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ABSTRACT

Adam and its variants, including AdaBound, AdamW, and AdaBelief, have gained
widespread popularity for enhancing the learning speed and generalization perfor-
mance of deep neural networks. This optimization technique adjusts weight vec-
tors by utilizing predetermined exponential decay rates (i.e.,β1 = 0.9, β2 = 0.999)
based on the first moment estimate and the second raw moment estimate of the
gradient. However, the default exponential decay rates might not be optimal, and
the process of tuning them through trial and error with experience proves to be
time-consuming. In this paper, we introduce AdamE, a novel variant of Adam
designed to automatically leverage dynamic exponential decay rates on the first
moment estimate and the second raw moment estimate of the gradient. Addition-
ally, we provide theoretical proof of the convergence of AdamE in both convex
and non-convex cases. To validate our claims, we perform experiments across
various neural network architectures and tasks. Comparative analyses with adap-
tive methods utilizing default exponential decay rates reveal that AdamE consis-
tently achieves rapid convergence and high accuracy in language modeling, node
classification, and graph clustering tasks.

1 INTRODUCTION

Adam Kingma & Ba (2014), a widely adopted stochastic optimization method, has been applied
across various domains in recent years, including object detection Kim et al. (2022), natural language
processing Gu et al. (2022), and node classification Meng et al. (2021). Despite its widespread use,
Adam’s performance in training deep neural networks (DNNs) can be sensitive to improper learning
rates, whether too large or too small. To address this issue, several improved variants have been
proposed, such as AdaBound Luo et al. (2019), RAdam Liu et al. (2019), Padam Chen et al. (2018),
AdamW Loshchilov & Hutter (2017), and AdaBelief Zhuang et al. (2020).

Building on the principles of adaptive optimization, we introduce a novel technique, AdamE, which
incorporates adaptive exponential decay rates. This approach dynamically adjusts the decay rates
for both the first and second moments of the gradient. The primary contributions of our study are as
follows:

• Introduction of AdamE: We propose a new optimization algorithm, AdamE, designed for
DNNs. Compared to the standard Adam optimizer and other mainstream methods, AdamE
exhibits superior adaptability to current gradient values, resulting in faster convergence and
improved model stability.

• Theoretical analysis of AdamE: We provide a detailed theoretical analysis of AdamE’s
convergence properties in both convex and non-convex stochastic optimization settings,
demonstrating its enhanced convergence behavior.

• Experimental validation: The effectiveness of AdamE is validated through experiments
on established datasets, including WikiText-2, BBBP, Cora, Citeseer, and DBLP. Extensive
experimental results show that AdamE achieves state-of-the-art performance.

2 MOTIVATION

Adam and its variants share a key feature: they rely on the first and second raw moment estimates
of the gradient to optimize weight vectors, using default exponential decay rates (e.g., β1 = 0.9,
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β2 = 0.999). However, there is limited research on how varying these decay rate settings affects
Adam’s convergence, generalization, and stability. In this study, we explore the effects of different
combinations of exponential decay rates (β1 ∈ {0.5, 0.7, 0.9} and β2 ∈ {0.9, 0.95, 0.999}) on
Adam’s performance in terms of these three aspects. The experimental findings are presented below:

A commonly used quadratic function is employed to assess the impact of different exponential
decay rate settings on the convergence and stability of Adam. The function is defined as f(x) =
(x− 1)2 + 2, with a search domain of −5 ≤ x ≤ 7. The global minimum of the quadratic function
is at x̃ = 1, f(x̃) = 2. The learning rate and number of iterations for Adam with different (β1,β2)
are set to 0.8 and 200 respectively.

(a) Adam with different β1 (b) Adam with different β2
Figure 1: Results of Adam with different β1 and β2 for Quadratic function.

As depicted in Fig. 1(a), as the β1 of Adam increasing (with β2 fixed at 0.999), the overshoot in
function optimization for Adam gradually increase, and the convergence speed gradually decreases.
The fluctuating range of the function optimization curve is higher when β1 =0.9. In comparison with
Fig. 1(a), the result of Fig. 1(b) is different, the fluctuating range of function optimization curve
gradually decreases with an increase in β2 of Adam (with β1 fixed at 0.9). The optimal function
optimization results for Adam can be observed when β1=0.5 and β2=0.999.

The experimental outcomes for Adam, considering different (β1, β2) combinations, across tasks
such as quadratic function, emphasize the critical role of appropriately setting β1 and β2 for Adam
based on specific tasks in training DNNs. In this paper, we introduce a novel variant of Adam,
termed Adam with dynamic exponential decay rate (AdamE), which straightforwardly computes β1
and β2 of Adam based on iterations.

3 ALGORITHM

3.1 DETAILS OF ADAME

The pseudo-code for AdamE is presented in Algorithm 1. In comparison to Adam, AdamE exhibits
the capability to dynamically adjust the exponential decay rates of the first moment estimate (α) and
the second raw moment estimate (β) based on the timestep. Essentially, AdamE flexibly adapts its
step size in accordance with the exponential decay rates of the first moment estimate and the second
raw moment estimate, all without the need for bias correction.

Algorithm 1 AdamE
Input: θ0 is initial parameter vector, the good default settings are λ = 0.01, ε = 10−8, d0 = 0, s0 = 0 and q = 0.
Output: The parameters θT of the model.
for q = 1; q ≤ T do
gq = ∇θfq(θq−1); (Get gradients of stochastic objective function at qth epoch)
αq = q

1+q2
; (Calculate exponential decay rate of first moment estimate)

βq = 1− αq ; (Calculate exponential decay rate of second raw moment estimate)
dq = αq ∗ dq−1 + (1− αq) ∗ gq ; (Calculate first moment estimate)
sq = βq ∗ sq−1 + (1− βq) ∗ g2q ; (Calculate second raw moment estimate)

θq = θq−1 − λ ∗
dq√
sq+ε

(Update parameters of model)
end for

3.2 NUMERICAL EXPERIMENTS

To assess the efficacy of AdamE, depicted in Fig. 1(a) and Fig. 1(b), an experiment involving
quadratic function fitting was conducted using AdamE. The outcomes, illustrated in Fig. 2(a) and
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(a) Adam with different learning rate (b) AdamE with different learning rate
Figure 2: Results of Adam and AdamE with different learning rate.

Fig. 2(b), reveal that the overshooting issue inherent in optimization methods can be mitigated by
adaptively adjusting the step. This adjustment is based on the exponential decay rates of the first
moment estimate and the second raw moment estimate, performed without bias correction, while
maintaining the same initial learning rate.

Furthermore, the individual learning rates for different parameters in DNNs can be dynamically
computed based on the estimates of the second moments of gradients, expressed as α√

vt
. Demon-

strated in Fig. 3(a) and Fig. 3(b), an increase in β2 in Adam leads to a gradual decrease in the value
of α√

vt
, highlighting that the critical factor influencing the extremes of large and small learning rates

in Adam is the setting of β2. Addressing this, AdamE, which incorporates a dynamic exponential
decay rate, is introduced to tackle the issue, as evidenced in Fig. 3(b).

Moreover, as depicted in Fig. 4(a) and Fig. 4(b), subsequent experiments indicate that Adam ex-
hibits reduced fluctuations by lowering the learning rate. In comparison, AdamE proves adept at
overcoming the overshooting problem; however, its convergence speed gradually diminishes with
decreasing learning rates. Consequently, future investigations are directed towards enhancing the
convergence speed of AdamE.

(a) Adam with different β1 (b) Adam with different β2
Figure 3: Results of Adam with different β and AdamE.

(a) Adam with different β2 (b) Adam with β2 = 0.999 and AdamE
Figure 4: Results of Adam with different β2 and AdamE.

3.3 ANALYSIS OF THE REASONS WHY ADAME CAN IMPROVE THE CONVERGENCE OF
ADAM IN THE CONVEX CASE

To demonstrate the improvements AdamE offers over Adam in terms of convergence, we analyze
the convergence behavior of AdamE in the convex setting, as detailed below.
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Theorem 1.1 Kingma & Ba (2014): Assuming that the function ft has bounded gradients,
‖∇ft(θt)‖2 ≤ G, ‖∇ft(θt)‖∞ ≤ G∞ for all θ ∈ Rd and distance between any θt generated
by Adam is bounded as ‖θn − θm‖2 ≤ D, ‖θn − θm‖∞ ≤ D∞ for any m,n ∈ 1, ..., T , and β1,
β2 ∈ [0, 1) satisfy β2

1√
β2

< 1. Let αt = α√
t

and β1,t = β1λ
t−1, λ ∈ (0, 1). Adam achieves the

following guarantee, for all T ≥ 1.

R(T ) =
D2

2α(1− β1)

d∑
i=1

√
T v̂T,i +

α(β1 + 1)G∞
∑d
i=1 ‖g1:T,i‖2

(1− β1)
√
1− β2(1− γ)2

+

d∑
i=1

D2
∞G∞

√
1− β2

2α(1− β1)(1− λ)2
(1)

According to literature Kingma & Ba (2014), we have

Ft+1 =

√
v̂t+1

τt+1
−
√
v̂t
τt

>

√
β2v̂t
τt+1

−
√
v̂t
τt

>

√
v̂t
τ

(
√
β2(t+ 1)−

√
t) (2)

The core of convergence of Adam is Ft+1 =
√
vt+1

τt+1
−
√
vt
τt

> 0, which vt = β2vt−1+(1−β2)g2t =

(1−β2)
∑t
i=1 β

t−i
2 g2i is the second moment estimate of Adam, and τt = τ√

t
(τ is the initial learning

rate of Adam). However, according to Theorem 1.1, if 0 < β2 <
t
t+1 < 1, and β2(t+ 1) < t, so it

is hard to illustrate Ft+1 =
√
vt+1

τt+1
−
√
vt
τt

> 0. However, when t
t+1 < β2 < 1 and β2(t+ 1) > t, it

ensures that Ft+1 =
√
vt+1

τt+1
−
√
vt
τt

> 0, so the value of β2 should be as close as possible to 1, such
as β2 = 0.999.

According to Algorithm 1, we have

Ht+1 =

√
st+1

τt+1
−
√
st

τt
>

√
βt+1st
τt+1

−
√
st

τt
>

√
st

τ
(
√
βt+1(t+ 1)−

√
t) (3)

Owing to

√
βt+1(t+ 1)−

√
t =

√
(1− αt+1)(t+ 1)−

√
t =

√
(t+ 1)− (t+ 1)2

(t+ 1)2 + 1
−
√
t > 0 (4)

Since Ht+1 > 0, AdamE exhibits the capability to improve the convergence of Adam for convex
scenarios.

4 CONVERGENCE ANALYSIS FOR CONVEX CASE

The regret is defined as

R(T ) =
T∑
t=1

[ft(θt)− ft(θ∗)] (5)

where θ∗ = argminθ∈χ
∑T
t=1 ft(θt). Some definitions of mathematical symbols are represented

as gt = ∇ft(θt), gt,i is the ith element, g1:t,i ∈ Rt is a vector which includes the ith dimension of
gradients gt over all iterations till t as g1:t,i = [g1,i, g2,i, ..., gt,i].

Online learning framework Kingma & Ba (2014) is applied in convergence analysis of AdamE for
convex case, and we prove that AdamE has a regret bound using the following theorems.

Lemma 2.1 : If a function f : Rd → R is convex, then for all x, y ∈ Rd,

f(y) ≥ f(x) +∇f(x)T (y − x) (6)

Theorem 2.1: Let gt = ∇ft(θt) and g1:t are defined as bounded and above, ‖gt‖2 ≤ G2. Then,
T∑
t=1

m2
t,i√
tvt,i

<
16
√
T

(
√
8− 1)2

‖g1:T,i‖2 (7)
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Proof of Theorem 2.1. According to Algorithm 1, we have

mt,i = αtmt−1,i + (1− αt)gt,i =
t∑
i=1

(1− αi)gt,i
t∏

k=i+1

αk (8)

vt,i = βtvt−1,i + (1− βt)g2t,i =
t∑
i=1

(1− βi)g2t,i
t∏

k=i+1

βk (9)

Owing to αt = t
1+t2 and βt = 1 − αt, there are

∏t
k=i+1 αk =

∏t
k=i+1

k
1+k2 ≤ 2i−t and√∏t

k=i+1 βk =
√∏t

k=i+1(1− αk) ≥
√
( 12 )

t−i = 2
i−t
2 .

We expand the last term in the summation of Algorithm 1,
T∑
t=1

m2
t,i√
tvt,i

=

T−1∑
t=1

m2
t,i√
tvt,i

+
(
∑T
j=1(1− αj)gj,i

∏T
k=j+1 αk)

2√
T
∑T
j=1(1− βj)g2j,i

∏T
k=j+1 βk

<

T−1∑
t=1

m2
t,i√
tvt,i

+
(
∑T
j=1(1− αj)gj,i2

j−T )2√
T
∑T
j=1(1− βj)g2j,i2j−T

<

T−1∑
t=1

m2
t,i√
tvt,i

+

T∑
j=1

T ((1− αj)gj,i2j−T )2√
T
∑T
j=1(1− βj)g2j,i2j−T

<

T−1∑
t=1

m2
t,i√
tvt,i

+

T∑
j=1

T ((1− αj)gj,i2j−T )2√
T (1− βj)g2j,i2j−T

<

T−1∑
t=1

m2
t,i√
tvt,i

+

T∑
j=1

√
T

√
(1− αj)2

αj

22j−2T

√
2j−T

g2j,i√
g2j,i

<

T−1∑
t=1

m2
t,i√
tvt,i

+

T∑
j=1

√
T (

1
√
αj
−√αj)(2

√
2)j−T ‖gj,i‖2

<

T−1∑
t=1

m2
t,i√
tvt,i

+
√
T

T∑
j=1

(2
√
2)j−T
√
αj

‖gj,i‖2. (10)

So we get that
T∑
t=1

m2
t,i√
tvt,i

<

T∑
t=1

‖gt,i‖2√
αt

T−t∑
k=0

√
t(

1

2
√
2
)k. (11)

For 1
2
√
2
< 1, using the upper bound on the arithmetic-geometric series,∑

t

√
t(

1

2
√
2
)t <

1

(1− 1

2
√
2
)2

=
8

(
√
8− 1)2

, (12)

then, we have
T∑
t=1

m2
t,i√
tvt,i

<

T∑
t=1

‖gt,i‖2√
αt

T−t∑
k=0

√
t(

1

2
√
2
)k <

8

(
√
8− 1)2

T∑
t=1

‖gt,i‖2√
αt

<
16

(
√
8− 1)2

T∑
t=1

√
t‖gt,i‖2 <

16
√
T

(
√
8− 1)2

‖g1:T,i‖2. (13)

Theorem 2.2: Given a cost function ft with bounded gradients, which is ‖gt‖2 = ‖∇ft(θt)‖2 ≤
G2. For all θ ∈ Rd and distance between any θt generated by AdamE is bounded as ‖θn − θm‖2 ≤
D2 for any m,n ∈ 1, ..., T . Let λt = λ

t , AdamE achieves the following guarantee, for all T ≥ 1.

R(T ) <
D2

2

λ

d∑
i=1

√
TvT,i + λ

d∑
i=1

16
√
T

(
√
8− 1)2

‖g1:T,i‖2 +D2

d∑
i=1

mT−1,i (14)

It is shown that the regret of AdamE is upper bounded by O(
√
T ), which is similar to Adam and its

variants.

Proof of Theorem 2.2. According to Lemma 2.1, we have

ft(θt)− ft(θ∗) ≤ gTt (θt − θ∗). (15)

5
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According to Algorithm 1:

θt+1 = θt − λt
mt√
vt

= θt − λt(
αtmt−1√

vt
+

(1− αt)gt√
vt

). (16)

The ith dimension of parameter vector θt ∈ Rd is a particular focus of attention. Subtract θ∗ and
square both side of above formula, we get

(θt+1,i − θ∗i )2 = (θt,i − θ∗i − λt
mt,i√
vt,i

)2

= (θt,i − θ∗i )2 + λ2
t (
mt,i√
vt,i

)2 − 2λt(
αtmt−1,i√

vt,i
+

(1− αt)gt,i√
vt,i

)(θt,i − θ∗i ), (17)

so we have √vt,i =
√∑t

i=1(1− βi)g2t,i
∏t
k=i+1 βk < ‖g1:t,i‖2.

gt,i(θt,i − θ∗i ) =

√
vt,i

2λt(1− αt)
((θt,i − θ∗i )2 − (θt+1,i − θ∗i )2) +

λt
2(1− αt)

m2
t,i√
vt,i

+
αt

1− αt
mt−1,i(θt,i − θ∗i )

<

√
vt,i

2λt(1− αt)
(θt,i − θ∗i )2 +

λt
2(1− αt)

m2
t,i√
vt,i

+
αt

1− αt
mt−1,i(θt,i − θ∗i )

<

√
vt,i

λt
(θt,i − θ∗i )2 + λt

m2
t,i√
vt,i

+mt−1,i(θt,i − θ∗i ). (18)

For the sequence of convex functions ft(θt) (t ∈ 1, ..., T ), the upper regret bound of ft(θt)− ft(θ∗)
by summing across all dimension for i ∈ 1, ..., d can be obtained by using Lemma 2.1 to above
inequality.

R(T ) <

T∑
t=1

d∑
i=1

(

√
tvt,i
λ

(θt,i − θ∗i )2 + λ
m2
t,i√
tvt,i

+mt−1,i(θt,i − θ∗i )). (19)

According to Theorem 2.1,
∑T
t=1

m2
t,i√
tvt,i

< 16
√
T

(
√
8−1)2 ‖g1:T,i‖2, and ‖θn − θm‖2 ≤ D2, we have:

R(T ) <
D2

2

λ

d∑
i=1

√
TvT,i + λ

d∑
i=1

16
√
T

(
√
8− 1)2

‖g1:T,i‖2 +D2

d∑
i=1

mT−1,i. (20)

5 CONVERGENCE ANALYSIS FOR NONCONVEX CASE

According to Zhou et al. (2018), we present theoretical results on the convergence of AdamE. The
following stochastic nonconvex optimization problem will be further studied

min
x∈Rd

f(x) := Eξ[f(x; ξ)], (21)

where ξ is a random variable satisfying certain distribution, and f(x; ξ) : Rd −→ R is a L-smooth
nonconvex function. x∗ ∈ argmin

x∈Rd
f(x) := Eξ[f(x; ξ)] exits.

Lemma 3.1: f(x) = Eξ[f(x; ξ)] is L-smooth, which has a G2-bounded stochastic gradient. That
is, for any ξ, x and y (x, y ∈ Rd), we have

‖∇f(x; ξ)‖2 ≤ G2, (22)

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ L

2
‖x− y‖22. (23)

mt and vt can be as defined in Algorithm 1. Then under Assumption 3.1, we have ‖vt‖2 ≤ G2
2 and

‖mt‖2 ≤ G2.
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Theorem 3.1: According to Algorithm 1, let αt and βt be the weight parameters such as αt = t
1+t2 ,

βt = 1− αt, mt = αtmt−1 + (1− αt)gt and vt = βtvt−1 + (1− βt)g2t , λt, t = 1, ..., T is the step
sizes. Suppose that λt = λ√

t
, then under Assumption 3.1, we have the following results:

∑T
t=1 E[‖∇f(xt; ξ)‖2]

T
<

G2

λ
√
T

(
G2

2d

4L
+ f (x1; ξ)− f (x∗) + 2λG

2
2

∥∥∥v−1/2
0

∥∥∥
2
+ 4dLλ

2
(1 + log T )) (24)

Theorem 3.1 implies the convergence rate of AdamE in the non-convex case is upper bounded by
O(log T√

T
).

Proof of Theorem 3.1. Let At = λtv
−1/2
t ∇f(xt; ξ) for t ≥ 1 and A0 = A1. Consider the definition

of mt and At ∈ Rd, ∀t = 1, ..., T . Then it follows that

〈At, gt〉 =
1

1− αt
(〈At,mt〉 − 〈At−1,mt−1〉) + 〈At−1,mt−1〉+

αt
1− αt

〈At−1 −At,mt−1〉 (25)

We use At = λtv
−1/2
t ∇f(xt; ξ). By summing (25) over t = 1, ..., T and using the initial condition

m0 = 0, we get

T∑
t=1

〈At, gt〉 =
1

1− αt
〈AT ,mT 〉+

T−1∑
t=1

〈At,mt〉+
αt

1− αt

T∑
t=1

〈At−1 −At,mt−1〉

=
αt

1− αt
〈AT ,mT 〉+

T∑
t=1

〈At,mt〉+
αt

1− αt

T−1∑
t=1

〈At −At+1,mt〉

(26)

For(26), the goal is to derive bounds and calculate expectation to estimation E
[
‖∇f(xt; ξ)‖2

]
. The

intelligible idea is to calculate it by using E [〈At, gt〉] = E
[〈
λtv
−1/2
t ∇f(xt; ξ), gt

〉]
. So we need

a more suitable random variable to take place 〈At, gt〉 for taking conditional expectation Et.
Bound for 〈At, gt〉

〈At, gt〉 =
〈
λtv
−1/2
t ∇f(xt; ξ), gt

〉
=
〈
λt−1v

−1/2
t−1 ∇f(xt; ξ), gt

〉
−
〈
∇f(xt; ξ),

(
λt−1v

−1/2
t−1 − λtv

−1/2
t

)
gt
〉
.

(27)

We set that λ0 = λ = λ1 for simplifying derivations. Now for the last term in the right-hand side,
by using Hölder’s inequality, and λt−1vt−1,i ≥ λtvt,i (note that for t = 1, this is still true), we have〈

∇f(xt; ξ),
(
λt−1v

−1/2
t−1 − λtv

−1/2
t

)
gt
〉
< ‖∇f(xt; ξ)‖2 ‖λt−1v

−1/2
t−1 − λtv

−1/2
t ‖2 ‖gt‖2

< G2
2

(
‖λt−1v

−1/2
t−1 ‖2 − ‖λtv

−1/2
t ‖2

)
,

(28)

Combining (27) and (28) yields

〈At, gt〉 <
〈
λt−1v

−1/2
t−1 ∇f(xt; ξ), gt

〉
−G2

2

(∥∥∥λt−1v
−1/2
t−1

∥∥∥
2
−
∥∥∥λtv−1/2

t

∥∥∥
2

)
(29)

Rearrange (29), we have〈
λt−1v

−1/2
t−1 ∇f(xt; ξ), gt

〉
< 〈At, gt〉+G2

2

(∥∥∥λt−1v
−1/2
t−1

∥∥∥
2
−
∥∥∥λtv−1/2

t

∥∥∥
2

)
. (30)

It is obvious that the term
〈
λt−1v

−1/2
t−1 ∇f(xt; ξ), gt

〉
is more suitable for calculating Et. The next

step is to focus on the bound of
∑T
t=1 〈At, gt〉 and consider each term separately.

Bound for 〈AT ,mT 〉: By Young’s inequality, xT −xT−1 = λtv
−1/2
t mT , and ‖∇f(xT ; ξ)‖2 ≤ G2,

〈AT ,mT 〉 =
〈
∇f (xT ; ξ) , λT v−1/2

T mT

〉
< L

∥∥∥λT v−1/2
T mT

∥∥∥2
2
+

1

4L
‖∇f (xT ; ξ)‖22 < L ‖xT+1 − xT ‖22 +

G2
2

4L
(31)
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Bound for 〈At,mt〉: By the update of xt+1, we have

〈At,mt〉 = 〈λtv−1/2
t ∇f (xt; ξ) ,mt〉 = 〈∇f (xt; ξ) , λtv−1/2

t mt〉

= 〈∇f (xt; ξ) , xt − xt+1〉 < f (xt; ξ)− f (xt+1; ξ) +
L

2
‖xt+1 − xt‖22 .

(32)

Bound for 〈At −At+1,mt〉
〈At −At+1,mt〉 =

〈
λtv
−1/2
t ∇f (xt; ξ)− λt+1v

−1/2
t+1 ∇f (xt+1; ξ) ,mt

〉
=
〈
λtv
−1/2
t ∇f (xt+1; ξ)− λt+1v

−1/2
t+1 ∇f (xt+1; ξ) ,mt

〉
+
〈
λtv
−1/2
t ∇f (xt; ξ)− λtv−1/2

t ∇f (xt+1; ξ) ,mt

〉
=
〈
∇f (xt+1; ξ) ,

(
λtv
−1/2
t − λt+1v

−1/2
t+1

)
mt

〉
+
〈
∇f (xt; ξ)−∇f (xt+1; ξ) , λtv

−1/2
t mt

〉
(33)

For the first term of (33), it uses similar derivation in (28), then we get〈
∇f (xt+1; ξ) ,

(
λtv
−1/2
t − λt+1v

−1/2
t+1

)
mt

〉
< ‖∇f (xt+1; ξ)‖2 ‖λtv

−1/2
t − λt+1v

−1/2
t+1 ‖2 ‖mt‖2

< ‖∇f (xt+1; ξ)‖2 ‖λtv
−1/2
t − λt+1v

−1/2
t+1 ‖2 ‖gt‖2 < G2

2

(
‖λtv−1/2

t ‖2 − ‖λt+1v
−1/2
t+1 ‖2

)
,

(34)

where ‖mt‖2 < ‖gt‖2 comes from ‖mt‖2 = ‖αtmt−1 + (1 − αt)gt‖2 < αt‖mt−1‖2 + (1 −
αt)‖gt‖2 < αt‖mt‖2 + (1− αt)‖gt‖2.

Because of f(x; ξ) is L-smooth, then the update rule of xt+1 as shown that〈
∇f (xt; ξ)−∇f (xt+1; ξ) , λtv

−1/2
t mt

〉
< ‖∇f (xt; ξ)−∇f (xt+1; ξ)‖2 ‖λtv

−1/2
t mt‖2

< L‖xt+1 − xt‖2‖λtv−1/2
t mt‖2 = L ‖xt+1 − xt‖22 .

(35)

Combining (34) and (35), we can derive

〈At −At+1,mt〉 < G2
2

(∥∥∥λtv−1/2
t

∥∥∥
2
−
∥∥∥λt+1v

−1/2
t+1

∥∥∥
2

)
+ ‖xt+1 − xt‖22 . (36)

We then get that
T∑
t=1

〈At, gt〉 ≤
G2

2d

4L
+

(
f (x1; ξ)− f(xT+1; ξ) +

L

2

T∑
t=1

‖xt+1 − xt‖22

)
+G2

2

∥∥∥λ1v
−1/2
1

∥∥∥
2
+ L

T∑
t=1

‖xt+1 − xt‖22

<
G2

2d

4L
+ (f (x1; ξ)− f (x∗)) + λG2

2

∥∥∥v−1/2
1

∥∥∥
2
+ 2L

T∑
t=1

‖xt+1 − xt‖22

(37)
where the last inequality follows from f(xT+1; ξ) ≥ f(x∗), α1 = α.

Considering the last term of (37):

2L

T∑
t=1

‖xt+1 − xt‖22 = 2L

T∑
t=1

∥∥∥λtv−1/2
t mt

∥∥∥2
2
= 2L

T∑
t=1

d∑
i=1

λ2
t

m2
t,i

vt,i

= 2L

T∑
t=1

d∑
i=1

λ2
t

(
∑t
j=1(1− αj)gj,i

∏t
k=j+1 αk)

2∑t
j=1(1− βj)g2j,i

∏t
k=j+1 βk

< 2L

T∑
t=1

d∑
i=1

λ2
t

(
∑t
j=1(1− αj)gj,i2

j−t)2∑t
j=1(1− βj)g2j,i2j−t

< 2L

T∑
t=1

d∑
i=1

λ2
t

t∑
j=1

2j−t < 4dL

T∑
t=1

λ2
t < 4dLλ2(1 + log T )

(38)

Since
∑T
j=1

1
j ≤ 1 + log T and λt = λ√

t
, the final inequality holds.

Substituting (38) into (37) yields,
T∑
t=1

〈At, gt〉 <
G2

2d

4L
+ (f (x1; ξ)− f (x∗)) + λG2

2

∥∥∥v−1/2
1

∥∥∥
2
+ 4dLλ2(1 + log T )

<
G2

2d

4L
+ f (x1; ξ)− f (x∗) + λG2

2

∥∥∥v−1/2
0

∥∥∥
2
+ 4dLλ2(1 + log T )

(39)
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where v−1/20,i > v
−1/2
1,i and λG2

2 > 0.

Now we sum the inequality from equation (30) over t = 1, ...T and substitute (39) into it, we obtain
T∑
t=1

〈
λt−1v

−1/2
t−1 ∇f (xt; ξ) , gt

〉
<

T∑
t=1

〈At, gt〉+
T∑
t=1

G2
2

(∥∥∥λt−1v
−1/2
t−1

∥∥∥
2
−
∥∥∥λtv−1/2

t

∥∥∥
2

)
<
G2

2d

4L
+ f (x1; ξ)− f (x∗) + λG2

2

∥∥∥v−1/2
0

∥∥∥
2
+ 4dLλ2(1 + log T ) +

T∑
t=1

G2
2

(∥∥∥λt−1v
−1/2
t−1

∥∥∥
2
−
∥∥∥λtv−1/2

t

∥∥∥
2

)
=
G2

2d

4L
+ f (x1; ξ)− f (x∗) + λG2

2

∥∥∥v−1/2
0

∥∥∥
2
+ 4dLλ2(1 + log T ) +G2

2

(∥∥∥λ0v
−1/2
0

∥∥∥
2
−
∥∥∥λT v−1/2

T

∥∥∥
2

)
(40)

Using λ0 = λ and ‖λT v−1/2T ‖2 ≥ 0, we have
T∑
1

〈
λt−1v

−1/2
t−1 ∇f (xt; ξ) , gt

〉
<
G2

2d

4L
+ f (x1; ξ)− f (x∗) + λG

2
2

∥∥∥v−1/2
0

∥∥∥
2
+ 4dLλ

2
(1 + log T ) +G

2
2

(∥∥∥λ0v
−1/2
0

∥∥∥
2
−
∥∥∥λT v−1/2

T

∥∥∥
2

)

<
G2

2d

4L
+ f (x1; ξ)− f (x∗) + λG

2
2

∥∥∥v−1/2
0

∥∥∥
2
+ 4dLλ

2
(1 + log T ) + λG

2
2

∥∥∥v−1/2
0

∥∥∥
2

=
G2

2d

4L
+ f (x1; ξ)− f (x∗) + 2λG

2
2

∥∥∥v−1/2
0

∥∥∥
2
+ 4dLλ

2
(1 + log T )

(41)

Since Et is conditioned on the history until selecting gt, vt−1 does not depend on gt, ‖vt‖2 ≤ G2
2,

and Et[gt] = ∇f(xt; ξ), we get

Et
[〈
λt−1v

−1/2
t−1 ∇f (xt; ξ) , gt

〉]
=
〈
λt−1v

−1/2
t−1 ∇f (xt; ξ) ,∇f (xt; ξ)

〉
=

d∑
i=1

λt−1

v
1/2
t−1,i

(∇f (xt; ξ))2i

<
λ√
TG2

‖∇f (xt; ξ)‖22
(42)

Taking the full expectation above yields
λ√
TG2

E
[
‖∇f (xt; ξ)‖22

]
< E

[〈
αt−1v̂

−1/2
t−1 ∇f (xt) , ĝt

〉]
<
G2

2d

4L
+ f (x1; ξ)− f (x∗) + 2λG2

2

∥∥∥v−1/2
0

∥∥∥
2
+ 4dLλ2(1 + log T )

(43)

Rearranging the above formula, we have

1

T

T∑
t=1

E
[
‖∇f (xt; ξ)‖22

]
<

G2

λ
√
T
(
G2

2d

4L
+ f (x1; ξ)− f (x∗) + 2λG2

2

∥∥∥v−1/2
0

∥∥∥
2
+ 4dLλ2(1 + log T )).

(44)
6 SIMULATION EXPERIMENTS AND DISCUSSIONS

Due to space constraints, please refer to the Appendix for details of our experiments and most
experimental results. Here we only list the experimental results of the proposed algorithm on a
typical graph clustering problem.

The Dual Correlation Reduction Network (DCRN) stands as a self-supervised deep graph clustering
method, incorporating a dual information correlation reduction mechanism aimed at diminishing
information correlation between the sample and feature levels. In accordance with the methodology
outlined in Liu et al. (2022), our evaluation of optimization algorithms, such as AdamE, AdaBelief,
AdaBound, AdamW, RAdam, Adam, EAdam and Padam, hinges on four widely accepted public
metrics measuring clustering performance: accuracy (ACC), normalized mutual information (NMI),
average rand index (ARI), and macro F1-score (F1).

The initial learning rates for AdamE, AdaBelief, AdaBound, AdamW, RAdam, Adam, and EAdam
are uniformly set at 0.001, while for Padam, the initial learning rate is established as 0.01. The
training of DCRN aligns with the prescribed protocol in the original literature, spanning 400 epochs
until convergence. Notably, a learning rate adjustment is implemented, reducing it by a factor of 0.1
at the 50th epoch.

The experimental findings reveal significant variations in four widely acknowledged public metrics
assessing clustering performance across different optimizers, as illustrated in Fig. 5(a), Fig. 5(b),
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Fig. 5(c), and Fig. 5(d). Notably, the overall trend observed for AdamE in all four clustering perfor-
mance metrics indicates a sustained improvement beyond epoch 250, surpassing the performance of
other optimizers.

(a) Testing accuracy (b) ARI

(c) NMI (d) F1
Figure 5: Performance evaluation of DCRN (λ = 10) with different optimizers on DBLP.

7 CONCLUSIONS

In this study, we systematically analyze the impact of varying exponential decay rates on the con-
vergence and generalization performance of the Adam optimization algorithm. Building on this
analysis, we introduce an enhanced version of the algorithm, termed AdamE, and provide a compre-
hensive exposition of its design. The effectiveness of AdamE is demonstrated through experiments
on the quadratic function fitting problem, along with a theoretical investigation of its convergence
properties in convex settings.

We further evaluate the empirical performance of AdamE across a range of deep learning tasks,
including language modeling, node classification, and graph clustering. Both the theoretical analyses
and experimental results consistently highlight the superior performance of the proposed AdamE
algorithm.
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