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ABSTRACT

Adam and its variants, including AdaBound, AdamW, and AdaBelief, have gained
widespread popularity for enhancing the learning speed and generalization perfor-
mance of deep neural networks. This optimization technique adjusts weight vec-
tors by utilizing predetermined exponential decay rates (i.e.,31 = 0.9, B2 = 0.999)
based on the first moment estimate and the second raw moment estimate of the
gradient. However, the default exponential decay rates might not be optimal, and
the process of tuning them through trial and error with experience proves to be
time-consuming. In this paper, we introduce AdamE, a novel variant of Adam
designed to automatically leverage dynamic exponential decay rates on the first
moment estimate and the second raw moment estimate of the gradient. Addition-
ally, we provide theoretical proof of the convergence of AdamE in both convex
and non-convex cases. To validate our claims, we perform experiments across
various neural network architectures and tasks. Comparative analyses with adap-
tive methods utilizing default exponential decay rates reveal that AdamE consis-
tently achieves rapid convergence and high accuracy in language modeling, node
classification, and graph clustering tasks.

1 INTRODUCTION

Adam [Kingma & Bal (2014), a widely adopted stochastic optimization method, has been applied
across various domains in recent years, including object detection|Kim et al.|(2022)), natural language
processing (Gu et al.|(2022)), and node classification Meng et al.| (2021). Despite its widespread use,
Adam’s performance in training deep neural networks (DNNs) can be sensitive to improper learning
rates, whether too large or too small. To address this issue, several improved variants have been
proposed, such as AdaBound [Luo et al.|(2019), RAdam |Liu et al.|(2019)), Padam (Chen et al.| (2018)),
AdamW |Loshchilov & Hutter|(2017)), and AdaBelief|Zhuang et al.| (2020).

Building on the principles of adaptive optimization, we introduce a novel technique, AdamE, which
incorporates adaptive exponential decay rates. This approach dynamically adjusts the decay rates
for both the first and second moments of the gradient. The primary contributions of our study are as
follows:

e Introduction of AdamE: We propose a new optimization algorithm, AdamE, designed for
DNNs. Compared to the standard Adam optimizer and other mainstream methods, AdamE
exhibits superior adaptability to current gradient values, resulting in faster convergence and
improved model stability.

e Theoretical analysis of AdamE: We provide a detailed theoretical analysis of AdamE’s
convergence properties in both convex and non-convex stochastic optimization settings,
demonstrating its enhanced convergence behavior.

o Experimental validation: The effectiveness of AdamE is validated through experiments
on established datasets, including WikiText-2, BBBP, Cora, Citeseer, and DBLP. Extensive
experimental results show that AdamE achieves state-of-the-art performance.

2  MOTIVATION

Adam and its variants share a key feature: they rely on the first and second raw moment estimates
of the gradient to optimize weight vectors, using default exponential decay rates (e.g., 51 = 0.9,
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B2 = 0.999). However, there is limited research on how varying these decay rate settings affects
Adam’s convergence, generalization, and stability. In this study, we explore the effects of different
combinations of exponential decay rates (5; € {0.5,0.7,0.9} and > € {0.9,0.95,0.999}) on
Adam’s performance in terms of these three aspects. The experimental findings are presented below:

A commonly used quadratic function is employed to assess the impact of different exponential
decay rate settings on the convergence and stability of Adam. The function is defined as f(z) =
(x — 1)2 + 2, with a search domain of —5 < z < 7. The global minimum of the quadratic function
isat & = 1, f(&) = 2. The learning rate and number of iterations for Adam with different (51,52)
are set to 0.8 and 200 respectively.
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Figure 1: Results of Adam with different 31 and S for Quadratic function.
As depicted in Fig. [[(a)] as the 51 of Adam increasing (with (> fixed at 0.999), the overshoot in
function optimization for Adam gradually increase, and the convergence speed gradually decreases.
The fluctuating range of the function optimization curve is higher when 31 =0.9. In comparison with
Fig. [I(a)] the result of Fig. [[(b)|is different, the fluctuating range of function optimization curve
gradually decreases with an increase in 32 of Adam (with 5y fixed at 0.9). The optimal function
optimization results for Adam can be observed when 31=0.5 and (55=0.999.

The experimental outcomes for Adam, considering different (5, B2) combinations, across tasks
such as quadratic function, emphasize the critical role of appropriately setting 31 and /32 for Adam
based on specific tasks in training DNNs. In this paper, we introduce a novel variant of Adam,
termed Adam with dynamic exponential decay rate (AdamE), which straightforwardly computes /3;
and S5 of Adam based on iterations.

3 ALGORITHM

3.1 DETAILS OF ADAME

The pseudo-code for AdamE is presented in Algorithm 1. In comparison to Adam, AdamE exhibits
the capability to dynamically adjust the exponential decay rates of the first moment estimate («) and
the second raw moment estimate () based on the timestep. Essentially, AdamE flexibly adapts its
step size in accordance with the exponential decay rates of the first moment estimate and the second
raw moment estimate, all without the need for bias correction.

Algorithm 1 AdamE

Input: 0 is initial parameter vector, the good default settings are A = 0.01, ¢ = 1078,dy = 0, so = 0 and q=0.
Output: The parameters 01 of the model.
forq =19 < Tdo

9q = Vo fq(0q—1); (Get gradients of stochastic objective function at gth epoch)

ag = ﬁ; (Calculate exponential decay rate of first moment estimate)

Bq = 1 — ag; (Calculate exponential decay rate of second raw moment estimate)

dg = ag *xdg—1 + (1 — ag) * gq: (Calculate first moment estimate)

Sq = Bqg *sq—1+ (1 — Bg) * gg; (Calculate second raw moment estimate)
0g =041 — A=
end for

% (Update parameters of model)

3.2 NUMERICAL EXPERIMENTS

To assess the efficacy of AdamE, depicted in Fig. [I(a)] and Fig. [I(b)] an experiment involving
quadratic function fitting was conducted using AdamE. The outcomes, illustrated in Fig. and



Under review as a conference paper at ICLR 2025

] M ’
-1
0 —— Adam-Ir-1.2 —— AdamE-Ir-1.2

— Adam-Ir-1.0 El — AdamE-Ir-1.0
— Adam-Ir-0.8 g —— AdamE-Ir-0.8
— Adam-Ir-0.6 —— AdamE-Ir-0.6

Value

9 5 5 = aco @35 2so s 2o 0 25 50 75 100 125 150 175 200
Epoch Epoch

(a) Adam with different learning rate  (b) AdamE with different learning rate
Figure 2: Results of Adam and AdamE with different learning rate.

Fig. 2(D)] reveal that the overshooting issue inherent in optimization methods can be mitigated by
adaptively adjusting the step. This adjustment is based on the exponential decay rates of the first
moment estimate and the second raw moment estimate, performed without bias correction, while
maintaining the same initial learning rate.

Furthermore, the individual learning rates for different parameters in DNNs can be dynamically
computed based on the estimates of the second moments of gradients, expressed as %t Demon-

strated in Fig.|3(a)|and Fig. an increase in 3, in Adam leads to a gradual decrease in the value
of \%}T, highlighting that the critical factor influencing the extremes of large and small learning rates

in Adam is the setting of 5. Addressing this, AdamE, which incorporates a dynamic exponential
decay rate, is introduced to tackle the issue, as evidenced in Fig. 31 E)L

Moreover, as depicted in Fig. #(a)] and Fig. #(b)} subsequent experiments indicate that Adam ex-
hibits reduced fluctuations by lowering the learning rate. In comparison, AdamE proves adept at
overcoming the overshooting problem; however, its convergence speed gradually diminishes with
decreasing learning rates. Consequently, future investigations are directed towards enhancing the
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Figure 3: Results of Adam with different 5 and AdamE.
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Figure 4: Results of Adam with different 82 and AdamE.

3.3 ANALYSIS OF THE REASONS WHY ADAME CAN IMPROVE THE CONVERGENCE OF
ADAM IN THE CONVEX CASE

To demonstrate the improvements AdamE offers over Adam in terms of convergence, we analyze
the convergence behavior of AdamE in the convex setting, as detailed below.
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Theorem 1.1 Kingma & Bal (2014): Assuming that the function f; has bounded gradients,
[Vfe(0)l2 < G, [VFi(0:)|loo < Goo for all & € R? and distance between any Gf generated

by Adam is bounded as [|6,, — 0,2 < D 16n — 0|l < Doo for any m,n € 1,...,T, and 1,
B2 € [0,1) satisfy \517 <1 Letay = W and 81 = B1ATTH A € (0,1). Adam achieves the
following guarantee, for all 7" > 1.
_ 51+1)G ZZ 1HngLH2 ¢ D2 Goor/T = B2
R(T) = Z\/Tm+ O +22a1_5l 5 O

According to literature Kingma & Ba (2014)), we have

Ft+1 _ Vt+1 \/> \/521115 \/77 /752 t+1 \[ 2)
Tt+1 Tt Tt+1 Tt

The core of convergence of Adam is Fy 1 = Vrijfll — \/T? > 0, which v; = Bavy_1 + (1 — B2)g? =
(1—72) Zt =792 is the second moment estimate of Adam, and Tt = % (7 is the initial learning
t+1 < l,and Bo(t+ 1) < t,soit

<62<1and62(t+1)>t,it

rate of Adam). However according to Theorem 1.1, if 0 < 2 <

U
is hard to illustrate F} 1 = \/T:Zl \ﬁ > 0. However, when ; +1

ensures that F} 1 = va:+11 — ‘QT’ > 0, so the value of 35 should be as close as possible to 1, such

as B> = 0.999.
According to Algorithm 1, we have

Hipw = Sl Vot > Berase — Ve > \/E(\/ Be+1(t+1) — 3)
Tt+1 Tt Tt+1 Tt T
Owing to
,Bt+1(t+1)_\/i = VA —am1)(t+1) —Vt= \/ %_\[>0 “4)

Since H;41 > 0, AdamE exhibits the capability to improve the convergence of Adam for convex
scenarios.

4 CONVERGENCE ANALYSIS FOR CONVEX CASE

The regret is defined as
T
T) = [fi(6:) — f2(67)] 5)
t=1

where 6* = argminge,, ZtT:l f+(0:). Some definitions of mathematical symbols are represented
as g; = Vfi(01), gi.i is the i*" element, g1, ; € R* is a vector which includes the i*" dimension of
gradients g, over all iterations till £ as g1.¢,; = [g1,4, 92,4, --» Gt.i)-

Online learning framework [Kingma & Bal (2014) is applied in convergence analysis of AdamE for
convex case, and we prove that AdamE has a regret bound using the following theorems.

Lemma 2.1 : If a function f : R — R is convex, then for all z,y € R<,

fly) > f(@) + V(@) (y - ) ©6)
Theorem 2.1: Let g; = V f;(6;) and g;.; are defined as bounded and above, ||g¢||2 < G5. Then,
2
mt 7 16f
. 7
Z Ve 1y Il (7
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Proof of Theorem 2.1. According to Algorithm 1, we have

my; = aemi—1,: + (1 — ae)ge,i = Z (1 —)ge, H o ()
k=i+1
t t
i = Brve-ri+ (1= Bi)gri = » (1= Bgis [ Br ©)
i=1 k=i+1
Owing to oy = 173 and B = 1 — «, there are Hk i1k = s = < 27" and

\/HZ:iJrl B = \/Hk:i+1

(L—an) = /()

We expand the last term in the summation of Algorithm 1,

T T — T i
I (Zj:l(l — a;)g;.i Hk:j+1 ak)2 < — m?,i (Zj:l(l —a;)g;,i2’ T)2

T T-1 2
2 T > s
t—1 t'Utz tvtz

?

1 2
My ;

7“

tv
1 t,1

o~
Il

N
|
[N}

My ;

}n

t?}t i

N
i

2
my

:T

tug;

So we get that

¢Tzf:1<1—ﬁj>giinfzjﬂﬁk =l ¢Tz?:1<1—ﬂj>g§-,i2f-T

G—T\2 T-1 —T\2
- ;)g5,:2"7) mtz — ;)92 ")
% <SS

¢T2J1 893,27 \/ (1- B;)g2, 27

17%22% 2T -— m - =Ty,
+Z\ﬂ/ m\/; <X it VT ) Tlasl

vEy e

Jj=1 Vi
~ mis - lgeille =z 1
= < Vi(—=)". (11

For f < 1, using the upper bound on the arithmetic-geometric series,

then, we have

T
; t’Ut 1

Theorem 2.2: Given a cost

Go. For all € R? and distance between any 6; generated by AdamE is bounded as ||0,, — 0, |2

. 1 8
gﬁ(m) < =27~ -1 (12)
f: TZ 8 ET: lge.ill2
t=1 k=0 2 (\/g_ 1)2 t=1 \/a
& 16V/T
Z; tl|ge,ill2 < B_12 lgr7,qll2- 13)

function f; with bounded gradients, which is ||g:||2 = ||V f:(6:)]|2

INIA

Dy forany m,n € 1,...,T. Let \, = %, AdamE achieves the following guarantee, for all 7" > 1.

D% & ¢ 16VT ¢
R(T) < ~ Z VTur; + A Z m”glmi”z + Dy Z mr—1,i (14)
i=1 i=1 i=1

It is shown that the regret of
variants.

AdamE is upper bounded by O(+/T'), which is similar to Adam and its

Proof of Theorem 2.2. According to Lemma 2.1, we have

fe(00) — £2(67) < g/ (6. — 07). (15)

10)
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According to Algorithm 1:

QM —1 (1 - Oét)gt)

m
0 =0 —N—=0; — A
t+1 t t t +( NG NG

o (16)

The i*" dimension of parameter vector §; € R% is a particular focus of attention. Subtract §* and
square both side of above formula, we get

t+1,0 — U; = ti — U, — tL
(9 9*)2 (9 9* )\ 1,1 )2
Vt,i
N i 1, 1—ot)ges .
(002 22 gy (i Y9tiyg, . —07), (17
(Ous =00 + X - on (Mt 4 BB 0, - 07), (17

so we have /v = \/25:1(1 - 6%)91:21 HZ:i+1 B < llg1:t,ill2-

2

Vt,i At my ; Qg

i(0ri—07) = Y (01— 07)° — (0r31. — 07)°
gt,(t, z) 2)\1‘(1_0“)(( t, 1) (tJrl, 1))4’2(1_0“)\/17’2 1— oy

vV vVt _ 2 At m?,i Qi , o
(i —an) O O T Sy e T T O )

2
A/ Ut,i * my ; *
< - (0:,: — 0; )2 + 2 + my—1,i(0r,i — 67).
At e

For the sequence of convex functions f;(6;) (¢t € 1, ..., T, the upper regret bound of f;(6;) — f(6*)
by summing across all dimension for ¢ € 1,...,d can be obtained by using Lemma 2.1 to above
inequality.

T d 2
N 2 mji "
OSSO — 09+ A om0 — 6)). (19)
t=1 i=1 A vt
According to Theorem 2.1, Y7, \}nt— (\1/@62 lg1:7,:|2, and |6, — 0., |2 < Do, we have:
D3 < 4 16VT d
R(T) < 2D VTori+2) (\/g*_cymlmz + D2y o 20)
i=1 =1 i=1

5 CONVERGENCE ANALYSIS FOR NONCONVEX CASE

According to|Zhou et al.| (2018), we present theoretical results on the convergence of AdamE. The
following stochastic nonconvex optimization problem will be further studied

min f(x) = Ee[f (x;£)], e
zER

where ¢ is a random variable satisfying certain distribution, and f(x;¢) : R — R is a L-smooth
nonconvex function. z, € arg min f(x) == Ee[f(z; &)] exits.
z€R

Lemma 3.1: f(z) = E¢[f(x;€)] is L-smooth, which has a G2-bounded stochastic gradient. That
is, for any &, 2 and y (2, y € R?), we have

IVf(z;€)2 < Go, (22)

1f(@) = fly) = (Vf(y),x —y)| < %Hfﬂ —yli3. (23)

m; and v; can be as defined in Algorithm 1. Then under Assumption 3.1, we have |v;]|2 < G3 and
[mell2 < Ga.

+ me—1,;(0,; —

07)

(18)
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Theorem 3.1: According to Algorithm 1, let «; and 3; be the weight parameters such as a; = pfj,
Bt = 1—at,mt:atmt 1+(1—Oét>gt andvt ﬁtvt 1+(1—5t)gt,At,t— 1 TiSthC step
sizes. Suppose that \; = \[, then under Assumption 3.1, we have the following results

SEABIVIEs O
T ,\\F 4L

‘ —1/2

(@136) = f (2:) + 273 [|vg /2| +4dLA* (1 4 108 T)) 4

Theorem 3.1 implies the convergence rate of AdamE in the non-convex case is upper bounded by
O(log %)

Proof of Theorem 3.1. Let A, = Av; /?V f(zy;€) fort > 1 and Ay = A,. Consider the definition
of my and Ay € R4, ¥t = 1, ..., T. Then it follows that

(Ar, gr) = 1% (Atyme) = (Aot me1)) + (Ae_1,me_r) +

it
1— 1*0&

We use A; = )\tv;l/QVf(a:t; §€). By summing ll overt = 1,...,T and using the initial condition
mo = 0, we get

(Ag—1 — Ay, my1) (25)

T — T
1
Z Atrgt = 1— o <ATamT Z Atamt> 1ftat Z<At—1*At,mt—l>
t=1 t=1 t=1
(26)
- T o T—1
= 1= (Armr) + ; (Aryme) + 3= ; (A — Arpr,me)

For, the goal is to derive bounds and calculate expectation to estimation E [HV f(ze;€) ||2} . The
intelligible idea is to calculate it by using E [(A, g;)] = E [<)\tvt 1/2 Vi(x;:€),9 >] . So we need

a more suitable random variable to take place (A;, g;) for taking conditional expectation E;.
Bound for (A, g:)

(At,gt) = <)\tv[1/2Vf(xt;§),gt>

<)\t 10, / Vf(zs;€),9 > <Vf(xt,f), ()\tflv;_ll/Z — )\tv;lm) gt> . @D

We set that \y = A = A for simplifying derivations. Now for the last term in the right-hand side,
by using Holder’s inequality, and A\;_1v;—1,; > Asv¢; (note that for ¢ = 1, this is still true), we have

(V@) (A0 = 20, %) g) < IV F @i &)l Ihemrvr (= Aevy 2 e gl

<G (D= {2 = e 22

Combining (27) and (28) yields

(Aege) < (v (P @ €),90) = 63 (|pemao ] = a2 29)
Rearrange (29), we have
</\t—11):1/2vf(17t§§)79t> < (A1, gt) + G5 (‘ At— 11}71/2 C? 2) . (30)

It is obvious that the term <)\t_1v;_11/ 2y f(z;8), gt> is more suitable for calculating E;. The next

step is to focus on the bound of ZtT:l (A4, g¢) and consider each term separately.

Bound for (A7, mr): By Young’s inequality, x7 —xp_1 = )\tvt_l/ZmT, and ||V f(z7; 8|2 < Ga,

(Ar,mr) = <Vf (z1;€), Arvg ' mT> <L H)‘TvT mTH tir HVf (zr; )5 < Llawri1 — =23 +

€2y

G3

4L



Under review as a conference paper at ICLR 2025

Bound for (A;, m;): By the update of x4, we have

(Ahmt) <)\t’l)t 1/2 Vf ((Et,f) ,mt) = <Vf (l‘t,&) 5 )\tvt_l/th>

(32)
= (Vf(@;8), 2 — ze41) < f(26;8) = f (@413 6) +

5 [EEE

Bound for (A; — Ayy1,my)

(Ar — Aprr,my) = </\tv[1/2Vf (245€) = Mesr0,{ PV F (20413 €) mt>

</\ 07 PV f (@413 €) — Aesr0, {2V f (0415 €) ,mt> + <>\tv[1/2Vf (25€) — Ay PV f (20515 €) mt>

= (Vf @erns©), (o2 = deaoi{®) me) + (VF (@66) = VI (@es1:)  deo

(33)
For the first term of (33), it uses similar derivation in (28), then we get
(VF @e3©), (Mo = Mo ) me) < IVF @ )l o = M vi 2 ol
<V (@1 )l [Aev 2

—1/2 —1/2 —-1/2
—Xes1vrf 2 llgelly < G5 (IR0 22 = A0 l2)

where [[myll2 < [|g¢ll2 comes from [[mylla = [lagmi—1 + (1 — ar)gella < aullme—1ll2 + (1
ar)llgell2 < agllmellz + (1 — ai)llgell2-

Because of f(x;€) is L-smooth, then the update rule of ;11 as shown that
(Vf (@5€) = Vf (@ee15) Aoy V2

< Lllmess — |2 Aoy

mi) < IVS (i) = Vf (@il Ineer Pl
mills = L|lzesr — 23 -

Combining (34) and (33)), we can derive
<At — At+1,mt> < G% (‘

Atv;1/2.‘2 - ‘ Aesr0, ] ‘2) + lwerr — @l - (36)
We then get that
Gid a
2 —1/2 2
; A, g1) < 1L <f (1;8) = f(zrs1;8) + 5 Z||$t+1 —l’t||2> +G3 || Aoy +Lt:21||$t+1 — xell3
B (@03 — £ (@) +7GE [0 7] + 213 favss il
4L ’ 1 9 — 2
(37
where the last inequality follows from f(z741;€) > f(z.), 00 = «
Considering the last term of (37):
T T T d m
2 _ —1/2 _ 2 t,i
2LZ 241 — 22l = 2LZ1 ) Ao | 2L;;)\t "
— ;) g5, [T jyr k)° T L (A —ay)gi2’ )
=2L /\t z < 2L N ——L=
2121 ( 59)9”Hk =j+1 Bk ZZ ¢

(38)
1i=1 Z] 1(1_ﬁ1) 2J t
< 2LZZA§ sz—‘ < 4dLZ,\§ <4dLX*(1 +1og T)

t=1i=1 j=1 t=1
Since ZJ 15 L'<1+4logTand \; =

Substituting @) into (37) yields,

5 () < B4 (1 006 - £ @) 426 o
t=1

ﬁ’ the final inequality holds.

1/2

,t 4dLN* (1 +log T)
G3d

(39)
< T @5~ f (@) + G oy

+ 4dLXN*(1 4 log T)
2
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1/2

where vy ;% > v, 11/2 and A\G3 > 0.

Now we sum the inequality from equation (30) over ¢ = 1, ...T and substitute (39) into it, we obtain

ZT: <>\t71’U;_11/2Vf (z+;€) ,gt> < XT: (A¢, gty + zT:Gg (‘ ’ . HA w0 1/2” )
t=1 t=1

t=1

)\t 1’07 1/2

G2 (@1:6) = f () + 2G5 |lvg /* +4dL>\2(1+logT)+ZT:G§(|)‘t w ], = pe,)
t=1
02 (2136) = f (2) + 2G5 Jug */%||| +4aLX*(1 + 108 T) + G5 (| Aoy ||| = Az )
(40)

Using \g = X and ||)\Tv;1/2||2 > 0, we have

i@ o AV @0 €) 0) < iiwm &) = f (@) + 263 ||og /2|, + 4423?01 +10g ) + GF (||rove 2|, = [Arer?,)

<i+f(x1 £) — f(z4) + AG2 H 1/2H +4dLA2(1+1ogT>+AG§)|vgl/2H2

2
- G7+f(zl €) — f(z4) + 27G2 Hv51/2||2+4dm2(1+1og T)
@1
Since E; is conditioned on the history until selecting g;, v;_1 does not depend on g, ||v¢]|2 < GZ,
and E.[g] = V f(x¢; ), we get

B (M9 @) 00)] = (e PV @0€) V@ €) = 3 S (9 (@6
t—1,4

=1
A 2
< —V ;
Taking the full expectation above yields
A 2 L—1/2 N
E[IVS (z:0ll5] <E {10, {"Vf (22), g
e [ )

< % +F (216) — f (22) + 2063 [l

Rearranging the above formula, we have

02|, + 4ara 1 +10g )

1 T 2 G2 G2 21l 12
f;E[HW(m;OHQ} A\f(—ﬂ‘(ml,&)—f(x*)HAGQHUO

+4dLN*(1 + log T)).
2

(44)
6 SIMULATION EXPERIMENTS AND DISCUSSIONS

Due to space constraints, please refer to the Appendix for details of our experiments and most
experimental results. Here we only list the experimental results of the proposed algorithm on a
typical graph clustering problem.

The Dual Correlation Reduction Network (DCRN) stands as a self-supervised deep graph clustering
method, incorporating a dual information correlation reduction mechanism aimed at diminishing
information correlation between the sample and feature levels. In accordance with the methodology
outlined in [Liu et al.|(2022)), our evaluation of optimization algorithms, such as AdamE, AdaBelief,
AdaBound, AdamW, RAdam, Adam, EAdam and Padam, hinges on four widely accepted public
metrics measuring clustering performance: accuracy (ACC), normalized mutual information (NMI),
average rand index (ARI), and macro F1-score (F1).

The initial learning rates for AdamE, AdaBelief, AdaBound, AdamW, RAdam, Adam, and EAdam
are uniformly set at 0.001, while for Padam, the initial learning rate is established as 0.01. The
training of DCRN aligns with the prescribed protocol in the original literature, spanning 400 epochs
until convergence. Notably, a learning rate adjustment is implemented, reducing it by a factor of 0.1
at the 50th epoch.

The experimental findings reveal significant variations in four widely acknowledged public metrics
assessing clustering performance across different optimizers, as illustrated in Fig. Fig.
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Fig. and Fig.[5(d)} Notably, the overall trend observed for AdamE in all four clustering perfor-
mance metrics indicates a sustained improvement beyond epoch 250, surpassing the performance of
other optimizers.
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Figure 5: Performance evaluation of DCRN (A = 10) with different optimizers on DBLP.

7 CONCLUSIONS

In this study, we systematically analyze the impact of varying exponential decay rates on the con-
vergence and generalization performance of the Adam optimization algorithm. Building on this
analysis, we introduce an enhanced version of the algorithm, termed AdamE, and provide a compre-
hensive exposition of its design. The effectiveness of AdamE is demonstrated through experiments
on the quadratic function fitting problem, along with a theoretical investigation of its convergence
properties in convex settings.

We further evaluate the empirical performance of AdamE across a range of deep learning tasks,
including language modeling, node classification, and graph clustering. Both the theoretical analyses
and experimental results consistently highlight the superior performance of the proposed AdamE

algorithm.

REFERENCES

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. arXiv preprint
arXiv:1806.06763, 2018.

Zhangxuan Gu, Changhua Meng, Ke Wang, Jun Lan, Weigiang Wang, Ming Gu, and Liqing Zhang.
Xylayoutlm: Towards layout-aware multimodal networks for visually-rich document understand-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 4583-4592, 2022.

Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue Gao. Graph-mlp:
node classification without message passing in graph. arXiv preprint arXiv:2106.04051, 2021.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
arXiv preprint arXiv:2105.00956, 2021.

10



Under review as a conference paper at ICLR 2025

JongMok Kim, Jooyoung Jang, Seunghyeon Seo, Jisoo Jeong, Jongkeun Na, and Nojun Kwak.
Mum: Mix image tiles and unmix feature tiles for semi-supervised object detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14512—
14521, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang, and En Zhu. Deep
graph clustering via dual correlation reduction. In Proc. of AAAI, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

Yuxian Meng, Shi Zong, Xiaoya Li, Xiaofei Sun, Tianwei Zhang, Fei Wu, and Jiwei Li. Gnn-Im:
Language modeling based on global contexts via gnn. arXiv preprint arXiv:2110.08743,2021.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Cheekong Lee. Protgnn: Towards self-
explaining graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 9127-9135, 2022.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On
the convergence of adaptive gradient methods for nonconvex optimization. arXiv preprint
arXiv:1808.05671, 2018.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James S Duncan. Adabelief optimizer: Adapting stepsizes by the belief in ob-
served gradients. arXiv preprint arXiv:2010.07468, 2020.

11



	Introduction
	Motivation
	Algorithm
	Details of AdamE
	Numerical experiments
	Analysis of the Reasons Why AdamE Can Improve the Convergence of Adam in the Convex case

	Convergence Analysis for Convex Case
	Convergence Analysis for Nonconvex Case
	Simulation Experiments and Discussions
	Conclusions

