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Abstract001

Dense retrieval methods typically target un-002
structured text data represented as flat strings.003
However, e-commerce catalogs often include004
structured information across multiple fields,005
such as brand, title, and description, which006
contain important information potential for007
retrieval systems. We present the Cascad-008
ing Hierarchical Attention Retrieval Model009
(CHARM), a novel framework designed to en-010
code structured product data into hierarchical011
field-level representations with progressively012
finer detail. Utilizing a novel block-triangular013
attention mechanism, our method captures the014
inter-dependencies between product fields in a015
specified hierarchy, yielding field-level repre-016
sentations and aggregated vectors suitable for017
fast and efficient retrieval. Combining both018
representations enables a two-stage retrieval019
pipeline, in which the aggregated vectors sup-020
port initial candidate selection, while more ex-021
pressive field-level representations facilitate022
precise fine-tuning for downstream ranking.023
Experiments on publicly available large-scale e-024
commerce datasets demonstrate that CHARM025
outperforms state-of-the-art baselines. Our026
analysis highlights the framework’s ability to027
align different queries with appropriate product028
fields, enhancing retrieval accuracy and explain-029
ability.030

1 Introduction031

Online shopping has become an ubiquitous part of032

modern life, making it easier to explore product033

options and quickly find what we need. Product re-034

trieval, i.e., the task of surfacing the right products035

for the right queries, is the backbone of this process036

and has been a focus of active research (Muhamed037

et al., 2023; Rossi et al., 2024; Li et al., 2024b;038

Kekuda et al., 2024). With increasing product di-039

versity and user requirements, product retrieval has040

faced complex challenges such as diverse search041

intents (Luo et al., 2024), addressing keyword mis-042

matches (Lakshman et al., 2021; Nigam et al.,043

2019) and scaling approaches to work on prod- 044

uct corpora spanning millions of items (Li et al., 045

2024b). Unlike the extensively explored topic of 046

free-form text retrieval, this work focuses on ef- 047

fectively retrieving items that are represented as 048

e-commerce products consisting of structured data. 049

Most online stores define products using mul- 050

tiple fields such as brand, category, title, and de- 051

scription. Since customers vary in goals and search 052

styles, finding a good product often involves dif- 053

ferent fields, requiring flexible and comprehensive 054

retrieval strategies. Figure 1a shows an example. 055

While keyword-based methods like TF-IDF (Salton 056

and Buckley, 1988) and BM25 (Robertson et al., 057

2009) have been used for decades (Baeza-Yates 058

et al., 1999), recent advances have shifted toward 059

dense retrieval (Karpukhin et al., 2020; Li et al., 060

2021; Hofstätter et al., 2021; Nardini et al., 2024). 061

In dense retrieval, the main challenge is to embed 062

both queries and product information into a shared 063

latent space where semantically similar pairs are 064

close. However, most work focuses on unstruc- 065

tured input text, and handling structured product 066

fields is often limited to auxiliary pre-training tasks 067

rather than adapting the underlying retrieval (Sun 068

et al., 2023, 2024; Kong et al., 2022). 069

We propose to leverage semi-structured product 070

data by using field names and their correspond- 071

ing text directly for dense e-commerce retrieval. 072

We treat product fields as distinct views of the 073

same product, each offering different levels of de- 074

tail. This hierarchy is input to a transformer-based 075

model that produces a cascade of field-level rep- 076

resentations, where each layer incorporates infor- 077

mation from the current and all previous fields. To 078

this end, our Cascading Hierarchical Attention Re- 079

trieval Model (CHARM), introduces a novel block- 080

triangular attention mechanism that allows each 081

field to attend to its own tokens and all tokens from 082

preceding fields. This attention pattern enables hi- 083

erarchical accumulation of information, producing 084
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(a) Two-stage retrieval with CHARM. (b) Structured encoding via block-triangular attention.

Figure 1: CHARM overview. a) An aggregated product representation (
⊕

) is used for initial query (diamond)
matching. Matches are re-evaluated based on the closest cascaded field representation (circle), where each field
encodes its own and all preceding fields. b) Products are tokenized with special tokens per field, and encoded using
a block-triangular attention mask that lets each field attend to itself and all previous fields. This structure enables
hierarchical, cumulative field-wise representations to be computed in a single forward pass. Both the aggregated
and individual field representations are trained to match queries, supporting retrieval at different levels of detail.

field-level representations that capture varying de-085

tail and allow the same product to match different086

queries. For example, shorter, ‘simpler queries tend087

to align with high-level fields, while longer, more088

‘complex‘ queries match detailed representations.089

To reduce retrieval cost, we adopt a two-stage re-090

trieval strategy. First, we aggregate the field-level091

vectors into a single representation used for initial092

retrieval to generate a shortlist of candidate prod-093

ucts. Second, we compute full dot-product similar-094

ity between the query and the individual field-level095

vectors of the shortlisted products. Figure 1a illus-096

trates how CHARM matches different queries to097

different fields of the same product.098

We experimentally validate our approach on099

a public collection of large-scale e-commerce100

datasets (Reddy et al., 2022). CHARM outper-101

forms common bi-encoder methods (Reimers and102

Gurevych, 2019; Lin et al., 2022), including ap-103

proaches that utilize multiple representations for104

the same product (Zhang et al., 2022). Compared105

to the latter, it significantly reduces computational106

cost thanks to its two-stage retrieval process. Addi-107

tional ablation studies show the effectiveness of the108

individual parts of CHARM. Finally, we explore109

how CHARM provides additional explainability110

through its field-specific matching. We find strong111

connections between different kinds of queries112

and product fields, and that more complex prod-113

uct fields yield increasingly diverse representations114

and query matches.115

To summarize our contributions, we (i) propose a116

novel block-triangular attention mechanism that al- 117

lows efficient multi-field processing in e-commerce 118

product retrieval, enabling a cascading hierarchy 119

of field-level product representations. (ii) integrate 120

this mechanism with a two-stage retrieval process 121

to combine fast initial shortlisting with powerful 122

field-level matching. (iii) validate the effectiveness 123

of our approach on several public datasets, match- 124

ing or outperforming state-of-the-art baselines and 125

providing a detailed analysis of our model’s behav- 126

ior and its inherent explainability. 127

2 Related Work 128

Deep neural networks have significantly advanced 129

information retrieval, beginning with character n- 130

gram vector representations processed by multi- 131

layer perceptrons (Huang et al., 2013). Trans- 132

former models (Vaswani et al., 2017), especially 133

BERT (Devlin et al., 2019), have enabled more 134

effective retrieval via latent representations of 135

queries and documents (Karpukhin et al., 2020; 136

Li et al., 2021; Hofstätter et al., 2021; Nardini 137

et al., 2024). Leveraging pre-trained Large Lan- 138

guage Models (LLMs) (Devlin et al., 2019; Raffel 139

et al., 2020), these methods support holistic, seman- 140

tic retrieval (Hambarde and Proenca, 2023; Zhao 141

et al., 2024), significantly outperforming classi- 142

cal techniques like TF-IDF (Salton and Buckley, 143

1988) and BM25 (Robertson et al., 2009) when 144

fine-tuned (Fan et al., 2022), as highlighted in re- 145

cent surveys (Guo et al., 2022a; Lin et al., 2022; Li 146

and Xu, 2014). 147

Models such as BiBERT (Reimers and 148
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Gurevych, 2019; Lin et al., 2022) use contrastive149

training (Hadsell et al., 2006; Jaiswal et al., 2020)150

in a dual-encoder setup (Bromley et al., 1993) to151

align texts by semantic similarity. A large corpus is152

encoded, and queries are matched to nearest neigh-153

bors. Extensions include multitask training (Abol-154

ghasemi et al., 2022), query expansion (Vish-155

wakarma and Kumar, 2025), multi-teacher distil-156

lation (Lin et al., 2023), and token-level embed-157

dings (Khattab and Zaharia, 2020). Based on this158

line of work, dense retrieval has been effective in e-159

commerce (He et al., 2023; Muhamed et al., 2023),160

enabling product search (Magnani et al., 2019),161

click-through rate prediction (Xiao et al., 2020),162

and ranking (Li et al., 2019), though often ignor-163

ing the rich, multi-field structure of product data.164

CHARM also uses a dual-encoder BiBERT setup,165

but without these orthogonal extensions.166

Recent work uses multi-field learning in retrieval167

to address these challenges. MADRAL (Kong et al.,168

2022) incorporates field-specific modules into a169

dense encoder to produce joint representations for170

fields like color, brand, and category. However, it171

relies on pruned categorical labels, limiting gener-172

ality, and uses auxiliary classification tasks rather173

than direct encoder inputs to incorporate field in-174

formation. MURAL (Sun et al., 2024) extends175

MADRAL by aligning multi-granular field and to-176

ken embeddings through self-supervised learning.177

Like our method, it uses softmax-weighted embed-178

ding aggregation and avoids explicit labels. Yet,179

it struggles with complex fields, such as long de-180

scriptions, where token-level signals fall short. Sun181

et al. (2023) address this issue by modeling inter-182

field dependencies using mutual prediction objec-183

tives during an additional Masked Language Mod-184

eling (MLM) pre-training phase (Gao and Callan,185

2021), improving information aggregation across186

fields. This process boosts downstream contrastive187

learning (Fan et al., 2022; Gao and Callan, 2021;188

Ma et al., 2022; Li et al., 2023), further enhanced189

by product-specific reconstruction tasks. In con-190

trast, CHARM modifies the encoder’s attention via191

block-triangular masking, yielding multiple field-192

level representations..193

Another line of work improves dense retrieval by194

using multiple representations per item. MultiView195

document Representations (MVR)(Zhang et al.,196

2022) uses a diversity loss to produce distinct views197

from a single encoder. Multi-View Geometric In-198

dex (MVG)(Jiang et al., 2022) applies this idea to199

e-commerce, augmenting product embeddings with200

historically matched queries. These methods in- 201

crease retrieval cost proportionally to the number of 202

representations per item. Efficient indexes using ap- 203

proximate nearest neighbor methods (Sivic and Zis- 204

serman, 2003; Malkov and Yashunin, 2018) help, 205

but require large candidate sets to ensure unique 206

results after de-duplication. Two-stage retrieval (Li 207

et al., 2024a) mitigates this issue by shortlisting 208

candidates before re-ranking using field-level de- 209

compositions. Prior work (Guo et al., 2022b; Yates 210

et al., 2021; Fan et al., 2022) often treats both stages 211

separately, and even joint training (Ren et al., 2021) 212

typically uses separate models. Hybrid sparse- 213

dense models like SPLADE (Formal et al., 2021b,a; 214

Lassance and Clinchant, 2022) retain an index ef- 215

ficiency but rely on sparse term matching. In con- 216

trast, CHARM only performs dense matching, al- 217

lowing it to model latent semantic relations more 218

effectively while maintaining computational effi- 219

ciency. While CHARM also uses shortlisting, it 220

constructs hierarchical, context-aware representa- 221

tions in a single encoder pass. 222

3 Methodology 223

3.1 Preliminaries 224

Our retrieval pipeline is based on an encoder-only 225

BERT (Devlin et al., 2019). BERT is a transformer- 226

based (Vaswani et al., 2017) model that employs 227

multi-head attention (Bahdanau et al., 2015), which 228

allows each token of an input sequence to weigh 229

the importance of other tokens to capture complex 230

contextual relationships. For two tokens i, j, the 231

attention of j towards i is 232

Aj(i) = softmax
(
qj · kT

i +Mj,i√
d

)
· vi, (1) 233

where qj ∈ Rd and ki ∈ Rd represent the query 234

and key vectors associated with tokens i and i, re- 235

spectively, and vj ∈ Rd is the value vector of token 236

j. The attention mask Mi,j is set to Mi,j = 0 if i 237

is allowed to attend to j, and to Mi,j = −∞ oth- 238

erwise. By default, BERT utilizes a full attention 239

mask M = 0, allowing each token to attend to all 240

other tokens. 241

Given a BERT backbone, we adopt a dual 242

encoder (Bromley et al., 1993; Reimers and 243

Gurevych, 2019; Lin et al., 2022) to map queries 244

and products into a joint embedding space. Repre- 245

sentations are aligned via the InfoNCE loss (Sohn, 246
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2016; Oord et al., 2018):247

InfoNCE(hq, hp) = − ln
es(hq ,hp+ )/τ∑N
i=1 e

s(hq ,hpi )/τ
, (2)248

where τ is a temperature hyperparameter, hq is the249

query embedding, hp+ the positive product, and hpi250

includes hp+ , in-batch, and hard negatives (Xiong251

et al., 2021; Karpukhin et al., 2020). We use the252

dot-product for the similarity function s(·, ·).253

Product items typically consist of multiple fields,254

such as brand, title and description, each capturing255

different levels of detail (Reddy et al., 2022; Zhou256

et al., 2023). These fields form a natural hierarchy,257

where each adds progressively richer information.258

Ordering them by information content, for example259

by sorting by length, yields structured, increasingly260

detailed representations that can be used to generate261

multi-granular product embeddings.262

3.2 Cascading Hierarchical Attention263

Retrieval Model (CHARM)264

Block-triangular Attention. We propose to ex-265

ploits the hierarchical structure of product informa-266

tion by generating multiple retrieval vectors, each267

corresponding to a different prefix of product fields.268

Unlike prior work that enforces diversity via loss269

functions (Zhang et al., 2022), our method, the270

Cascading Hierarchical Attention Retrieval Model271

(CHARM), fosters natural diversity by represent-272

ing each hierarchy level with its own representation.273

The first vector encodes the top-level field, the sec-274

ond adds the next field, and so on. This process275

captures residual information introduced by each276

field, offering a dense, structured alternative to shal-277

low field-wise combinations (Li et al., 2024a).278

We implement CHARM using a modified atten-279

tion mechanism. Specifically, we alter the attention280

mask M so that token i can only attend to tokens281

from its own and preceding fields, i.e.,282

Mi,j = 0 if F (i) ≥ F (j), −∞ otherwise (3)283

Here, F (i) is the index of the field containing to-284

ken i, with fields ordered by their hierarchy level.285

This block-triangular attention mask lets token i286

attend only to tokens from its field or earlier ones,287

blocking access to later fields. This process yields288

a cascade of latent vectors with increasingly de-289

tailed field-level product representations in a single290

forward pass. To extract these representations, we291

insert field-wise special tokens into the input se-292

quence Xp, placing a SEP token as the end of each293

field. If a field is empty, its vector is derived from 294

earlier fields and its special token. Appendix A 295

provides a schematic example and further details. 296

We define the field-level representation as: 297

hp,f = BERT(Xp,M)f (4) 298

where hp,f corresponds to the latent vector of the 299

special token for field f ∈ F . Similar to Sun 300

et al. (2024), we compute an aggregated rep- 301

resentation as hp =
∑

f wfhp,f , with wf = 302

softmax(KhCLS)f and K ∈ Rd×|F|. 303

Evaluation. We first encode all products into 304

an index containing their field-level representation 305

hp,f and aggregated representation hp. The query 306

is encoded analogously, using shared weights and 307

matching special tokens, which helps align repre- 308

sentations. 309

Retrieval then consists of two stages. We first 310

shortlist the top-k products by comparing the query 311

representation hq to each hp. Then, for each short- 312

listed product, we compute the maximum similarity 313

between its field-level representations hp,f and hq. 314

This process requires only one model forward pass 315

and supports efficient implementation via priority 316

queues. Given N queries and M products, the 317

overall complexity for this two-stage ranking is 318

O(N(M + k|F|)), compared to O(NM |F|) for 319

full field-level retrieval (Zhang et al., 2022). Since 320

typically M ≫ k|F|, our two-stage approach sig- 321

nificantly reduces cost while maintaining retrieval 322

quality by combining a fast initial retrieval stage 323

with a more expressive second one. We use an 324

exact k-Nearest Neighbor index for simplicity, but 325

the method extends naturally to approximate near- 326

est neighbor search (Sivic and Zisserman, 2003; 327

Malkov and Yashunin, 2018). 328

Training. CHARM combines multiple InfoNCE
losses, as described in Equation 2, to optimize both
the aggregated and field-specific representations.
We match the aggregated representation hp with
the query vector hq via the loss

LAgg = InfoNCE (hq, hp) ,

ensuring an accurate first retrieval stage. Addition-
ally, we match the representations of the individual
product fields, i.e.,

LFields = avgf InfoNCE (hq, hp,f ) .

We finally add an additional loss 329

LMax = InfoNCE (hq, hMax) (5) 330
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US (English) ES (Spanish) JP (Japanese)

Method (Evaluation) R@100 NDCG@50 R@100 NDCG@50 R@100 NDCG@50

MADRAL∗ 60.9 39.5
MURAL-CONCAT∗ 63.9 42.8
BIBERT 58.9 ± 0.4 38.4 ± 0.4 56.4 ± 0.6 39.0 ± 0.6 55.3 ± 0.8 40.6 ± 0.7

MVR (Avg.) 54.8 ± 0.5 34.1 ± 0.4 53.5 ± 0.7 35.8 ± 0.5 50.9 ± 0.8 36.4 ± 0.7

MVR (Best) 58.8 ± 0.4 37.3 ± 0.4 59.7 ± 0.7 40.8 ± 0.6 55.8 ± 0.7 39.8 ± 0.7

Our Models
BIBERT+ 63.8 ± 0.4 42.2 ± 0.4 64.4 ± 0.5 44.5 ± 0.6 59.7 ± 0.7 43.6 ± 0.6

BIBERT+-CONCAT 66.5 ± 0.4 44.3 ± 0.4 66.9 ± 0.6 46.0 ± 0.6 60.0 ± 0.7 43.2 ± 0.7

MVR+ (Avg.) 63.0 ± 0.4 41.2 ± 0.4 62.0 ± 0.7 41.7 ± 0.6 57.8 ± 0.8 40.9 ± 0.7

MVR+ (Best) 66.0 ± 0.5 43.8 ± 0.4 67 .8 ± 0.7 47 .0 ± 0.7 61 .3 ± 0.7 44.5 ± 0.7

CHARM (Agg.) 66 .8 ± 0.4 44.8 ± 0.4 66.7 ± 0.6 46.1 ± 0.5 60.3 ± 0.7 44.0 ± 0.7

CHARM (Best) 67.0 ± 0.4 45 .2 ± 0.4 68.1 ± 0.6 47.4 ± 0.6 61.9 ± 0.7 45.2 ± 0.7

CHARM (Two-Stage) 66.8 ± 0.4 45.3 ± 0.4 66.7 ± 0.6 47.0 ± 0.6 60.3 ± 0.7 44 .8 ± 0.7

Table 1: Comparison of means and bootstrapped confidence intervals of CHARM, MVR, MURAL and BiBERT
Variants on the Multi-Aspect Amazon Shopping Queries Dataset (Reddy et al., 2022). ∗ indicates results taken
from Sun et al. (2024), using different pre-training and training hyperparameters. + indicates MLM pre-training.
Bold indicates best performance, italic indicates second best.

favoring the product field vector331

hMax = argmaxf sim(hq, hp,f ) that most closely332

matches the query. Combining these losses, we get333

L = λAggLAgg + λFieldsLFields + λMaxLMax. (6)334

The last two losses naturally lead to diverse solu-335

tions due to the block-triangular attention structure,336

allowing us to omit explicit diversity losses (Zhang337

et al., 2022). This structure ensures that the field-338

level representations have access to different lev-339

els of the information hierarchy of the underlying340

product, resulting in changing ways to match the341

query as more product information becomes avail-342

able. Each field’s retrieval vector is optimized to343

match the query, with additional emphasis on the344

best-performing field throughout the optimization345

process. Combined with the loss on the aggre-346

gated representation, the total objective encour-347

ages the model to learn individually meaningful348

field-specific representations that can be efficiently349

combined for a fast first retrieval stage. Figure 1b350

provides a schematic overview of the CHARM ar-351

chitecture and its losses.352

4 Experiments353

4.1 Datasets354

We evaluate on the English (US), Spanish (ES), and355

Japanese (JP) subsets of the Multi-Aspect Ama-356

zon Shopping Queries dataset (Reddy et al., 2022),357

which contains real-world e-commerce queries358

with annotated product matches. Each query is359

linked to an average of 20−29 products, with la-360

bels indicating exact, substitute, complementary,361

or irrelevant matches. Following prior work (Sun 362

et al., 2023, 2024), we train by sampling an exact 363

match as a positive and a product from the other 364

labels as a hard negative. Evaluation uses the full 365

product corpus in the respective language. Dataset 366

statistics are shown in Table 4. 367

Each product includes multiple fields forming 368

a hierarchy of increasingly detailed descriptions, 369

namely "Color", "Brand", "Title", "Description", 370

and "Bullet points". We use this order unless noted 371

otherwise. For the US set, we use an extended 372

version (Sun et al., 2024) with an additional "Cat- 373

egory" field inserted between "Brand" and "Title". 374

Tokenization follows Section 3.2, with queries trun- 375

cated to 64 tokens and products to 400. 376

4.2 Implementation Details and Baselines 377

During evaluation, we use a two-stage setup 378

(CHARM Two-Stage), retrieving a shortlist of 379

k=100 products per query from the aggregated 380

representation, followed by fine-grained re-ranking 381

using field-level representations. This evaluation 382

setting balances efficiency and quality and is robust 383

to the exact value of k. We also report performance 384

for only the aggregated representation (CHARM 385

Agg.) and the best-matching individual field using 386

full search (CHARM Best). 387

Baselines. We compare against several bi- 388

encoder baselines, each using a BERT back- 389

bone. MultiView document Representations 390

(MVR) (Zhang et al., 2022) encodes multiple repre- 391

sentations of a product and uses regular attention 392

over them for matching. Each representation acts 393
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as a separate channel over shared product content.394

To prevent representation collapse, it employs a395

joint loss396

LMVR = LMax + 0.01LDiv,397

where LMax is defined in Equation 5, and the diver-398

sity term399

LDiv = − log
ef(q,hp,Max)/τ∑
f e

f(q,hp,f )/τ
(7)400

encourages representation diversity by maximiz-401

ing the score of the best-matching one while push-402

ing others away. We align the number of MVR403

representations with the number of product fields404

for consistency. Since MVR lacks a native aggre-405

gated representation, we report both the best indi-406

vidual (MVR (Best) and mean-pooled (MVR (Agg.))407

representations. Notably, MVR lacks a two-stage408

evaluation process, making it impractical to use in409

large-scale applications with too many representa-410

tions. We also evaluate several BiBERT (Reimers411

and Gurevych, 2019; Lin et al., 2022) baselines,412

an InfoNCE loss (Equation 2) and training and413

evaluating on the CLS token embeddings. We414

consider three configurations. BiBERT uses only415

the "Title" field and no MLM, representing a naive416

baseline.BiBERT∗, adds MLM pretraining and cor-417

responds to CHARM or MVR with a single field.418

BiBERT∗-CONCAT concatenates all fields and ap-419

plies MLM pretraining. Finally, we include re-420

sults for MURAL (Sun et al., 2024)-CONCAT and421

MADRAL (Kong et al., 2022), as reported in Sun422

et al. (2023). Both use auxiliary pretraining objec-423

tives and differ slightly in training setup, making424

direct comparison difficult.425

Pre-training. For CHARM and all models de-426

noted with a +, we first perform a simple MLM427

pre-training (Fan et al., 2022) on the product cor-428

pus of the respective dataset to adapt the initial429

BERT checkpoints to general product data. We430

use the same tokenization and data formatting as in431

the subsequent contrastive training. Appendix C.1432

provides pre-training details. We then initialize the433

shared BERT backbone for the query and product434

encoders with the resulting pre-trained checkpoint.435

From this checkpoint, we train each method us-436

ing its respective loss function. Appendix C.2 lists437

further details on the setup and relevant training438

hyperparameters.439

Ablation Experiments. To isolate the contri-440

butions of CHARM, we ablate key components.441

We assess the impact of individual loss compo- 442

nents from Equation 6, and additionally incorpo- 443

rate the MVR diversity loss. Full Attention removes 444

the inductive bias of the hierarchical representa- 445

tions by allowing all representations to attend to 446

the entire input. Diagonal Attention sets Equa- 447

tion 3 to an equality, enforcing independent field 448

aggregation and eliminating interactions between 449

fields (Li et al., 2024a). No MLM omits the MLM 450

pre-training stage entirely. Asymmetric Encoders 451

replaces the query encoder’s softmax-pooled spe- 452

cial tokens with a standard CLS token, breaking 453

symmetry with the product encoder. Finally, Other 454

Field Order tests an alternative field sequence based 455

on relative retrieval importance, namely Title, Bul- 456

let Points, Category, Brand, Description, and Color. 457

4.3 Metrics 458

We compute Recall@{10, 100} (R@{10, 100}) us- 459

ing query-product pairs labeled as "exact" as pos- 460

itive data and all others as negative data. We also 461

report NDCG@50. Following Reddy et al. (2022); 462

Sun et al. (2024), we weight exact pairs with 1.0, 463

substitutes with 0.1, complementary matches with 464

0.01, and irrelevant matches with 0.0. Finally, we 465

report Precision@10 (P10), evaluated by an ora- 466

cle classifier model trained to predict if a query- 467

product pair is "exact" or not. This metric allows 468

us to also consider sensible query-product pairs 469

that are not explicitly labeled in the training data. 470

5 Results 471

5.1 Retrieval Performance 472

Table 1 reports R@100 and NDCG@50 for 473

CHARM, MVR, MURAL, and BiBERT variants. 474

Appendix D provides results for R@10 and P@10. 475

CHARM consistently outperforms baselines, in- 476

cluding on the challenging JP dataset. Its aggre- 477

gated representation matches or exceeds BiBERT+- 478

CONCAT, which outperforms BiBERT+ trained 479

only on titles, highlighting the value of additional 480

fields and the effectiveness of our block-diagonal 481

attention. In contrast, averaging MVR embeddings 482

performs poorly, likely due to its diversity loss. 483

Since we use k = 100 products for the short- 484

list, the Recall@100 performance is the same be- 485

tween the aggregated and the two-stage evaluation. 486

CHARM’s two-stage evaluation boosts ranking 487

metrics compared to the aggregated representation, 488

outperforming other methods at comparable cost. 489
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Method R@10 R@100 NDCG@50 P@10

CHARM 34.9 67.0 45.2 52.1
Losses
Added LDiv −0.03 +0.02 ∼0.00 ∼0.00
λMax = 0 −0.13 +0.03 −0.23 −0.12
λFields = 0 −0.35 −0.52 −0.34 +0.10
λAgg = 0 −1.01 −6.46 −1.83 +0.05

Attention
Diagonal Attention −1.36 −1.73 −1.38 +0.67
Full Attention −0.73 −0.16 −0.75 −1.13
(+Added LDiv) −0.68 −0.22 −0.74 −1.12

Pretraining
No MLM −3.18 −5.32 −4.52 −2.91

Misc.
Other Field Order −0.25 −0.34 −0.34 −0.58
Asym. Encoders −0.40 −0.16 −0.29 −0.18

Table 2: Evaluation results for CHARM (Two-Stage)
ablations on the US dataset. We report the performance
for CHARM and the absolute difference to it for all
ablations.

5.2 Ablation Results490

Table 2 reports ablation results for CHARM (Two-491

Stage) on the US dataset. Each loss component in492

Equation 6 contributes meaningfully, while adding493

the diversity loss from Equation 7 yields no im-494

provement. Removing the loss on the aggregated495

representation (λAgg=0) leads to a poor shortlist,496

reducing R@100 performance despite minor im-497

pact on top matches, i.e., R@10.498

Diagonal attention fails to capture the hierarchi-499

cal and interleaved structure of product data. In500

contrast, full attention allows access to all fields501

but reduces representational diversity, even with502

an added diversity loss. MLM pre-training greatly503

improves performance, which is consistent with504

Table 1. Reordering fields by retrieval impor-505

tance slightly harms results, suggesting that placing506

shorter, more compressed fields earlier in the hier-507

archy is beneficial. Replacing the softmax-pooled508

special tokens with a CLS token for queries de-509

grades performance, likely due to broken encoder510

symmetry and less effective weight sharing.511

6 Further Analysis512

While CHARM shows modest performance gains513

compared to the considered baselines, its main ad-514

vantage lies in the diversity and explainability in-515

duced by its block-triangular attention mechanism.516

We investigate these effects, as well as the match-517

ing capabilities of the resulting field-level product518

representations. For this analysis, we focus on the519

evaluation queries and product corpus of the US520

dataset. Unless mentioned otherwise, all evalua-521

tions use our two-stage retrieval process, and eval-522
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Figure 2: Average length of queries matching a product
field by closest dot-product similarity. Product fields
that are on a higher hierarchy level generally match
longer queries.

uate the top 10 products and their associated, most 523

relevant product field for each query. 524

Diversity of Field-level Representations. We 525

analyze the average number of characters in a query 526

that matches any given field, using this metric as a 527

proxy for query complexity. Figure 2 shows that 528

longer queries tend to align with later product fields, 529

indicating that more complex queries benefit from 530

more detailed representations. 531

To assess the diversity of field-level represen- 532

tations across the corpus, we compute average 533

pairwise Euclidean distance, dot-product similarity, 534

and the log-determinant of the covariance matrix. 535

As shown in Table 3, fields that appear later in 536

the hierarchy produce more diverse representations, 537

supporting the idea that CHARM learns a hierarchy 538

of increasingly expressive embeddings matched to 539

query complexity. 540

We also test whether the aggregated representa- 541

tion hp meaningfully integrates field-level informa- 542

tion. Using crawled product type metadata, we an- 543

alyze the distribution of softmax weights wf over 544

fields by category. Figure 3a shows that media 545

products like books assign more weight to the "De- 546

scription" field compared to other product types 547

such as clothing. This capability supports the ro- 548

bustness of our approach and lays the groundwork 549

for explainable search systems that dynamically 550

match important product fields. 551

Query-Product Match Analysis. Figure 3b 552

shows how often each product field appears among 553

the top 10 matches for queries in the US dataset. 554

More specific fields appear more frequently, with 555

Metric Agg. Color Brand Cat. Title Bullet P. Desc.

↑ Euclidean 2.618 1.126 1.985 2.906 4.014 4.067 4.054
↓ Dot Product 19.35 19.75 19.60 19.38 19.24 19.40 19.44
↑ Log-det -5679 -7411 -6146 -5552 -4916 -4905 -4918

Table 3: Corpus diversity metrics by product field.
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Figure 3: Field relevance and query matching.

"Title" being the most common, likely due to its556

importance and low noise. The results suggest557

that CHARM often utilizes fields up to the "Title,"558

while later fields like bullet points or descriptions559

may add little or even unnecessary information for560

many queries. Figure 3c shows that most queries561

match two to three different fields within their top562

10. Thus, while queries often cover multiple types563

of product information, they usually do not span564

the full hierarchy. To analyze retrieval diversity, we565

compute the average entropy over product types in566

the top k results. Higher entropy reflects greater567

variety in the retrieved items. Figure 4 shows that568

CHARM consistently produces more diverse re-569

sults than MVR and BiBERT across all values of570

k. Qualitatively, Figure 1a shows different queries571

matching the same product using different fields.572

Appendix E provides examples for the reverse di-573

rection, where the same query matches different574

products through different fields. In each case, the575

matched field adds useful information beyond the576

preceding ones in the hierarchy.577

Two-stage retrieval. Figure 5 shows that our578

two-stage retrieval with shortlist size k = 100 ef-579

fectively preserves high-quality matches. We mea-580

sure how often the first retrieval stage includes581

the top matches identified by the best matching582

field, i.e., how many matches are shared between583

CHARM (Agg.) and CHARM Best. Recall curves584

20 40 60 80 100

0.6
0.8
1.0
1.2
1.4
1.6

Top k

A
vg

.E
nt

ro
py CHARM (Best)

MVR (Best)
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Figure 4: Average entropy of product type distributions
across different methods and top-k values
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Figure 5: Preservation of ‘best‘ matches in two-
stage retrieval for different initial shortlist sizes
s ∈ {50, 75, 100}.

across varying k and shortlist sizes s indicate strong 585

similarities. For example, with a shortlist size of 50, 586

over 90% of the ‘true‘ top 10 matches are success- 587

fully retained. This high preservation of relevant 588

matches confirms that aggregated representations 589

offer a good trade-off between efficiency and re- 590

trieval quality. 591

7 Conclusion 592

We present the Cascading Hierarchical Attention 593

Retrieval Model (CHARM), an adaptive representa- 594

tion framework for efficient retrieval of multi-field 595

e-commerce product data. CHARM introduces a 596

novel block-triangular attention mechanism that 597

allows each product field in a specified hierarchy 598

to attend to itself and preceding fields, producing 599

increasingly detailed field-level representations in 600

a single forward pass. The representations are ag- 601

gregated for shortlist retrieval, then re-ranked by 602

matching queries to their best-aligned field. This 603

two-stage process enables fast, accurate retrieval 604

tailored to diverse query intents. 605

Our empirical results highlight the importance 606

of leveraging multiple product fields and the ef- 607

fectiveness of the emerging diversity of CHARM 608

compared to state-of-the-art baselines. We vali- 609

date each component of our model through abla- 610

tion studies and further show that CHARM fosters 611

diverse, interpretable field representations. The 612

model leverages diverse product fields, with deeper 613

fields having more complex representations, and 614

tends to align intricate queries with similarly com- 615

plex product fields. 616
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Limitations617

CHARM currently requires a fixed, linear hierar-618

chy of product field. While approach works well619

for the product types discussed in this work, many620

e-commerce stores curate more complex fields with621

less direct or hierarchical relationships. In future622

work, we will thus investigate extending the block-623

triangular attention matrix to more general atten-624

tion graphs, allowing subsets of product fields to625

attend to arbitrary subsets for more effective and626

diverse communication between selected fields.627

Further, our two-stage retrieval process requires628

a computational overhead that is constant regard-629

less of the underlying query. Especially for simpler630

queries, that, e.g., just look for a certain brand, this631

process incurs unneccesary cost. To alleviate this632

issue, we want to assign different dimensions of633

the retrieval vector to the different product fields,634

matching the amount of retrieval dimensions to the635

information content of the field to allow for more636

effective retrieval.637

Potential Risks. While our work is primarily638

methodological, efficient retrieval systems can in-639

fluence downstream model behavior. In high-recall640

or user-facing scenarios, care should be taken to641

mitigate risks such as content bias or retrieval of642

low-quality information.643
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A Block-triangular Attention990

Figure 6 visualizes a block-diagonal attention991

matrix for exemplary "(B)rand", "(T)itle" and992

"(D)escription" fields. In practice, we move all spe-993

cial tokens directly behind the CLS token while994

maintaining their attention structure to ensure a995

consistent positional encoding.996

Figure 6: Exemplary block-diagonal attention matrix.
Each row (i) represents the attention of one token to all
tokens in the sequence, while each column (j) shows
which other tokens a token is attended by. The two-
colored cells indicate that tokens of one field attend to
another field (Mi,j = 0 in Equation 1). The red dotted
cells indicate masking (Mi,j = −∞), which ensures
that the tokens of a given field can only attend to tokens
of this or previous fields. Combined with increasingly
detailed fields, this structure yields an information cas-
cade, where the latent vectors of each product field’s
tokens include increasingly detailed representations.

B Datasets997

We provide statistics for the number of train and998

evaluation queries, their average number of positive999

and negative product pairs, and size of the full1000

product corpus in Table 4.1001

Dataset Type Amount Pos. Neg.

US
Train Queries 17,388 8.70 11.41
Test Queries 8,955 8.90 11.38
Corpus 482,105 – –

ES
Train Queries 11,336 13.44 9.77
Test Queries 3,844 12.91 11.37
Corpus 259,973 – –

JP
Train Queries 7,284 13.20 15.51
Test Queries 3,123 13.32 15.11
Corpus 233,850 – –

Table 4: Dataset statistics for US, ES, and JP sub-
sets of the Multi-Aspect Amazon Shopping Queries
dataset (Reddy et al., 2022). "Pos." and "Neg." denote
the average number of positive and negative pairs in the
dataset, respectively.

C Hyperparameters 1002

All model trainings and pre-trainings are conducted 1003

using the ADAM (Kingma and Ba, 2015) optimizer 1004

with a linear learning rate scheduling and a warm- 1005

up ratio of 0.1. We further train and evaluate using 1006

16-bit floating point operations, and clip the maxi- 1007

mum gradient norm to 1.0 for all trainings. Each 1008

experiment uses 4 Nvidia V100 GPUs. 1009

C.1 MLM Pre-training. 1010

Table 5 provides hyperparameters for the MLM pre- 1011

training stage. We use the resulting model check- 1012

points as the initial weights for all experiments un- 1013

less mentioned otherwise. We use the same general 1014

pre-training parameters across datasets, except that 1015

we employ a multilingual BERT (mBERT) (Devlin 1016

et al., 2019) model for the non-english ES and JP 1017

datasets. Since this model is more expensive to 1018

run due to an increased token vocabulary, we only 1019

train these datasets for 30, 000 steps instead of the 1020

40, 000 for the US one.

Dataset

Parameter US JP ES
Pretrained checkpoint BERT (uncased)2 mBERT (cased)3

Training steps 40,000 30,000
MLM masking rate 0.15
Learning rate 1.0× 10−4

Batch size 512

Table 5: Parameters for the MLM pre-training. Pa-
rameters that are only listed once are shared between
datasets.

1021

C.2 Training Setup and Hyperparameters. 1022

We implement all experiments in pytorch (Paszke 1023

et al., 2019), using the huggingface transformer 1024

package (Wolf et al., 2020) and Tevatron (Gao et al., 1025

2022) for the contrastive training. We perform the 1026

retrieval using FAISS-GPU (Johnson et al., 2019; 1027

Douze et al., 2024) with a full similarity search and 1028

a dot-product similarity metric. 1029

All training runs denoted with an + use the fi- 1030

nal checkpoints from the MLM pre-training stage 1031

of the respective dataset as initial model weights. 1032

Runs without + use the official BERT checkpoints, 1033

as mentioned in Table 5. The pre-training al- 1034

lows each model to benefit from task-relevant 1035

2https://huggingface.co/google-bert/
bert-base-uncased

3https://huggingface.co/google-bert/
bert-base-multilingual-cased
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language representations prior to contrastive fine-1036

tuning. Additional training hyperparameters used1037

for CHARM across datasets are listed in Table 6.1038

For baseline methods, we adopt the same config-1039

uration, except for the number of training epochs,1040

which is set to 200, and the temperature parame-1041

ters, where we use τ=0.1 for US and τ=0.1 for1042

ES and JP. All other hyperparameters remain un-1043

changed unless specified otherwise. Since the batch1044

size of 1024 does not fit into memory for regular1045

hardware, we use gradient caching for contrastive1046

training (Gao et al., 2021) to allow for all batch1047

samples to act as in-batch negatives for all other1048

samples.1049

Dataset

Parameter US JP ES
Learning rate 5.0e−6
Batch size 1024
τ (Eq. 2) 0.1 0.5 0.5
Training epochs 200 300 200
λFields (Eq. 6) 1 0.05 0.05
λAgg (Eq. 6) 1
λMax (Eq. 6) 1

Table 6: Parameters for the contrastive training. Pa-
rameters that are only listed once are shared between
datasets.

C.3 Computational Resources.1050

We run all experiments in the cloud, using NVIDIA1051

V100 instances. Each training is parallelized across1052

4 GPUs, and takes between 6 and 12 hours, depend-1053

ing on the dataset.1054

D Extended Results1055

To complement the aggregate results in Table 1, we1056

report detailed performance on each language sub-1057

set in Tables 7, 8, and 9. These tables report R@10,1058

R@100, NDCG@50, and P@10 for English (US),1059

Spanish (ES), and Japanese (JP), respectively. We1060

find that the results for R@10 and P@10 are overall1061

consistent with the metrics reported in the main1062

paper. Across datasets, CHARM (Best) slightly1063

outperforms CHARM (Two-Stage) on R@10, re-1064

flecting the benefit of full-field retrieval for opti-1065

mizing top-ranked results. In contrast, the two-1066

stage setup trades some top-k precision for faster1067

inference via its shortlist based on the aggregated1068

representation. This result highlights the typical1069

trade-off between retrieval quality and efficiency in 1070

multi-stage retrieval settings. 1071

E Example Matches 1072

Table 10 provides examples where the same query 1073

retrieves different products by matching on differ- 1074

ent fields. The matched field contribute new and 1075

more specific information compared to the previ- 1076

ous field, such as highlighting specific features in 1077

bullet points versus generic category labels. For 1078

example, in the last row, the query pink womans 1079

toolbag is matched through a bullet point empha- 1080

sizing "pink" and a title mentioning "Ladies Tool 1081

Bag," combining to capture the full query intent. 1082

These examples show how different fields can con- 1083

tain complementary information, and how captur- 1084

ing this information hierarchically leads to more 1085

accurate matching. 1086
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US (English)

Method (Evaluation) R@10 R@100 NDCG@50 P@10

MADRAL∗ 60.9 39.5
MURAL-CONCAT∗ 63.9 42.8
BIBERT 28.7 ± 0.4 58.9 ± 0.4 38.4 ± 0.4 47.3
MVR (Avg.) 25.2 ± 0.4 54.8 ± 0.5 34.1 ± 0.4 44.2
MVR (Best) 28.2 ± 0.4 58.8 ± 0.4 37.3 ± 0.4 46.2

Our Models
BIBERT+ 31.8 ± 0.4 63.8 ± 0.4 42.2 ± 0.4 50.0
BIBERT+-CONCAT 33.7 ± 0.4 66.5 ± 0.4 44.3 ± 0.4 50.7
MVR+ (Avg.) 31.4 ± 0.4 63.0 ± 0.4 41.2 ± 0.4 48.8
MVR+ (Best) 33.7 ± 0.4 66.0 ± 0.5 43.8 ± 0.4 50.8
CHARM (Agg.) 34.2 ± 0.4 66 .8 ± 0.4 44.8 ± 0.4 51.2
CHARM (Best) 34.9 ± 0.4 67.0 ± 0.4 45 .2 ± 0.4 52.1
CHARM (Two-Stage) 34 .8 ± 0.4 66.8 ± 0.4 45.3 ± 0.4 51.9

Table 7: Results on the US (English) subset. ∗: from Sun et al. (2024), +: MLM pre-trained.

ES (Spanish)

Method (Evaluation) R@10 R@100 NDCG@50 P@10

BIBERT 24.9 ± 0.6 56.4 ± 0.6 39.0 ± 0.6 56.5
MVR (Avg.) 22.4 ± 0.6 53.5 ± 0.7 35.8 ± 0.5 54.3
MVR (Best) 26.3 ± 0.5 59.7 ± 0.7 40.8 ± 0.6 57.3

Our Models
BIBERT+ 28.5 ± 0.5 64.4 ± 0.5 44.5 ± 0.6 62.1
BIBERT+-CONCAT 29.1 ± 0.5 66.9 ± 0.6 46.0 ± 0.6 62.6
MVR+ (Avg.) 26.1 ± 0.6 62.0 ± 0.7 41.7 ± 0.6 60.0
MVR+ (Best) 30.4 ± 0.5 67 .8 ± 0.7 47 .0 ± 0.7 63.4
CHARM (Agg.) 29.4 ± 0.5 66.7 ± 0.6 46.1 ± 0.5 62.6
CHARM (Best) 30.5 ± 0.6 68.1 ± 0.6 47.4 ± 0.6 63.8
CHARM (Two-Stage) 30 .4 ± 0.6 66.7 ± 0.6 47.0 ± 0.6 63.6

Table 8: Results on the ES (Spanish) subset. + indicates MLM pre-trained models.

JP (Japanese)

Method (Evaluation) R@10 R@100 NDCG@50 P@10

BIBERT 27.4 ± 0.6 55.3 ± 0.8 40.6 ± 0.7 56.5
MVR (Avg.) 24.3 ± 0.6 50.9 ± 0.8 36.4 ± 0.7 44.0
MVR (Best) 26.7 ± 0.6 55.8 ± 0.7 39.8 ± 0.7 46.1

Our Models
BIBERT+ 29.1 ± 0.7 59.7 ± 0.7 43.6 ± 0.6 62.1
BIBERT+-CONCAT 28.9 ± 0.6 60.0 ± 0.7 43.2 ± 0.7 62.6
MVR+ (Avg.) 27.4 ± 0.7 57.8 ± 0.8 40.9 ± 0.7 48.6
MVR+ (Best) 30.1 ± 0.7 61 .3 ± 0.7 44.5 ± 0.7 50.7
CHARM (Agg.) 29.5 ± 0.7 60.3 ± 0.7 44.0 ± 0.7 50.2
CHARM (Best) 30.5 ± 0.7 61.9 ± 0.7 45.2 ± 0.7 51.9
CHARM (Two-Stage) 30 .3 ± 0.6 60.3 ± 0.7 44 .8 ± 0.7 51.2

Table 9: Results on the JP (Japanese) subset. + indicates MLM pre-trained models.
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Query Matched Field Previous Field

ergonomic desk Category: Home & Kitchen - Furniture - Home
Office Furniture - Home Office Desks

Brand: EUREKA ER-
GONOMIC

Title: RESPAWN RSP-3000 Computer Ergonomic
Height Adjustable Gaming Desk [...]

Category: Home & Kitchen -
Furniture - Home Office Furni-
ture - Home Office Desks

Bullet Points: Go from sitting to standing in one
smooth motion with this complete active work-
station providing comfortable viewing angles and
customized user heights [...]

Title: VIVO Electric Height Ad-
justable 43 x 24 inch Stand Up
Desk

pink womans toolbag Category: Tools & Home Improvement - Power &
Hand Tools - Tool Organizers - Tool Bags

Brand: The Original Pink Box

Title: Pretty Pink Tool Carry-All With Red Trim-
12-1/2 X 9-1/2 X 8 Inches With Multiple Pockets
And Metal Handle

Category: Tools & Home Im-
provement - Power & Hand
Tools - Tool Organizers - Tool
Bags

Bullet Points: Perfect basic set all the essentials are
here. Tools and bag are lovely pink with rubbery
grips. Great quality tools.

Title: IIT 89808 Ladies Tool
Bag 9 Piece

Table 10: Qualitative examples of a query matching different products on different fields.
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