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Abstract
Randomized response (RR) mechanisms consti-
tute a fundamental and effective technique for en-
suring label differential privacy (LabelDP). How-
ever, existing RR methods primarily focus on the
response labels while overlooking the influence
of covariates and often do not fully address op-
timality. To address these challenges, this paper
explores optimal LabelDP procedures using RR
mechanisms, focusing on achieving optimal esti-
mation and inference in binary response models.
We first analyze the asymptotic behaviors of RR
binary response models and then optimize the pro-
cedure by maximizing the trace of the Fisher Infor-
mation Matrix within the ε- and (ε, δ)-LabelDP
constraints. Our theoretical results indicate that
the proposed methods achieve optimal LabelDP
guarantees while maintaining statistical accuracy
in binary response models under mild conditions.
Furthermore, we develop private confidence in-
tervals with nominal coverage for statistical infer-
ence. Extensive simulation studies and real-world
applications confirm that our methods outperform
existing approaches in terms of precise estimation,
privacy protection, and reliable inference.

1. Introduction
Motivation. Privacy protection is crucial in modern sta-
tistical analysis and machine learning to handle personal
information and sensitive data. Differential privacy (DP)
(Dwork et al., 2006; 2014) has recently emerged as the gold
standard for preserving privacy when analyzing sensitive
data. It provides a statistical mechanism that enables users
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to analyze data without directly accessing sensitive infor-
mation while exploring theoretical guarantees to prevent
the exposure of private details. On the other hand, the ran-
dom response mechanism (RR) (Warner, 1965) has gained
significant attention in sensitive binary data and achieves
effective DP guarantees by flipping the binary labels with a
predetermined probability (Hout et al., 2010; Coutts & Jann,
2011; Kirchner, 2015; Oberski & Kreuter, 2020). Although
a surge of works explores DP guarantees under RR mecha-
nisms (Holohan et al., 2017; Fox et al., 2018; Ghazi et al.,
2020; Pastore & Gastpar, 2021; Xu et al., 2023), there is
still limited guidance on the optimal DP mechanism for RR
labels, particularly in the context of estimation and infer-
ence for binary response models. To address this gap, we
introduce a novel optimal DP RR mechanism tailored for bi-
nary response models that take into account the influence of
covariates. Our proposed DP RR mechanism operates under
the setting that the input covariates are publicly available
while the response labels are highly sensitive, which re-
quires rigorous protection. Motivated by the optimal design
of the experiment via maximizing the various types of “data
information” (Pukelsheim, 2006; Dette et al., 2012; Yang
et al., 2013; Waite & Woods, 2022; Duarte et al., 2022),
we primarily focus on exploring the optimal estimation and
inference for the RR binary response models by maximizing
the trace of the Fisher Information Matrix within a LabelDP
feasible region for RR parameters. This ensures the opti-
mality of the RR mechanism in safeguarding privacy while
maintaining statistical accuracy.

Literature review. Numerous approaches have been pro-
posed to develop DP algorithms through RR mechanisms
(Ding et al., 2020; Garcelon et al., 2021; Biswas et al.,
2023). In this section, we organize the relevant work into
three groups and highlight how our methodology differs
significantly, emphasizing the importance of a thorough
review.

DP via RR. Based on the classical RR mechanisms, Kairouz
et al. (2016) studied the optimal local DP mechanisms for
binary data. Holohan et al. (2017) extended Warner’s origi-
nal technique (Warner, 1965) to establish an RR mechanism
that simultaneously achieves DP and optimality by minimiz-
ing the variance estimator of the proportion of true answers.
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Furthermore, Ghazi et al. (2021) introduced a deep learning
method to construct an RR mechanism. Recently, Waudby-
Smith et al. (2023) presented a nonparametric extension
of Warner’s seminal RR mechanism tailored for bounded
data with sequential interactivity. Furthermore, Barnes et al.
(2020) and Asoodeh & Zhang (2022) investigated how fisher
information from statistical samples can scale with the pri-
vacy parameter ε under local DP constraints. Despite the
success of DP via RR in various domains, the challenges of
statistical inference for RR binary response models under
DP remain unresolved, potentially impacting both accuracy
and efficiency.

Label differential privacy. Label differential privacy (La-
belDP) is a well-established method to protect sensitive
labels while allowing non-private covariates under the RR
mechanism in classification tasks (Chaudhuri & Hsu, 2011).
LabelDP has received significant attention due to the in-
creasing demands in various fields (Nayak & Adeshiyan,
2009; Wang et al., 2016; Busa-Fekete et al., 2021; Chaud-
huri & Hsu, 2011; Busa-Fekete et al., 2021; Xu et al., 2023).
More recently, Busa-Fekete et al. (2023) established the
LabelDP mechanisms to share training data in machine
learning, enabling accurate predictive model learning while
safeguarding the privacy of each user’s labels.

Inference under RR binary response models. In statistics,
inference involves the use of representative training data to
learn about population characteristics, often represented by
model parameters (Tutz, 2011). Statistical inference under
LabelDP goes beyond providing point estimates; its goal is
to construct confidence intervals that capture the true val-
ues of the model/population parameters while accounting
for sampling variability and noise introduced by LabelDP
(Ghazi et al., 2022). Numerous works have been performed
on the estimation of binary response models using RR mech-
anisms without inference (Van den Hout et al., 2007; Hsieh
et al., 2010; Duan et al., 2016). Although Fox et al. (2018)
has explored statistical inference and extended the estimate
to a wide range of RR designs, their method does not con-
sider optimal estimation and inference within the LabelDP
framework, which is the main objective of our paper.

Our goals and contributions. Traditional optimal LabelDP
RR mechanisms, such as those in Holohan et al. (2017) and
Wang et al. (2017) , focus solely on optimizing privacy for
the response variable Y , but ignore the role of covariates X .
In contrast, our approach incorporates X by maximizing
the trace of the Fisher Information Matrix in the context of
RR binary response models, leading to improved statistical
efficiency and accuracy – capabilities that traditional meth-
ods do not offer. Specifically, we make the following major
contributions.

• This is the first work to investigate the optimal ε- and
(ε, δ)-LabelDP mechanisms using RR binary response

models. Specifically, our definition of optimality aims
to maximize the trace of the asymptotic information
matrix in (5) within the feasible LabelDP region for
the RR parameters, as illustrated in Figure 1. Further-
more, we establish the optimal inference for RR binary
response models with a specified level of confidence
within the LabelDP framework.

• We provide a rigorous theoretical analysis of the pro-
posed method, including the privacy guarantees and
asymptotic normality. Theoretical results establish that
this novel optimal LabelDP RR mechanism guarantees
ε- and (ε, δ)-LabelDP privacy while achieving optimal
estimators and asymptotic normality for the regression
coefficients in RR binary response models. Addition-
ally, we develop a privatized confidence interval that
delivers asymptotically valid coverage while preserv-
ing privacy.

• We conduct extensive simulations and real-data exper-
iments to demonstrate that our approach outperforms
several existing mechanisms, providing significantly
higher efficiency regarding estimation accuracy and
coverage probability. Notably, our method achieves a
threefold improvement in coverage probability within
the confidence interval, closely matching the perfor-
mance of non-private methods. This highlights the ef-
fectiveness of our approach in balancing privacy preser-
vation with high statistical efficiency.

Paper organization. The rest of this paper is organized
as follows. Section 2 reviews the essential background of
LabelDP and RR mechanisms. We introduce the RR binary
response models and establish the novel optimal LabelDP
RR mechanism under the ε- and (ε, δ)-LabelDP frameworks
in Section 3. Section 4 provides the theoretical results on
LabelDP guarantees and the private inference of the confi-
dence interval. Extensive simulation studies are conducted
in Section 5 to demonstrate the superior performance of the
proposed methods. In Section 6, we apply our proposed
method to a real-world dataset focused on measuring pla-
giarism among students to further illustrate its effectiveness.
Section 7 concludes the paper with several additional topics.
The detailed technical proofs are included in the appendix.

2. Preliminaries
In this section, we present a brief review of the LabelDP
and RR mechanisms, which lay the groundwork for our
proposed method.

LabelDP. DP has emerged as a state-of-the-art framework
for releasing privacy-preserving data in data science and
machine learning (Dwork et al., 2006; 2014; Dong et al.,
2022). The core of DP is to ensure that an individual’s data
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is sufficiently masked within the dataset. This enables anal-
ysis to be performed without direct access to the original
data, offering theoretical assurances that prevent the expo-
sure of sensitive information. Our work focuses mainly on
the binary response model, so we introduce the concept of
LabelDP, a specialized application of DP that specifically
targets the response space.

Definition 2.1 ((ε, δ)-LabelDP (Ghazi et al., 2021)). Let
X and Y denote the covariate and binary response spaces,
respectively. A randomized algorithm or mechanism A :
X → Y is (ε, δ)-LabelDP for some parameters ε > 0,
0 ≤ δ ≤ 1. If for any pair of datasets D,D′ that only differ
in the label of a single example and any measurable event
C ⊆ Y , it holds that

P (A(D) ∈ C) ≤ eεP (A(D′) ∈ C) + δ,

where the probability P is taken over the randomness of A.

The privacy budget (ε, δ) quantifies the level of protection
of privacy and the probability of relaxation. If δ = 0, A is
called pure LabelDP, denoted by ε-LabelDP; if δ > 0, it
is considered the approximate LabelDP. Generally speak-
ing, the smaller the sizes of both ε and δ, the stronger the
protection level, but this will limit the utility of the esti-
mators. Commonly used LabelDP mechanisms randomize
target quantities (e.g., parameter, loss, gradient, or aggregate
statistics) by adding random noises derived from elaborately
designed distributions to hide each individual’s contribution
(Kairouz et al., 2016).

RR mechanism. Suppose that there are n individuals, each
with an observed binary response Yi ∈ {0, 1}, dependent
on the true value Y ∗

i ∈ {0, 1}. The definition 2.2 describes
the relationship between Y and Y ∗ for the RR mechanism
via a design matrix.

Definition 2.2 (Design matrix). The RR mechanism for a
binary true value Y ∗

i follows a 2× 2 design matrix

P =

(
p00 p01
p10 p11

)
=

(
p00 1− p00

1− p11 p11

)
,

where pkj = P(Yi = j | Y ∗
i = k) with j, k = {0, 1},

represents the conditional response probability (Wang et al.,
2016; Holohan et al., 2017; Chaudhuri & Mukerjee, 2020),
and adheres the fact that p00 + p01 = 1, p10 + p11 = 1.

Subsequently, the probability mass function of each ob-
served value Yi can be calculated by

P (Yi = 0) = {1− P (Y ∗
i = 1)} p00 + P (Y ∗

i = 1) (1− p11)

= p00 − P (Y ∗
i = 1) (p00 + p11 − 1) ,

P (Yi = 1) = P (Y ∗
i = 1) p11 + {1− P (Y ∗

i = 1)} (1− p00)

= 1− p00 + (p00 + p11 − 1)P (Y ∗
i = 1) .

(1)

In scenarios where both p00 and p11 are equal to 1, the RR
mechanism directly reflects the true response, resulting in
P(Yi = 0) = P(Y ∗

i = 0) and P(Yi = 1) = P(Y ∗
i = 1).

However, this RR mechanism only addresses the unsuper-
vised aspect of the response. This means that it does not take
into account the relationship between the response variable
and the covariates or features, leading to potential inefficien-
cies and inaccuracies when used in supervised learning con-
texts, such as regression models. In the following sections,
we will investigate the application of RR binary response
models within the framework of LabelDP. This approach
provides a deeper insight into the effective application of
privacy-preserving techniques in binary response models.

3. Methodology
In this section, we aim to develop a novel LabelDP RR
mechanism that yields an optimal estimator for the RR
binary response models while safeguarding the privacy of
individual responses. We first introduce a new data structure
that incorporates RR and binary response models. Then we
present the fundamental framework of the proposed optimal
LabelDP RR mechanism.

3.1. RR binary response models

Suppose we observe n independent and identical distributed
(i.i.d.) observations D∗

n = {Xi, Y
∗
i }ni=1 from a binary

response model

E (Y ∗
i | Xi) = P (Y ∗

i = 1 | Xi) = G
(
β⊤
∗ Xi

)
, (2)

where Xi = (Xi1, . . . , Xid)
⊤ ∈ Rd is the d-dimensional

covariate, Y ∗
i ∈ {0, 1} is the true binary label, β∗ is the true

parameter vector. Throughout this paper, we assume that
only the responses Y ∗

i contain sensitive information, while
the covariates Xi are considered non-sensitive. The func-
tion G(β⊤

∗ Xi) denotes the link function, and the inverse of
the link function is typically assumed to be monotonic and
differentiable to the linear predictor β⊤

∗ Xi. Depending on
the form of G(β⊤

∗ Xi), the Model (2) can accommodate var-
ious binary response models as special cases, including Lo-
gistic regression exp(β⊤

∗ Xi)/{1 + exp(β⊤
∗ Xi)}, Cauchy

distribution π−1 arctan(β⊤
∗ Xi) + 1/2, and Probit regres-

sion Φ(β⊤
∗ Xi), where Φ typically represents the cumulative

distribution function of the standard normal distribution, as
explained in (Tutz, 2011; McCullagh, 2019).

Due to privacy considerations, researchers often encounter
a practical challenge: they typically only have access to
a potentially privatized dataset Dn = {Xi, Yi}ni=1 instead
of the true dataset D∗

n when using the RR mechanism. In
particular, the labels in Dn may not accurately represent
the true responses. In such cases, it is crucial to utilize a
calibration counterpart binary response to construct the RR
mechanism, as exemplified in (1) and (2). Consequently, we
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formulate the RR binary response models as

E (Yi | Xi) = P (Yi = 1 | Xi)

= 1− p00 + (p00 + p11 − 1)G
(
β⊤

∗ Xi

)
.

(3)

Note that Equation (1) provides a straightforward relation-
ship between Model (2) and Model (3), effectively adapting
(2) to account for the randomness introduced by the RR
mechanism. As a result, there is no need for a debiasing
step when estimating Model (3), since it already includes
the necessary adjustments due to (1).

The Maximum likelihood estimator (MLE) is effective in
estimating β∗ because the maximum likelihood equation
for Model (3) shares a structure similar to the maximum
likelihood equations of the generalized linear model (GLM)
maximum likelihood equations (Blair et al., 2015). To get
the MLE of β∗ based on the observed Dn, we solve the
following optimization problem

β̂ = argmax
β∗

ln(β∗)

= argmax
β∗

1

n

n∑
i=1

{
Yi log

pi
1− pi

+ log (1− pi)

}
, (4)

where pi = P (Yi = 1 | Xi), ηi = β⊤
∗ Xi, and ln(β∗) is

the log-likelihood function. Let S(·) be the derivative of
ln(·) and I(·) be the Fisher Information Matrix with respect
to β, respectively. The S(·) and I(·) in Dn can be specified
as follows:

S(β; p00, p11) =
1

n

n∑
i=1

(p00 + p11 − 1)(Yi − pi)

pi (1 − pi)

∂G (ηi)

∂ηi

Xi,

I (β; p00, p11) =
1

n

n∑
i=1

(p00 + p11 − 1)2

pi (1 − pi)

{
∂G (ηi)

∂ηi

}2

XiX
⊤
i . (5)

The derivative S and the Fisher Information Matrix I play
crucial roles in determining the asymptotic behaviour of the
estimator, which is essential for establishing the optimality
of the DP RR mechanism.

3.2. Optimal LabelDP mechanism

We establish the optimal LabelDP mechanisms for the RR
binary response models (3) in this subsection. First, we
construct the feasible regions of RR parameters (p00, p11)
under LabelDP constraints in Definition 3.1 inspired by
(Holohan et al., 2017). Figure 1 illustrates the corresponding
feasible regions.

Definition 3.1. An RR mechanism (1) satisfies ε-LabelDP
if (p00, p11) ∈ R ⊂ R2, or satisfies (ε, δ)-LabelDP if
(p00, p11) ∈ R′ ⊂ R2, where R and R′ are the LabelDP

P00 = eε(1 − P11)

P11 = eε(1 − P00)

(
eε

eε + 1
,

eε

eε + 1
)

0

0.5

1

0 0.5 1
P00

P
11

P00 = eε(1 − P11) + δ

P11 = eε(1 − P00) + δ

(δ, 1)

(1, δ)

(
eε + δ

eε + 1
,
eε + δ

eε + 1
)

0

0.5

1

0 0.5 1
P00

P
11

Figure 1. Feasible regions of the RR mechanisms. Top panel: ε-
LabelDP; Bottom panel: (ε, δ)-LabelDP.

feasible regions for RR parameters (p00, p11), defined as:

R =



p00, p11 ≤ 1,

p00 + p11 > 1,

p00 ≤ eε(1− p11),

p11 ≤ eε(1− p00)


, R′ =



p00, p11 ≤ 1,

p00 + p11 > 1,

p00 ≤ eε(1− p11) + δ,

p11 ≤ eε(1− p00) + δ


.

In general, a default assumption is that the RR mechanism
tends to favor the true value, that is, p00, p11 > 0.5 (Wang,
2015). Setting p00, p11 > 0.5 implies that the RR mecha-
nism is more likely to generate a true answer. This assump-
tion is crucial for the statistical analysis of Model (3), as the
RR mechanism’s tendency to lean towards the truth enables
more meaningful insights.

Next, we develop our optimal LabelDP mechanisms for the
RR binary response model. To achieve our goal, we borrow
the concepts from the design of experiments and consider
the T -optimality criterion (Pukelsheim, 2006; Dette et al.,
2012), which maximizes the trace of the Fisher Information
Matrix M(β; p00, p11) = tr[I(β; p00, p11)], restricted to
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the LabelDP feasible regions R and R′,

(p̂00, p̂11) = argmax
(p00,p11)∈R or R′

M (β; p00, p11) . (6)

It is important to note that while both T -optimality and D-
optimality aim at maximizing information, D-optimality
involves maximizing the determinant of the Fisher Infor-
mation Matrix, which is computationally challenging and
more complex due to the involvement of determinant calcu-
lations, especially for high-dimensional parameter spaces.
However, T -optimality is computationally simpler, making
it significantly easier to implement in practical scenarios
without sacrificing the quality of inference. Moreover, in
many cases, the two criteria are equivalent or closely re-
lated, and maximizing the trace often provides a satisfactory
approximation to maximizing the determinant.
Remark 3.2. In detail, our T -optimality criterion is equiv-
alent in asymptotic efficiency but far more practical. The
trace decomposes into a sum of variances (diagonal ele-
ments), reducing the problem to scalar optimization (Lemma
4.2). This allows closed-form solutions for (p00, p11) on
the boundary of R (Theorems 4.1 and 4.7). The trace di-
rectly corresponds to minimizing the average variance of β̂,
which aligns with our goal of precise estimation. Both cri-
teria yield consistent estimators, but T -optimality achieves
this with O(d) complexity versus O

(
d3
)

for D-optimality
due to determinant calculations, where d is the number of
covariates.
Remark 3.3. Awan & Slavkovic (2019) optimized the RR
mechanisms solely for the binary response Y by minimiz-
ing Var(

∑̂
Y ), where

∑
Y is the sample sum, which is a

complete sufficient statistic for the binomial model in their
paper, without considering covariate information X . while
our Fisher information maximization I(β; p00, p11) explic-
itly incorporates covariate X through the model (3). Our
novel method explicitly leverages the covariate structure,
enhancing the estimation efficiency when covariates are
present.

The estimators (p̂00, p̂11) do not depend on β based on
the specific formulation of M(β; p00, p11). This indepen-
dence arises because M(β; p00, p11) is designed to iso-
late p00 and p11 from the influence of β on ∂G(ηi)/∂ηi.
Therefore, in practical applications, the initial step is to use
M(β; p00, p11) to obtain the optimal estimators of p00 and
p11. Once these values are estimated, we then plug them
into (4) to obtain β̂. The estimated β̂ is optimal in the sense
that it maximizes the trace of the Fisher Information Matrix
I (β; p00, p11).

4. Theoretical results
In this section, we start by establishing the theoretical guar-
antees for two LabelDP mechanisms, followed by the con-

struction of the privatized confidence interval for our pro-
posed methods. We begin with the theoretical guarantees for
ε-LabelDP and then extend our focus to (ε, δ)-LabelDP. Fur-
thermore, we explore the statistical inference of β̂ based on
Model (3). To support our theoretical results, we introduce
several technical assumptions necessary for the proofs.

Assumption 4.1. M (β; p00, p11) is twice continuously dif-
ferentiable with respect to p00 and p11.

Assumption 4.2. Suppose that p00 + p11 > 1.

Assumption 4.1 is the regular conditions imposed to ensure
the unique and finite maximum in optimization (Boyd &
Vandenberghe, 2004). Assumption 4.2 requires that the RR
parameters satisfy p00+p11 > 1 to ensure the identifiability
of the parameter for the RR binary response model (3) across
the feasible regions.
Remark 4.3. Assumption 4.2 serves multiple purposes by
improving theoretical robustness and optimality. First, it
ensures that the RR mechanism tends to capture the true
response accurately, thereby improving the utility of the pri-
vatized response label data. Second, it restricts the feasible
region for (p00, p11), leading to a well-defined optimization
process and practical solutions for optimal LabelDP RR
mechanisms.

Lemma 4.4. Suppose Assumptions 4.1–4.2 hold.
There exists (p∗00, p

∗
11) such that (p∗00, p

∗
11) ∈

argmax(p00,p11)∈R or R′ M(β; p00, p11), where (p∗00, p
∗
11)

lie on the boundaries of R or R′.

Lemma 4.4 demonstrates that M(β; p00, p11) is convex
and thus confirms the existence of optimal solutions for
the RR parameters in binary response models. The optimal
(p∗00, p

∗
11) attains on the boundaries of the feasible regions R

and R′ by maximizing the function M(β; p00, p11). Under
Lemma 4.4, we will proceed to establish the optimal RR
mechanisms for ε- and (ε, δ)-LabelDP constraints.

4.1. Optimal mechanism for ε-LabelDP

Theorem 4.5 (ε-LabelDP). Suppose Assumptions 4.1–4.2
hold. Given ε > 0, the ε-LabelDP RR mechanism which
maximizes M(β; p00, p11) is given by the privacy design
matrix

Pε =

(
eε

eε+1
1

eε+1
1

eε+1
eε

eε+1

)
.

It is crucial to point out that the traditional optimal LabelDP
mechanisms, such as those discussed in (Holohan et al.,
2017; Wang et al., 2017), primarily focus on optimizing
privacy based solely on the response variable Y . These
approaches typically aim to minimize the variance of the
estimator related to Y , without incorporating the additional
information provided by covariates. In contrast, while our
results are similar to Theorem 2 from (Holohan et al., 2017)
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when establishing an optimal mechanism for ε-LabelDP, our
method starts by optimizing the RR binary response model
itself, specifically by maximizing the trace of the Fisher
Information Matrix. This optimization inherently incorpo-
rates covariates (X), which are essential for enhancing the
statistical efficiency and accuracy of the estimates in the
binary response model, which is a significant advantage that
traditional LabelDP methods do not provide.

4.2. Optimal mechanism for (ε, δ)-LabelDP

The (ε, δ)-LabelDP is a relaxation of ε-LabelDP when δ >

0. In this section, we utilize the following parameterization
to explore the optimal (ε, δ)-LabelDP RR mechanism. We
first parametrize p11 = eε(1−p00)+δ in R′ as p00 = rδ(t)

and p11 = sδ(t), where

rδ(t) =
(
1 + e−εδ

)
(1− t) +

eε + δ

eε + 1
t, and sδ(t) =

eε + δ

eε + 1
t,

for t ∈ (0, 1]. By the symmetry of p00 and p11 based on the
form of p00 = eε (1− p11) + δ, we can then parameterize
the line p00 = eε(1 − p11) + δ in R′ as p00 = sδ(t) and
p11 = rδ(t). We start with the following lemma:

Lemma 4.6. Suppose Assumptions 4.1–4.2 hold. For any
δ > 0 and constants l ≤ u, with l, u ∈ (0, 1], it follows that

arg max
t∈[l,u]

M(β; rδ(t), sδ(t)) ⊆ {l, u}.

Lemma 4.6 presents that the optimal solution of (p00, p11)
exists under (ε, δ)-LabelDP constraint, which enables us to
establish the corresponding optimal LabelDP RR mecha-
nism in Theorem 4.7.

Theorem 4.7 ((ε, δ)-LabelDP). Suppose Assumptions 4.1–
4.2 hold. Given ε > 0 and δ ∈ (0, 1), the (ε, δ)-LabelDP
RR mechanisms which maximizes M(β; p00, p11) are de-
scribed as follows:

(i) If M(β; eε+δ
eε+1 ,

eε+δ
eε+1 ) ≥ M(β; 1, δ) and

M(β; eε+δ
eε+1 ,

eε+δ
eε+1 ) ≥ M(β; δ, 1), then the pri-

vacy design matrix is Pε,δ =

(
eε+δ
eε+1

1−δ
eε+1

1−δ
eε+1

eε+δ
eε+1

)
.

(ii) If M(β; 1, δ) ≥ M(β; eε+δ
eε+1 ,

eε+δ
eε+1 ) and

M(β; 1, δ) ≥ M(β; δ, 1), then the privacy de-

sign matrix is Pε,δ =

(
1 0

1− δ δ

)
.

(iii) If M(β; δ, 1) ≥ M(β; eε+δ
eε+1 ,

eε+δ
eε+1 ) and

M(β; δ, 1) ≥ M(β; 1, δ), then the privacy de-

sign matrix is Pε,δ =

(
δ 1− δ
0 1

)
.

In Theorem 4.7, the optimal (ε, δ)-LabelDP privacy de-
sign matrix is determined through three steps in a real-
world application. First, we plug in the sets of values
(p00, p11) = (1, δ), (δ, 1), and ( e

ε+δ
eε+1 ,

eε+δ
eε+1 ) into formula

(4). These inputs allow us to estimate the corresponding
values of the parameter β∗ for each case. Once β̂ is esti-
mated, we then calculate the value of M(β̂; p00, p11) for
each of these sets of probability pairs. The final step in-
volves comparing these calculated values of M(β̂; p00, p11)
to determine which set of p00 and p11 provides the optimal
outcome.

It is important to highlight that the above procedure does
not require direct access to private data for selecting matri-
ces. Instead, it relies on theoretical estimates and compar-
isons based on predetermined probability pairs (p00, p11)
within the LabelDP framework, thereby preserving privacy
throughout the selection process. Theorem 4.7 constructs
the optimal estimator of the true β∗ while safeguarding
(ε, δ)-LabelDP guarantee in binary response models in the
same spirit as Theorem 4.5. Consequently, our mechanisms
enable investigators to release sensitive response label data
with higher statistical accuracy.

4.3. Inference with privacy

Private statistical inference is important as well as estima-
tion. In this section, we provide the construction of the
privacy-preserving confidence interval (CI) for each coef-
ficient β∗j under ε- and (ε, δ)-LabelDP mechanisms. The
following additional assumptions are imposed to facilitate
the technical proof of asymptotic normality for MLE.

Assumption 4.8. The true parameter β∗ must be identifi-
able. The log likelihood function ln(β∗) is convex and can
be differentiated twice continuously over β∗ ∈ Θ.

Assumption 4.9. The information matrix I(β∗) is positive
definite at β∗.

Assumptions 4.8 and 4.9 are standard in asymptotic infer-
ence. Assumption 4.8 (on convexity and smoothness of
the log-likelihood) holds in most binary regression settings,
and Assumption 4.9 (positive definiteness of the Fisher In-
formation Matrix) ensures model identifiability, a common
condition in GLMs. While asymptotic results assume large
samples, these assumptions often hold well in practice, even
with moderate sample sizes–as supported by our real data
analysis.

Theorem 4.10 (Asymptotic Normality). Suppose Assump-
tions 4.2 and 4.8–4.9 hold. As n → ∞, β̂ is asymptotically
normally distributed as

√
n(β̂ − β∗)N

(
0, I (β∗)

−1
)
.

The unbiasedness and asymptotic normality in Theorem
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4.10 are crucial for constructing confidence intervals on
each cared coefficient β∗j ,1 ≤ j ≤ d in Model (3) under
the LabelDP constraints.

Beyond point estimation, our framework enables formal
statistical inference with privacy guarantees. Specifically,
Corollary 4.11 establishes the asymptotic valid confidence
intervals of each coefficient β∗j under the ε- and (ε, δ)-
LabelDP mechanisms, containing β∗j with high probability
(e.g., 0.95) as sample size n → ∞.

Corollary 4.11. Suppose the Assumptions in Theorem 4.10
hold. Denote by α the target significant level. For 1 ≤ j ≤
d, the DP (1− α)-confidence interval for β∗j is

CI1−α(β∗j) =
[
β̂j − I−1/2(β̂j)z1−α

2
, β̂j + I−1/2(β̂j)z1−α

2

]
,

where z1−α is the (1 − α)-the quantile of the standard
normal distribution. Moreover, as n → ∞, the nominal
coverage probability of the confidence interval CI1−α(β∗j)
is

lim
n→∞

P
(
β̂j ∈ CI1−α(β∗j)

)
= 1− α.

Corollary 4.11 establishes that our privatized confidence
interval achieves asymptotically valid coverage while main-
taining privacy protection. Although Theorem 4.10 and
Corollary 4.11 are rooted in established likelihood theory,
their application in our context is vital to validate our simu-
lation results, particularly in terms of coverage probability.
In particular, while our results are similar to Theorem 2 of
(Holohan et al., 2017) in establishing an optimal mechanism
for ε-LabelDP, our approach extends beyond by enabling
private statistical inference for RR binary response mod-
els using both ε- and (ε, δ)-LabelDP mechanisms. This
represents a significant advantage over traditional optimal
LabelDP methods (Holohan et al., 2017; Wang et al., 2017),
which typically do not support such a direct and effective
approach to private statistical inference.

5. Simulation studies
In this section, we conduct extensive numerical experiments
to evaluate the finite sample performance of the proposed
mechanism with several competing methods when fitting
RR binary response.

5.1. Settings

We consider several benchmarks for comparison with our
proposed methods.
NP. Non-DP RR binary response (Fox et al., 2018), which
estimates β∗ without any privacy consideration.
RRbR. Apply the traditional DP RR mechanism (Holohan
et al., 2017) solely to the response variable, then fit a binary

response model with this privatized response. The confi-
dence intervals for RRbR are built by fitting the same binary
response model as our method, but using responses priva-
tized by the traditional RR mechanism. Standard asymptotic
techniques are then applied to construct the intervals. How-
ever, this ignores the extra bias and variability introduced
by randomization and fails to use covariate information to
correct for these effects.
ORRbR. Optimal LabelDP RR binary response models (the
proposed methods).
We set d = 4, sample size n = 105 and fix β∗ =
(1, 0.25, 0, 0.5)⊤. Two covariate structures are considered.
Scenario I (Independence structure). The covariate X =
(x1, x2, x3, x4)

⊤ is i.i.d. generated with the intercept x1 =
1, x2 ∼ N(0, 1), x3 ∼ N(0, 1.52), and x4 ∼ N(0, 0.52).
Scenario II (Dependence structure). The covariate X =
(x1, x2, x3, x4)

⊤ is i.i.d. generated with the intercept x1 =
1, and (x2, x3, x4) ∼ N(0,Σ) with an autoregressive de-
pendence structure (Σ)jl = 0.5|j−l|, 2 ≤ j, l ≤ d.
In each scenario, two link functions are considered, includ-
ing Logistic regression G(β⊤

∗ Xi) = exp(β⊤
∗ Xi)/{1 +

exp
(
β⊤
∗ Xi

)
} and Probit regression G(β⊤

∗ Xi) =
Φ(β⊤

∗ Xi). We set the nominal significant level α = 0.05.
We study both the ε-DP (δ = 0) and (ε, δ)-DP (δ = 10−5).
All simulation results are based on B = 500 indepen-
dent replications, and β̂(b) is the estimator obtained from
the b-th replication. The performance of the proposed
methods is evaluated along with the above benchmarks
through comparisons of estimation (mean squared error,
MSE(β∗) = B−1

∑B
b=1 ∥β̂(b) −β∗∥2), privacy (ε, δ), and

inference (coverage probability of 1-α confidence interval).

5.2. Results

Figures 2–5 present the empirical MSE of β̂ and the cover-
age probability of an approximate 95% confidence interval
for β∗ for Scenarios I–II against different privacy parame-
ters under ε- and (ε, δ)-LabelDP constraints, respectively.
Specifically, the top subfigures in each of these figures cor-
respond to δ = 0, while the bottom ones correspond to
δ = 10−5. In Figures 2 and 4, the y-axis shows the log-
arithm of Mean Squared Error (MSE), and in Figures 3
and 5, it shows the empirical average coverage probability
(CP) for an approximate 95% confidence interval of the true
parameter β∗, with the x-axis representing the privacy pa-
rameter ε in all cases. The chosen privacy budget values ε
are {0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.5, 0.7, 1}, which are
not evenly spaced or set according to a log scale. Instead,
these values were deliberately selected in an irregular and
somewhat random manner to extensively test the robustness
of our method across a wide range of privacy constraints.

All figures demonstrate that NP possesses the smallest MSE
and the most accurate coverage probability as expected,
since no privacy is considered. Remarkably, our ORRbR

7



Differentially Private Analysis for Binary Response Models: Optimality, Estimation, and Inference

shows a higher coverage probability when ε is exceedingly
small due to the conservative nature of privacy-preserving
estimators under stringent privacy constraints. Hence, under
tight privacy constraints, the ORRbR method introduces
significant noise to protect privacy. This could lead to overly
conservative estimates, resulting in an increase in coverage
probability compared to the NP method. As the privacy
budget ε increases, all comparing methods sacrifice accuracy
for better privacy protection, consistent with theoretical
analysis. Moreover, our proposed ORRbR outperforms the
RRbR with a smaller MSE and a higher coverage probability
due to the presence of covariate information in ORRbR.

In addition, the performance of our proposed approach has
improved as the privacy parameter ε has increased for both
values of δ. For example, in the top left plot of Figure 2, the
logMSE is approximately 0 for ε = 0.05 and δ = 0, while
it is approximately -15 for ε = 0.7 and δ = 0. Additionally,
analogous results are depicted in the right panels of Figures
4 for Probit regression under Scenario II. Improvements
were observed as ε increased for both ε- and (ε, δ)-LabelDP
constraints. Furthermore, when comparing the panels in
Figures 2 and 4, as well as Figures 3 and 5, we can observe
significant differences between Scenarios I and II, particu-
larly in terms of mean squared error (MSE) and coverage
probability. Scenario II exhibits a larger MSE compared to
Scenario I. Additionally, the coverage probability in Sce-
nario II appears to be less accurate than in Scenario I. These
disparities can be attributed to the underlying structural
differences between the two scenarios.
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Logistic Probit

−15
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−5
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0.05 0.1 0.7 1
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δ
=

1
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0.05 0.1 0.7 1
ε

ORRbR NP RRbR

Figure 2. Empirical logMSE for three methods against different ε
under Scenario I.
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0
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0
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0.95
1

0.05 0.1 0.7 1
ε

δ
=

1
0

−
5

0.05 0.1 0.7 1
ε

ORRbR NP RRbR

Figure 3. Empirical average coverage probability (CP) for three
methods against different ε under Scenario I.

6. Real-data application
In this section, we demonstrate the practical utility of our
proposed method by applying it to a real-world dataset fo-
cused on measuring plagiarism among students, as detailed
in (Jann et al., 2012). This dataset comprises responses from
474 German and Swiss students who were surveyed using
either direct questioning or the crosswise (CW) technique
to estimate the prevalence of plagiarism. For our analysis,
the dataset was divided into two parts: 75% of the data was
used to train the model, while the remaining 25% was re-
served for testing. The covariates in our model include three
key variables: pp (indicating whether the question pertains
to partial or severe plagiarism), RR (denoting whether the
crosswise method or direct questioning was used), and age
(the student’s age). These variables are essential to capture
the nuances of the data and were included in the model to
assess their impact on responses.

We implemented three methods – NP, RRbR, and ORRbR,
as used in our simulation studies – to predict the probabili-
ties of different responses. The performance of these models
was assessed by calculating the MSE between the predicted
probabilities and the actual responses in the test set. The
results presented in Figure 6 highlight the trade-off between
differential privacy and statistical accuracy. Compared to
RRbR, the lower MSE values achieved by the proposed
ORRbR method at various ε levels demonstrate its superior
performance. In particular, as ε increases, the MSE for OR-
RbR decreases even further, highlighting its effectiveness in
balancing privacy and accuracy.
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Figure 4. Empirical logMSE for three methods against different ε
under Scenario II.

7. Conclusion
This paper proposed two RR mechanisms with an opti-
mal design for binary response models under ε- and (ε, δ)-
LabelDP constraints. Theoretical and numerical results
reveal that the proposed optimal LabelDP RR mechanism
successfully outperforms the traditional optimal DP RR
mechanism (Holohan et al., 2017) in terms of estimation,
privacy, and statistical inference when applied to fit a binary
response model with privatized responses. Starting with
parametric models like GLMs is methodologically natural,
as they offer well-defined Fisher Information and their ana-
lytical tractability allows for rigorous theoretical develop-
ment. This mirrors the trajectory of many pioneering works
in DP, which initially focused on basic statistical tasks such
as mean and median estimation, before extending to more
structured models like linear and logistic regression (e.g.,
Kulkarni et al. (2021); Narayanan et al. (2022); Asi et al.
(2022); Alparslan et al. (2023); Kulesza et al. (2023); Brown
et al. (2024)). This balance between privacy protection and
statistical efficiency marks a significant advancement in
private data analysis. Our approach allows researchers to
confidently release sensitive binary response data while im-
proving statistical efficiency with strong privacy guarantees.

We conclude this paper by acknowledging several limita-
tions and suggesting directions for future research. First, our
method can be naturally extended to multiclass outcomes
using the k-RR mechanism. The optimization strategy of
maximizing the trace of the Fisher Information Matrix re-
mains valid for multiclass scenarios, as discussed in Yao
& Wang (2019). Specifically, for k-class responses, the de-
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0.05 0.1 0.7 1
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0.05 0.1 0.7 1
ε

ORRbR NP RRbR

Figure 5. Empirical average coverage probability (CP) for three
methods against different ε under Scenario II.
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Figure 6. Empirical MSE for three methods against different ε
under the real-data application.

sign matrix in Definition 2.2 of our paper becomes a k × k
stochastic matrix, and the optimality criterion would involve
maximizing the Fisher Information’s trace across multiple
response probabilities under LabelDP constraints. This is
an exciting direction that we are actively exploring, and pre-
liminary theoretical analysis indicates promising scalability.
We plan to provide more detailed theoretical developments
and numerical evaluations in future work. Second, extend-
ing our method to other concepts of privacy, such as Rényi
DP (Mironov, 2017) or Gaussian DP (Dong et al., 2022),
remains challenging due to the unclear design of the feasible
region in our equation (3). Lastly, investigating other opti-
mal criteria, such as minimizing label classification errors,
deserves further exploration to enhance the robustness and
applicability of our approach.
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By providing optimal privacy protection while maintaining
statistical accuracy, our method enables more reliable in-
ference in sensitive applications such as medical diagnosis,
online surveys, and secure machine learning. In scenarios
where protecting individual responses is critical, our ap-
proach ensures that privacy guarantees do not come at the
cost of statistical efficiency, allowing researchers and prac-
titioners to draw meaningful conclusions from privatized
data.

Additionally, our framework facilitates the construction of
private confidence intervals, ensuring valid statistical in-
ference under strict privacy constraints. This capability is
particularly valuable for organizations and policymakers
who require both privacy preservation and rigorous statis-
tical validity in their analyses. Extensive empirical evalu-
ations demonstrate that our method outperforms existing
approaches in estimation precision, coverage probability,
and computational efficiency. By striking a balance between
privacy and statistical accuracy, our approach lays a strong
foundation for advancing differentially private statistical
modelling in real-world applications.

References
Alparslan, B., Yıldırım, S., and Birbil, I. Differentially

private distributed bayesian linear regression with mcmc.
In International Conference on Machine Learning, pp.
627–641. PMLR, 2023.

Asi, H., Feldman, V., and Talwar, K. Optimal algorithms
for mean estimation under local differential privacy. In
International Conference on Machine Learning, pp. 1046–
1056. PMLR, 2022.

Asoodeh, S. and Zhang, H. Contraction of locally
differentially private mechanisms. arXiv preprint
arXiv:2210.13386, 2022.

Awan, J. and Slavkovic, A. Differentially private infer-

ence for binomial data. arXiv preprint arXiv:1904.00459,
2019.

Barnes, L. P., Chen, W.-N., and Özgür, A. Fisher infor-
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Appendix

Proof of Lemma 4.3. Firstly, after some calculation on ∂M(β;p00,p11)
∂p00

and ∂2M(β0;p00,p11)
∂p2

00
, we have

∂M (β; p00, p11)

∂p00
=
1

n

n∑
i=1

d∑
j=1

(p00 + p11 − 1) [2pi (1− pi) + (p00 + p11 − 1)(1− 2pi)(1−G (ηi))]

[pi (1− pi)]
2

·
{
∂G (ηi)

∂ηi

}2

X2
ij .

∂2M (β; p00, p11)

∂p200
=
2

n

n∑
i=1

d∑
j=1

{[
pi (1− pi) + (p00 + p11 − 1)(1− 2pi)(1−G (ηi))

]2
+ (p00 + p11 − 1)2pi (1− pi) (1−G (ηi))

2

}
1

[pi (1− pi)]
3

·
{
∂G (ηi)

∂ηi

}2

X2
ij .

Note that ∂2M(β;p00,p11)
∂p2

00
≥ 0 , it is easy to verify that ∂M(β;p00,p11)

∂p00
increases as p00 increases within the region R or

R′. We know that p00 is greater than 1 − p11 under Assumption 4.2. Since ∂M(β;1−p11,p11)
∂p00

= 0, we can deduce that
∂M(β;p00,p11)

∂p00
> 0 when p00 > 1− p11. It follows that M (β; p00, p11) increases as p00 increases.

Secondly, after performing some calculations, we have

∂M (β; p00, p11)

∂p11
=
1

n

n∑
i=1

d∑
j=1

(p00 + p11 − 1) [2pi (1− pi)− (p00 + p11 − 1)(1− 2pi)G (ηi)]

[pi (1− pi)]
2

·
{
∂G (ηi)

∂ηi

}2

X2
ij ,

∂2M (β; p00, p11)

∂p211
=
2

n

n∑
i=1

d∑
j=1

{[
pi (1− pi)− (p00 + p11 − 1)(1− 2pi)G (ηi)

]2
+ (p00 + p11 − 1)2pi (1− pi)G

2
i

}
1

[pi (1− pi)]
3

{
∂G (ηi)

∂ηi

}2

X2
ij .

Similar to the reasoning above, we verify that M (β; p00, p11) is also an increasing function as p11 increases since
∂M(β;p00,p11)

∂p11
> 0 when p11 > 1− p00. Thus, the maximum of M(β; p00, p11) for (p00, p11) is attained on the boundaries

of the feasible regions R or R′. □

Proof of Theorem 4.4. Lemma 4.3 shows that the optimal mechanism occurs when the parameters (p00, p11) are on the
boundaries of R. Accordingly, at least one of the inequalities p11 ≤ eε (1− p00) and p00 ≤ eε (1− p11) must be tight (i.e.,
either p11 = eε (1− p00) or p00 = eε (1− p11)), which can be listed as the following cases.

Case 1. Suppose p11 ≤ eε (1− p00) holds. It implies that p11 = eε (1− p00) with the constraint that p11 is non-negative
and p00 ≤ eε (1− p11). For t ∈ (0, 1], we parameterize the line p11 = eε (1− p00) as p00 = r(t) and p11 = s(t) with the
condition p00 + p11 > 1

r(t) = (1− t) +
eε

1 + eε
t = 1− e−εs(t),

s(t) =
eε

1 + eε
t.

(A.1)

See the proof of Theorem 2 in (Holohan et al., 2017) for details of the parameterization. After substituting p00 = r(t) and

13
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p11 = s(t) into M(β; p00, p11), we have

M (β; r(t), s(t)) =
1

n

n∑
i=1

d∑
j=1

t(eε − 1)2

{eε + 1− t [1 + (eε − 1)G (ηi)]} [1 + (eε − 1)G (ηi)]

·
{
∂G (ηi)

∂ηi

}2

X2
ij ,

∂M (β; r(t), s(t))

∂t
=
1

n

n∑
i=1

d∑
j=1

(eε − 1)2 (eε + 1) [1 + (eε − 1)G (ηi)]

{eε + 1− t [1 + (eε − 1)G (ηi)]}2 [1 + (eε − 1)G (ηi)]
2

·
{
∂G (ηi)

∂ηi

}2

X2
ij .

Given eε > 1, we have ∂M(β;r(t),s(t))
∂t > 0, which implies that the maximum value of t maximizing M (β; r(t), s(t)) lies

in the interval (0, 1] and is equal to 1, i.e., pε00 = pε11 = 1/(eε + 1). Therefore, we conclude that the privacy design matrix
for the ε-LabelDP RR mechanism while maximizing M (β; p00, p11) is

Pε =

(
pε00 1− pε00

1− pε11 pε11

)
=

(
eε

eε+1
1

eε+1
1

eε+1
eε

eε+1

)
.

Case 2. Let p00 ≤ eε (1− p11) tight that means p00 = eε (1− p11), constrained by p00 ≥ 0 and p11 ≤ eε (1− p00). By
symmetry of the equations p00 ≤ eε (1− p11) and p11 ≤ eε (1− p00), we define p00 = s(t) and p11 = r(t). By the similar
proof of Case 1, we obtain the same privacy design matrix as shown in Case 1. □

Proof of Lemma 4.5. As the Proof of Theorem 4.4, we parameterize the line p11 = eϵ (1− p00) + δ of the region R′ as
p00 = rδ(t) and p11 = sδ(t) :

rδ(t) =
(
1 + e−ϵδ

)
(1− t) +

eϵ + δ

eϵ + 1
t, (A.2)

sδ(t) =
eϵ + δ

eϵ + 1
t, (A.3)

for t ∈ (0, 1]. By symmetry, we can parameterize the line p00 = eϵ (1− p11) + δ of the region R′ as p00 = sδ(t) and
p11 = rδ(t). Hence, in the following, we only need to prove the result for the case that p00 = rδ(t) and p11 = sδ(t). By
plugging (A.2) and (A.3) into M (β; p00, p11), we have

M (β; rδ(t), sδ(t)) =
1

n

n∑
i=1

d∑
j=1

[t (eε − 1) (1 + e−εδ) + δ + e−εδ]
2

{t (1 + e−εδ) [1 + (eε − 1)G (ηi)]− (δ + e−εδ) (1−G (ηi))}

· 1

{(eε + 1) [1 + e−εδ (1−G (ηi))]− t (1 + e−εδ) [1 + (eε − 1)G (ηi)]}

·
{
∂G (ηi)

∂ηi

}2

X2
ij .

Denote

A(t) = t (eε − 1)
(
1 + e−εδ

)
+ δ + e−εδ,

Bi(t) = t
(
1 + e−εδ

)
[1 + (eε − 1)G (ηi)]−

(
δ + e−εδ

)
(1−G (ηi)) ,

Ci(t) = (eε + 1)
[
1 + e−εδ (1−G (ηi))

]
− t
(
1 + e−εδ

)
[1 + (eε − 1)G (ηi)] .

14
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Hence, we rewrite M (β; rδ(t), sδ(t)) =
1
n

∑n
i=1

∑d
j=1

A2(t)
Bi(t)Ci(t)

{
∂G(ηi)
∂ηi

}2

X2
ij . And thus we have

∂M (β; rδ(t), sδ(t))

∂t
=
1

n

n∑
i=1

d∑
j=1

{
2A(t)Bi(t)Ci(t) (e

ε − 1) (1 + e−εδ)

B2
i (t)C

2
i (t)

− A2(t) [eε + 1− 2Bi(t)] (1 + e−εδ) [1 + (eε − 1)G (ηi)]

B2
i (t)C

2
i (t)

}
·
{
∂G (ηi)

∂ηi

}2

X2
ij ,

∂2M (β; rδ(t), sδ(t))

∂t2
=
1

n

n∑
i=1

d∑
j=1

{
2Bi(t)Ci(t) (1 + e−εδ)

B4
i (t)C

4
i (t)

·

{
(eε − 1)Bi(t)Ci(t)−A(t) [eε + 1− 2Bi(t)] [1 + (eε − 1)G (ηi)]

}2

B4
i (t)C

4
i (t)

+
2A2(t)B2

i (t)C
2
i (t) (1 + e−εδ)

2
[1 + (eε − 1)G (ηi)]

2

B4
i (t)C

4
i (t)

}

·
{
∂G (ηi)

∂ηi

}2

X2
ij .

Note that δ > 0 and eε > 1, we have ∂2M(β;rδ(t),sδ(t))
∂t2 ≥ 0. Then,

argmax
t∈[l,u]

M (β; rδ(t), sδ(t)) ⊆ {l, u},

which means that the maximal M (β; rδ(t), sδ(t)) on t ∈ [l, u] will occur at one of its extreme points l or u. □

Proof of Theorem 4.6. By Lemma 4.5, we can see that an extreme point of p00 = eε (1− p11) + δ is located at
t = 1, that pε,δ00 = pε,δ11 = rδ(1) = sδ(1) =

eε+δ
eε+1 . Also, another extreme point can be found at t0(ε, δ) =

δ(eε+1)
eε+δ , that,

pε,δ00 = rδ(t0) = 1 and pε,δ11 = sδ(t0) = δ. Therefore, we obtain

argmax
t∈[t0,1]

M (β; rδ(t), sδ(t)) ⊆ {t0, 1}.

Next, we aim to determine the sign of M (β; rδ(t0), sδ(t0)) − M (β; rδ(1), sδ(1)). If M (β; rδ(t0), sδ(t0)) −
M (β; rδ(1), sδ(1)) > 0, then the optimal privacy design matrix is

Pε,δ =

(
1 0

1− δ δ

)
,

else the optimal privacy design matrix is

Pε,δ =

(
eε+δ
eε+1

1−δ
eε+1

1−δ
eε+1

eε+δ
eε+1

)
.

Similarly, if we set p11 = eε (1− p00) + δ to be tight, and parameterize p11 = rδ(t) and p00 = sδ(t). Then if
M (β; sδ(t0), rδ(t0))−M (β; sδ(1), rδ(1)) > 0, then the optimal privacy design matrix is

Pε,δ =

(
δ 1− δ
0 1

)
,

else the optimal privacy design matrix is

Pε,δ =

(
eε+δ
eε+1

1−δ
eε+1

1−δ
eε+1

eε+δ
eε+1

)
,

and accordingly, we claim the assertion. □
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