S1. We compare the output of Origami, with inputs aligned on hg19 genome assembly against the grch38 aligned assembly. Origami does not
generalize to hg19 assembled inputs and struggles to produce meaningful contact maps.

Output with a Sparse Hi-C Input Output with Dense Hi-C input

Fig. S2. We compare the output of Caesar when provided with a sparse real-world H1 cell line Hi-C contact map as input. Caesar struggles to
recover distal and nearby features to the diagonal. We provided the same ChIP-seq inputs in both cases. Moreover, Caesar produces MicroC
contact maps showing substantially different read contact distributions compared to Hi-C, so we exclude Caesar from our baselines.

MSE SSIM PCC HiCRep GenomeDISCO HiCSpector QuASAR-Rep TAD Boundaries Chromatin Loops DNA Hairpins
GM12878 0.00110 0.90830 0.97220 0.59400 0.84428 0.33185 0.77946 0.61640 0.36520 0.44350

IMR90 0.00490 0.77460 0.85050 0.35865 0.57363 0.24410 0.63696 0.54500 0.37280 0.40060
K562 0.00440 0.82800 0.87410 0.47852 0.80279 0.28448 0.63149 0.51250 0.33050 0.31200

TABLE S11
We show the performance of GrapHiC when provided with an expected Hi-C contact map across three different cell lines.
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HiCReg GrapHiC:
Expected Hi-C

GrapHiC:
LRC Hi-C Target
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Fig. S3. We qualitatively compare the output of GrapHiC when provided with a expected Hi-C contact map, a low-read-count (LRC) contact map
against the target and HiCReg. We show that GrapHiC is able to impute high-fidelity Hi-C contact maps in both cases that are more simlar to the
target in comparison to HiCReg.
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