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Abstract—Research involving anomaly detection in image
streams has seen growth through the years, given the proliferation
of high-quality image data in various applications. One such
application that is in urgent need of attention is deforesta-
tion. Detecting anomalies in this context, however, remains
challenging due to the irregular and low-probability nature of
deforestation events. This study introduces two anomaly detection
frameworks utilizing machine learning and deep learning for
the early detection of deforestation activities in image streams.
Furthermore, Explainable AI was used to explain the black box
models of the deep learning-based anomaly detection framework.
The class imbalance problem, the inter-dependency between the
images with time, the lack of available labelled images, a data-
driven anomalous threshold, and the trade-off of accuracy while
increasing interpretability in the black box optimization methods
are some key aspects considered in the model-building process.
Our novel framework for anomaly detection in image streams
underwent rigorous evaluation using a range of datasets that
included synthetic and real-world data, notably datasets related
to Amazon’s forest coverage. The objective of this evaluation was
to detect occurrences of deforestation in the Amazon. Several
metrics were used to evaluate the performance of the proposed
framework.

Index Terms—Anomaly Detection, Image Time Series, Machine
Learning, Deforestation, Explainable AI

I. INTRODUCTION

Deforestation is a pressing global issue driven by various
factors such as agriculture, urbanization, and logging, resulting
in far-reaching ecological, environmental, and socio-economic
consequences [1]. Detecting deforestation in its early stages
is critical for effective conservation and mitigation efforts.
Traditional methods, however, exhibit limitations in terms of
scalability, accuracy, and real-time responsiveness [2]. Timely
detection and intervention are essential for sustainable forest
conservation and sustainable land management. Recent tech-
nological advancements have led to the proliferation of high-
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resolution satellite imagery and remote sensing capabilities,
which have opened up new avenues for early detection and
monitoring of deforestation, offering valuable insights into the
dynamic nature of forest ecosystems [3]. Nevertheless, moni-
toring extensive forested areas for signs of deforestation is a
challenging task, given the sheer volume of satellite and aerial
images generated daily. The timely identification of deforesta-
tion events is pivotal to the success of conservation initiatives.
In recent years, the integration of remote sensing technologies,
coupled with machine learning techniques, has demonstrated
promising potential in the monitoring of deforestation ac-
tivities. This paper introduces a novel framework for the
early identification of deforestation using anomaly detection in
image streams, addressing several key research gaps within the
existing literature. One of the primary challenges in anomaly
detection, as highlighted by previous research, is the class
imbalance problem [4] [5] [6]. In the context of deforestation
monitoring, anomalies (i.e., deforestation events) are often rare
compared to normal or typical scenes in image streams. To
mitigate this issue, the authors propose a novel strategy: the
treatment of anomaly detection as a one-class classification
problem. This approach centres on modelling the typical
behaviour, i.e., non-deforestation situations, within forested
areas. Subsequently, the framework is trained accordingly. This
novel approach ensures that the system is better equipped to
identify deforestation events accurately, addressing the class
imbalance challenge. Moreover, traditional anomaly detection
methods often rely on manual thresholding techniques, making
them less adaptive and subject to unrealistic assumptions [7].
In contrast, this study introduces a data-driven anomalous
threshold based on the Extreme Value Theory (EVT) [8].
This threshold is dynamically adjusted to accommodate the
evolving characteristics of the image stream, improving the
robustness and accuracy of the anomaly detection system and
making it better suited to the dynamic landscape of defor-
estation monitoring. Acknowledging the temporal interdepen-
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dencies within image streams, especially as forested areas
evolve over time, is essential [9]. To tackle this challenge,
the authors incorporated time-series forecasting techniques
into the framework. The integration enables the capture of
temporal patterns and trends associated with deforestation
activities. Consequently, the system gains heightened sensi-
tivity to early-stage deforestation events, facilitating timely
intervention and mitigation strategies. In addition, the study
addresses a prevalent issue in the field of anomaly detection -
the dearth of explainability in deep learning models [10]. Such
models, including Convolutional Neural Networks (CNNs),
often operate as enigmatic “black boxes,” complicating the
interpretation of their decision-making processes. Recognizing
the importance of transparency and interpretability, partic-
ularly for stakeholders engaged in deforestation monitoring
and management, the authors integrate Explainable AI (XAI)
techniques into their framework. This allows for valuable
insights into the decision-making process of the framework,
making it more accessible and trustworthy for stakeholders
involved in deforestation monitoring and management.

The remainder of this paper is organized as follows: Section
II provides an overview of the proposed framework and
implementation approaches taken in this research, followed
by Section III, Results and Discussions which details the
evaluations of the research. Finally, Section IV, Conclusion,
provides a concise and clear summary.

II. METHODOLOGY

A. Overview

In this study, we characterized a deforestation situation as
an anomaly, denoting it as an occurrence that exhibits an ex-
ceedingly low likelihood within the projected distribution. The
proposed framework is based on two main assumptions: first,
that deforestation situations manifest as substantial deviations
from the typical behaviour of the monitored ecosystem; and
second, that a representative dataset encapsulating the typical
behaviour of said ecosystem is available to define a model for
the typical behaviour of the image streams generated within
the ecosystem under consideration. In this study, two distinct
anomaly detection frameworks were developed to identify
deforestation, employing machine learning and deep learn-
ing methodologies. The primary objective was to conduct a
comprehensive comparison of these technologies to determine
the optimal approach for early deforestation identification.
Furthermore, Explainable AI was integrated into the deep
learning-based framework to interpret the reasoning behind
the results generated by the opaque deep learning models. The
overall proposed framework is demonstrated in Figure 1.

B. Conventional Machine Learning and Deep Learning based
Anomaly Detection

In this study, two distinct anomaly detection frameworks
were developed to identify deforestation, employing machine
learning and deep learning methodologies. The primary ob-
jective was to conduct a comprehensive comparison of these
technologies to determine the optimal approach for early

deforestation identification. Furthermore, Explainable AI was
integrated into the deep learning-based framework to interpret
the reasoning behind the results generated by the opaque
deep learning models. Both conventional machine learning
and deep learning approaches for anomaly detection consist
of three main components: computer vision, univariate time
series forecasting, and an unsupervised anomaly detection
component. Each step followed in two frameworks is discussed
in detail below.

1) Pre-processing: This initial step in the methodology
involves foundational activities that play a pivotal role
in enhancing data quality, reducing noise, and facili-
tating data preparation for precise modelling. In both
frameworks discussed in this paper, a standardized set
of pre-processing tasks, including image cropping, re-
sizing, and normalization, was particularly applied as
an essential preparatory step before advancing to sub-
sequent stages of analysis. Following the execution of
these pre-processing tasks, the resulting processed image
series was subsequently input into the feature extraction
component.

2) Feature extraction using computer vision: The
prime objective of the feature extraction component is
to enhance image recognition and facilitate automated
detection of prominent features without any human
intervention. Within the conventional machine learning
approach, a multifaceted feature extraction strategy is
employed, encompassing Gabor Wavelet features, edge
detection features, first-order statistical features, and
Gray-level Co-Occurrence Matrix (GLCM) feature ex-
traction techniques. These techniques are instrumental
in capturing the dynamic nature associated with anoma-
lous behaviour. In contrast, within the deep learning
framework, the feature extraction process utilizes sev-
eral pre-trained Convolutional Neural Network (CNN)
architectures, specifically VGG 16, ResNet 50, Inception
V3, DenseNet 121, and Xception. However, a pivotal
adjustment is made by removing the top-level, fully
connected layers to eliminate their inherent classifica-
tion capabilities. This modification ensures that these
networks are served exclusively for feature extraction
purposes, thus preserving their capacity to uncover and
extract prominent and complex patterns within the image
data.

3) Dimensionality reduction: Following the feature ex-
traction phase, the resultant feature set yields a con-
siderable number of features for every image within
the image series dataset. The management of such a
high-dimensional feature set raises concerns, notably
the Curse of Dimensionality. To mitigate these chal-
lenges, Principal Component Analysis (PCA) is em-
ployed within the machine learning module. Meanwhile,
the Deep Learning module incorporates a Global Max
Pooling layer, and subsequently, the average feature
vector is computed for each image, resulting in a sub-
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Fig. 1. An overview of the anomaly detection framework architecture.

stantial reduction of dimensionality. These techniques
are utilized to obtain a univariate feature vector for each
image.

4) Time series forecasting: Time-series forecasting is a
statistical technique used to predict future values or
trends in chronologically ordered data points, i.e., time-
series data. The univariate dataset, post-dimensionality
reduction, is split into training and test datasets. The
training set is employed to train the time-series fore-
casting model, which in the case of Machine Learning
employs the Auto-Autoregressive Integrated Moving Av-
erage (ARIMA) model, while the Deep Learning model
leverages a Long Short Term Memory (LSTM). The
model yields fitted values are residuals for the training
set, along with forecast error series from the test dataset.
Residuals denote the disparity between actual training
values and the fitted values, while the forecast error
series represents the deviation between actual test values
and forecasted values.

5) Data driven anomalous threshold calculation: In the
subsequent stage of model development, the residuals
obtained from the previous step play a pivotal role in
establishing a data-driven threshold, a critical element
for classification purposes. The selected approach for
threshold computation is firmly grounded in EVT. In
contrast to the conventional box plot-based threshold
calculation method, which is based on unrealistic as-
sumptions, the EVT-based approach hinges on the funda-
mental principle that anomalies, resembling rare events,
share similarities with extreme values. In this approach,
a child distribution for generalized extreme values is
plotted, and a threshold calculation is subsequently
conducted.

6) Binary Classification: The final stage of the method-

ology includes binary classification, wherein data points
within the forecasted series that surpass the upper
anomalous threshold or dip below the lower anomalous
threshold are categorized as instances of deforestation.
Conversely, data points residing within the calculated
threshold are designated as representative of typical
behaviour (i.e., non-deforestation situations).

C. Explainable AI for Interpretation of Deep Learning-based
Framework

Even though the pre-trained CNN-based feature extractors
play a significant role in directing the overall anomaly detec-
tion module towards its success or failure, it is very much
a black-box operation, rendering them less interpretable. This
lack of transparency can impede user understanding, trust, and
validation, undermining accountability. To address this issue,
Explainable AI techniques are leveraged to facilitate the inter-
pretation of predictions generated by the deep learning-based
anomaly detection models. In this module, using SHapley
Additive exPlanations (SHAP) and Local Interpretable Model-
Agnostic Explanations (LIME) methods, high importance is
given to explaining the feature extraction and its contribution
to the outcome of the anomaly detection module by evaluating
the validity of the importance given to the extracted features
by the anomaly detection model.

III. RESULTS AND DISCUSSIONS

Both the proposed anomaly detection systems were eval-
uated for their prediction accuracy using various metrics,
including accuracy, F1-score, sensitivity, and specificity. These
metrics were used in the comparative analysis between the
machine learning-based anomaly detection system and the
deep learning-based anomaly detection system. The machine
learning-based anomaly detection framework performed fairly
well for the small dataset and displayed comparatively low
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TABLE I
PERFORMANCE COMPARISON OF THE MACHINE LEARNING-BASED ANOMALY DETECTION FRAMEWORK ON FOREST COVERAGE DATASETS.

Small Dataset Large Dataset
Box Plot Threshold Calculation Technique

Accuracy 70.00% 70.67%
Sensitivity 0.84 1.0
Specificity 0.45 0.12
F1-Score 0.78 0.82

EVT Threshold Calculation Technique (with 95% confidence level)
Accuracy 83.33% 68.8%
Sensitivity 0.79 0.53
Specificity 0.91 1.0
F1-Score 0.86 0.69

TABLE II
PERFORMANCE COMPARISON OF THE DEEP LEARNING-BASED ANOMALY DETECTION FRAMEWORK USING VARIOUS CNN EXTRACTORS ON A SMALL

FOREST COVERAGE DATASET.

CNN Architecture InceptionV3 ResNet50 VGG16 Xception DenseNet121
Box Plot Threshold Calculation Technique

Accuracy 71.43% 96.43% 92.86% 67.86% 96.43%
Sensitivity 0.6 0.95 0.95 0.55 0.95
Specificity 1.0 1.0 0.875 1.0 1.0
F1-Score 0.750 0.974 0.950 0.710 0.974

EVT Threshold Calculation Technique (with 95% confidence level)
Accuracy 71.43% 96.43% 96.43% 85.71% 96.42%
Sensitivity 0.6 0.95 0.95 0.8 0.95
Specificity 1.0 1.0 1.0 1.0 1.0
F1-Score 0.750 0.974 0.974 0.889 0.974

TABLE III
PERFORMANCE COMPARISON OF THE DEEP LEARNING-BASED ANOMALY DETECTION FRAMEWORK USING VARIOUS CNN EXTRACTORS ON A LARGE

FOREST COVERAGE DATASET.

CNN Architecture InceptionV3 ResNet50 VGG16 Xception DenseNet121
Box Plot Threshold Calculation Technique

Accuracy 94.39% 87.58% 67.16% 70.09% 67.02%
Sensitivity 1.0 1.0 1.0 0.958 1.0
Specificity 0.832 0.628 0.016 0.188 0.012
F1-Score 0.960 0.915 0.802 0.810 0.802

EVT Threshold Calculation Technique (with 95% confidence level)
Accuracy 99.60% 92.92% 79.57% 70.09% 79.57%
Sensitivity 1.0 1.0 1.0 0.958 1.0
Specificity 0.988 0.788 0.388 0.188 0.388
F1-Score 0.997 0.950 0.867 0.810 0.867

performance under both threshold calculation techniques for
the large dataset. However, the results obtained from the
machine learning framework were less impressive than the
performance of the deep learning-based anomaly detection
framework, which scored good and consistent accuracy. An
overview of the performance results of both frameworks is
given in Table I, II, and III.

Both frameworks performed better with the EVT-based
threshold than the box plot-based approach. Therefore, out of
all the frameworks, the VGG-16-LSTM-based deep learning
model and the ResNet-50-LSTM-based deep learning model
along with the EVT-based threshold calculation worked best
for the small dataset. As for the large dataset, the InceptionV3-
LSTM-based deep learning anomaly detection model along

with the EVT-based threshold was selected as the best frame-
work. Both final frameworks resulted in good accuracy scores
and F1 scores, indicating that the proposed frameworks are
befitted for imbalanced datasets. Additionally, it is visible that
the deep learning-based anomaly detection framework has a
very low time complexity compared to the machine learning-
based anomaly detection framework.

The two XAI methods were used to analyze the accuracy
of feature extraction and their relevance to the final output
of the InceptionV3, ResNet50, and VGG16-based feature
extractors. In both SHAP and LIME explanations, InceptionV3
and ResNet50 identified the most appropriate regions as major
contributing areas when classifying an image as typical or
not, compared to the VGG16 model. Furthermore, SHAP
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Fig. 2. Performance comparison of the LIME explanations on a large forest coverage dataset.

Fig. 3. Performance comparison of the SHAP explanations on a large forest coverage dataset.

predictions also indicated the degree of contribution of each
result. An overview of the performance results of XAI methods
are given in Figures 2 and 3.

IV. CONCLUSION

Comparing the different methodologies used in the research,
the authors conclude that deep learning works better, the
deep learning approach is faster compared to the machine
learning approach, and the EVT threshold calculation provides
more accurate results than the boxplot-based threshold. The
XAI module further demonstrates that the InceptionV3 and
ResNet50 models outperform in extracting the most relevant
features.

In the research analysis of the performance of machine
learning, deep learning, and Explainable AI within this re-
search, the findings lead to the following conclusions; Firstly,
in terms of performance, deep learning can be deemed to be

performing better since it displayed higher accuracy and sig-
nificantly faster processing when compared with the machine
learning approach. However, it can be noted that the machine
learning approach is more interpretable than the deep learning
module, which can be identified as an advantage and would
work fairly well for small datasets.

When evaluating the threshold calculation techniques, it
is evident that the Extreme Value Theory (EVT) approach
consistently yields more precise results in contrast to the
box plot-based threshold method. As anomalies have a low
probability of happening, extreme values can be considered
to represent anomalies, and EVT was able to demonstrate
its competency when it comes to identifying and addressing
extreme values within the data. Additionally, the XAI analysis
shows the exceptional performance of the InceptionV3 and
ResNet50 models in feature extraction, outperforming other
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deep learning models in capturing the most important features.
While deep learning models used in this research consisted

of black-box models and architectures, such as the CNN
architectures, which are known for not being interpretable, it is
noteworthy that their interpretability can be improved through
the incorporation of explainable AI techniques. The compre-
hensive evaluations done in this research confirm that the CNN
architectures, responsible for feature extraction within the deep
learning framework, have performed well in identifying and
isolating relevant features pertaining to deforestation.

As for future work, the authors are planning to make
several improvements to the frameworks to increase their
performance. The machine learning module can sport a
more optimized feature extraction and selection procedure
that would increase its performance when processing larger
datasets. Likewise, the deep learning module can potentially be
optimized to accommodate smaller datasets as well, and good
hyperparameter tuning methods can be assisted to increase the
performance of the framework. The XAI module can be further
improved by accommodating standard quantitative evaluation
techniques such as BAM (Benchmark Attribution Method)
which is highly demanded in the state of art. Furthermore,
a back propagation-based XAI technique such as Layer Wise
Relevance Propagation (LRP) can be implemented in compar-
ison to the existing perturbation-based XAI techniques used
in this study.
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