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Abstract

Dense retrieval methods typically target un-
structured text data represented as flat strings.
However, e-commerce catalogs often include
structured information across multiple fields,
such as brand, title, and description, which
contain important information potential for
retrieval systems. We present the Cascad-
ing Hierarchical Attention Retrieval Model
(CHARM), a novel framework designed to en-
code structured product data into hierarchical
field-level representations with progressively
finer detail. Utilizing a novel block-triangular
attention mechanism, our method captures the
inter-dependencies between product fields in a
specified hierarchy, yielding field-level repre-
sentations and aggregated vectors suitable for
fast and efficient retrieval. Combining both
representations enables a two-stage retrieval
pipeline, in which the aggregated vectors sup-
port initial candidate selection, while more ex-
pressive field-level representations facilitate
precise fine-tuning for downstream ranking.
Experiments on publicly available large-scale e-
commerce datasets demonstrate that CHARM
outperforms state-of-the-art baselines. Our
analysis highlights the framework’s ability to
align different queries with appropriate product
fields, enhancing retrieval accuracy and explain-
ability.

1 Introduction

Online shopping has become an ubiquitous part of
modern life, making it easier to explore product
options and quickly find what we need. Product re-
trieval, i.e., the task of surfacing the right products
for the right queries, is the backbone of this process
and has been a focus of active research (Muhamed
et al., 2023; Rossi et al., 2024; Li et al., 2024b;
Kekuda et al., 2024). With increasing product di-
versity and user requirements, product retrieval has
faced complex challenges such as diverse search
intents (Luo et al., 2024), addressing keyword mis-
matches (Lakshman et al., 2021; Nigam et al.,

2019) and scaling approaches to work on prod-
uct corpora spanning millions of items (Li et al.,
2024b). Unlike the extensively explored topic of
free-form text retrieval, this work focuses on ef-
fectively retrieving items that are represented as
e-commerce products consisting of structured data.

Most online stores define products using mul-
tiple fields such as brand, category, title, and de-
scription. Since customers vary in goals and search
styles, finding a good product often involves dif-
ferent fields, requiring flexible and comprehensive
retrieval strategies. Figure 1a shows an example.
While keyword-based methods like TF-IDF (Salton
and Buckley, 1988) and BM25 (Robertson et al.,
2009) have been used for decades (Baeza-Yates
et al., 1999), recent advances have shifted toward
dense retrieval (Karpukhin et al., 2020; Li et al.,
2021; Hofstitter et al., 2021; Nardini et al., 2024).
In dense retrieval, the main challenge is to embed
both queries and product information into a shared
latent space where semantically similar pairs are
close. However, most work focuses on unstruc-
tured input text, and handling structured product
fields is often limited to auxiliary pre-training tasks
rather than adapting the underlying retrieval (Sun
et al., 2023, 2024; Kong et al., 2022).

We propose to leverage semi-structured product
data by using field names and their correspond-
ing text directly for dense e-commerce retrieval.
We treat product fields as distinct views of the
same product, each offering different levels of de-
tail. This hierarchy is input to a transformer-based
model that produces a cascade of field-level rep-
resentations, where each layer incorporates infor-
mation from the current and all previous fields. To
this end, our Cascading Hierarchical Attention Re-
trieval Model (CHARM), introduces a novel block-
triangular attention mechanism that allows each
field to attend to its own tokens and all tokens from
preceding fields. This attention pattern enables hi-
erarchical accumulation of information, producing
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Figure 1: CHARM overview. a) An aggregated product representation (€) is used for initial query (diamond)
matching. Matches are re-evaluated based on the closest cascaded field representation (circle), where each field
encodes its own and all preceding fields. b) Products are tokenized with special tokens per field, and encoded using
a block-triangular attention mask that lets each field attend to itself and all previous fields. This structure enables
hierarchical, cumulative field-wise representations to be computed in a single forward pass. Both the aggregated
and individual field representations are trained to match queries, supporting retrieval at different levels of detail.

field-level representations that capture varying de-
tail and allow the same product to match different
queries. For example, shorter, ‘simpler queries tend
to align with high-level fields, while longer, more
‘complex‘ queries match detailed representations.
To reduce retrieval cost, we adopt a two-stage re-
trieval strategy. First, we aggregate the field-level
vectors into a single representation used for initial
retrieval to generate a shortlist of candidate prod-
ucts. Second, we compute full dot-product similar-
ity between the query and the individual field-level
vectors of the shortlisted products. Figure 1a illus-
trates how CHARM matches different queries to
different fields of the same product.

We experimentally validate our approach on
a public collection of large-scale e-commerce
datasets (Reddy et al., 2022). CHARM outper-
forms common bi-encoder methods (Reimers and
Gurevych, 2019; Lin et al., 2022), including ap-
proaches that utilize multiple representations for
the same product (Zhang et al., 2022). Compared
to the latter, it significantly reduces computational
cost thanks to its two-stage retrieval process. Addi-
tional ablation studies show the effectiveness of the
individual parts of CHARM. Finally, we explore
how CHARM provides additional explainability
through its field-specific matching. We find strong
connections between different kinds of queries
and product fields, and that more complex prod-
uct fields yield increasingly diverse representations
and query matches.

To summarize our contributions, we (i) propose a

novel block-triangular attention mechanism that al-
lows efficient multi-field processing in e-commerce
product retrieval, enabling a cascading hierarchy
of field-level product representations. (ii) integrate
this mechanism with a two-stage retrieval process
to combine fast initial shortlisting with powerful
field-level matching. (iii) validate the effectiveness
of our approach on several public datasets, match-
ing or outperforming state-of-the-art baselines and
providing a detailed analysis of our model’s behav-
ior and its inherent explainability.

2 Related Work

Deep neural networks have significantly advanced
information retrieval, beginning with character n-
gram vector representations processed by multi-
layer perceptrons (Huang et al., 2013). Trans-
former models (Vaswani et al., 2017), especially
BERT (Devlin et al., 2019), have enabled more
effective retrieval via latent representations of
queries and documents (Karpukhin et al., 2020;
Li et al., 2021; Hofstitter et al., 2021; Nardini
et al., 2024). Leveraging pre-trained Large Lan-
guage Models (LLMs) (Devlin et al., 2019; Raffel
et al., 2020), these methods support holistic, seman-
tic retrieval (Hambarde and Proenca, 2023; Zhao
et al., 2024), significantly outperforming classi-
cal techniques like TF-IDF (Salton and Buckley,
1988) and BM25 (Robertson et al., 2009) when
fine-tuned (Fan et al., 2022), as highlighted in re-
cent surveys (Guo et al., 2022a; Lin et al., 2022; Li
and Xu, 2014).
Models such as

BiBERT (Reimers and



Gurevych, 2019; Lin et al., 2022) use contrastive
training (Hadsell et al., 2006; Jaiswal et al., 2020)
in a dual-encoder setup (Bromley et al., 1993) to
align texts by semantic similarity. A large corpus is
encoded, and queries are matched to nearest neigh-
bors. Extensions include multitask training (Abol-
ghasemi et al., 2022), query expansion (Vish-
wakarma and Kumar, 2025), multi-teacher distil-
lation (Lin et al., 2023), and token-level embed-
dings (Khattab and Zaharia, 2020). Based on this
line of work, dense retrieval has been effective in e-
commerce (He et al., 2023; Muhamed et al., 2023),
enabling product search (Magnani et al., 2019),
click-through rate prediction (Xiao et al., 2020),
and ranking (Li et al., 2019), though often ignor-
ing the rich, multi-field structure of product data.
CHARM also uses a dual-encoder BiBERT setup,
but without these orthogonal extensions.

Recent work uses multi-field learning in retrieval
to address these challenges. MADRAL (Kong et al.,
2022) incorporates field-specific modules into a
dense encoder to produce joint representations for
fields like color, brand, and category. However, it
relies on pruned categorical labels, limiting gener-
ality, and uses auxiliary classification tasks rather
than direct encoder inputs to incorporate field in-
formation. MURAL (Sun et al., 2024) extends
MADRAL by aligning multi-granular field and to-
ken embeddings through self-supervised learning.
Like our method, it uses softmax-weighted embed-
ding aggregation and avoids explicit labels. Yet,
it struggles with complex fields, such as long de-
scriptions, where token-level signals fall short. Sun
et al. (2023) address this issue by modeling inter-
field dependencies using mutual prediction objec-
tives during an additional Masked Language Mod-
eling (MLM) pre-training phase (Gao and Callan,
2021), improving information aggregation across
fields. This process boosts downstream contrastive
learning (Fan et al., 2022; Gao and Callan, 2021;
Ma et al., 2022; Li et al., 2023), further enhanced
by product-specific reconstruction tasks. In con-
trast, CHARM modifies the encoder’s attention via
block-triangular masking, yielding multiple field-
level representations..

Another line of work improves dense retrieval by
using multiple representations per item. MultiView
document Representations (MVR)(Zhang et al.,
2022) uses a diversity loss to produce distinct views
from a single encoder. Multi-View Geometric In-
dex (MVG)(Jiang et al., 2022) applies this idea to
e-commerce, augmenting product embeddings with

historically matched queries. These methods in-
crease retrieval cost proportionally to the number of
representations per item. Efficient indexes using ap-
proximate nearest neighbor methods (Sivic and Zis-
serman, 2003; Malkov and Yashunin, 2018) help,
but require large candidate sets to ensure unique
results after de-duplication. Two-stage retrieval (Li
et al., 2024a) mitigates this issue by shortlisting
candidates before re-ranking using field-level de-
compositions. Prior work (Guo et al., 2022b; Yates
etal.,2021; Fan et al., 2022) often treats both stages
separately, and even joint training (Ren et al., 2021)
typically uses separate models. Hybrid sparse-
dense models like SPLADE (Formal et al., 2021b,a;
Lassance and Clinchant, 2022) retain an index ef-
ficiency but rely on sparse term matching. In con-
trast, CHARM only performs dense matching, al-
lowing it to model latent semantic relations more
effectively while maintaining computational effi-
ciency. While CHARM also uses shortlisting, it
constructs hierarchical, context-aware representa-
tions in a single encoder pass.

3 Methodology

3.1 Preliminaries

Our retrieval pipeline is based on an encoder-only
BERT (Devlin et al., 2019). BERT is a transformer-
based (Vaswani et al., 2017) model that employs
multi-head attention (Bahdanau et al., 2015), which
allows each token of an input sequence to weigh
the importance of other tokens to capture complex
contextual relationships. For two tokens i, 7, the
attention of j towards i is

kT M,
A, (i) = softmax (qjl—i_]> v, (D)
Vid

where q; € R? and k; € R? represent the query
and key vectors associated with tokens 7 and ¢, re-
spectively, and v; € R? is the value vector of token
J. The attention mask M; ; is setto M; ; = 0if ¢
is allowed to attend to j, and to M; ; = —oo oth-
erwise. By default, BERT utilizes a full attention
mask M = 0, allowing each token to attend to all
other tokens.

Given a BERT backbone, we adopt a dual
encoder (Bromley et al., 1993; Reimers and
Gurevych, 2019; Lin et al., 2022) to map queries
and products into a joint embedding space. Repre-
sentations are aligned via the InfoNCE loss (Sohn,



2016; Oord et al., 2018):
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where 7 is a temperature hyperparameter, h, is the
query embedding, h,,+ the positive product, and h,,
includes h,,+, in-batch, and hard negatives (Xiong
et al., 2021; Karpukhin et al., 2020). We use the
dot-product for the similarity function s(-, -).
Product items typically consist of multiple fields,
such as brand, title and description, each capturing
different levels of detail (Reddy et al., 2022; Zhou
et al., 2023). These fields form a natural hierarchy,
where each adds progressively richer information.
Ordering them by information content, for example
by sorting by length, yields structured, increasingly
detailed representations that can be used to generate
multi-granular product embeddings.

3.2 Cascading Hierarchical Attention
Retrieval Model (CHARM)

Block-triangular Attention. We propose to ex-
ploits the hierarchical structure of product informa-
tion by generating multiple retrieval vectors, each
corresponding to a different prefix of product fields.
Unlike prior work that enforces diversity via loss
functions (Zhang et al., 2022), our method, the
Cascading Hierarchical Attention Retrieval Model
(CHARM), fosters natural diversity by represent-
ing each hierarchy level with its own representation.
The first vector encodes the top-level field, the sec-
ond adds the next field, and so on. This process
captures residual information introduced by each
field, offering a dense, structured alternative to shal-
low field-wise combinations (Li et al., 2024a).

We implement CHARM using a modified atten-
tion mechanism. Specifically, we alter the attention
mask M so that token ¢ can only attend to tokens
from its own and preceding fields, i.e.,

M, ; =0if F(i) > F(j), —oo otherwise (3)
Here, F'(7) is the index of the field containing to-
ken ¢, with fields ordered by their hierarchy level.
This block-triangular attention mask lets token ¢
attend only to tokens from its field or earlier ones,
blocking access to later fields. This process yields
a cascade of latent vectors with increasingly de-
tailed field-level product representations in a single
forward pass. To extract these representations, we
insert field-wise special tokens into the input se-
quence X, placing a S F P token as the end of each

field. If a field is empty, its vector is derived from

earlier fields and its special token. Appendix A

provides a schematic example and further details.
We define the field-level representation as:

hy,s = BERT(X,, M) )

where h,, r corresponds to the latent vector of the
special token for field f € F. Similar to Sun
et al. (2024), we compute an aggregated rep-
resentation as hy, = Y cwrhy g, with wy =
softmax (K hcrs) s and K € Ra*IF1,

Evaluation. We first encode all products into
an index containing their field-level representation
hyp,r and aggregated representation h,,. The query
is encoded analogously, using shared weights and
matching special tokens, which helps align repre-
sentations.

Retrieval then consists of two stages. We first
shortlist the top-k products by comparing the query
representation i, to each hy,. Then, for each short-
listed product, we compute the maximum similarity
between its field-level representations hy, y and h,.
This process requires only one model forward pass
and supports efficient implementation via priority
queues. Given N queries and M products, the
overall complexity for this two-stage ranking is
O(N(M + k|F])), compared to O(N M |F|) for
full field-level retrieval (Zhang et al., 2022). Since
typically M > k|F|, our two-stage approach sig-
nificantly reduces cost while maintaining retrieval
quality by combining a fast initial retrieval stage
with a more expressive second one. We use an
exact k-Nearest Neighbor index for simplicity, but
the method extends naturally to approximate near-
est neighbor search (Sivic and Zisserman, 2003;
Malkov and Yashunin, 2018).

Training. CHARM combines multiple InfoNCE
losses, as described in Equation 2, to optimize both
the aggregated and field-specific representations.
We match the aggregated representation h, with
the query vector h, via the loss

Lage = InfoNCE (hg, hy) ,

ensuring an accurate first retrieval stage. Addition-
ally, we match the representations of the individual
product fields, i.e.,

Lrielas = avg fJInfoNCE (hg, hy 5) -
We finally add an additional loss

Ltax = InfoNCE (g, hytax) (5)



US (English) ES (Spanish) JP (Japanese)

Method (Evaluation)  R@100 NDCG@50 R@100 NDCG@50 R@100 NDCG@50
MADRAL* 60.9 39.5

MURAL-CONCAT*  63.9 42.8

BIBERT 58.9 +04 38.4+04 56.4 + 0.6 39.0+06 55.3 +£08 40.6 + 0.7
MVR (Avg.) 54.8 £ 05 34.1+04 53.5 +0.7 35.8+05 50.9 +0.8 36.4 +0.7
MVR (Best) 58.8 + 04 37.3+04 59.7 +0.7 40.8 £ 0.6 55.8 £ 0.7 39.8 +0.7

Our Models

BIBERT* 63.8 + 0.4 42.2 +04 64.4+05 44.5 £ 0.6 59.7+ 0.7 43.6 £ 0.6
BIBERTT-CONCAT  66.5 + 0.4 44.3 +£ 0.4 66.9 + 0.6 46.0 + 0.6 60.0 +0.7 43.2 +0.7
MVR™ (Avg.) 63.0 + 0.4 41.2 + 04 62.0 0.7 41.7 + 0.6 57.8 408 40.9 + 0.7
MVRT (Best) 66.0 £ 0.5 43.8 £ 0.4 67.8 £0.7 47.0 £0.7 61.3+07 44.5 + 0.7
CHARM (Agg.) 66.8 +04 44.8 + 0.4 66.7 + 0.6 46.1+05 60.3 +0.7 44.0 + 0.7
CHARM (Best) 67.0+04 45.2 £ 04 68.1 + 0.6 47.4+0.6 61.9+07 45.2 +0.7

CHARM (Two-Stage) 66.8 + 0.4 45.3 + 04

66.7 + 0.6 47.0 £ 06 60.3 + 0.7 44.8 £0.7

Table 1: Comparison of means and bootstrapped confidence intervals of CHARM, MVR, MURAL and BiBERT
Variants on the Multi-Aspect Amazon Shopping Queries Dataset (Reddy et al., 2022). * indicates results taken
from Sun et al. (2024), using different pre-training and training hyperparameters. T indicates MLM pre-training.
Bold indicates best performance, italic indicates second best.

favoring the product field vector
hmax = argmax gsim(hg, hy, ¢) that most closely
matches the query. Combining these losses, we get

L = AggLagg + AFields LFields + AMaxLMax- (6)

The last two losses naturally lead to diverse solu-
tions due to the block-triangular attention structure,
allowing us to omit explicit diversity losses (Zhang
et al., 2022). This structure ensures that the field-
level representations have access to different lev-
els of the information hierarchy of the underlying
product, resulting in changing ways to match the
query as more product information becomes avail-
able. Each field’s retrieval vector is optimized to
match the query, with additional emphasis on the
best-performing field throughout the optimization
process. Combined with the loss on the aggre-
gated representation, the total objective encour-
ages the model to learn individually meaningful
field-specific representations that can be efficiently
combined for a fast first retrieval stage. Figure 1b
provides a schematic overview of the CHARM ar-
chitecture and its losses.

4 Experiments

4.1 Datasets

We evaluate on the English (US), Spanish (ES), and
Japanese (JP) subsets of the Multi-Aspect Ama-
zon Shopping Queries dataset (Reddy et al., 2022),
which contains real-world e-commerce queries
with annotated product matches. Each query is
linked to an average of 20—29 products, with la-
bels indicating exact, substitute, complementary,

or irrelevant matches. Following prior work (Sun
et al., 2023, 2024), we train by sampling an exact
match as a positive and a product from the other
labels as a hard negative. Evaluation uses the full
product corpus in the respective language. Dataset
statistics are shown in Table 4.

Each product includes multiple fields forming
a hierarchy of increasingly detailed descriptions,
namely "Color", "Brand", "Title", "Description”,
and "Bullet points”. We use this order unless noted
otherwise. For the US set, we use an extended
version (Sun et al., 2024) with an additional "Cat-
egory" field inserted between "Brand" and "Title".
Tokenization follows Section 3.2, with queries trun-
cated to 64 tokens and products to 400.

4.2 Implementation Details and Baselines

During evaluation, we use a two-stage setup
(CHARM Two-Stage), retrieving a shortlist of
k=100 products per query from the aggregated
representation, followed by fine-grained re-ranking
using field-level representations. This evaluation
setting balances efficiency and quality and is robust
to the exact value of k. We also report performance
for only the aggregated representation (CHARM
Agg.) and the best-matching individual field using
full search (CHARM Best).

Baselines. We compare against several bi-
encoder baselines, each using a BERT back-
bone. MultiView document Representations
(MVR) (Zhang et al., 2022) encodes multiple repre-
sentations of a product and uses regular attention
over them for matching. Each representation acts



as a separate channel over shared product content.
To prevent representation collapse, it employs a
joint loss

Lyvvr = Lymax + 0.01Lpiy,

where Lyx is defined in Equation 5, and the diver-
sity term

ef(fIvhp,MaX)/T

Zf ef(@hp£)/T @

Lpiy = — log

encourages representation diversity by maximiz-
ing the score of the best-matching one while push-
ing others away. We align the number of MVR
representations with the number of product fields
for consistency. Since MVR lacks a native aggre-
gated representation, we report both the best indi-
vidual (MVR (Best) and mean-pooled (M VR (Agg.))
representations. Notably, MVR lacks a two-stage
evaluation process, making it impractical to use in
large-scale applications with too many representa-
tions. We also evaluate several BIBERT (Reimers
and Gurevych, 2019; Lin et al., 2022) baselines,
an InfoNCE loss (Equation 2) and training and
evaluating on the CLS token embeddings. We
consider three configurations. BiBERT uses only
the "Title" field and no MLM, representing a naive
baseline.BiBERT*, adds MLM pretraining and cor-
responds to CHARM or MVR with a single field.
BiBERT*-CONCAT concatenates all fields and ap-
plies MLM pretraining. Finally, we include re-
sults for MURAL (Sun et al., 2024)-CONCAT and
MADRAL (Kong et al., 2022), as reported in Sun
et al. (2023). Both use auxiliary pretraining objec-
tives and differ slightly in training setup, making
direct comparison difficult.

Pre-training. For CHARM and all models de-
noted with a *, we first perform a simple MLM
pre-training (Fan et al., 2022) on the product cor-
pus of the respective dataset to adapt the initial
BERT checkpoints to general product data. We
use the same tokenization and data formatting as in
the subsequent contrastive training. Appendix C.1
provides pre-training details. We then initialize the
shared BERT backbone for the query and product
encoders with the resulting pre-trained checkpoint.
From this checkpoint, we train each method us-
ing its respective loss function. Appendix C.2 lists
further details on the setup and relevant training
hyperparameters.

Ablation Experiments. To isolate the contri-
butions of CHARM, we ablate key components.

We assess the impact of individual loss compo-
nents from Equation 6, and additionally incorpo-
rate the MVR diversity loss. Full Attention removes
the inductive bias of the hierarchical representa-
tions by allowing all representations to attend to
the entire input. Diagonal Attention sets Equa-
tion 3 to an equality, enforcing independent field
aggregation and eliminating interactions between
fields (Li et al., 2024a). No MLM omits the MLM
pre-training stage entirely. Asymmetric Encoders
replaces the query encoder’s softmax-pooled spe-
cial tokens with a standard C'LS token, breaking
symmetry with the product encoder. Finally, Other
Field Order tests an alternative field sequence based
on relative retrieval importance, namely Title, Bul-
let Points, Category, Brand, Description, and Color.

4.3 Metrics

We compute Recall@{10, 100} (R@{10,100}) us-
ing query-product pairs labeled as "exact" as pos-
itive data and all others as negative data. We also
report NDCG@50. Following Reddy et al. (2022);
Sun et al. (2024), we weight exact pairs with 1.0,
substitutes with 0.1, complementary matches with
0.01, and irrelevant matches with 0.0. Finally, we
report Precision@10 (P10), evaluated by an ora-
cle classifier model trained to predict if a query-
product pair is "exact" or not. This metric allows
us to also consider sensible query-product pairs
that are not explicitly labeled in the training data.

5 Results

5.1 Retrieval Performance

Table 1 reports R@100 and NDCG@Q@50 for
CHARM, MVR, MURAL, and BiBERT variants.
Appendix D provides results for R@10 and PQ10.
CHARM consistently outperforms baselines, in-
cluding on the challenging JP dataset. Its aggre-
gated representation matches or exceeds BiBERT " -
CONCAT, which outperforms BiBERT™ trained
only on titles, highlighting the value of additional
fields and the effectiveness of our block-diagonal
attention. In contrast, averaging MVR embeddings
performs poorly, likely due to its diversity loss.
Since we use k = 100 products for the short-
list, the Recall@100 performance is the same be-
tween the aggregated and the two-stage evaluation.
CHARM'’s two-stage evaluation boosts ranking
metrics compared to the aggregated representation,
outperforming other methods at comparable cost.



Method R@10 R@100 NDCG@50 PQ@10
CHARM 34.9 67.0 45.2 52.1

Losses

Added Lpiy —0.03 +0.02 ~0.00 ~0.00
AMax = 0 —-0.13  +0.03 —-0.23 —0.12
AFields = 0 —-0.35 —0.52 —-0.34 +0.10
Aage =0 —-1.01 —6.46 —1.83 +0.05
Attention

Diagonal Attention —1.36 —1.73 —1.38 +0.67
Full Attention -0.73 —0.16 —0.75 —1.13
(+Added Lpiy) —-0.68 —0.22 —0.74 —1.12
Pretraining

No MLM —-3.18 —5.32 —4.52 —-2.91
Misc.

Other Field Order —0.25 —0.34 —0.34 —0.58
Asym. Encoders —-0.40 —0.16 -0.29 —0.18

Table 2: Evaluation results for CHARM (Two-Stage)
ablations on the US dataset. We report the performance
for CHARM and the absolute difference to it for all
ablations.

5.2 Ablation Results

Table 2 reports ablation results for CHARM (Two-
Stage) on the US dataset. Each loss component in
Equation 6 contributes meaningfully, while adding
the diversity loss from Equation 7 yields no im-
provement. Removing the loss on the aggregated
representation (Aag,=0) leads to a poor shortlist,
reducing R@100 performance despite minor im-
pact on top matches, i.e., R@10.

Diagonal attention fails to capture the hierarchi-
cal and interleaved structure of product data. In
contrast, full attention allows access to all fields
but reduces representational diversity, even with
an added diversity loss. MLM pre-training greatly
improves performance, which is consistent with
Table 1. Reordering fields by retrieval impor-
tance slightly harms results, suggesting that placing
shorter, more compressed fields earlier in the hier-
archy is beneficial. Replacing the softmax-pooled
special tokens with a C'LS token for queries de-
grades performance, likely due to broken encoder
symmetry and less effective weight sharing.

6 Further Analysis

While CHARM shows modest performance gains
compared to the considered baselines, its main ad-
vantage lies in the diversity and explainability in-
duced by its block-triangular attention mechanism.
We investigate these effects, as well as the match-
ing capabilities of the resulting field-level product
representations. For this analysis, we focus on the
evaluation queries and product corpus of the US
dataset. Unless mentioned otherwise, all evalua-
tions use our two-stage retrieval process, and eval-
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Figure 2: Average length of queries matching a product
field by closest dot-product similarity. Product fields
that are on a higher hierarchy level generally match
longer queries.

uate the top 10 products and their associated, most
relevant product field for each query.

Diversity of Field-level Representations. We
analyze the average number of characters in a query
that matches any given field, using this metric as a
proxy for query complexity. Figure 2 shows that
longer queries tend to align with later product fields,
indicating that more complex queries benefit from
more detailed representations.

To assess the diversity of field-level represen-
tations across the corpus, we compute average
pairwise Euclidean distance, dot-product similarity,
and the log-determinant of the covariance matrix.
As shown in Table 3, fields that appear later in
the hierarchy produce more diverse representations,
supporting the idea that CHARM learns a hierarchy
of increasingly expressive embeddings matched to
query complexity.

We also test whether the aggregated representa-
tion h, meaningfully integrates field-level informa-
tion. Using crawled product type metadata, we an-
alyze the distribution of softmax weights w; over
fields by category. Figure 3a shows that media
products like books assign more weight to the "De-
scription” field compared to other product types
such as clothing. This capability supports the ro-
bustness of our approach and lays the groundwork
for explainable search systems that dynamically
match important product fields.

Query-Product Match Analysis. Figure 3b
shows how often each product field appears among
the top 10 matches for queries in the US dataset.
More specific fields appear more frequently, with

Color Brand Cat. Title BulletP. Desc.
1 Euclidean 2618 1.126 1985 2906 4.014 4.067 4.054

J Dot Product  19.35  19.75 19.60 19.38 19.24 19.40 19.44
1 Log-det -5679 -7411 -6146 -5552 -4916  -4905  -4918

Metric Agg.

Table 3: Corpus diversity metrics by product field.
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Figure 3: Field relevance and query matching.

"Title" being the most common, likely due to its
importance and low noise. The results suggest
that CHARM often utilizes fields up to the "Title,"
while later fields like bullet points or descriptions
may add little or even unnecessary information for
many queries. Figure 3¢ shows that most queries
match two to three different fields within their top
10. Thus, while queries often cover multiple types
of product information, they usually do not span
the full hierarchy. To analyze retrieval diversity, we
compute the average entropy over product types in
the top k results. Higher entropy reflects greater
variety in the retrieved items. Figure 4 shows that
CHARM consistently produces more diverse re-
sults than MVR and BiBERT across all values of
k. Qualitatively, Figure 1a shows different queries
matching the same product using different fields.
Appendix E provides examples for the reverse di-
rection, where the same query matches different
products through different fields. In each case, the
matched field adds useful information beyond the
preceding ones in the hierarchy.

Two-stage retrieval. Figure 5 shows that our
two-stage retrieval with shortlist size & = 100 ef-
fectively preserves high-quality matches. We mea-
sure how often the first retrieval stage includes
the top matches identified by the best matching
field, i.e., how many matches are shared between
CHARM (Agg.) and CHARM Best. Recall curves

2 1.6

& 1.4 - —— CHARM (Bes) //—

= 1.2 MVR (Best) |

LL} 1.0 BiBert

o 0.8 4 .

< 0.6 - I I I I I
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Figure 4: Average entropy of product type distributions
across different methods and top-k values
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Figure 5: Preservation of ‘best’ matches in two-
stage retrieval for different initial shortlist sizes
s € {50,75,100}.

across varying k and shortlist sizes s indicate strong
similarities. For example, with a shortlist size of 50,
over 90% of the ‘true‘ top 10 matches are success-
fully retained. This high preservation of relevant
matches confirms that aggregated representations
offer a good trade-off between efficiency and re-
trieval quality.

7 Conclusion

We present the Cascading Hierarchical Attention
Retrieval Model (CHARM), an adaptive representa-
tion framework for efficient retrieval of multi-field
e-commerce product data. CHARM introduces a
novel block-triangular attention mechanism that
allows each product field in a specified hierarchy
to attend to itself and preceding fields, producing
increasingly detailed field-level representations in
a single forward pass. The representations are ag-
gregated for shortlist retrieval, then re-ranked by
matching queries to their best-aligned field. This
two-stage process enables fast, accurate retrieval
tailored to diverse query intents.

Our empirical results highlight the importance
of leveraging multiple product fields and the ef-
fectiveness of the emerging diversity of CHARM
compared to state-of-the-art baselines. We vali-
date each component of our model through abla-
tion studies and further show that CHARM fosters
diverse, interpretable field representations. The
model leverages diverse product fields, with deeper
fields having more complex representations, and
tends to align intricate queries with similarly com-
plex product fields.



Limitations

CHARM currently requires a fixed, linear hierar-
chy of product field. While approach works well
for the product types discussed in this work, many
e-commerce stores curate more complex fields with
less direct or hierarchical relationships. In future
work, we will thus investigate extending the block-
triangular attention matrix to more general atten-
tion graphs, allowing subsets of product fields to
attend to arbitrary subsets for more effective and
diverse communication between selected fields.

Further, our two-stage retrieval process requires
a computational overhead that is constant regard-
less of the underlying query. Especially for simpler
queries, that, e.g., just look for a certain brand, this
process incurs unneccesary cost. To alleviate this
issue, we want to assign different dimensions of
the retrieval vector to the different product fields,
matching the amount of retrieval dimensions to the
information content of the field to allow for more
effective retrieval.

Potential Risks. While our work is primarily
methodological, efficient retrieval systems can in-
fluence downstream model behavior. In high-recall
or user-facing scenarios, care should be taken to
mitigate risks such as content bias or retrieval of
low-quality information.
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A Block-triangular Attention

Figure 6 visualizes a block-diagonal attention
matrix for exemplary "(B)rand”, "(T)itle" and
"(D)escription" fields. In practice, we move all spe-
cial tokens directly behind the C'LS token while
maintaining their attention structure to ensure a
consistent positional encoding.

[CLS]

iser] (Bs) (B4 (E2R) (2] (7). (ED)
-

Brand Title Description

Figure 6: Exemplary block-diagonal attention matrix.
Each row (7) represents the attention of one token to all
tokens in the sequence, while each column (j) shows
which other tokens a token is attended by. The two-
colored cells indicate that tokens of one field attend to
another field (M; ; = 0 in Equation 1). The red dotted
cells indicate masking (M; ; = —oo), which ensures
that the tokens of a given field can only attend to tokens
of this or previous fields. Combined with increasingly
detailed fields, this structure yields an information cas-
cade, where the latent vectors of each product field’s
tokens include increasingly detailed representations.

B Datasets

We provide statistics for the number of train and
evaluation queries, their average number of positive
and negative product pairs, and size of the full
product corpus in Table 4.

Dataset Type Amount Pos.  Neg.
Train Queries 17,388 8.70 11.41
US Test Queries 8,955 8.90 11.38
Corpus 482,105 - -
Train Queries 11,336 13.44 9.77
ES Test Queries 3,844 1291 11.37
Corpus 259,973 - -
Train Queries 7,284 13.20 15.51
JP Test Queries 3,123 13.32  15.11
Corpus 233,850 - -

Table 4: Dataset statistics for US, ES, and JP sub-
sets of the Multi-Aspect Amazon Shopping Queries
dataset (Reddy et al., 2022). "Pos." and "Neg." denote
the average number of positive and negative pairs in the
dataset, respectively.
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C Hyperparameters

All model trainings and pre-trainings are conducted
using the ADAM (Kingma and Ba, 2015) optimizer
with a linear learning rate scheduling and a warm-
up ratio of 0.1. We further train and evaluate using
16-bit floating point operations, and clip the maxi-
mum gradient norm to 1.0 for all trainings. Each
experiment uses 4 Nvidia V100 GPUs.

C.1 MLM Pre-training.

Table 5 provides hyperparameters for the MLM pre-
training stage. We use the resulting model check-
points as the initial weights for all experiments un-
less mentioned otherwise. We use the same general
pre-training parameters across datasets, except that
we employ a multilingual BERT (mBERT) (Devlin
et al., 2019) model for the non-english ES and JP
datasets. Since this model is more expensive to
run due to an increased token vocabulary, we only
train these datasets for 30, 000 steps instead of the
40, 000 for the US one.

Dataset
Parameter UsS JP ES
Pretrained checkpoint BERT (uncased)> mBERT (cased)®
Training steps 40,000 30,000
MLM masking rate 0.15
Learning rate 1.0x 1074
Batch size 512

Table 5: Parameters for the MLM pre-training. Pa-
rameters that are only listed once are shared between
datasets.

C.2 Training Setup and Hyperparameters.

We implement all experiments in pytorch (Paszke
et al., 2019), using the huggingface transformer
package (Wolf et al., 2020) and Tevatron (Gao et al.,
2022) for the contrastive training. We perform the
retrieval using FAISS-GPU (Johnson et al., 2019;
Dougze et al., 2024) with a full similarity search and
a dot-product similarity metric.

All training runs denoted with an * use the fi-
nal checkpoints from the MLM pre-training stage
of the respective dataset as initial model weights.
Runs without T use the official BERT checkpoints,
as mentioned in Table 5. The pre-training al-
lows each model to benefit from task-relevant

2https://huggingface.co/google—bert/
bert-base-uncased

3https://huggingface.co/google—bert/
bert-base-multilingual-cased


https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-multilingual-cased
https://huggingface.co/google-bert/bert-base-multilingual-cased

language representations prior to contrastive fine-
tuning. Additional training hyperparameters used
for CHARM across datasets are listed in Table 6.
For baseline methods, we adopt the same config-
uration, except for the number of training epochs,
which is set to 200, and the temperature parame-
ters, where we use 7=0.1 for US and 7=0.1 for
ES and JP. All other hyperparameters remain un-
changed unless specified otherwise. Since the batch
size of 1024 does not fit into memory for regular
hardware, we use gradient caching for contrastive
training (Gao et al., 2021) to allow for all batch
samples to act as in-batch negatives for all other
samples.

Dataset
Parameter Us JP ES
Learning rate 5.0e—6
Batch size 1024
7 (Eq. 2) 0.1 05 0.5
Training epochs 200 300 200
AFields (Eq. 6) 1 0.05 0.05
AAgg (Eq 6) 1
AMax (Eq. 6) 1

Table 6: Parameters for the contrastive training. Pa-
rameters that are only listed once are shared between
datasets.

C.3 Computational Resources.

We run all experiments in the cloud, using NVIDIA
V100 instances. Each training is parallelized across
4 GPUs, and takes between 6 and 12 hours, depend-
ing on the dataset.

D Extended Results

To complement the aggregate results in Table 1, we
report detailed performance on each language sub-
set in Tables 7, 8, and 9. These tables report R@10,
R@100, NDCG@50, and PQ10 for English (US),
Spanish (ES), and Japanese (JP), respectively. We
find that the results for R@10 and PQ10 are overall
consistent with the metrics reported in the main
paper. Across datasets, CHARM (Best) slightly
outperforms CHARM (Two-Stage) on R@10, re-
flecting the benefit of full-field retrieval for opti-
mizing top-ranked results. In contrast, the two-
stage setup trades some top-k precision for faster
inference via its shortlist based on the aggregated
representation. This result highlights the typical
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trade-off between retrieval quality and efficiency in
multi-stage retrieval settings.

E Example Matches

Table 10 provides examples where the same query
retrieves different products by matching on differ-
ent fields. The matched field contribute new and
more specific information compared to the previ-
ous field, such as highlighting specific features in
bullet points versus generic category labels. For
example, in the last row, the query pink womans
toolbag is matched through a bullet point empha-
sizing "pink" and a title mentioning "Ladies Tool
Bag," combining to capture the full query intent.
These examples show how different fields can con-
tain complementary information, and how captur-
ing this information hierarchically leads to more
accurate matching.



US (English)

Method (Evaluation) R@10 R@100 NDCG@50 PQ10
MADRAL* 60.9 39.5
MURAL-CONCAT* 63.9 42.8

BIBERT 28.7+04 589404 384+04 473
MVR (Avg.) 25.2+04 54.8+05 34.1+04 442
MVR (Best) 282+04 58.8+04 37.3+04 462

Our Models

BIBERT™ 31.8+04 63.8+04 422+04 50.0
BIBERTT-CONCAT  33.7+04 66.5+04 44.3+04 50.7
MVR™ (Avg.) 31.4+04 63.0+04 41.2+04 488
MVR™ (Best) 33.7+04 66.0+05 43.8+04 50.8
CHARM (Agg.) 34.2+04 66.8+04 448+04 512
CHARM (Best) 34.9+04 67.0+04 45.2+04 521
CHARM (Two-Stage) 34.8 +04 66.8+04 453+04 519

Table 7: Results on the US (English) subset. *: from Sun et al. (2024), *: MLM pre-trained.

ES (Spanish)
Method (Evaluation) R@10 R@100 NDCG@50 PQ10
BIBERT 249+06 56.4+06 39.0+06  56.5
MVR (Avg.) 224+06 535407 35.8+05 543
MVR (Best) 26.3+05 59.7+07 40.8+0.6 57.3
Our Models
BIBERT™ 285+05 64.44+405 445+06 @ 62.1
BIBERTT-CONCAT  29.1+05 66.9+06 46.0+06 62.6
MVR™ (Avg.) 26.1+06 62.0+07 41.7+06  60.0
MVRT (Best) 304+05 67.8+07 47.0+07 634
CHARM (Agg.) 29.4+05 66.7+06 46.1+05 62.6
CHARM (Best) 30.5+06 68.1+06 47.44+06 63.8
CHARM (Two-Stage) 30.4 £+06 66.7+06 47.0+06 63.6

Table 8: Results on the ES (Spanish) subset. T indicates MLLM pre-trained models.

JP (Japanese)
Method (Evaluation) R@10 R@100 NDCG@50 P@10
BIBERT 27.44+06 55.3+08 40.6+0.7 56.5
MVR (Avg.) 24.3+06 509+08 36.4+07 440
MVR (Best) 26.7+06 55.8+07 39.8 +£0.7 46.1
Our Models
BIBERT™ 29.14+07 59.7+07 43.6 £ 0.6 62.1
BIBERTT-CONCAT 289+06 60.0+£07 43.24+07 62.6
MVRT™ (Avg.) 274+07 57.8+08 40.9+07 48.6
MVRT (Best) 30.1+07 61.3+07 4454+07 507
CHARM (Agg.) 29.54+07 60.3+07 44.0=+0.7 50.2
CHARM (Best) 30.5+07 61.9+07 45.2+07 51.9
CHARM (Two-Stage) 30.3 £06 60.3+07 44.8+07 51.2

Table 9: Results on the JP (Japanese) subset. T indicates MLLM pre-trained models.
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Query

Matched Field

Previous Field

ergonomic desk

Category: Home & Kitchen - Furniture - Home
Office Furniture - Home Office Desks

Brand:
GONOMIC

EUREKA ER-

Title: RESPAWN RSP-3000 Computer Ergonomic
Height Adjustable Gaming Desk [...]

Category: Home & Kitchen -
Furniture - Home Office Furni-
ture - Home Office Desks

Bullet Points: Go from sitting to standing in one
smooth motion with this complete active work-
station providing comfortable viewing angles and
customized user heights [...]

Title: VIVO Electric Height Ad-
justable 43 x 24 inch Stand Up
Desk

pink womans toolbag

Category: Tools & Home Improvement - Power &
Hand Tools - Tool Organizers - Tool Bags

Brand: The Original Pink Box

Title: Pretty Pink Tool Carry-All With Red Trim-
12-1/2 X 9-1/2 X 8 Inches With Multiple Pockets
And Metal Handle

Category: Tools & Home Im-
provement - Power & Hand
Tools - Tool Organizers - Tool
Bags

Bullet Points: Perfect basic set all the essentials are
here. Tools and bag are lovely pink with rubbery
grips. Great quality tools.

Title: IIT 89808 Ladies Tool
Bag 9 Piece

Table 10: Qualitative examples of a query matching different products on different fields.

16



	Introduction
	Related Work
	Methodology
	Preliminaries
	Cascading Hierarchical Attention Retrieval Model (CHARM)

	Experiments
	Datasets
	Implementation Details and Baselines
	Metrics

	Results
	Retrieval Performance
	Ablation Results

	Further Analysis
	Conclusion
	Block-triangular Attention
	Datasets
	Hyperparameters
	MLM Pre-training.
	Training Setup and Hyperparameters.
	Computational Resources.

	Extended Results
	Example Matches

